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Abstract

Reasoning over temporal and numerical data,
such as time series, is a crucial aspect of fact-
checking. While many systems have recently
been developed to handle this form of evidence,
their evaluation remains limited by existing
datasets, which often lack structured evidence,
provide insufficient justifications for verdicts,
or rely on synthetic claims. In this paper, we
introduce TSVER, a new benchmark dataset
for fact verification focusing on temporal and
numerical reasoning with time-series evidence.
TSVER contains 287 real-world claims sourced
from 38 fact-checking organizations and a cu-
rated database of 400 time series covering di-
verse domains. Each claim is annotated with
time frames across all pertinent time series,
along with a verdict and justifications reflecting
how the evidence is used to reach the verdict.
Using an LLM-assisted multi-step annotation
process, we improve the quality of our annota-
tions and achieve an inter-annotator agreement
of κ = 0.745 on verdicts. We also develop
a baseline for verifying claims against time-
series evidence and show that even the state-of-
the-art reasoning models like Gemini-2.5-Pro
are challenged by time series, achieving a 63.37
accuracy score on verdicts and an Ev2R score
of 48.63 on verdict justifications.

1 Introduction

With the growing use of social media and genera-
tive AI, there has been an unprecedented increase
in the amount of inaccurate and misleading infor-
mation (Adams et al., 2023; Arnold, 2020). In
response, automated fact-checking systems have
advanced substantially with the application of new
large language models (LLMs) and the develop-
ment of comprehensive datasets (Vykopal et al.,
2024). These systems have shown promising re-
sults in identifying and verifying claims across di-
verse domains and languages (Strong et al., 2024).
However, they continue to face challenges when

Figure 1: Example claim from TSVer. Our dataset
includes real-world claims paired with historical time-
series evidence. All claims are annotated with time
ranges (blue boxes), verdicts, and justifications empha-
sizing numerical and temporal reasoning.

assessing claims that rely on external evidence
(Fontana et al., 2025) or when evaluating claims
requires deeper reasoning beyond surface-level tex-
tual cues (Choi and Ferrara, 2023; Dziri et al.,
2023).

One of the areas where the reasoning limita-
tions of LLMs are particularly prominent is numer-
ical and temporal reasoning (Akhtar et al., 2023a;
Bubeck et al., 2023). This is particularly problem-
atic in the context of fact-checking, where numeri-
cal and temporal expressions are prevalent. Studies
have shown that over one-third of check-worthy
claims involve numerical data (V et al., 2024; Has-
san et al., 2017), and many claims demand complex
numerical reasoning to be properly evaluated (Aly
et al., 2021). Furthermore, as facts can evolve and
change over time, fact-checking systems must be

29895



capable of accurately interpreting and reasoning
over temporal aspects of both claims and support-
ing evidence (Allein et al., 2023, 2020). Therefore,
it is increasingly important to effectively evalu-
ate these capabilities and ensure that fact-checking
systems can reliably reason over numerical and
temporal data.

In this work, we introduce a new benchmark
for evaluating fact verification systems using time-
series evidence. Time series is a modality shown to
be challenging for language models (Merrill et al.,
2024; Fons et al., 2024) and is frequently used by
human fact-checkers for fact verification (Akhtar
et al., 2023b; Alam et al., 2021). To address
this gap, we present TSVER—the first benchmark
dataset for explainable fact verification grounded
in time-series evidence. TSVER pairs real-world
claims with historical time-series evidence sourced
from fact-checking organizations and includes tex-
tual justifications for verdicts, allowing for the eval-
uation of reasoning about evidence.

To construct TSVER, we collected 287 claims
from 38 fact-checking organizations, focusing on
those involving numerical and temporal expres-
sions resolvable via time series data. These claims
were then aligned with our curated database of 400
time series, extracted from Our World in Data1.
We avoided claims solvable by simple look-ups or
simple arithmetic operations (common in numeri-
cal datasets (Lu et al., 2023)) and instead targeted
claims requiring reasoning across multiple coun-
tries, time series, and claims containing temporal
and numerical ambiguities. While time series can
be seen as tabular data, their temporal structure and
scale add complexity. Compared to prior datasets,
TSVER features much larger time series, averag-
ing around 20,000 records per instance, with some
over 217,000 records, posing new challenges for
fact verification on high-volume, real-world data.

Figure 1 illustrates an example claim from TSVer
with annotations for the evidence, verdict, and jus-
tification. To fact-check this claim, a system must
identify the relevant time series from our dataset
(i.e., Greenhouse Gas Emissions, Gross Domestic
Product (GDP), and Annual GDP Growth), deter-
mine the relevant time frames (i.e., 1990–2020),
reason over all data points within these time frames
for relevant countries (i.e., the United Kingdom),
and generate a verdict accompanied by a justifica-
tion. Identifying relevant time frames is particu-

1https://ourworldindata.org/

larly challenging in our benchmark, as selecting
different date ranges often leads to different ver-
dicts. Politicians frequently exploit this by choos-
ing selective dates to support their claims, a prac-
tice known as cherry-picking (Asudeh et al., 2020).
Additionally, a time series may contain both sup-
porting and contradicting periods. For example,
while the Gemini-2.5 Pro reasoning model cor-
rectly selects 1990 as the starting year (a common
baseline for climate-related claims), it uses the pe-
riod 1990–2019 rather than 1990–2020 to provide
supporting evidence. This contradicts the reason-
ing of our annotators and the original fact-checking
article, which notes that Boris Johnson, who made
the claim in 2021, relied on outdated figures that
ignore the extraordinary impact of the COVID-19
pandemic.

We also propose a fact-checking pipeline as a
baseline to demonstrate the feasibility of the task
and to benchmark the performance of the state-
of-the-art open-weight and proprietary language
models. The gemini-2.5-pro-preview-03-25 reason-
ing model (Anil et al., 2023), currently ranked first
on ChatBot Arena (Chiang et al., 2024), achieves
an accuracy of 63.37 on verdict prediction. Addi-
tionally, to evaluate models’ reasoning in compari-
son to human annotators, we use the Ev2R scorer
(Akhtar et al., 2024), originally developed for evi-
dence retrieval, and demonstrate its effectiveness
in this new context. Furthermore, to specifically
evaluate evidence retrieval performance with time
series data, we introduce a novel metric—TSCS,
which jointly measures the accuracy of both time
series selection and temporal coverage.

Our dataset is available under a CC-BY-NC-4.0
license at https://github.com/marekstrong/
TSVer.

2 Related Work

We summarize key characteristics of existing fact
verification datasets in Table 1. In the following ,
we compare these datasets to TSVER along three
key dimensions: evidence modalities, numerical
and temporal focus, and the inclusion of human-
written justifications.

Evidence Modalities Early fact-checking
datasets, such as FEVER (Thorne et al., 2018),
primarily relied on textual evidence to support or
refute claims. However, as a substantial portion
of factual information is embedded in structured
sources (e.g., tables, knowledge bases, time series),
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Dataset Domain #Labels Real-world
Claims

Numerical
Focus

Temporal
Focus

Evidence
Modality Justifications

FEVER (Thorne et al., 2018) Multi 3 ✗ ✗ ✗ Text ✗

TabFact (Chen et al., 2019) Multi 2 ✗ ✓ ✗ Tables ✗

FEVEROUS (Aly et al., 2021) Multi 3 ✗ ✗ ✗ Text + Tables ✗

AVERITEC (Schlichtkrull et al., 2023) Multi 4 ✓ ✗ ✗ Text ✓

SciTab (Lu et al., 2023) Science 3 ✓ ✓ ✗ Tables ✗

Liar++ (Russo et al., 2023) Politics 2 ✓ ✗ ✗ Text ✓

T-FEVER (Barik et al., 2024b) Multi 3 ✗ ✗ ✓ Text ✗

T-FEVEROUS (Barik et al., 2024b) Multi 3 ✗ ✗ ✓ Text + Tables ✗

ChronoClaims (Barik et al., 2024a) Multi 3 ✗ ✗ ✓ Text ✗

QuanTemp (V et al., 2024) Multi 3 ✓ ✓ ✓ Text ✓

FinDVer (Zhao et al., 2024) Finance 2 ✗ ✓ ✗ Text + Tables ✓

TSVer Multi 4 ✓ ✓ ✓ Time Series ✓

Table 1: Comparison of TSVer with other fact-checking datasets.

subsequent datasets have expanded to include
these modalities as well. FEVEROUS (Aly et al.,
2021) extends the FEVER framework by pairing
synthetic claims with both textual and tabular
evidence. FinDVer (Zhao et al., 2024) focuses
on tabular data extracted from financial reports,
linking it to relevant claims. SciTab (Lu et al.,
2023) compiles real-world claims from scientific
literature and supports them with tabular evidence.
Compared to the previous datasets, TSVER

introduces time series as the primary source of
evidence.

Numerical and Temporal Focus Since numeri-
cal and temporal expressions are common in fact-
checking, recent datasets increasingly focus on
these aspects. Several benchmarks target numeri-
cal reasoning with structured data: TabFact (Chen
et al., 2019) verifies crowd-sourced claims against
Wikipedia tables, while SciTab (Lu et al., 2023)
uses scientific tables to assess compositional rea-
soning. Domain-specific datasets like FinDVer (fi-
nance) (Zhao et al., 2024) combine text and tables
with an emphasis on numerical calculations. In
open-domain fact-checking, QuanTemp (V et al.,
2024) introduces real-world claims involving nu-
merical comparisons and trends, explicitly incorpo-
rating temporal reasoning. It is the only existing
dataset that targets both numerical and temporal
expressions, and since its claims are also sourced
from fact-checking websites, it is the closest to
our work. While QuanTemp includes justifications,
they are unstructured and exclusively textual. In
contrast, TSVER provides high-quality, structured
justifications for time-series data, including anno-
tations that explain how specific time frames sup-
port a claim. Moreover, time series are central in

TSVER, whereas it is only one of several claim
categories in QuanTemp. Other temporal datasets
such as T-FEVER / T-FEVEROUS (Barik et al.,
2024b), and ChronoClaims (Barik et al., 2024a) fo-
cus more narrowly on date-sensitive or chronologi-
cal assertions, often using synthetic augmentation
or curated timelines.

Justifications Justifying claim verification deci-
sions is a critical component of journalistic fact-
checking, reflecting the broader need for trans-
parency and accountability in the verification pro-
cess (Guo et al., 2022; Kotonya and Toni, 2020).
Warren et al. (2025) recently argued that the in-
herent complexity of fact-checking requires auto-
mated systems to offer justifications that allow fact-
checkers to critically evaluate their results. Unfor-
tunately, most of the aforementioned datasets do
not provide such rationale. A few recent datasets
aim to address this gap: AVeriTeC (Schlichtkrull
et al., 2023) adds textual explanations synthesiz-
ing evidence, LIAR++ (Russo et al., 2023) includes
journalist-written justifications, and FinDVer (Zhao
et al., 2024) provides expert-annotated step-by-step
reasoning.

To the best of our knowledge, TSVER is the only
dataset that provides complex structured evidence,
focuses on both numerical and temporal claims,
and provides justifications for claims’ verdicts as
well as retrieved evidence. A detailed compari-
son of TSVER with existing fact-checking datasets
across these dimensions is presented in Table 1.

3 Annotation Process

This chapter describes the construction of the
TSVER dataset, detailing the end-to-end pipeline
from claim extraction to evidence alignment and
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Figure 2: TSVer data collection pipeline.

annotation. An overview of the entire process is
illustrated in Figure 2.

3.1 Claim Extraction and Post-Processing

To construct our dataset, we began by collecting
an initial pool of around 6 thousand claims using
The Google FactCheck Claim Search API2, which
aggregates content from the ClaimReview project3.
We then applied a filtering pipeline to identify
claims likely to require reasoning over temporal
and numerical data. Specifically, we used Heidel-
Time (Strötgen and Gertz, 2010) to detect the pres-
ence of temporal expressions and spaCy (Honnibal
et al., 2020) to extract numerical expressions from
the claim texts. Each retained claim was linked to
its corresponding fact-checking article and associ-
ated metadata, including the publisher, claimant,
and claim date, as provided by the API.

We then post-processed the extracted claims in
three steps. First, we manually reviewed cases with
missing claim dates and inferred the dates from the
accompanying articles. Second, for claims that did
not mention any country, we added annotations in
square brackets where appropriate (e.g., the anno-
tation ’[the UK]’ as shown in Figure 1). Lastly,
we provided an additional annotation for all coun-
tries mentioned in the corresponding fact-checking
article. For this step, we prompted the Llama-3.1-
8B model (Dubey et al., 2024) to identify country
names within the raw HTML of each article.

3.2 Time-Series Extraction

As the source of our time series data, we selected
Our World in Data (OWID)4, a non-profit online
publication that compiles and curates open-access
datasets on global issues such as population, health,

2https://toolbox.google.com/factcheck/apis
3https://www.claimreviewproject.com/
4https://ourworldindata.org/

economic development, environment, and gover-
nance. OWID’s focus on socially and politically rel-
evant topics aligns well with the kinds of subjects
that are frequently addressed in professional fact-
checking. Moreover, OWID is a useful source as
it integrates data from a variety of original sources
and applies consistent post-processing steps, in-
cluding the standardization of country names and
regional groupings, unit normalization, and compu-
tation of derived indicators (e.g., per capita values).

To constrain the complexity of the dataset and
simplify alignment with claims, we restricted our
scope to time series reported at an annual resolution.
However, we also included data sources for which
meaningful annual aggregates could be computed
from higher-frequency data. In total, we selected
400 time series spanning a wide range of domains.
The largest time series in our dataset in terms of
the number of records is "Annual Average Surface
Temperature," containing 217,899 datapoints. One
of the longest in temporal coverage is "Population
Density," which extends back to 10,000BC. Many
other time series extend back to around 1850, with
1950 being the most common starting year.

Each time series was paired with metadata pro-
vided by OWID, including its title, description (in-
cluding associated notes), and units. Examples of
this metadata can be found in Appendix D.

3.3 Claim-Evidence Pre-Alignment

Aligning collected claims with relevant time-series
evidence presents some major challenges; in many
cases, identifying the correct time series can be
as difficult as verifying the claim itself. Time-
series data often include semantically related but
distinct indicators (e.g., "Cumulative CO2 Emis-
sions", "Per-capita CO2 Emissions", and "CO2

Emissions"), and for some indicators, data may be
available from multiple sources (e.g., "ILO Unem-
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ployment Rate" vs. "IMF Unemployment Rate").
Furthermore, most claims require alignment with
multiple time series to be adequately verified (see
Figure 1).

Given this complexity, we opted to leave the fi-
nal alignment of claims with evidence to human
annotators (see Section 3.4). However, to reduce
annotation effort and ensure consistency, we in-
troduced a pre-alignment step. Specifically, we
grouped time series into semantic categories using
the OWID taxonomy and matched claims to these
groups using keyword-based heuristics. For exam-
ple, claims containing the term "emissions" were
pre-aligned with all time series in the "Environ-
ment" category. Claims that could not be aligned
with any group were excluded from the dataset.

3.4 Two-Round Annotation Study

We conducted a two-round annotation study us-
ing the Prolific platform5. Examples of annotation
interfaces are shown in Appendix C.

In Phase 1, annotators were given a claim, its
corresponding fact-checking article, and a set of
potentially relevant time series. Their task was
to: (i) select relevant time series, (ii) identify all
time ranges useful for verification, and (iii) provide
explanations for each selected range. Since anno-
tators had access to full articles, they could follow
the reasoning of professional fact-checkers, which
often included contextual knowledge. For example,
fact-checkers often reference years 2005 (Kyoto
Protocol) or 2016 (Paris Agreement) in climate-
related claims. However, as fact-checkers may have
relied on sources beyond OWID, we instructed an-
notators to prioritize only the provided time-series
evidence. To capture contextual information, anno-
tators were also asked to record any useful details
from the fact-checking articles (e.g., for resolving
ambiguities) that informed their choices of time se-
ries and time ranges. These notes will be released
as part of the dataset.

In Phase 2, new annotators reviewed the evi-
dence annotated in Phase 1 without access to the
articles. They were asked to assign one of four
verdict labels (see Section 4.1) based on the claim
and evidence, and to provide a justification. To
assist with reasoning, we presented precomputed
statistics (e.g., min/max values, averages, trends)
for each time range. The full list is in Appendix F.
To avoid overwhelming annotators with irrelevant

5https://www.prolific.com/

data, we limited the statistics shown to countries
mentioned in the article, as identified during the
LLM-based post-processing step (see Section 3.1).

Our initial annotation results showed that while
these statistics helped, annotator justifications of-
ten lacked numerical expressions and reasoning.
To address this, we prompted gpt-4o-2024-11-20
(OpenAI, 2023) to generate up to five statements
based on the provided time-series ranges, focus-
ing on numerical expressions (see Appendix E for
prompting details). Annotators were asked to iden-
tify truthful ones and optionally incorporate them
into their justifications. This modification substan-
tially increased the use of numerical details, re-
sulting in justifications that were more precise and
better aligned with the presented time-series data.

As a quality check, we compared annotator ver-
dicts to those from the reference fact-checks. If a
majority verdict disagreed with the reference ver-
dict from the article, the claim was re-annotated in
a second round. However, we kept the claims after-
wards as differences in the evidence may naturally
lead to differing verdicts.

3.5 Inter-Annotator Agreement

Following Schlichtkrull et al. (2023) and Ousid-
houm et al. (2022), we measured inter-annotator
agreement using Randolph’s free marginal multi-
rater κ (Randolph, 2005). For verdict labels, we
achieve an agreement score of κ = 0.745, in-
dicating substantial agreement among annotators.
For the selection of numerical statements gener-
ated by GPT-4o, we observe a lower agreement of
κ = 0.581.

4 TSVER Benchmark

4.1 Dataset Statistics

We collected 287 claims from a total of 38 fact-
checking sites. The most represented sites were
Africa Check (25%), Full Fact (13%), and Poli-
tiFact (13%) (see Appendix D for the full dis-
tribution by organization). Following the ap-
proach of Schlichtkrull et al. (2023), we adopt
a 4-class labeling scheme: SUPPORTS, RE-
FUTES, NOT ENOUGH INFO, and CONFLICT-
ING EVIDENCE/CHERRY-PICKING. The dataset
is inherently unbalanced, with a higher proportion
of REFUTES labels (55%). This reflects the nature
of fact-checking workflows, where journalists often
prioritize addressing false or misleading claims. In
terms of geographic coverage, the most claims dis-
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cuss the United States (29.90%), followed by the
United Kingdom (24.23%) and Nigeria (16.49%).
A more detailed country-level distribution is pro-
vided in Appendix D.

TSVER also includes a curated collection of 400
time series from Our World in Data. All time series
were preprocessed into a consistent format, and we
provide both titles and descriptions to facilitate
retrieval. Additionally, inspired by the time-series
taxonomy introduced by Fons et al. (2024), we
categorize each series by feature type (e.g., trend,
volatility, stationarity). To this end, we prompted
Gemini-2.5-Pro to generate descriptive features for
each time series and annotated time ranges.

Few-shot prompting, a technique in which a
model is given a few in-context examples, has been
shown to improve performance across various fact-
checking tasks, including claim detection, evidence
retrieval, and general reasoning (Vykopal et al.,
2024; Li et al., 2023; Wang et al., 2023). Thus,
to support few-shot prompting for our benchmark,
we set aside a small development set of 27 claims.
To ensure minimal overlap with the test set, these
claims are drawn from entirely separate domains,
which are explicitly excluded from the test data.

4.2 Synthetic Claims

To further improve the practical utility of this
benchmark for training and evaluation, we aug-
mented TSVER by modifying the countries and
dates mentioned in claims. We used gemini-2.5-
pro-preview-03-25 to guide this process, generat-
ing new claims with different labels. This approach
resulted in 300 additional synthetic claims, which
will be released as a separate dataset within TSVER.
However, this synthetic dataset was not used in our
main experiments reported in Section 5.

4.3 Baseline Pipeline

Our baseline pipeline consists of two main compo-
nents: (1) time-series retrieval and (2) verdict and
justification generation.

To retrieve relevant time-series evidence, we
rely on the textual metadata (e.g., title, descrip-
tion, units) associated with each time series in
the database. Examples of this metadata are pro-
vided in Appendix D. While directly using raw
time-series data could provide better retrieval per-
formance, exploring methods such as time series
encoders (Woo et al., 2024) is beyond the scope of
this work.

We prompt an LLM in a few-shot setup, provid-
ing examples from the development set, to generate
a list of relevant time series as evidence. How-
ever, this initial retrieval step often yields too much
data: even a few complete time series can exceed
the input limits of most LLMs. For example, us-
ing Gemini-2.5-Pro, only 31% of the cases had re-
trieved evidence with fewer than 1 million tokens.
Therefore, we apply additional filtering using the
same LLM (in a few-shot set-up) to further refine
the results. Specifically, we prompt the model to
identify relevant time ranges and relevant coun-
tries. Note that the model does not have access to
fact-checking articles during testing, so it cannot
leverage country information in those articles as
was done during the annotation phase.

The second baseline component starts by loading
the specified slices of time-series data according
to the retrieval results. We then prompt the same
LLM to generate a verdict along with supporting
justifications. Due to the large input size, we adopt
a zero-shot setup for this stage. Additionally, for
non-reasoning models, we apply Chain-of-Thought
prompting (Wei et al., 2022) to explicitly encourage
step-by-step reasoning in the output.

All prompting templates are reported in Ap-
pendix E.

4.4 Baseline LLMs

Due to the large input sizes resulting from repre-
senting time series data in raw text format, our
evaluation is restricted to language models with ex-
tended context windows. Specifically, we consider
only models that support a minimum of 128k to-
kens. Among proprietary models, we include Gem-
ini (Anil et al., 2023) and GPT (OpenAI, 2023),
while for open-weight models, we choose Mistral
(Jiang et al., 2023) and Llama (Dubey et al., 2024).

For all experiments, the temperature is set to
0.01, top-p to 0.95, and the maximum output length
is 4096 tokens.

5 Experiments

5.1 Evaluation Metrics

In addition to standard verdict prediction metrics
such as macro-F1 and accuracy, we introduce two
complementary evaluation metrics to assess the
effectiveness of our retrieval and justification com-
ponents. These metrics specifically capture the ac-
curacy of time series retrieval with temporal align-
ment and the factual consistency of generated justi-
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fications relative to human justifications.

5.1.1 Time Series Coverage Score
To evaluate the performance of the retrieval com-
ponent, we assess two key aspects with respect to
human-annotated ground truth: (1) whether the cor-
rect time series datasets are retrieved, and (2) how
well the retrieved time ranges align with the anno-
tated relevant time spans. Both over-retrieval (e.g.,
retrieving more datasets or time spans than neces-
sary) and under-retrieval (e.g., omitting relevant
time series or time spans) can negatively impact
downstream performance, either by exceeding the
context window or by failing to provide sufficient
evidence for verification.

We propose the Time Series Coverage Score
(TSCS), a metric that jointly captures the accuracy
of both time series selection and temporal coverage.
TSCS combines a dataset-level F1 score with a
temporal Jaccard Index to evaluate the quality of
each retrieval instance.

TSCS =
1

N

N∑

i=1

(
F1i · J i

)
(1)

In Equation 1, N denotes the number of evalu-
ation instances. For each instance i, the F1 score
is computed, reflecting whether the correct set of
time series datasets was retrieved. J i is then the
average Jaccard Index over the matched datasets,
measuring temporal alignment.

The average Jaccard Index is defined as:

J =
1

T

T∑

j=1

|Ŷj ∩ Yj |
|Ŷj ∪ Yj |

(2)

Here, T is the number of retrieved time series
that correctly match the ground truth data. For each
time series j, Ŷj and Yj represent the annotated and
retrieved time ranges, respectively. The Jaccard
Index measures the degree of overlap between these
ranges. Averaging across all matched time series
yields a robust estimate of temporal accuracy.

5.1.2 Ev2R Score for Justifications
The Ev2R scorer (Akhtar et al., 2024) evaluates
the quality of evidence retrieval in automated fact-
checking by comparing retrieved evidence against
reference evidence through atomic fact decompo-
sition. Since the metric essentially compares two
free-form texts for factual overlap, we test its suit-
ability for comparing verdict justifications in this
context.

The metric comprises three components:

Precision (sprec) This measures the proportion
of atomic facts in the retrieved evidence (AÊ) that
are supported by the reference evidence (E). It is
calculated as:

sprec =
1

|AÊ |
∑

aÊ∈AÊ

I
[
aÊ supported by E

]
(3)

Recall (srecall) This assesses the proportion of
atomic facts in the reference evidence (AE) that
are supported by the retrieved evidence (Ê). It is
given by:

srecall =
1

|AE |
∑

aE∈AE

I
[
aE supported by Ê

]

(4)

F1 Score (sF1) This is the harmonic mean of
precision and recall, providing a balanced measure
of the retrieval quality:

sF1 =
2 sprec srecall

sprec + srecall
(5)

In this work, we use the reference-based atomic
score from Ev2R (Akhtar et al., 2024), which was
inspired by FactScore (?). While we follow a simi-
lar prompting template, we adapt it using modified
examples drawn from our development set as few-
shot instances. We use gemini-2.5-flash-preview-
04-17 as the scorer model, and the prompting de-
tails can be seen in Appendix E.

5.2 Results

Our main evaluation results are reported in Table 2.
We can observe that even state-of-the-art API mod-
els such as Gemini and GPT-4 struggle with the
TSVER benchmark, achieving verdict prediction
accuracies of 63.37 and 65.35, respectively. This
indicates that a large portion of the benchmark re-
mains challenging, even for the most capable com-
mercial models. In contrast, smaller open-weight
models, including Ministral-8B, Ministral-3B, and
Llama-3.1-8B, perform substantially worse, with
accuracies of 38.61, 28.71, and just 7.92, respec-
tively. These results underscore both the difficulty
of TSVER and its effectiveness as a probing tool
for evaluating model reasoning and verification ca-
pabilities.
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Time Series Verdicts Justifications

Model Params Max Tokens TSCS F1 Accuracy METEOR Ev2R CL Errors

Gemini-2.5-pro-03-25 - 1M 41.39 68.68 63.37 27.48 48.63 2.31 %
GPT-4.1-2025-04-14 - 1M 33.35 68.58 65.35 31.89 37.57 2.69 %
Mistral-large-2411 123B 128k 26.18 60.11 54.46 32.52 35.75 11.15 %
Ministral-8b-2410 8B 128k 18.04 43.27 38.61 29.66 26.5 9.23 %
Ministral-3b-2410 3B 128k 16.51 36.19 28.71 30.54 21.87 11.92 %
Llama-3.3-70B 70B 128k 26.97 59.32 56.39 27.86 39.52 10.38 %
Llama-3.1-8B 8B 128k 8.21 13.85 7.92 5.88 8.47 78.85 %

Table 2: Verification results with baseline models on the TSVER test set.

When evaluating retrieval quality using the Time
Series Coverage Score (TSCS), we observe a sub-
stantial performance gap across models. Gemini
achieves the highest TSCS at 41.39, followed by
GPT-4 with a score of 33.35, indicating that these
models are more effective at both selecting the rel-
evant time series and aligning the retrieved time
ranges with the human annotated spans. In contrast,
smaller models such as Ministral-8B, Ministral-
3B, and Llama-3.1-8B perform considerably worse,
with TSCS values of 18.04, 16.51, and just 8.21,
respectively.

Further analysis of low TSCS scores reveals that
smaller models tend to over-retrieve. For instance,
while Gemini and GPT-4 retrieve 917 and 871 time
series in total across the test set, Ministral-3B and
Llama-3.1-8B retrieve substantially more—3242
and 4893, respectively. This excessive retrieval
not only increases the difficulty of downstream rea-
soning tasks but also places greater demands on
context length. As shown in Table 2, smaller mod-
els are more likely to exceed their context window
limits, leading to context length (CL) inference er-
rors. Notably, Llama-3.1-8B failed on 78.85% of
the test instances due to exceeding its 128k token
limit.

We evaluate justification quality using both ME-
TEOR (Banerjee and Lavie, 2005) and the Ev2R
score. While METEOR provides a surface-level
measure of lexical overlap with reference justifica-
tions, it shows a limited capability to differentiate
between our models. For instance, Ministral-3B
and GPT-4 obtain comparable METEOR scores
of 30.54 and 31.89, despite a substantial gap in
their verdict and retrieval performance. This aligns
with prior findings of Akhtar et al. (2024), which
suggest that surface metrics like METEOR often
fail to correlate with human judgments of factual
adequacy in explanations.

In contrast, Ev2R provides a more informative

signal by evaluating the factual alignment between
model-generated and reference justifications via
atomic fact decomposition. According to this met-
ric, Gemini leads with an Ev2R score of 48.63,
followed by GPT-4 at 37.57. All smaller models
score lower, with Ministral-8B, Ministral-3B, and
Llama-3.1-8B scoring only 26.5, 21.87, and 8.47,
respectively. These results suggest that Ev2R is
more sensitive to factual accuracy and evidence rel-
evance in generated justifications, making it a more
reliable indicator of model capability in complex
verification tasks.

To further probe the complexity of our bench-
mark, we also conducted experiments with PASTA
(Gu et al., 2022), an NLI model specifically de-
signed and pre-trained for numerical and tabular
reasoning. PASTA aligns well with TSVER, since
it can reason over table-based operations such as
column aggregation, min/max comparisons, and
row filtering, operations that are commonly re-
quired in our dataset. Using the authors’ publicly
released checkpoint6, we fine-tuned the model on
the TabFact dataset (Chen et al., 2019) and ap-
plied PASTA’s linearization scripts to convert our
time-series tables into a format compatible with
the model. Since PASTA only performs binary fact
verification, we collapsed all labels other than SUP-
PORTED into the REFUTED category. Under this
setup, PASTA achieved an F1 score of 43.56, un-
derscoring both the difficulty of our benchmark and
the current limitations of table-aware NLI methods
when applied to time-series reasoning.

5.3 Discussion

Our baseline system employs a straightforward
strategy: formatting raw time series data as
Markdown-style tables using pandas7. While this

6https://github.com/ruc-datalab/PASTA
7https://pandas.pydata.org/docs/reference/api/

pandas.DataFrame.to_markdown.html
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representation enables seamless integration with ex-
isting LLM-based systems, it presents challenges
due to the input length and the continuous, numer-
ical nature of time series data. In particular, the
tokenization of floating-point numbers using byte
pair encoding (BPE) can yield inconsistent and inef-
ficient representations (Gruver et al., 2023; Spathis
and Kawsar, 2023). Furthermore, the sheer length
of many time series, often spanning thousands or
even millions of data points, can easily exceed the
context window limitations of current LLMs.

Unlike traditional fact verification tasks, where
input length can often be managed by selecting
the top-N most relevant sentences, time series data
does not lend itself to such straightforward trun-
cation. Relevant temporal patterns may span long,
continuous ranges, making it harder to reduce input
size without losing critical evidence.

To address these issues, several studies have in-
troduced quantization-based techniques. For exam-
ple, models like SpeechGPT (Zhang et al., 2023)
and AudioLM (Borsos et al., 2022) employ K-
means clustering to convert continuous signals into
discrete token sequences, while others use VQ-
VAE for a similar discretization process (Duan
et al., 2023; Strong et al., 2021). Alternative strate-
gies involve integrating dedicated time series en-
coders with LLMs, as seen in models such as
GPT4TS (Zhou et al., 2023) and Time-LLM (Jin
et al., 2023).

Since our results highlight retrieval quality as a
critical bottleneck, particularly for smaller models,
exploring more efficient time series representations
may enable future systems to better encode and
reason over temporal data within constrained model
budgets.

6 Conclusion

We introduced TSVER, the first benchmark dataset
for fact verification grounded in real-world time-
series evidence. By focusing on complex claims re-
quiring numerical and temporal reasoning, TSVER

show the limitations of current fact-checking sys-
tems and large language models in handling struc-
tured temporal data. Our LLM-assisted annota-
tion pipeline enables the alignment of claims with
time-series evidence, achieving a substantial inter-
annotator agreement of κ = 0.745 on verdicts. The
dataset supports rigorous evaluation of both evi-
dence selection and reasoning quality, and we hope
TSVER will serve as a valuable resource for ad-

vancing research in explainable and evidence-based
fact verification.

Limitations

Lack of Multilingual Coverage Although our
claims span topics and entities from many parts
of the world, we only collected claims and fact-
checking articles in English. This design choice
simplifies annotation and model evaluation, yet
it also means that the benchmark does not assess
cross-lingual retrieval, multilingual reasoning, or
language-specific numeral and date formats.

Source Bias and Coverage Limitations The
claims in TSVER are sourced directly from existing
fact-checking articles via the Google Fact Check
Explorer. As such, our dataset inherits any biases or
limitations present in those original articles. Fact-
checkers may differ in how they frame claims, inter-
pret evidence, or articulate justifications, which can
introduce variability not reflective of ground-truth
facts but rather of editorial choices. Additionally,
reliance on a single aggregation tool like the Fact
Check Explorer may result in an incomplete or
skewed view of the global fact-checking landscape,
under-representing claims from less frequently in-
dexed sources or under-covered topics.

Scope of Evidence Our dataset includes only
time-series evidence (with textual descriptions),
even though real-world claims often require inte-
grating multiple evidence modalities such as re-
ports, tables, charts, or multimedia. While focus-
ing on time series allows us to study a particularly
challenging and underexplored aspect of fact verifi-
cation, the benchmark does not fully represent the
broader, multi-modal nature of the fact-checking
process.

Ethics Statement

Data provenance and licensing All evidence se-
ries in TSVer originate from Our World in Data
(OWID), which redistributes underlying statistics
from official bodies (e.g., UN, World Bank) under
permissive Creative Commons licences (CC-BY
4.0). We preserve the OWID identifiers, metadata,
and citations so that the data lineage remains trans-
parent.

Privacy and anonymisation. We did not
anonymise any portion of TSVER. All claims are
extracted from publicly accessible fact-checking
articles that already appear on journalistic websites
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and reference well-known public figures, institu-
tions, or countries. These named entities, and the
temporal and geographic details, are integral to
the factual content of each statement and therefore
necessary for fact verification.
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A Experimental Setup

As part of the annotation pipeline, we used the
Llama-3 (Dubey et al., 2024) model for inference.
Specifically, we employed the 8B-parameter ver-
sion in 16-bit precision. Inference was performed
with a temperature of 1.0 using nucleus sampling
(Holtzman et al., 2019), with a top-p value of 0.9.

All annotation scripts and experiments were run
on a machine equipped with a single Quadro RTX
8000 GPU (49GB memory) and 64GB of system
RAM.

For querying the baseline models, we performed
inference using each model’s official API. For our
baseline experiments with Llama, we used Amazon
Bedrock’s API instead of the local model to support
the full 128k token context window. All API calls
were made with default settings unless otherwise
specified.

Additionally, we used a combination of GPT-4
(OpenAI, 2023) and Claude (Anthropic, 2025) to
assist with parts of the codebase. These models
were used as general-purpose coding assistants.

B Annotation details

We carried out our annotations with the help of
Prolific (https://www.prolific.com/), an on-
line platform which connects researchers with real
people willing to participate in studies and sur-
veys, enabling fast collection of high-quality data.
The annotations took place on a separate dedicated
platform developed by our team and supplied to
Prolific.

To ensure high-quality annotations, we applied
participant screening criteria available through Pro-
lific. In particular, we restricted participation to
individuals located in the United States whose pri-
mary language was English and who had completed
at least an undergraduate degree (BA/BSc/other).
Participants were compensated at an average rate
of £10 per hour, in accordance with Prolific’s
payment principles (https://researcher-help.
prolific.com/en/article/2273bd).
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Figure 3: Instructions given to participants at the beginning of the annotation session. These instructions were
followed by a detailed tutorial.

C Annotation Interface

Figure 4: Detailed step-by-step tutorial explaining the annotation study.
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Figure 5: Annotation Interface for Phase 1.

Figure 6: Annotation Interface for Phase 2.

29908



D Dataset Details

Figure 7: Top 20 countries by share of claims in the benchmark dataset. Bars indicate the percentage of claims
associated with each country.

Figure 8: Share of fact-checked claims by publishing organization (N=38) in the TSVer test set. Africa Check (25%)
accounts for the largest share, followed by Full Fact (13%) and PolitiFact (13%).
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Name: Population growth rate with migration
Description: "Average exponential rate of growth of the population over a given period. It is calculated as ln(P2/P1) where P1
and P2 are the populations on 1 January of subsequent years."
Unit: "%"

Name: Number of people living in urban areas
Description: "Urban population refers to people living in urban areas as defined by national statistical offices. It is calculated
using World Bank population estimates and urban ratios from the United Nations World Urbanization Prospects.<br><br>
Limitations and exceptions: Aggregation of urban and rural population may not add up to total population because of different
country coverage. There is no consistent and universally accepted standard for distinguishing urban from rural areas, in part
because of the wide variety of situations across countries.<br><br>Because the estimates of city and metropolitan area are
based on national definitions of what constitutes a city or metropolitan area, cross−country comparisons should be made with
caution."
Unit: "People"

Name: Population by age group (15−19 years)
Description: "De facto total population in a country, area or region as of 1 July of the year indicated. This only includes
individuals aged 15−19."
Unit: "Persons"

Name: Foreign aid given
Description: "Net official development assistance (ODA) from governments and multilateral organizations, grants from civil
society organizations. This data is expressed in US dollars and adjusted for inflation."
Unit: "Constant 2022 US$"

Name: Press freedom index
Description: "The index combines expert estimates with data on violence against journalists. It ranges from 0 (freedom) to 100 (
no freedom).<br><br>The variable denotes a country's press freedom score. It combines data on violence against journalists
with experts assessments by media professionals, lawyers, and sociologists on pluralism, media independence, media
environment and self−censorship, legislative framework, transparency, and the quality of the infrastructure that supports the
production of news and information."
Unit: "Index"

Name: Per capita CO2 emissions
Description: "<ul><li>Carbon dioxide (CO2) emissions from fossil fuels and industry. Land−use change is not included.</li><li>
Per capita emissions represent the emissions of an average person in a country or region − they are calculated as the total
emissions divided by population.</li><li>This data is based on territorial emissions, which do not account for emissions
embedded in traded goods.</li><li>Emissions from international aviation and shipping are not included in any country or region'
s emissions. They are only included in the global total emissions.</li></ul>"
Unit: "Tonnes per person"

Name: Share of the population that is female
Description: "Female population is the percentage of the population that is female. Population is based on the de facto definition
of population, which counts all residents regardless of legal status or citizenship."
Unit: "% of total"

Listing 1: An example of metadata associated with time-series in the TSVer dataset.
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E Prompting

# Datasets Provided

You have access to the following dataset(s):

{time_series_metadata}

−−−−−−−−−−−−−−−−−−−−−−−−

# Data

The following section contains the actual data for each dataset.
Each dataset may include one or more time ranges − when multiple time ranges are available, they are provided separately.

{time_series_data}

−−−−−−−−−−−−−−−−−−−−−−−−

# Claim

Evaluate the following claim, stated on {claim_date}:

{claim_text}

−−−−−−−−−−−−−−−−−−−−−−−−

# Instructions for Analysis

Based only on the data provided above, generate up to five concise assertions that either support or refute the claim.

Each assertion must follow these guidelines:

1. Data−Backed: Every assertion must cite specific figures, statistics, or rankings from the data. Mention relevant time ranges
within the assertion itself. Include the dataset name(s) in brackets at the end of each assertion for attribution, such as [Coal
production (2007−2017), Energy consumption (1930−2010), Energy consumption (2003−2004)].

2. Factual Only: Do not include assumptions, interpretations, or projections beyond what the data shows.

3. Data Relevance: Consider whether the data is relevant to when the claim was stated.

4. Clear & Focused: Keep assertions concise and directly tied to the claim.

5. Contextual Language: Refer to data using natural phrasing based on the time periods and content, rather than naming the
dataset titles or headings explicitly.

6. Output Format: Use a numbered list (1−5) for your assertions.

Listing 2: The prompt template used for statement generation during the second phase of human annotation.
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# AVAILABLE TIME−SERIES DATA:

{time_series_metadata}

−−−−−−−−−−−−−−−−−−−−−−−−

# INSTRUCTIONS:

Your task is to identify and list all time−series charts that would be relevant or helpful for verifying a provided claim.

Output your response as a numbered list containing only the titles of the relevant time series charts.

Output the list of relevant time series and say nothing else.

−−−−−−−−−−−−−−−−−−−−−−−−

# Examples:

{few_shot_examples}

−−−−−−−−−−−−−−−−−−−−−−−−

# CLAIM:

"{claim_text}"

Listing 3: Prompt template for time series retrieval.

# TIME−SERIES DATA:

{time_series_metadata}

# AVAILABLE COUNTRIES:

{country_names}

−−−−−−−−−−−−−−−−−−−−−−−−

# INSTRUCTIONS:

Your task is to identify and list all countries that would be relevant or helpful for verifying a provided claim.

When verifying the claim, we will also have access to time series evidence data as listed above.

Provide your response as a numbered list containing only countries provided in the list above.

Output the list of relevant countries and say nothing else.

−−−−−−−−−−−−−−−−−−−−−−−−

# Examples:

{few_shot_examples}

−−−−−−−−−−−−−−−−−−−−−−−−

# CLAIM:

"{claim_text}"

Listing 4: Prompt template for the retrieval of relevant countries.
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# TIME SERIES DATA:

{time_series_metadata}

# CLAIM DATE:

{claim_date}

−−−−−−−−−−−−−−−−−−−−−−−−

# INSTRUCTIONS:

Your task is to identify all time ranges in the provided time series metadata that could be relevant or helpful for verifying the
claim made on {claim_date}.

Output your response as a bullet−point list for each time series, using the following format:

# Time−Series−Name−1
− YYYY−YYYY
− YYYY

# Time−Series−Name−2
− YYYY

# Time−Series−Name−3
− YYYY−YYYY
− YYYY−YYYY
− YYYY−YYYY

Output only the list of relevant time ranges for each time series. Do not include any additional text.

−−−−−−−−−−−−−−−−−−−−−−−−

# Examples:

{few_shot_examples}

−−−−−−−−−−−−−−−−−−−−−−−−

# CLAIM:

"{claim_text}"

Listing 5: Prompt template for the retrieval of relevant time ranges.
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Consider the following claim, stated on {claim_date} by {claimant}:
"{claim_text}"

−−−−−−−−−−−−−−−−−−−−−−−−

Your task is to assess the veracity of this claim using the provided time series data.

# TIME SERIES DATA:

{relevant_tseries_data}

−−−−−−−−−−−−−−−−−−−−−−−−

# INSTRUCTIONS:
Evaluate the claim in two steps:
− First, select a verdict based on the time series data.
− Second, provide a brief explanation justifying your verdict.

When choosing the verdict, you can choose only from the following options:
{labels_legend}

Format your response as follows:
# VERDICT
...

# EXPLANATION
...

Listing 6: Prompt template for verdict and justification generation without CoT.

Consider the following claim, stated on {claim_date} by {claimant}:
"{claim_text}"

−−−−−−−−−−−−−−−−−−−−−−−−

Your task is to assess the veracity of this claim using the provided time series data.

# TIME SERIES DATA:

{relevant_tseries_data}

−−−−−−−−−−−−−−−−−−−−−−−−

# INSTRUCTIONS:
Evaluate the claim in three steps:
− First, reason about the data step by step.
− Second, select a verdict based on the time series data.
− Third, provide a brief explanation justifying your verdict.

When choosing the verdict, you can choose only from the following options:
{labels_legend}

Format your response as follows:
# REASONING
...

# VERDICT
...

# EXPLANATION
...

Listing 7: Prompt template for verdict and justification generation with CoT.
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You will get as input a claim, a reference evidence and a predicted evidence.
Please verify the correctness of the predicted evidence by comparing it to the reference evidence, following these steps:

1. Break down the PREDICTED evidence in independent facts. Each fact should be a separate sentence.
2. Evaluate each fact individually: is the fact supported by the REFERENCE evidence? Do not use additional sources or
background knowledge.
3. Next, break down the REFERENCE evidence in independent facts. Each fact should be a separate sentence.
4. Evaluate each fact individually: is the fact supported by the PREDICTED evidence? Do not use additional sources or
background knowledge.
5. Finally summarise (1.) how many predicted facts are supported by the reference evidence, (2.) how many reference facts are
supported by the predicted evidence.

Generate the output in form of a JSON as shown in the examples below.

−−−−−−−−−−

Examples:

{few_shot_examples}

−−−−−−−−−−

Input:

# CLAIM:
"{claim_text}"

# REFERENCE EVIDENCE:
"{reference_evidence}"

# PREDICTED EVIDENCE:
"{predicted_evidence}"

Listing 8: Prompt template for the Ev2R scorer.

F Annotation Details

Name of Operation Description Example Output

Difference (Change) Computes the absolute change in value between the start and end year. 150.0

Percent Change Computes the percentage change from the starting value to the ending value. 12.5%

Average Calculates the mean value across the selected years. 123.45

Cumulative Total Sums all values over the selected time range. 987.65

Standard Deviation Measures variability or dispersion from the average value. 15.23

Minimum Value Finds the lowest value in the time range. 100.00

Maximum Value Finds the highest value in the time range. 200.00

Number of Years of Growth Counts years where the value increased from the previous year. 4

Number of Years of Decline Counts years where the value decreased from the previous year. 3

Largest Single-Year Drop Finds the largest decrease in value between two consecutive years. -45.67 (in 2012)

Largest Single-Year Increase Finds the largest increase in value between two consecutive years. 55.23 (in 2018)

Average Rank Computes the average ranking of a country over the selected years. 2.4

Rank in Year Ranks countries by value in a specific year (1 = highest value). 1.0

Table 3: List of operators with descriptions used for generating pre-computed statistics in the second annotation
phase.

29915


