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Abstract

Schema linking is widely recognized as a
key factor in improving text-to-SQL perfor-
mance. Supervised fine-tuning approaches en-
hance SQL generation quality by explicitly fine-
tuning schema linking as an extraction task.
However, they suffer from two major limita-
tions: (i) The training corpus of small language
models restricts their cross-domain general-
ization ability. (ii) The extraction-based fine-
tuning process struggles to capture complex
linking patterns. To address these issues, we
propose GenLink, a generation-driven schema-
linking framework based on multi-model learn-
ing. Instead of explicitly extracting schema
elements, GenLink enhances linking through a
generation-based learning process, effectively
capturing implicit schema relationships. By
integrating multiple small language models,
GenLink improves schema-linking recall rate
and ensures robust cross-domain adaptabil-
ity. Experimental results on the BIRD and
Spider benchmarks validate the effectiveness
of GenLink, achieving execution accuracies
of 67.34% (BIRD), 89.7% (Spider develop-
ment set), and 87.8% (Spider test set), demon-
strating its superiority in handling diverse and
complex database schemas. Our implementa-
tion will be open-sourced at https://github.
com/DMIRLAB-Group/GenLink.

1 Introduction

Text-to-SQL aims to convert natural language
queries into SQL based on a given database
schema(Gao et al., 2023; Qin et al., 2022; Deng
et al., 2022). Benchmarks like Spider(Yu et al.,
2019) and BIRD(Li et al., 2023b) evaluate cross-
domain generalization, where training and test
databases are disjoint. Schema-linking is widely
recognized as key to improving generalization by
adaptively associating queries with database items.
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Figure 1: An example of extracting implicit schema on
the BIRD dataset.

Leveraging the reasoning capabilities of large lan-
guage models (LLMs)(Zhu et al., 2024), they have
become the dominant approach in text-to-SQL. In-
context learning-based methods, such as CHESS
(Talaei et al., 2024) and MCS-SQL (Lee et al.,
2024), explicitly incorporate schema-linking by
extracting database items via LLMs, significantly
improving SQL generation quality. However, their
high token cost remains a major limitation.

To overcome this, supervised fine-tuning (SFT)
approaches train LLMs on labeled Text-to-SQL
data. Similarly, explicitly training schema linking
in SFT methods, as seen in DTS-SQL (Pourreza
and Rafiei, 2024) and CodeS (Li et al., 2024), has
proven effective in enhancing performance. How-
ever, these solutions face two major limitations:
(i) Their schema-linking extraction performance
is constrained by model size and training corpus,
making it difficult to handle samples with signifi-
cant domain differences. (ii) The explicit extraction
and fine-tuning process limits the model’s ability
to capture complex linking patterns.

To address these limitations, we propose Gen-
Link, a generation-driven schema-linking frame-
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work based on multi-model learning. Instead
of relying on explicit schema extraction, Gen-
Link enhances schema linking through generation-
based learning, enabling more robust alignment
between queries and database schemas. As illus-
trated in Figure 1, GenLink successfully links the
implicit schema "transactions_1k.date". By in-
tegrating multiple small language models, Gen-
Link has strong cross-domain adaptation capabili-
ties, ensuring a high recall rate for schema linking.
Experimental results on two authoritative bench-
marks, BIRD and Spider, validate the effective-
ness of GenLink, achieving execution accuracies
of 67.34% (BIRD), 89.7% (Spider development
set), and 87.8% (Spider test set), substantiating its
effectiveness across diverse database domains.

2 Methodology
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Figure 2: GenLink pipeline.

GenLink is a multi-stage, multi-model learning
framework based on supervised fine-tuning. It aims
to achieve implicit schema linking and SQL gen-
eration by integrating various generative language
models. As shown in Figure 2, the framework
comprises two key modules: Generation-Driven
Schema Linking and Multi-Model SQL Generation.
Specifically, as the core component, the Generation-
Driven Schema Linking module strategically in-
tegrates multiple generative language models to
independently generate SQL queries and extract
relevant schema information. Following this, it sys-
tematically consolidates the verified information
using an advanced merging mechanism, ensuring
the accuracy and robustness of schema linking. The
Multi-Model SQL Generation module introduces
a self-consistency(Wang et al., 2023) mechanism,

further optimizing SQL generation performance
based on the merged schema representation gen-
erated by the Generation-Driven Schema Linking
module. This hierarchical architecture makes full
use of the diversity in training corpora across differ-
ent language models, significantly enhancing the
framework’s ability to extract implicit schema links
and effectively addressing domain generalization
issues.

2.1 Generation-Driven Schema Linking

Generation-Driven Schema Linking(GDSL) mod-
ule significantly enhances the accuracy of schema
linking by integrating the strengths of multiple
small generative language models and leveraging
the SQL generation task to indirectly infer im-
plicit schema linking. Specifically, although these
generative language models are all based on sim-
ilar Decoder architectures and have acquired lan-
guage comprehension capabilities through training
on large-scale datasets, there are notable differ-
ences in their understanding of schema semantics
and their ability to handle complex queries in SQL
generation tasks due to variations in pre-training
corpora. By harmonizing the consistency and di-
versity among these models, the module effectively
improves both the recall and precision of schema
extraction.

In terms of implementation methodology, given
a user question Q, a complete database schema
Sfull, and the corresponding ground truth SQL
statement CGold, we first train a series of SQL gen-
eration models LMi(i ∈ [1, ...,m]) using the pre-
pared training set (Q,Sfull) → CGold. During the
inference phase, the trained models generate an
initial set of candidate SQL queries:

C0
i = LMi(Q,Sfull)

Subsequently, a SQL parsing tool is used to ex-
tract the set of schema items S0

i from C0
i . Each

schema item in S0
i is then validated to determine

whether it exists in Sfull , a process denoted as
V . The verified schema set is then given by
Ŝ0
i = V(Sfull,S0

i ). The aforementioned steps are
applied to all language models respectively, result-
ing in multiple validated sets of schema items. Fi-
nally, these sets are merged into a unified set of
schema items S̄, expressed as:

S̄ =

m⋃

i=1

Ŝ0
i
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2.2 Multi-Model SQL Generation
After GDSL module extracts both explicit and im-
plicit schema items related to the natural language
question, the core task of the Multi-Model SQL
Generation(MMSG) module is to generate a set
of high-quality SQL queries and filter out the fi-
nal result. The diversity among multiple language
models is reflected in their different utilization of
the schema, thereby generating diverse SQL struc-
tures, especially in complex SQL generation sce-
narios. When combined with the self-consistency
technique, this approach demonstrates significant
potential. This strategy not only enhances the ro-
bustness of the framework but also significantly
improves the accuracy of SQL generation.

In the specific implementation, we feed Q and
S̄ into multiple generation models to obtain SQL
queries Ci again:

Ci = LMi(Q, S̄)

Subsequently, we further refine the query result
sets by applying the self-consistency method for
voting-based filtering, obtaining the verified query
set Ĉ(Ĉ ⊆ C). We define G = {G1, ..., Gn},
where each Gk represents a group with the same
query result set. For each Gk ∈ G, the number
of query results it contains is represented by |Gk|.
Therefore, the group with the largest number of
results is Gmax = argmaxGk∈G |Gk|. Then, from
Gmax, we can obtain the corresponding query set
C̄(C̄ ⊆ Ĉ), from which we select the SQL query
with the fastest execution speed through the op-
timization criterion: CF = argminCz∈C̄ T (Cz) as
the final output SQL query.

In addition, to optimize models selection un-
der computational constraints, we consider the
trade-off between execution accuracy and infer-
ence time across multiple models: for a given
model LMi, the inference time is defined as Ti =
T (LMi(Q, Sfull) + T (LMi(Q, S̄)). During par-
allelized reasoning, the overall multiple models
reasoning time Tmulti is determined by the slowest
model: Tmulti = maxi∈{1,...,m} Ti. To standardize
efficiency measurements, we define inference time
per sample (ITS) tits = Tmulti

N , where N represents
the number of processed samples.

3 Experiments

3.1 Experimental Setup
Datasets and Evaluation Metrics In our exper-
iments, we employed two cross-domain Text-to-

SQL benchmark datasets, Spider (Yu et al., 2019)
and BIRD (Li et al., 2023b), to evaluate the perfor-
mance of GenLink framework.

For the evaluation of SQL generation, we adopt
execution accuracy (EX) and Inference Time per
Sample (ITS) as the primary metric, which takes
into account both the execution accuracy and the
reasoning efficiency simultaneously. In evaluat-
ing schema linking, we utilize a combination of
recall and precision metrics. Specifically, recall is
further broken down into Count-based Table Re-
call (TR), Count-based Column Recall (CR) and
Sample-based Recall (SR); precision is subdivided
into Count-based Table Precision (TP) and Count-
based Column Precision (CP). This multidimen-
sional evaluation system comprehensively reflects
the model’s performance in schema linking tasks.

Models Our experiments used the Llama-3.1-8B-
Instruct, Qwen2.5-Coder-7B-Instruct, Qwen2.5-
7B-Instruct, deepseek-coder-6.7b-instruct, and
Mistral-7B-Instruct-v0.3 models, denoted by L,
QC, Q, D, and M , respectively. And the model
combinations used by GenLink default to {L, QC,
Q, D, M} unless otherwise specified.

3.2 Experimental Analysis

Main Results This experiment systematically
evaluates the GenLink framework against in-
context learning methods and supervised fine-
tuning approaches. As shown in Table 1, on the
BIRD dev set, GenLink demonstrates a 2.34% ad-
vantage in EX over the GPT-4-turbo-based ICL
method CHESSIR+SS+CG, while achieving more
precise SQL generation with significantly fewer pa-
rameters, demonstrating the superior parameter ef-
ficiency of our approach. Regarding cross-domain
generalization capability, GenLink outperforms the
SFT baseline DTS-SQL + DeepSeek-7B by 4.2%
and 3.4% EX on Spider validation and test sets re-
spectively. Compared with SFT CodeS-15B, Gen-
Link achieves a notable 8.87% EX performance
gain on the BIRD dev set. In addition, under re-
source constraints, the use of lightweight model
combinations {L,Q,D} can significantly reduce the
inference time with a slight reduction in EX. This
performance breakthrough stems from the frame-
work’s innovative multi-model collaboration mech-
anism: Through stage-wise integration of special-
ized capabilities from different models in schema
linking and SQL generation tasks, it effectively en-
hances the capture of implicit semantic relation-
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Method Bird Dev Spider Dev Spider Test
EX ITS EX ITS EX ITS

In-Context Learning Methods
DAIL-SQL + GPT-4(Gao et al., 2023) 54.76 - 84.4 - 86.6 -
MCS-SQL + GPT-4(Lee et al., 2024) 63.36 - 89.5 - 89.6 -
CHESSIR+SS+CG + GPT-4-turbo(Talaei et al., 2024) 65.0 - - - 87.2 -

Supervised Fine-Tuning Approaches
DTS-SQL + DeepSeek 7B (Pourreza and Rafiei, 2024) 55.8 1.78 85.5 1.41 84.4 1.56
SFT CodeS-7B(Li et al., 2024) 57.17 0.86 85.4 0.62 83.3 0.70
SFT CodeS-15B(Li et al., 2024) 58.47 0.92 84.9 0.82 83.7 0.88
GenLink + {QC} 59.32 (↑0.85) 2.02 87.3 (↑1.8) 1.78 86.6 (↑2.2) 1.80
GenLink + {L,Q,D} 65.58 (↑7.11) 2.24 88.8 (↑3.3) 2.11 87.5 (↑3.1) 2.16
GenLink + {L,QC,Q,D,M} 67.34 (↑8.87) 3.24 89.7 (↑4.2) 2.85 87.8 (↑3.4) 3.15

Table 1: Performance and computational overhead of GenLink on BIRD and Spider dataset.

ships between questions and database schemas,
while simultaneously reducing the schema linking
learning burden on SQL generation models.

Ablation Studies We conducted an ablation
study on the BIRD development set to systemati-
cally evaluate the contributions of three key com-
ponents within the GenLink framework: Schema
Linking(SL), GDSL and MMSG. Table 2 illustrates
the impact of each component on the execution
accuracy of GenLink. The results demonstrate
that both our proposed GDSL and MMSG strate-
gies yield significant performance improvements.
Specifically, compared to employing only tradi-
tional schema linking methods, GDSL enhances ex-
ecution accuracy by 2.22%, while the Multi-Model
SQL Generation strategy contributes a more sub-
stantial increase of 5.80%. These findings highlight
the importance of each component in enhancing
the overall performance of Text-to-SQL translation.

Model Simple Mod. Chall. All
Baseline 64.00 49.68 38.19 57.24

+ SL 67.68 51.61 43.75 59.32(+2.08)
+ GDSL 68.97 52.90 41.67 61.54(+2.22)
+ MMSG 73.19 60.00 53.47 67.34(+5.80)

Table 2: Experiments on GenLink + {L, QC, Q, D,M}
components using EX based on BIRD development set,
with Baseline representing Full Schema strategy.

Effect of Different Numbers of Models To eval-
uate the impact of different numbers of models on
the GenLink framework, we gradually increased
the number of models from 1 to 5. The results,
which are the average of all possible combinations
as shown in Figure 3, indicate that as the number

Figure 3: Performance and computational overhead of
different numbers of models on BIRD development set.
VRAM is the GPU memory usage of GenLink during
the inference stage.

of models increases, there is a consistent upward
trend in TR, CR, SR, and EX. This demonstrates
that incorporating a greater number of diverse mod-
els enhances the framework’s ability to identify and
link relevant schema elements, thereby improving
overall schema linking accuracy. The improvement
can be attributed to the complementary strengths of
individual models, which, when combined, reduce
the likelihood of missing valid schema entries and
increase robustness against model-specific biases
or errors.

However, due to the adoption of a multi-model
extraction and merging strategy, the increase in
the number of models inevitably leads to redundant
schema entries, resulting in a downward trend in TP
and CP. Additionally, the computational overhead
increases accordingly.
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Dataset Method TR TP CR CP SR EX

BIRD-dev
SFT CodeS-15B 99.76 36.40 98.91 13.26 95.89 58.47†
CHESSIR+SS+CG 96† 90† 94† 71† - 65.0†
GenLink (ours) 97.22(↑1.22) 85.50 94.56(↑0.56) 78.52(↑7.52) 83.96 67.34 (↑2.34)

Spider-dev
SFT CodeS-15B 100 38.05 99.76 13.92 95.84 84.9
GenLink (ours) 99.61 92.56 (↑54.51) 98.33 88.93 (↑75.01) 93.42 89.7 (↑4.8)

Spider-test
SFT CodeS-15B 99.97 37.40 99.98 16.69 96.60 83.7
GenLink (ours) 99.54 90.53 (↑53.13) 98.44 89.29 (↑72.60) 92.41 87.8 (↑4.1)

Table 3: Performance of Generation-Driven Schema Linking Module on BIRD and Spider datasets. Results marked
with † are from the original paper, others are reproduced by us.

Effect of Generation-Driven Schema Linking
Module To comprehensively evaluate the effec-
tiveness of the Generation-Driven Schema Linking
(GDSL) module, we conducted systematic exper-
imental assessments using TR, TP, CR, CP, SR
and EX on the BIRD and Spider datasets (Table 3).
CodeS-15B, which adopts a probability-based pre-
diction method by selecting the top 6 tables and top
10 columns per table, achieved high recall but low
precision. In contrast, CHESSIR+SS+CG, by incor-
porating GPT-4-turbo technology, achieved a better
balance between recall and precision, although its
high token cost severely limited its practical appli-
cation scenarios. Notably, our GDSL module, also
a generative approach, achieved superior schema
linking with far fewer parameters.

On BIRD-dev, our GDSL module improved CP
by 7.52% over CHESSIR+SS+CG, and benefiting
from a higher recall rate, the model also enhanced
SQL generation performance (EX) by 2.34% com-
pared to CHESSIR+SS+CG. On Spider-dev and
Spider-test, where CHESS results were unavailable,
we only conducted comparative experiments with
SFT CodeS-15B. The results in Table 3 demon-
strate that GDSL consistently improves both preci-
sion (TP, CP) and execution accuracy (EX), show-
ing large gains in CP (up to +75.01%) and notable
improvements in EX (+4.8% on dev and +4.1% on
test).

The Role of Model Diversity under Matched
Compute Budgets To rigorously evaluate
whether GenLink’s performance gains stem from
increased computational budget or the proposed
multi-model diversity, we conduct a controlled
ablation study under matched compute conditions.

Specifically, we replace the five distinct models
in GenLink with five independent inference runs
from a single model (e.g., Mistral-7B-Instruct-v0.3
or Qwen2.5-Coder-7B-Instruct), each initialized
with a different random seed. All other settings

(e.g., temperature=0 for deterministic generation,
self-consistency voting) remain identical to the
original GenLink setup. This ensures that the total
computational cost (number of forward passes) is
equivalent to the full GenLink ensemble.

As shown in Table 4, the single-model ensemble
strategy yields only marginal improvements over
the base model (e.g., 56.45% → 57.30% for Mis-
tral). In stark contrast, the full GenLink ensemble,
which leverages diverse model families, achieves a
significantly higher execution accuracy of 67.34%.
This substantial performance gap demonstrates that
GenLink’s effectiveness is not merely a byproduct
of increased computation or sampling variance. In-
stead, it critically depends on the complementarity
and diversity across different model architectures
and pre-training corpora, which enables more ro-
bust schema linking and SQL generation.

Method EX
M (single model) 56.45
Single-Model Ensemble (M ) 57.30
QC (single model) 57.24
Single-Model Ensemble (QC) 59.39
GenLink (Full Ensemble) 67.34

Table 4: Execution accuracy (EX) on BIRD develop-
ment set under matched compute budget.

4 Conclusion

In this work, we introduced GenLink, a generation-
driven schema-linking framework for Text-to-SQL.
The core idea of GenLink is to leverage multi-
model generation to drive a more stable schema-
linking process. Experimental results on the BIRD
and Spider benchmarks demonstrate the effective-
ness of GenLink, achieving high execution accu-
racy across diverse database schemas. In future
work, we aim to further refine GenLink by incor-
porating more advanced reasoning mechanisms.
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Limitations

Our work has the following limitations: first, due to
the limitation of computational resources, we only
conducted experiments on 3B, 8B and 14B scale
models. Based on the analysis of the existing exper-
imental results, we speculate that the model perfor-
mance is expected to be further improved if a larger
scale model (e.g., 32B) is used. Second, in terms of
model architecture, the multi-model approach does
have the problem of larger computational cost com-
pared to traditional single-model approaches (e.g.,
DTS-SQL, CodeS), but GenLink has significant
advantages in solving the cross-domain problem
and handling implicit patterns. And we can also
use a more lightweight model combination such
as {L,Q,D} that takes care of both computational
overhead and performance.
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A Appendix A

A.1 Experiment Settings
Hyperparameters Since the pre-training corpus
for different language models is different, we use
the Low-Rank Adaptation (LoRA)(Hu et al., 2021)
technique on NVIDIA A800 to fine tune the model
with a specific epoch, where the epoch is different
for different models, to make the model converge.
The detailed information of the experimental hy-
perparameters is shown in Table 5, which can help
readers better reproduce our work.

Hyper-parameter Value
lora_rank 32
lora_alpha 128
lora_dropout 0.05
learning_rate 5e-05
per_device_train_batch_size 2
gradient_accumulation_steps 8

Table 5: Model Hyper-parameter Configuration.

A.2 Further Experiments and Analysis
A.2.1 Generalization of Generation-Driven

Schema Linking Module
To demonstrate the generalization of the
Generation-Driven Schema Linking (GDSL)
module, we conducted an experiment in which
the GDSL module was treated as a plug-in and
integrated into single SQL generation baseline
models with varying parameter sizes, such as 3B,
7B, and 14B. As shown in Table 6, Full Schema
EX represents the performance without our
Generation-Driven Schema Linking module, while
GDSL Schema EX represents the performance
with it. The Qwen2.5-Coder-3B-Instruct model
achieved an EX of 60.63%, a significant improve-
ment of 6.33% over the full schema approach. This
performance advantage expanded as the model
size increased: the Qwen2.5-7B-Instruct model
achieved an EX of 62.58% (3.45% higher than the
full schema), and the Qwen2.5-14B-Instruct model
reached an EX of 64.60% (3.84% higher than the
full schema). These performance improvements
can be attributed to the inherent superior SQL
generation capabilities of the Qwen model series.
This architectural advantage enables us to adopt a
single-model inference strategy during the SQL
generation phase, achieving an optimal balance
between computational cost and performance.
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Params SQL Generation model Full Schema EX GDSL Schema EX

3B
Qwen2.5-3B-Instruct 50.26 58.54 (↑8.28)

Qwen2.5-Coder-3B-Instruct 54.30 60.63 (↑6.33)

6.7~8B

Llama-3.1-8B-Instruct 58.47 61.21 (↑2.74)

Qwen2.5-Coder-7B-Instruct 57.24 61.54 (↑4.30)

Mistral-7B-Instruct-v0.3 56.45 61.15 (↑4.70)

deepseek-coder-6.7b-instruct 57.76 61.15 (↑3.39)

Qwen2.5-7B-Instruct 59.13 62.58 (↑3.45)

14B
Qwen2.5-Coder-14B-Instruct 60.95 64.15 (↑3.20)

Qwen2.5-14B-Instruct 60.76 64.60 (↑3.84)

Table 6: Execution Accuracy of GDSL on BIRD development set using single-model SQL generation across
different parameter sizes.

Method Easy Medium Hard Extra Total
Baseline 96.8 91.7 74.1 62.0 85.2

+SL 96.0 92.6 75.9 66.9 86.5(+1.3)

+GDSL 95.6 92.4 82.8 66.3 87.3(+0.8)

+MMSG 96.0 94.8 82.8 74.1 89.7 (+2.4)

Table 7: The execution accuracy (EX) of the GenLink
pipeline by removing each component on the Spider
development set.

Method Easy Medium Hard Extra Total
Baseline 93.4 87.0 79.9 71.4 84.3

+SL 93.8 88.1 80.6 74.8 85.5(+1.2)

+GDSL 94.0 89.0 82.5 76.2 86.6(+1.1)

+MMSG 93.8 89.1 87.3 77.6 87.8 (+1.2)

Table 8: The execution accuracy (EX) of the GenLink
pipeline by removing each component on the Spider test
set.

A.2.2 Effect of Different modules
To comprehensively evaluate the performance con-
tributions of each module within GenLink, we pro-
vided a detailed modular analysis on the BIRD
dataset in the main text. To further validate the gen-
eralization capability and module effectiveness of
GenLink, we conducted systematic experiments
on the development and test sets of the Spider
benchmark. The experimental results indicate that
the introduction of the Generation-Driven Schema
Linking (GDSL) module led to a consistent im-
provement in the ability to generate correct SQL
compared to traditional Schema Linking (SL), al-
though the extent of improvement was relatively
modest. This phenomenon primarily stems from
the inherent limitations of single-model SQL gener-
ation in terms of domain adaptability. To overcome
this bottleneck, we adopted a Multi-Model SQL
Generation (MMSG) strategy, which not only fully
leveraged the potential of the GDSL module but

also significantly enhanced the model’s execution
accuracy (EX), achieving more substantial perfor-
mance improvements. As shown in Table 7 and
Table 8, MMSG contributed to execution accuracy
improvements of 2.4% and 1.2%, respectively.

A.2.3 Effect of Different Numbers of Models
In the main text, we introduced Figure 3 to show
the average performance of different number of
model combinations on the BIRD development set,
providing a visual comparison of the overall trend.
Table 9, on the other hand, lists in detail the pre-
cise values of each specific model combination on
each metric (e.g., TR, TP, CR, CP, SR, EX, etc.),
and labels the optimal EX results (bolded) and the
sub-optimal EX results (underlined), which facili-
tates an in-depth analysis of the differences in the
strengths and weaknesses of different combinations.
In short, Figure 3 focuses on macro trends, while
Table 9 provides micro details. To measure the
resource overhead, we also provide the Inference
Time per Sample (ITS) for each model combination
and the GPU memory usage (VRAM) for reason-
ing on each model combination. In the case of
limited resources, we can choose the appropriate
model combination as needed to balance the model
performance and inference efficiency. In order to
ensure the reliability of the experimental results,
under each set of model number settings (except
for the case of 5 models), we have conducted tests
with at least 5 different model combinations to fully
evaluate the performance under various configura-
tions. The experimental results indicate that: (1)
under a fixed number of models, the performance
variation across different model combinations is
minimal, demonstrating good stability; (2) with
the increase in the number of models, although the
computational overhead increases, the execution
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Number of models Combination of models TR TP CR CP SR EX ITS VRAM

1

L 92.31 93.48 86.47 88.29 67.67 58.93 2.03 17.06
QC 93.02 93.56 87.09 89.45 67.21 59.32 2.02 16.95
Q 93.94 92.68 88.06 89.45 67.21 60.56 2.24 16.95
D 91.67 93.57 86.37 89.15 67.21 58.67 1.94 14.47
M 91.57 93.02 85.01 89.16 64.99 57.17 3.24 15.57

2

L, Q 95.63 89.82 91.81 84.54 77.51 61.34 2.24 34.01
QC, Q 95.63 90.48 91.33 85.80 76.14 61.15 2.24 33.90
L, QC 95.26 90.89 91.45 84.73 76.53 61.34 2.03 34.01
QC, M 95.56 90.42 91.35 85.25 75.49 61.21 3.24 32.52
D, M 95.23 90.51 91.39 85.27 76.86 61.02 3.24 30.04

3

QC, Q, D 96.61 88.71 93.21 83.25 80.57 64.99 2.24 48.37
L, Q, D 96.68 88.01 93.48 81.99 81.23 65.58 2.24 48.48
L, D, M 96.17 88.42 92.95 81.81 80.05 65.45 3.24 47.10
L, Q, M 96.11 87.76 92.97 81.79 80.38 64.21 3.24 49.58
L, QC, Q 96.34 88.49 93.07 82.25 80.31 63.89 2.24 50.96

4

L, Q, D, M 96.92 86.44 94.08 79.84 82.92 66.17 3.24 64.05
L, QC, Q, D 96.99 86.97 94.05 80.27 82.59 65.97 2.24 65.43
QC, Q, D, M 96.99 86.87 94.00 80.72 82.53 65.78 3.24 63.94
L, QC, Q, M 96.68 86.78 93.77 79.99 81.88 64.28 3.24 66.53
L, QC, D, M 96.75 86.97 93.75 79.76 81.81 64.54 3.24 64.05

5 L, QC, Q, D, M 97.22 85.50 94.56 78.52 83.96 67.34 3.24 81.00

Table 9: Performance and computational overhead of different model combinations on BIRD development set.

accuracy EX and recall rates TR and CR for tables
and columns exhibits a clear monotonic upward
trend. Specifically, when the number of models
increased from 2 to 3, the optimal EX improved
by 4.24% and both TR and CR increased by over
1%. This phenomenon fully validates the effective-
ness of the multi-model collaboration mechanism
in the GenLink method, indicating that integrating
decisions from multiple models can significantly
enhance the overall performance of the system.

A.2.4 Effect on Robustness Benchmarks
In addition to evaluations on BIRD-dev, Spider-
dev, and Spider-test, we have supplemented ex-
periments on Spider-SYN(Gan et al., 2021) (a
human-currated synonym-substitution benchmark)
and Spider-Realistic(Deng et al., 2021) (where ex-
plicit column mentions are removed) to further
validate the robustness and effectiveness of our
method. Table 10 shows the execution accuracy
performance of GenLink. GenLink achieves bet-
ter performance on both Spider-SYN (83.5%) and
Spider-Realistic (86.6%), surpassing all compared
methods by significant margins. Notably, GenLink
improves upon the strongest baseline (SFT CodeS-
15B) by 6.5% and 3.5% on these benchmarks, re-
spectively. These results demonstrate GenLink’s

robustness against real-world linguistic variations
and schema perturbations.

Method Spider-SYN Spider-Realistic
DAIL-SQL - 76.0
SFT CodeS-7B 76.9 82.9
SFT CodeS-15B 77.0 83.1
GenLink(ours) 83.5 (↑6.5) 86.6 (↑3.5)

Table 10: Execution accuracy (EX) of GenLink on the
Spider-SYN and Spider-Realistic datasets.

A.2.5 Ablation Study on the Interplay
between GDSL and MMSG

To rigorously evaluate the individual and synergis-
tic contributions of the Generation-Driven Schema
Linking (GDSL) and Multi-Model SQL Generation
(MMSG) modules, we conduct a comprehensive
ablation study by introducing two critical variants:
(1) SL + MMSG: MMSG using a schema linker
trained via supervised fine-tuning (QwenCoder).
(2) MMSG only (Full Schema + Voting): MMSG
with full database schema input and no schema
linking.

As shown in Table 11, GenLink (GDSL +
MMSG) achieves 67.34% EX, outperforming SL +
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Method Simple Moderate Challenging All
SL + MMSG 71.14 57.20 45.14 64.47
MMSG only (Full Schema + Voting) 71.89 57.42 45.14 64.99
GenLink (GDSL + MMSG) 73.19 60.00 53.47 67.34

Table 11: Component-wise execution accuracy (EX) by difficulty level on the BIRD development set.

Method TR TP CR CP SR Dev EX
SL + MMSG 93.02 93.56 87.09 89.45 67.21 64.47
MMSG only (Full Schema + Voting) 100.00 27.20 100.00 5.91 100.00 64.99
GenLink (GDSL + MMSG) 97.22 85.50 94.56 78.52 83.96 67.34

Table 12: Schema linking quality and execution accuracy (EX) on the BIRD development set.

MMSG (64.47%) and MMSG only (64.99%). Gen-
Link provides the most substantial gains on Mod-
erate and Challenging questions, where complex
schema reasoning is paramount. This highlights
GDSL’s strength in handling intricate, implicit re-
lationships that are difficult for explicit extractors
to capture. A deeper analysis of schema quality
(Table 12) reveals the reasons for this gap: MMSG
only has perfect recall (CR=100%) but very low
precision (CP=5.91%), as the full schema intro-
duces noise and harms generation. SL + MMSG
has high precision (CP=89.45%) but lower recall
(CR=87.09%), indicating the explicit linker may
miss critical columns. GenLink strikes the optimal
balance, achieving high recall (CR=94.56%) and
high precision (CP=78.52%).

This demonstrates that GDSL is not redundant
but essential. It provides a high-quality, focused
schema that maximizes the effectiveness of the
MMSG ensemble, enabling superior performance
compared to both explicit linking and no linking.

Comparison Pair Similarity Score
Q vs QC 0.944
Q vs L 0.944
Q vs D 0.936
Q vs M 0.945
QC vs L 0.947
QC vs D 0.940
QC vs M 0.947
L vs D 0.942
L vs M 0.951
D vs M 0.943
Average 0.944

Table 13: Comparison of semantic similarity of SQL
generated by different generative language models.

Number of Models Jaccard Similarity TR CR EX
2 0.81 95.46 91.47 61.21
3 0.74 96.38 93.14 64.82
4 0.69 96.87 93.93 65.35
5 0.65 97.22 94.56 67.34

Table 14: Model Ensemble Performance Metrics.

A.2.6 Analysis of Different Generative
Language Models

We analyzed five models used in the experi-
ment: Llama-3.1-8B-Instruct, Qwen2.5-Coder-7B-
Instruct, Qwen2.5- 7B-Instruct, deepseek-coder-
6.7b-instruct and Mistral-7B-Instruct-v0.3. While
different generative language models generate SQL
with similar basic skeletons due to their pretrained
SQL generation capabilities, their linked seman-
tic schemas may vary owing to biases introduced
by their respective pre-training corpora. To vali-
date this observation, we conducted the following
experiments (1)Semantic Similarity of Generated
SQL and (2)Schema Linking Diversity via Jaccard
Similarity on the BIRD-dev dataset.

The specific details of Experiment (1) are as
follows: we used BERT to vector SQL and mea-
sured the semantic similarity between SQL queries
generated by different generative models on BIRD-
dev. As shown in Table 13, experimental results
revealed an average similarity of 94.4%, confirm-
ing near identical SQL skeletons. The remaining
5.6% divergence stemmed from variations in linked
schemas.

To further prove the difference comes from the
schema linking, we designed Experiment (2). We
quantified schema linking differences using Jaccard
similarity in Table 14. To be specific, we carry out
Jaccard Similarity calculation for different schema
sets. The schema sets are linked by different mod-
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els. And we take an average value among 1534
BIRD samples. As the number of models increased,
Jaccard similarity decreased, indicating greater di-
versity in linked schemas. This diversity enables
GenLink to explore a broader space of potential
schemas, thereby improving Table Recall (TR) and
Column Recall (CR). The superior schema link-
ing performance directly contributes to GenLink’s
67.34% EX on BIRD-dev, demonstrating its effec-
tiveness.

B Appendix B

B.1 Related work

Schema Linking-Centered Research Schema
linking is a core preliminary step in the text-to-SQL
task, whose primary goal is to establish accurate
associations between natural language queries and
database schemas. It directly determines the struc-
tural accuracy of subsequent SQL generation. Ex-
isting research focuses on "how to efficiently cap-
ture the matching relationships between NL queries
and schema elements" and can be mainly catego-
rized into two core approaches: neural network-
based methods and in-context learning (ICL)-based
methods. These two approaches exhibit significant
differences in matching granularity and semantic
understanding capabilities.

Neural network-based schema linking leverages
deep learning to capture the semantic relationships
between queries and schemas. DAE (Dong et al.,
2019) treats schema linking as a sequence label-
ing task, while SLSQL (Lei et al., 2020) improves
performance by annotating schema linking data in
benchmarks such as Spider (Yu et al., 2019). RES-
DSQL (Li et al., 2023a) introduces a cross-encoder
with enhanced ranking to prioritize relevant schema
elements, and FinSQL (Zhang et al., 2024) accel-
erates the linking process through parallel cross-
encoders. Despite the advantages of these methods,
they face generalization challenges across different
schemas, especially when training data is limited.

Schema linking methods based on ICL, relying
on the semantic understanding and reasoning capa-
bilities of LLMs, break through the surface-level
limitations of string matching and are suitable for
dynamic and complex schema association scenar-
ios. TA-SQL (Qu et al., 2024) utilizes the task
alignment capability of LLMs (e.g., GPT-4 (Ope-
nAI et al., 2024)) to link the schema linking and
SQL generation stages. By embedding schema
information in prompts, it reduces "hallucinatory

linking". To address the schema filtering challenge
in large-scale databases, MAC-SQL (Wang et al.,
2025) designs a multi-agent architecture, where a
"selector agent" is specifically responsible for the
initial filtering of schema elements, and a "gener-
ator agent" then completes fine-grained linking to
improve linking efficiency. E-SQL (Caferoğlu and
Özgür Ulusoy, 2025) further optimizes semantic
associations by integrating key values and condi-
tional constraints in the database into NL query
reconstruction, thereby strengthening the seman-
tic binding between queries and schemas. Build-
ing on this, CHESSIR+SS+CG (Talaei et al., 2024)
adds keyword extraction from external evidence
and combines a "three-stage schema pruning strat-
egy" (coarse filtering - fine ranking - verification) to
reduce redundant linking. Although ICL methods
have significant advantages in semantic matching,
they suffer from a prominent high token cost issue:
descriptions of large-scale schemas occupy a large
amount of prompt length, leading to reduced in-
ference efficiency and increased costs in practical
deployment.

End-to-End Text-to-SQL Models End-to-end
text-to-SQL models aim to skip the explicit schema
linking step and directly map NL queries to com-
plete SQL statements. Their core design logic is to
"integrate schema understanding and SQL gener-
ation into a single learning task", which is mainly
implemented through two technical approaches:
neural network-based semantic modeling and su-
pervised fine-tuning (SFT)-based generative mod-
els. While simplifying the process, these models
also face challenges in schema generalization capa-
bilities.

Neural network-based end-to-end models di-
rectly capture the joint semantics of NL queries,
SQL structures, and database schemas through
deep learning architectures. DAE (Dong et al.,
2019) pioneered the transformation of the end-to-
end task into a sequence labeling problem, treating
table names and column names as "annotation la-
bels". It performs joint encoding of NL queries and
schema sequences using a BiLSTM encoder, di-
rectly outputting SQL token sequences containing
schema information. Addressing the scarcity of an-
notated data, SLSQL (Lei et al., 2020) constructs a
dedicated schema linking annotation dataset within
the Spider (Yu et al., 2019) benchmark. By increas-
ing "schema-query" aligned samples, it enhances
the model’s implicit recognition ability of schema
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elements.
SFT-based generative end-to-end models opti-

mize the parameters of pre-trained language mod-
els (PLMs) through gradient descent on labeled
(NL query, SQL) pairs, internalizing the mapping
rules of "schema understanding - SQL generation"
into model parameters without relying on schema
demonstrations in prompts. DTS-SQL (Pourreza
and Rafiei, 2024) proposes a two-stage fine-tuning
strategy: the first stage only trains the "schema el-
ement recognition" subtask (e.g., predicting table
names and column names in SQL), and the second
stage trains complete SQL generation. By decom-
posing the task, it reduces the learning difficulty of
schema understanding and indirectly improves the
accuracy of schema association. From the perspec-
tive of data augmentation, CodeS (Li et al., 2024)
optimizes SFT performance. It constructs diverse
training samples through "bidirectional data aug-
mentation" and combines "strategic prompt con-
struction" to strengthen the model’s memory of
schemas. However, the "implicit schema under-
standing" design formed by such methods also
makes it difficult for the model to learn complex
linking patterns, resulting in weak interpretability
and error correction capabilities.

Utilization of Self-Consistency in SQL Gener-
ation Traditional ensemble learning in machine
learning shows that combining multiple models can
improve overall performance and robustness. Com-
mon techniques include majority voting, averaging,
or selecting the most confident prediction. In the
context of LLMs and generative models, basic en-
semble methods may involve generating multiple
outputs and selecting the most frequent response,
which is the strategy adopted in self-consistency
(Wang et al., 2023). C3 (Dong et al., 2023) samples
multiple reasoning paths to generate diverse SQL
answers and applies a voting mechanism to the exe-
cution results of SQL. MCS-SQL (Lee et al., 2024)
generates various SQL queries based on different
prompts, which differ in the selection method and
order of few-shot examples. Driven by Gemini 1.5,
CHASE-SQL (Pourreza et al., 2024) adopts various
chain-of-thought prompting techniques to generate
candidates, and then selects from the candidates
through a binary voting mechanism. However, our
method, GenLink, effectively improves the recall
rate of schema linking by integrating the variability
of different generative language models in com-
plex schema understanding, thereby solving the

problem of domain generalization.

B.2 Prompt Template

BIRD prompt template

Given the following database schema,
question and evidence, your task is to write
a valid SQLite SQL query whose execution
results can accurately answer the question.
Evidence can help you to comprehend the
database values.

Database Schema:
{schema}
{content_sequence}

Question:
{question}

Evidence:
{evidence}

Please only provide valid SQLite SQL
query and do not provide unnecessary
explanations.

SQL:

Spider prompt template

Given the following database schema and
question, your task is to write a valid
SQLite SQL query whose execution results
can accurately answer the question.

Database Schema:
{schema}
{content_sequence}

Question:
{question}

Please only provide valid SQLite SQL
query and do not provide unnecessary
explanations.

SQL:

Existing approaches typically rely on complex
instructions crafted by human experts, which not
only require significant domain expertise but also
consume a lot of time for optimization. In contrast,
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we use a simple and generalized prompt template.
Experimental results show that GenLink achieves
better performance than in-context learning meth-
ods such as CHESSIR+SS+CG on both the BIRD
and Spider benchmark datasets, which validates
that our method can achieve excellent performance
even on simple prompts.

B.3 Case study
In this section, through a systematic analysis of
typical cases from the BIRD dataset, we compared
the performance differences between GenLink and
SFT CodeS-15B in schema linking task. The ex-
perimental results (as shown in Table 15 and Table
16) indicate that when CodeS employs a single-
model explicit extraction approach, it incorrectly
links schools.school and foreign_data.name. This
error primarily stems from two key factors: (1)
the inherent limitations of explicit extraction meth-
ods in handling complex schemas, making it dif-
ficult to capture deep semantic relationships; and
(2) the lack of sufficient generalization capabil-
ity in language models trained in a single training
corpus environment, which struggle to adapt to
cross-domain scenarios. In contrast, GenLink, by
integrating multiple small language models and
adopting a generation-based schema linking strat-
egy, successfully achieves implicit schema linking
(e.g., satscores.cds and cards.name). This result
demonstrates that the multi-model strategy can ef-
fectively enhance the robustness and accuracy of
schema linking, particularly showcasing significant
advantages in handling complex semantic scenar-
ios.
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Question What is the total number of schools whose total SAT scores are greater or equal to 1500 whose
mailing city is Lakeport?

Evidence Total SAT scores can be computed by avgscrread + avgscrmath + avgscrwrite.

Schema Linking Variants

Qwen {"satscores": ["cds", "avgscrread", "avgscrmath", "avgscrwrite"],
"schools": ["cdscode", "mailcity"]}

QwenCoder {"satscores": ["cds", "avgscrread", "avgscrmath", "avgscrwrite"],
"schools": ["cdscode", "mailcity"]}

Llama {"satscores": ["cds", "numge1500"],
"schools": ["cdscode", "mailcity"]}

DeepSeek {"schools": ["cdscode", "mailcity"],
"satscores": ["cds", "avgscrread", "avgscrmath", "avgscrwrite"]}

Mistral {"satscores": ["cds", "numtsttakr"],
"schools": ["cdscode", "mailcity"]}

Merged Schema {"satscores": ["cds", "avgscrread", "avgscrmath", "avgscrwrite", "numge1500", "numtsttakr"],
"schools": ["cdscode", "mailcity"]}

GenLink Predicted SQL SELECT count(satscores.cds) FROM schools INNER JOIN satscores ON schools.cdscode
= satscores.cds WHERE schools.mailcity = ’Lakeport’ AND satscores.avgscrread +
satscores.avgscrmath + satscores.avgscrwrite >= 1500

CodeS Explicitly Schema {"schools": ["mailcity", "cdscode", "school", "city", ...],
"satscores": ["cds", "avgscrread", "avgscrmath", "avgscrwrite", ...], ...}

CodeS Predicted SQL SELECT count(schools.school) FROM schools INNER JOIN satscores ON schools.cdscode
= satscores.cds WHERE schools.mailcity = ’Lakeport’ AND satscores.avgscrread +
satscores.avgscrmath + satscores.avgscrwrite >= 1500

Gold SQL SELECT count(satscores.cds) FROM satscores INNER JOIN schools ON satscores.cds
= schools.cdscode WHERE schools.mailcity = ’Lakeport’ AND (satscores.avgscrread +
satscores.avgscrmath + satscores.avgscrwrite) >= 1500

Table 15: Case Study 1 of GenLink compared to CodeS on the BIRD Dataset.

Question Among the Artifact cards, which are black color and comes with foreign language translation?

Evidence Artifact card refers to originaltype = ’Artifact’; black color refers to colors = ’B’; foreign
language refers to language in foreign_data;

Schema Linking Variants

Qwen {"foreign_data": ["name", "uuid"],
"cards": ["uuid", "originaltype", "colors"]}

QwenCoder {"foreign_data": ["uuid", "language"],
"cards": ["name", "uuid", "originaltype", "colors"]}

Llama {"foreign_data": ["uuid"],
"cards": ["name", "uuid", "originaltype", "colors"]}

DeepSeek {"foreign_data": ["uuid"],
"cards": ["name", "uuid", "originaltype", "colors"]}

Mistral {"foreign_data": ["uuid"],
"cards": ["name", "uuid", "originaltype", "colors"]}

Merged Schema {"foreign_data": ["name", "uuid", "language"],
"cards": ["name", "uuid", "originaltype", "colors"]}

GenLink Predicted SQL SELECT cards.name FROM cards INNER JOIN foreign_data ON cards.uuid = for-
eign_data.uuid WHERE cards.colors = ’B’ AND cards.originaltype = ’Artifact’

CodeS Explicitly Schema {"foreign_data": ["name", "uuid", ...],
"cards": ["uuid", "originaltype", "colors", ...], ...}

CodeS Predicted SQL SELECT foreign_data.name FROM cards INNER JOIN foreign_data ON cards.uuid = for-
eign_data.uuid WHERE cards.originaltype = ’Artifact’ AND cards.colors = ’B’

Gold SQL SELECT DISTINCT cards.name FROM cards INNER JOIN foreign_data ON cards.uuid =
foreign_data.uuid WHERE cards.originaltype = ’Artifact’ AND cards.colors = ’B’

Table 16: Case Study 2 of GenLink compared to CodeS on the BIRD Dataset.
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