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Abstract

Autoregressive generative models play a key
role in various language tasks, especially for
modeling and evaluating long text sequences.
While recent methods leverage stochastic repre-
sentations to better capture sequence dynamics,
encoding both temporal and structural depen-
dencies and utilizing such information for eval-
uation remains challenging. In this work, we
observe that fitting transformer-based model
embeddings into a stochastic process yields or-
dered latent representations from originally un-
ordered model outputs. Building on this insight
and prior work, we theoretically introduce a
novel likelihood-based evaluation metric BB-
ScoreV2. Empirically, we demonstrate that the
stochastic latent space induces a "clustered-to-
temporal ordered" mapping of language model
representations in high-dimensional space, of-
fering both intuitive and quantitative support
for the effectiveness of BBScoreV2. Further-
more, this structure aligns with intrinsic prop-
erties of natural language and enhances per-
formance on tasks such as temporal consis-
tency evaluation (e.g., Shuffle tasks) and AI-
generated content detection.

1 Introduction

Generative models are rapidly gaining traction in
NLP (Zou et al., 2023; Yang et al., 2023; Yi et al.,
2024), particularly for the complex task of mod-
eling and generating long text sequences—a chal-
lenge central to downstream applications such as
text generation and machine translation. Recently,
stochastic representations of latent spaces have
emerged as a promising approach, showing consid-
erable success in areas including time-series anal-
ysis (Liu et al., 2021), dynamical flow modeling
(Albergo et al., 2023; Albergo and Vanden-Eijnden,
2023), and video generation (Zhang et al., 2023).
In the context of text generation, Wang et al. (2022)
introduced a method that models long sequences

*Equal contribution.

as stochastic dynamical flows, yielding strong re-
sults in producing coherent long texts. However,
accurately learning the time-dependent probability
density functions inherent in text data remains an
open problem. Furthermore, effectively leveraging
the information encoded in stochastic representa-
tions continues to be a significant challenge that
has not yet been fully addressed.

Brownian bridge (BB) process helps to learn
time-evolution in the stochastic representation
While the temporal evolution captured in articles
offers insights into linguistic properties like coher-
ence and theme (Sheng et al., 2024), effectively
encoding this temporal information into latent rep-
resentations remains difficult. Drawing inspira-
tion from the Time-control model (Wang et al.,
2022) and Stochastic Interpolation (Albergo and
Vanden-Eijnden, 2023; Albergo et al., 2023), we
propose using the "bridge process" from stochastic
process theory (Øksendal and Øksendal, 2003) to
encode and evaluate sentence-level temporal infor-
mation within latent representations. Furthermore,
by leveraging the raw embeddings from frozen lan-
guage models, we can also incorporate sentence-
level structural information. In this work, we utilize
the BB, the simplest bridge process characterized
by fixed start and end points (Øksendal and Øk-
sendal, 2003) and widely applied across various
domains. We believe that more complex bridge
processes, such as the Schrödinger bridge (Albergo
and Vanden-Eijnden, 2023; Albergo et al., 2023),
could offer richer encoding capabilities, represent-
ing a promising avenue for future research.

To evaluate such encoded time-evolution in-
formation, we introduce BBScoreV2, a novel
likelihood-based evaluation metric for long-text as-
sessment. BBScoreV2 evaluates the time evolution
within a stochastic representation by considering
both its temporal and structural dependencies, as
detailed in Section 3.1. This metric is particularly
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Figure 1: Schematic diagram of the Stochastic Representation in the latent space. An article from domain Xi,
segmented into sentences (u1, u2, · · ·un), is processed by the encoder which consists of a pre-trained language
model (LM) and a multi-layer perceptron (MLP). The encoder maps each sentence into latent space and after
optimizing for the stochastic objective, the latent trajectory becomes time dependent.

useful for article coherence evaluation, exempli-
fied by the shuffle task, which disrupts the natu-
ral temporal order. Existing methods for this task
(Lai and Tetreault, 2018; Jeon and Strube, 2022)
often depend heavily on the training domain, are
limited by their training paradigms, can only as-
sess pairwise data, and are restricted to articles
of the same length. In contrast, BBScoreV2 as-
sesses general temporal order, offering greater flex-
ibility while maintaining comparable performance.
To demonstrate this, we generalize the standard
Shuffle test (Barzilay and Lapata, 2005; Joty et al.,
2018; Moon et al., 2019) into a more robust Mixed
Shuffle test. This new test compares shuffled and
unshuffled versions both within and between differ-
ent articles, allowing for evaluation of the metric’s
robustness independent of individual article char-
acteristics like length. Furthermore, BBScoreV2
proves valuable in downstream applications such
as Human-AI discrimination and exhibits strong
performance in out-of-domain (O.O.D.) scenarios,
likely due to its ability to capture the general struc-
tural and temporal information in human writing
and preserve it in the stochastic representation.

The main contributions of our work can be sum-
marized as follows:

• We demonstrate that clustered language model

embeddings can be effectively structured into
temporal ordered stochastic representations
via a simple multi-layer architecture.

• We propose a novel likelihood-based metric
(BBScoreV2) to evaluate temporal and struc-
tural dependencies within the stochastic rep-
resentation with solid theoretical foundation.

• We hypothesized and validated that tempo-
ral and structural information encoded in the
stochastic representation, as measured by the
BBScoreV2, can potentially serve as an ef-
fective and flexible metric for multiple down-
stream tasks such as coherence evaluate and
AI-generated text detection.

2 Related work

Stochastic processes have demonstrated robust ca-
pabilities in modeling complex tasks across various
fields, including biology (Horne et al., 2007) and
finance (Øksendal and Øksendal, 2003). Recently,
the use of stochastic representations to model la-
tent spaces has shown considerable promise in di-
verse applications such as time-series analysis (Liu
et al., 2021) and dynamical flow modeling (Al-
bergo et al., 2023; Albergo and Vanden-Eijnden,
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2023). Notably, such methods also excel in gen-
eration tasks, including video generation (Zhang
et al., 2023), and long text generation (Wang et al.,
2022). A critical aspect of these tasks is to in-
corporate time-evolution into the latent representa-
tion, which requires capturing the time-dependent
probability density functions embedded within real-
world data. Generally, there are two approaches to
tackle this challenge. One method is the likelihood-
free training paradigm (Durkan et al., 2020), exem-
plified by contrastive learning techniques, which
have demonstrated significant effectiveness in han-
dling high-dimensional data (van den Oord et al.,
2018; Wang et al., 2022; Zhang et al., 2023). This
approach enables the learning of predictive density
indirectly, rather than through direct reconstruction
(Mathieu et al., 2021). The alternative method is
the traditional likelihood-based approach, such as
stochastic interpolants (Albergo et al., 2023; Al-
bergo and Vanden-Eijnden, 2023), which requires
the pre-definition of specific target stochastic pro-
cesses. Both methods exhibit substantial potential
in their respective tasks.

Coherence of articles, as defined by (Reinhart,
1980), referring to the logical flow and connection
of ideas in a text, is one of the most complex tem-
poral dynamic encoded in the articles. Studies have
shown that transformers, while effective in generat-
ing tasks, often struggle with capturing coherence
(Deng et al., 2022). To improve how language mod-
els learn long-text dynamics, methods using latent
spaces have been developed (Bowman et al., 2016;
Gao et al., 2021), focusing on sentence embeddings
by considering neighboring utterances. However,
these methods often produce static representations
and neglect the text’s dynamic nature. A recent
approach using stochastic representations, such as
the BB, incorporates "temporal dynamics" to im-
prove long-range text dependencies (Wang et al.,
2022). This method shows promise in generating
coherent long texts through capturing structural
and temporal information.

In addition to generative tasks, evaluating coher-
ence in a given text also remains a challenge (Sheng
et al., 2024; Maimon and Tsarfaty, 2023). Build-
ing on stochastic concepts, (Sheng et al., 2024)
developed a heuristic metric for coherence assess-
ment, grounded in the unsupervised learning ap-
proach proposed by Wang et al. (2022). This score
demonstrated considerable performance on artifi-
cial shuffle tasks. However, their method relies on
a heuristic understanding of the BB and fails to

adequately establish a theoretical foundation for
the metric setup, which limit the effectiveness and
flexibility of their score, particularly its sensitivity
to article length.

3 Method

3.1 Brownian bridge process

In this section, we introduce a stochastic represen-
tation of the encoded sequences by modeling them
using BBs. We begin by defining a standard BB
{B(t) : t ∈ [0, T ]} with B(0) = 0 and B(T ) = 0.
For any t ∈ [0, T ], the process B(t) follows a
normal distribution B(t) ∼ N(0, t(T − t)/T ).
Additionally, for s, t ∈ [0, T ] with s < t, the
covariance between B(s) and B(t) is given by
Cov(B(s), B(t)) = s(T − t)/T . A more general
BB start from a and end at b can then be constructed
as a + (t/T )(b − a) + σB(t), where a and b are
fixed start and end points, respectively, and σ is the
standard deviation of the process.

3.2 Contrastive learning encoder

The encoder architecture consists of two compo-
nents: a frozen, pre-trained language model and
a trainable multilayer perceptron (MLP) network.
We extract the hidden state corresponding to the
end-of-sentence (EOS) token from the last layer of
the language model. This hidden state serves as
an input to a four-layer MLP, which is trained to
map the input to the latent space. The purpose of
the encoder is to learn a non-linear mapping from
the raw input space to the latent space, denoted
as fθ : X → S. We train the encoder using con-
trastive learning (CL) loss (LCL), which enhances
its ability to differentiate between positive and neg-
ative samples, following the approach of (van den
Oord et al., 2018; Wang et al., 2022).

We adopt the CL encoder framework as pre-
sented by Wang et al. (2022). In this framework,
a key structural assumption is imposed on the la-
tent space, namely an isotropic covariance struc-
ture represented by Σ = Id, where Id denotes the
d-dimensional identity matrix. Consequently, for
an arbitrary starting point s0 at time t = 0 and
an ending point sT at time t = T , the marginal
distribution of st at time t is given by Equation 1.

Consider any triplet of observations (x1,x2,x3)
with x1,x2,x3 ∈ X . The goal is to ensure that
fθ(x2) follows the above marginal distribution
with starting point fθ(x1) and ending point fθ(x3).
For a sequence of observations (x0, . . . ,xT ), let
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Marginal distribution of st st | s0, sT ∼ N ((1− t/T ) s0 + (t/T )sT , [t(T − t)/T ]Id) . (1)

Encoder contrastive loss LCL = E

[
− log

exp(d(x0,xt,xT ; fθ))∑
(x0,xt′ ,xT )∈B exp(d(x0,xt′ ,xT ; fθ))

]
, (2)

d(x0,xt,xT ; fθ) = −∥Tfθ(xt)− (T − t)fθ(x0)− tfθ(xT )∥22
2t(T − t)

.

Log likelihood of Σ ℓ(Σ|{s̄i}ni=1) =
1

2
(d log(2π)

n∑

i=1

(Ti − 1)− d

n∑

i=1

log(|ΣTi |) (3)

− log(|Σ|)
n∑

i=1

(Ti − 1)−
n∑

i=1

tr(Σ−1(si − µi)Σ
−1
Ti

(si − µi)
⊤)).

Log density of s̄ log p(s̄|Σ) = −d(T − 1)

2
log(2π)− d

2
log(|ΣT |) (4)

− (T − 1)

2
log(|Σ|)− 1

2
tr(Σ−1(s− µ)Σ−1

T (s− µ)⊤).

BBScoreV2 of s̄ B+(s̄|Σ̂) = log p(s̄|Σ)/[d(T − 1)]. (5)

Figure 2: Key Equations in the BBScoreV2 Formulation.

B = {(x0,xt,xT )} be a batch consisting of ran-
domly sampled positive triplets (x0,xt,xT ) with
0 < t < T . Then, the CL loss function LCL is
defined by Equation 2.

To further investigate the structural assumption
(Σ = Id) employed during encoder training, partic-
ularly given the importance of latent space correla-
tion structure for downstream tasks, we conducted
ablation studies. Specifically, we tested two dif-
ferent encoders: 1) CL encoder with AnInfoNCE
loss: a CL loss designed by Rusak et al. (2024) to
keep learning the covariance matrix Σ during train-
ing, and 2) a negative-log-likelihood based method
(SP Encoder) which is purely based on fitting the
temporal distribution of the bridge process.

3.3 Alignment in latent space

To evaluate trajectories within the stochastic latent
space, we propose a method to approximate the in-
herent correlation structure and assess both spatial
and temporal properties of the encoded latents. For
an input sequence s̄ = (s0, . . . , sT ) with st ∈ Rd

for t = 0, 1, . . . , T , we capture temporal depen-
dence using standard BBs. To account for structural
dependence among the components, we consider d
independent standard BBs B1(t), . . . , Bd(t) over
the interval [0, T ]. At each time t, the sequence
is modeled as st = µt +W(B1(t), . . . , Bd(t))

⊤,
where W ∈ Rd×d is a transformation matrix and

µt = s0 + (t/T )(sT − s0) represents the mean at
time t. The structural dependence is captured by
Σ = WW⊤. Let s = (s1, . . . , sT−1) denote the
sequence excluding the start and end points, and let
µ = (µ1, . . . , µT−1) be the corresponding means.

The proposed BBScoreV2 is based on the likeli-
hood function of the input sequences, with Σ being
the only unknown parameter. The following propo-
sition presents the likelihood function. For the
detailed proof, please check Appendix B

Proposition 1. Let ΣT ∈ R(T−1)×(T−1) be the
covariance matrix with entries [ΣT ]s,t = s(T −
t)/T .

For n independent input sequences s̄1, . . . , s̄n
with lengths T1 + 1, . . . , Tn + 1, generated by the
same W (or equivalently, Σ), and then the log-
likelihood function is defined in Equation 3.

By Proposition 1, given the input sequences, the
maximum likelihood estimate (MLE) of Σ is.

Proposition 2. Under the setting of Proposition 1,
the MLE of Σ given {s̄i}ni=1 is

Σ̂ =
( n∑

i=1

(Ti − 1)
)−1( n∑

i=1

(si − µi)Σ
−1
Ti

(si − µi)
⊤
)
.

The definition of the BBScoreV2 is therefore de-
rived from the MLE of Σ. Consider the sequence
s̄ = (s0, . . . , sT ), with s and µ defined as before.
To evaluate the coherence of the sequence from
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a domain with unknown parameters Σ, a natural
approach is to compute its density under the as-
sumed model. If s̄ is a BB with covariance Σ, then
by Proposition 1, the log density of s̄ is given by
Equation 4. To remove the length sensitive term in
the log density, we design a standardized score for
practical purposes, and define the score as follow-
ing:

Definition (BBScoreV2). Let Σ̂ be the estimate of
Σ from Proposition 2. The metric BBScoreV2 is
defined as

B+(s̄|Σ̂) = log p(s̄|Σ)/[d(T − 1)].

Given an accurate estimate Σ̂ of the true covari-
ance Σ, and assuming the input sequence s̄ origi-
nates from a BB process with covariance Σ, a lower
BBScoreV2 value signifies a decreased likelihood
of s̄ being generated under Σ. Conversely, if the
representation encodes a better temporal and struc-
tural information, such as encoded from a more co-
herent article, the probability density will be higher,
resulting in a larger BBScoreV2.

In a summary, BBScoreV2 is novel in two
key aspects. First, by utilizing the temporal co-
variance matrix ΣT , the BBScoreV2 captures the
time-dependent structure inherent in the sequence,
which is essential for accurately assessing sequence
temporal property, such as coherence. Second, the
inclusion of the covariance matrix Σ allows the
BBScoreV2 to account for structural dependencies
among the latent dimensions, providing a more
comprehensive evaluation of the sequence’s adher-
ence to the assumed stochastic process.

4 Experiments and Problems

To understand the spatial and temporal information
encoded in stochastic representations, we exper-
imentally designed latent space visualization ex-
periments. Subsequently, we evaluate BBScoreV2
to demonstrate its utility in downstream tasks that
leverage this encoded information. Our experi-
ments are designed to address the following three
key research questions (Q):

• Q1: How is stochastic representation learning
achieved, and what makes it effective? In
Section 5.1, we analyze the spatial structure
of the latent space.

• Q2: Can BBScoreV2 capture correct temporal
information and assess document coherence?

In Section 5.2, we examine its performance
on standard shuffle tasks (indicative of tem-
poral understanding) and also comparing the
coherence of articles of varying lengths—an
evaluation that current state-of-the-art meth-
ods often cannot perform effectively.

• Q3: Can we use BBScoreV2 to detect AI-
generated text from human-written ones ? In
Section 5.3, we explore whether BBScoreV2
can effectively distinguish between human-
written text and text generated by AI. We also
compare its performance with other baselines.

To validate the above question, we design the fol-
lowing experiments. Moreover, in Section C, we
describes the dataset utilized in these experiments
and how we construct the input.

Global discrimination. We employed the Shuf-
fle Test (Barzilay and Lapata, 2005; Moon et al.,
2019) to assess BBScoreV2’s ability to evaluate
temporal information and discriminate global co-
herence. It involves randomly permuting sentences
within a document to create an incoherent version,
which is then compared against the original. Specif-
ically, for each article, we generated 20 unique shuf-
fled copies by permuting entire sentence blocks of
varying sizes (1, 2, 5, and 10 sentences).

Mixed Shuffled test. Building upon the standard
Shuffle Test, we introduced a more challenging
variant called the Mixed Shuffle Test. In this setup,
BBScoreV2 of an original (unshuffled) article is
compared against BBScoreV2 of shuffled articles
drawn from the entire dataset, rather than solely
against its own shuffled versions. A robust and
general-purpose scoring mechanism should con-
sistently identify the original, unshuffled article as
more coherent in these broader comparisons.

Human-AI text discrimination. We leverage
the HC3 Q&A dataset (Guo et al., 2023) to train the
encoder exclusively on human-generated answers,
and subsequently apply it to unseen Q&A pairs
generated by both humans and ChatGPT. After de-
riving the stochastic representations, we compute
the BBScoreV2 for each Q&A pair. We evaluate
multiple encoder backbones to examine the impact
of the raw embeddings. Additionally, we train an
encoder on the WikiSection dataset and evaluate it
using the Wikipedia subset of HC3. Experiments
are conducted under both the full Q&A and answer-
only settings to determine if the BBScoreV2 can ef-
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fectively discriminate between ChatGPT-generated
and human-written texts.

5 Results

5.1 Latent space structure analysis

Theoretically, transformer-based LLMs are argued
to map articles to a latent representation that tends
to form clusters. The structural properties of these
clusters are believed to reflect underlying similar-
ities and properties present in the original articles
(Geshkovski et al., 2023).

Experimentally, we also find such clustered prop-
erty. We first visualized the raw embeddings of
each article from the frozen GPT-2 model. In Fig-
ure 3 (A.1), these embeddings are projected onto
their joint first two principal components (PCs), de-
rived using PCA computed from the latents of un-
shuffled articles. The color gradient, from light to
dark red, represents the token’s sequential position
within the article, from beginning to end. Notably,
as shown in (A.2) and (A.3) for shuffled versions of
an article, the distinct clustering property persists.
This persistence, despite the disruption of sequen-
tial order, suggests that these raw LM embeddings
do not clearly and inherently encode temporal in-
formation. To further substantiate this, Figure 3
(B) plots the mean values of the first two PCs for
the embeddings of each article, illustrating a ten-
dency for articles from the same dataset to cluster
together based on their raw LM embeddings.

Subsequently, to determine the information
learned by the MLP layers in our CL encoder, we
analyzed its outputted stochastic representations.
Figure 3 (C.1) displays these MLP-processed la-
tents projected via PCA. Here, a color gradient
from light to dark blue indicates the component’s
position within the article’s sequence (from begin
to the end). This visualization reveals a clear tem-
poral progression in the latent space for the original,
unshuffled article. In stark contrast, Figures (C.2)
and (C.3), which depict shuffled versions of the
same article, demonstrate that the CL encoder’s
representations clearly reflect this violation of tem-
poral order; the clear sequential pattern observed
in (C.1) is visibly disrupted. Furthermore, Figure 3
(D) presents the projection of latent trajectories for
all articles. This visualization further validates our
assertion that the CL encoder effectively learns and
represents temporal sequence information, unlike
the raw LLM embeddings.

Based on these findings, we show that the CL

encoder effectively encodes temporal information
into the representation. Furthermore, by evaluating
the temporal structure, we can infer properties of
the original articles—such as coherence—which
are quantified by BBScore+ and will be systemati-
cally discussed in the following sections.

5.2 Article coherence evaluation
As shown in Tables 1, we first implement global
discrimination tasks on WikiSection. In this task,
BBScoreV2 significantly outperforms the BBScore
and SOTA results. (See Appendix D for more de-
tails on methods we compared to.) The SOTA
method, developed using a complex network struc-
ture and trained on unshuffle-shuffle data pairs,
serves as a robust baseline. Our results demon-
strate that BBScoreV2 surpasses the SOTA method
in global discrimination tasks with larger block
sizes, underscoring its potential to capture more
globalized temporal properties.

In shuffle tasks, most current high-performance
methods, including the SOTA approach, rely on
pairwise training and are unable to effectively com-
pare articles of different lengths, as these models
are typically constructed based on sentence-wise
matching and comparisons. However, in the Mixed
Shuffle test which evaluate the metric robustness
across different articles, as shown in Table 1, BB-
ScoreV2 surpasses these SOTA method by generat-
ing a metric that can be compared across different
articles. We use the basic entity-grid method (Barzi-
lay and Lapata, 2005) as a baseline and the result
highlights that our score enables article-wise com-
parison. It also demonstrates significant potential
in more complex tasks. Additionally, BBScoreV2
outperforms the BBScore in this article-wise com-
parison, underscoring a key contribution of our
design—mitigating the effect of article length on
score evaluation. This property allows for a more
general comparison across diverse articles.

We also explore the effect of different LLM back-
bones. We tested our model using LLaMA3-1B
and LLaMA3-3B, with GPT2-124M which is the
LLM model used in the main section. As summa-
rized in Table 1, we find: 1) In global shuffle task,
LLaMA3-3B outperforms both GPT2-124M and
the SOTA method, demonstrating its effectiveness
in capturing global sequence structure; 2) In Mixed
Shuffle Task, LLaMA3-3B surpasses GPT2-124M
for smaller blocks (b=1), but its performance de-
creases for larger blocks (b=2, b=5, b=10). This
suggests a trade-off where larger models excel at
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Figure 3: PCA analysis of raw LM embeddings and CL encoder representations. (A.1) Projection of raw LM
embeddings for an unshuffled article onto the first two PCs. The color gradient, from light to dark red, indicates the
sequential position of each token within the article. (A.2, A.3) raw LM embeddings for shuffled versions of the
same article. (B) Mean PC1 and PC2 values for all articles are plotted, with each article represented by a dot. (C.1)
Latent representations from the CL encoder for an unshuffled article, where the color gradient (light to dark blue)
signifies the component’s position in the article sequence. (C.2, C.3) Latent patterns observed in shuffled versions
of the same article. (D) Visualization of the latent trajectories for all articles.

capturing local details (b=1) but might sacrifice
robustness for global structures (b=10). This in-
sight highlights an intriguing direction for future
exploration — different LMs may facilitate learn-
ing stochastic representations in task-specific ways.

Moreover, we evaluate the robustness of the
encoded stochastic representation on a broader
dataset. As shown in Table 2, we train the en-
coder on WikiText and evaluate it on WikiSection
(see Appendix C for details and comparisons about
the datasets). The results indicate that our method
remains highly robust in this O.O.D. setting, sug-
gesting that the structural and temporal informa-
tion captured by our model reflects fundamental
patterns that generalize across different datasets.

5.3 Human-AI discrimination tasks

In this task, we hypothesize that human writing,
compared to AI-generated text, displays temporal
dynamics and structural patterns similar to those
observed in other human-written articles. Specif-

ically, we propose that an encoder trained on a
human-written dataset will more accurately cap-
ture the characteristics of human writing than those
of AI-generated text, resulting in a higher likeli-
hood for human-authored content. As shown in
Figure 4, BBScoreV2 consistently outperforms
BBScore across all experimental settings. No-
tably, GPT2 (124M) surpasses the larger backbone
models, suggesting that the quality of the learned
stochastic representation does not necessarily im-
prove with increased model size.Instead, it is the
MLP module that plays the central role in shaping
the stochastic representation. Among the models
evaluated, GPT2 features a smaller hidden dimen-
sion of 768, whereas both LLaMA3 and Qwen3
utilize larger hidden dimensions of 2048. It implies
that the hidden dimension of the backbone model
may influence performance on this task.

Next, we use a WikiSection trained encoder to
detect ChatGPT-generated answer in the Wikipedia
subset of HC3. The results are shown in Table 3
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Methods
Acc. (Shuffle Task) Acc. (Mixed Shuffle Task)

Db=1 Db=2 Db=5 Db=10 Db=1 Db=2 Db=5 Db=10

ENTITY GRID (Barzilay and Lapata, 2005) 85.73 82.79 75.81 64.65 46.10 52.29 53.69 63.02
UNIFIED COHERENCE (Moon et al., 2019) 99.73 97.86 96.90 96.09 – – – –
BBSCORE (Sheng et al., 2024) 83.39 80.71 79.36 78.66 22.37 24.94 23.84 19.69

BBSCOREV2 (GPT2-124M) 99.03 98.11 98.02 98.17 94.78 89.24 79.64 70.83
BBSCOREV2 (LLAMA3-1B) 99.16 98.37 97.99 97.87 94.53 87.86 76.95 71.13
BBSCOREV2 (LLAMA3-3B) 99.57 98.74 98.14 98.74 94.97 86.34 73.88 68.87

Table 1: Results of Global shuffle tasks on WikiSection. Db=i, i = 1, 2, 5, 10 refers to datasets constructed with
varying levels of block shuffling.

Methods Shuffle Test tasks (O.O.D.)
Db=1 Db=2 Db=5 Db=10

UNIFIED COHERENCE 60.02 9.63 44.80 66.51
BBSCORE 70.32 72.09 76.84 77.73
BBSCOREV2 91.30 87.22 86.14 88.18

Table 2: O.O.D. Task. Encoder was trained on the
WikiText and evaluated on Shuffle Test tasks using the
same WikiSection data to assess their performance.

GPT2 (124M) GPT2-L (774M) Llama-3 (1B) GPT2-XL (1.5B) Qwen3 (1.7B)
0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

0.220
0.302

0.370 0.338 0.309

0.729

0.601
0.500 0.529

0.585

BBScore BBScoreV2

Figure 4: Compare different LM backbones.

under both Q&A and answer-only settings. To
further highlight the flexibility and competitive
performance of BBScoreV2 compared to LLM-
based models, we assessed the perturbation discrep-
ancy metric proposed in DetectGPT (Mitchell et al.,
2023), which has high performance in AI detection
tasks. Our results reveal that BBScoreV2 surpasses
DetectGPT when using a comparable number of
model inferences. DetectGPT’s performance is in-
fluenced by a hyperparameter—the number of per-
turbations—which directly affects both the number
of model inferences and the computational com-
plexity. As shown in Table 7 in the Appendix, we
tested cases with 1 and 10 perturbations. With 1
perturbation, DetectGPT’s accuracy was approxi-
mately 64%, lower than BBScoreV2’s 70%, while
requiring twice the number of model inferences
per text. With 10 perturbations, DetectGPT’s accu-
racy increased to 84%, but this required 11 model

inferences per text, making it significantly more
computationally intensive than BBScoreV2.

Methods HC3 (w/o Q&A) HC3 (w/ Q&A)

BBSCORE 37.53 31.47
DETECTGPT 64.30 63.30
BBSCOREV2 70.67 69.71

Table 3: Accuracy of the Human-AI discrimination task.

5.4 Ablation analysis on CL encoder
As previously discussed, the CL encoder relies on
a critical assumption of the independence and ho-
mogeneity among the dimensions of the encoded
sequence which is Σ = Id. To further examine this
assumption, we employ two alternative methods:

1) A likelihood-based encoder, SP Encoder (see
Appendix A) whose loss function is defined based
on the likelihood of the Brownian bridge:

LNLL =
m∑

j=1

nj∑

i=1

(Ti − 1) log(|Σj |)

+
m∑

j=1

nj∑

i=1

tr(Σ−1
j (sθi − µθ

i )Σ
−1
Ti

(sθi − µθ
i )

⊤).

(6)
2) A contrastive loss-based encoder, whose

loss function is AnInfoNCE Rusak et al. (2024)
which is capable of learning Σ during training
The loss function LAnInfoNCE is defined with the
same formate as CL loss (2), however, we re-
place the metric d(x0,xt,xT ) by a trainable metric
d∗(x0,xt,xT ; fθ) defined as:

d∗(x0,xt,xT ; fθ)

= −
∥fθ(xt)− T−t

T fθ(x0)− t
T fθ(xT )∥2Λ̂

2t(T − t)/T
.

and Λ̂ is a trainable diagonal scaling matrix. Let
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v = fθ(xt)− T−t
T fθ(x0)− t

T fθ(xT ), then its cor-
responding norm is defined as:

∥v∥2
Λ̂
= vT · Λ̂ · v

As shown in Table 4, neither the likelihood-
based nor the CL encoder with AnInfoNCE loss
yields significant improvements in the shuffle test.
This suggests that the MLP layers do not capture
meaningful structural correlations across latent di-
mensions—a phenomenon also noted by Wang et al.
(2022)—and instead primarily reconstruct tempo-
ral information, which validate our assumptions
on CL encoder training. The lack of performance
improvement may also suggest that the pertinent
correlation structure is likely inherent either within
the statistical properties of the article domain or
already captured within the high-dimensional em-
bedding space of the pre-trained language model
as we seen in the cluster analysis in Fig 3.

Loss Type Db=1 Db=2 Db=5 Db=10

ANINFONCE 94.63 91.05 92.13 91.70
LIKELIHOOD 94.42 92.90 90.77 86.69
OURS 99.03 98.11 98.02 98.17

Table 4: Comparison of model performance with differ-
ent loss function on WikiSection Dataset.

5.5 Computation efficiency analysis
We specifically analyze the computation efficiency
of BBScoreV2, as shown in Figure 5, the y-axis
represents computation time, while the x-axis indi-
cates article length. The theoretical computational
complexity of BBScoreV2 is O(T 2), primarily due
to matrix multiplications inherent in its definition.
This complexity is fundamental to fully leveraging
temporal information for sequence evaluation. Em-
pirically, the observed computation time is slightly
better than the theoretical prediction, thanks to the
computational acceleration. These results demon-
strate that BBScoreV2 is not only feasible for real-
time applications but also retains its robust evalua-
tion capabilities.

6 Conclusion

In this paper, we present both a theoretical and
empirical investigation into the structural and tem-
poral properties encoded in stochastic represen-
tations of latent trajectories for NLP tasks. We
analyze and visualize these properties, and intro-
duce BBScoreV2—a novel, length-invariant metric

Figure 5: The computation time of BBScoreV2 for
different article lengths. It reveals a quadratic relation-
ship (experimentally 1.57, theoretically 2) between ar-
ticle length and computation time, with each article
processed in approximately ∼ 10−3 seconds.

designed to quantify such information. First we
present the learned representations recovers the
time dependency of the input sequences. Then val-
idated through shuffled and mixed-shuffle tests, we
show that BBScoreV2 exhibits strong performance
in capturing temporal structure and generalizes ef-
fectively to out-of-distribution tasks, suggesting
that these properties reflect domain-independent
textual signals. Moreover, BBScoreV2 shows
promising capability in distinguishing human-
written from AI-generated text by leveraging en-
coded structural and temporal features.

Looking ahead, we aim to extend BBScoreV2
to multi-domain tasks such as domain identifica-
tion, and to exploit its length-insensitive nature to
develop generative models that maintain seman-
tic coherence across varying sequence lengths. Its
computational efficiency (see Fig. 5) also makes
it suitable for large-scale applications. Finally,
inspired by Albergo et al. (2023); Albergo and
Vanden-Eijnden (2023), we plan to explore more
expressive bridge processes to further enhance the
representational capacity of the latent space and
enable richer downstream analysis and generation.

7 Limitations

Our current study is constrained by limited compu-
tational resources and the lack of human-annotated
data, which prevents us from evaluating BB-
ScoreV2 against human preference—a key limi-
tation in assessing its alignment with human judg-
ment. Additionally, in the Human-AI discrimina-
tion task, we were unable to evaluate it on a broader
range of datasets or conduct more extensive com-
parisons across more baselines. These limitations
suggest directions for future work involving large-
scale human evaluation and broader benchmarking.
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A Appendix: SP Encoder

A.1 Definition

Consider a multi-domain problem with m domains
X1,X2, . . . ,Xm each associated with domain-
specific true structural parameters Σ1,Σ2, . . . ,Σm,
respectively. For each domain Xj , we have nj

independent raw inputs xj1, . . . ,xjnj . We de-
fine the encoded sequences as s̄θji = fθ(xji) for
j = 1, . . . ,m and i = 1, . . . , nj , where fθ is the
encoder parameterized by θ. When the encoder
parameters reach their optimal values θ∗, the se-
quences [s̄θ

∗
ji ]

nj

i=1 are expected to be i.i.d. samples
from BBs with parameters Σj for each domain Xj .

We employ the negative log-likelihood (NLL)
as the loss function to train the encoder. Ac-
cording to Proposition 1, for each θ, the neg-
ative log-likelihood for domain Xj depends on
Σj and the inputs [xji]

nj

i=1 through the expres-
sion

∑nj

i=1(Ti−1) log(|Σj |)+
∑nj

i=1 tr(Σ
−1
j (sθi −

µθ
i )Σ

−1
Ti

(sθi − µθ
i )

⊤). We consider the following
training process.

Batch Processing: We divide the inputs [xji]
nj

i=1

into several batches. For each batch B, we com-
pute the batch loss using the current estimate Σ̂j of
Σj :

∑
i∈B tr(Σ̂−1

j (sθi −µθ
i )Σ

−1
Ti

(sθi −µθ
i )

⊤). This
loss function measures how well the encoded se-
quences fit the assumed BB model with the current
structural parameter estimate.

Handling Large Sequences: When the se-
quence lengths Ti are large, computing the full
loss can be computationally intensive. To address
this, we randomly sample a triplet of time points
t = (t1, t2, t3) with 1 ≤ t1 < t2 < t3 ≤ Ti − 1.
We extract the corresponding sub-matrices [sθi ]t
and [µθ

i ]t of size d × 3 from sθi and µθ
i , respec-

tively. Let [ΣTi ]t be the 3 × 3 sub-matrix of ΣTi

corresponding to the selected time points. The loss
for each i in the batch becomes tr(Σ̂−1

j ([sθi ]t −
[µθ

i ]t)[ΣTi ]
−1
t ([sθi ]t − [µθ

i ]t)
⊤). This approach re-

duces computational complexity while still captur-
ing temporal dependencies at selected time points.

Updating Structural Parameters: After pro-
cessing all batches for Xj , we update the esti-
mate of Σj using the MLE: Σ̂j = [

∑nj

i=1(Ti −
1)]−1[

∑nj

i=1(s
θ
i − µθ

i )Σ
−1
Ti

(sθi − µθ
i )

⊤]. This up-
date aggregates information from all sequences in
the domain to refine the structural parameter esti-
mate.

Regularization for Stability: To stabilize
the training process, we regularize Σ̂j by blend-
ing it with a scaled identity matrix. We com-
pute the average variance σ̂2

j and update Σ̂j

as follows, using a small regularization param-
eter ϵ > 0: Σ̂j = (1 − ϵ)[

∑nj

i=1(Ti −
1)]−1[

∑nj

i=1(s
θ
i − µθ

i )Σ
−1
Ti

(sθi − µθ
i )

⊤] + ϵσ̂2
j Id

with σ̂2
j = [

∑nj

i=1(Ti − 1)d]−1[
∑nj

i=1 tr((s
θ
i −

µθ
i )Σ

−1
Ti

(sθi − µθ
i )

⊤)]. This regularization shifts
Σ̂j slightly towards isotropy, improving numerical
stability during optimization.

Total Empirical Loss Function: After iterating
over all domains, the total empirical loss function
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becomes

LNLL =

m∑

j=1

nj∑

i=1

(Ti − 1) log(|Σj |)

+
m∑

j=1

nj∑

i=1

tr
(
Σ−1
j (sθi − µθ

i )

· Σ−1
Ti

(sθi − µθ
i )

⊤
)
.

Minimizing this loss over θ encourages the encoder
to produce sequences that align with the assumed
stochastic process model across all domains.

A.2 Training Details

The WikiSection SP Encoder was trained on 1
A100 GPU for about 10 hours using the training
set of WikiSection for 100 epochs. We used SGD
optimizer and set the learning rate to be 1e-9. The
ϵ in the loss function LNLL is chosen as 1e-7. The
WikiText SP Encoder was trained on 4 A100 GPUs
for roughly 20 hours for 4 epochs with WikiText
dataset. For this dataset, we trained with AdamW
optimizer with learning rate 1e-9 and batch size
32. The ϵ in the loss function LNLL is chosen as
1e-3. Other hyperparameters can be accessed from
the configuration file in the submitted code. Our
empirical results show incorporating σ̂j into the
Σ̂j makes no significant results in the downstream
tasks, thus we disregard σ̂j during encoder training.

A.3 Hyper-parameter Tuning

While training the SP Encoder, we experimented
with different ϵ in LNLL to see its impact on the
performance of the trained encoder. Note that ϵ
determines the perturbation added to the matrix
Σ̂. The eigenvalues of the initial Σ̂ range from
10−6 to 10−1, with the majority of which lying in
[10−3, 10−5]. Thus we tested the following three
different ϵ:

• Large ϵ = 10−3 that is larger that most eigen-
values of Σ̂.

• Medium ϵ = 10−5 that is about the same scale
of most eigenvalues of Σ̂.

• Small ϵ = 10−7 that is smaller than most
eigenvalues of Σ̂.

We choose the small ϵ based on the performance.

B Proof

B.1 Proof of Proposition 1
Proof. We fix the start and end points s0 and sT
and calculate the likelihood function of the input
sequence s.

Given that st − µt = W(B1(t), . . . , Bd(t))
⊤,

and considering the independence of
B1(t), . . . , Bd(t) along with the proper-
ties of the standard BB, we have for any
t, t′ ∈ {1, 2, . . . , T − 1}: E[st − µt] = 0,
Var[st] = [ΣT ]t,tΣ and Cov[st, st′ ] = [ΣT ]t,t′Σ.
Therefore, the vectorized form of s− µ follows a
multivariate normal distribution:

vec(s− µ) ∼ N(0,ΣT ⊗ Σ),

where vec(·) denotes vectorization and ⊗ repre-
sents the Kronecker product.

Using the likelihood function of the multivariate
normal distribution, we have:

L(Σ|s̄) = (2π)−d(T−1)/2|ΣT ⊗ Σ|−1/2

· exp
[
−1

2vec(s− µ)⊤[ΣT ⊗ Σ]−1vec(s− µ)
]

Using properties of the Kronecker product, we have
|ΣT ⊗ Σ| = |ΣT |d|Σ|T−1 and then

vec(s− µ)⊤[ΣT ⊗ Σ]−1vec(s− µ)

= vec(s− µ)⊤[Σ−1
T ⊗ Σ−1]vec(s− µ)

= vec(s− µ)⊤vec(Σ−1(s− µ)Σ−1
T )

= tr((s− µ)⊤Σ−1(s− µ)Σ−1
T )

= tr(Σ−1(s− µ)Σ−1
T (s− µ)⊤).

Therefore, the likelihood function becomes:

L(Σ|s̄) =(2π)−d(T−1)/2|ΣT |−d/2|Σ|−(T−1)/2

· exp[−tr(Σ−1(s− µ)Σ−1
T (s− µ)⊤)/2].

Taking the logarithm, the log-likelihood function
is:

ℓ(Σ|s̄) = −d(T−1)
2 log(2π)− d

2 log|ΣT |
− (T−1)

2 log|Σ|
− 1

2tr
(
Σ−1(s− µ)Σ−1

T (s− µ)⊤
)
.

For n independent input sequences s̄1, . . . , s̄n with
lengths T1 + 1, . . . , Tn + 1, generated by the same
Σ, the total likelihood is:

L(Σ|{si}ni=1) = Πn
i=1L(Σ|si).
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Then the total log-likelihood function is

ℓ(Σ|{si}ni=1) =
n∑

i=1

ℓ(Σ|si)

= −d
∑n

i=1(Ti − 1)

2
log(2π)

− d

2

n∑

i=1

log(|ΣTi |)

−
∑n

i=1(Ti − 1)

2
log(|Σ|)

− 1

2

n∑

i=1

tr
(
Σ−1(si − µi)

· Σ−1
Ti

(si − µi)
⊤
)
.

B.2 Proof of Proposition 2
Proof. To find the MLE of Σ, we need to mini-
mize the negative log-likelihood function, which is
equivalent to minimizing:

g(Σ) =
n∑

i=1

(Ti − 1) log|Σ|

+
n∑

i=1

tr
(
Σ−1(si − µi)Σ

−1
Ti

(si − µi)
⊤
)

Since Σ = WW⊤ is positive definite, we can
compute the gradient of g(Σ) with respect to Σ.
Note that:

d

dΣ
log|Σ| = Σ−1,

d

dΣ
tr
(
Σ−1(si − µi) · Σ−1

Ti
(si − µi)

⊤
)

=− Σ−1(si − µi)Σ
−1
Ti

· (si − µi)
⊤Σ−1.

We compute the gradient:

d

dΣ
g(Σ) =

( n∑

i=1

(Ti − 1)
)
Σ−1

− Σ−1
( n∑

i=1

(si − µi)Σ
−1
Ti

(si − µi)
⊤
)

· Σ−1.

Setting the gradient to zero for minimization, we
have:

Σ̂ =
( n∑

i=1

(Ti − 1)
)−1

·
( n∑

i=1

(si − µi)Σ
−1
Ti

(si − µi)
⊤
)

As shown, the MLE estimate for Σ is obtained.

C Datasets

WikiSection: We use dataset introduced in
(Arnold et al., 2019) which contains selected
Wikipedia articles on the topic of global cities and
have clear topic structures. Each article in this col-
lection follows a pattern certain sections such as
abstract, history, geographics and demographics.
The training split contains 2165 articles and the
test split has 658 articles.

HC3: The Human ChatGPT Comparison Cor-
pus (HC3) (Guo et al., 2023) includes comparative
responses from human experts and ChatGPT, cov-
ering questions from various fields such as open-
domain, finance, medicine, law, psychology and
Wikipedia. We construct the input by concatenat-
ing the Question and Answers together as a single
document and label whether it is ChatGPT gener-
ated by the source of the answers. We also use
the data without Q&A settings and only treat the
answer part as a single document.

WikiText: WikiText language modeling dataset
(Merity et al., 2016) is a much larger set of ver-
ified good and featured articles extracted from
Wikipedia compared to WikiSection,we further
compare these two dataset (Section C) and show
that there is only ∼ 1% potential overlap in topics.
We used WikiText-103-v1 collection in specific for
experiments. This dataset encompass over 100 mil-
lion tokens from 29,061 full articles. The dataset is
assessible through Huggingface 1.

Difference between WikiSection and WikiText
The WikiSection dataset comprises 2,165 articles
describing cities from Wikipedia, while WikiText
includes 29,061 featured or high-quality articles
covering a broader range of topics. The Wiki-
Section dataset is most similar to the “places"
category in WikiText, which contains approxi-
mately 500 articles. To ensure dataset exclusiv-
ity, we used string match to check the overlapping.
The regular expression query we used is ’(a|the)
([\w\s]*)?(city|town) in’ as it is contained in
1,721 articles out of 2,165 in WikiSection dataset.
Using the same query, we examined the WikiText
dataset and checked the intersection of first word
of the article from both search result. After manu-
ally getting rid of false positives, there are around
30 documents found overlap in both datasets. We

1https://huggingface.co/datasets/EleutherAI/
WikiText_document_level
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argue that with that amount of (∼0.1%) contamina-
tion, WikiSection can be considered out of domain
of WikiText.

D Other scores used in this paper

Entity Grid Barzilay and Lapata (2005) is the
most recognized entity-based approach. It creates
a two-way contingency table for each input doc-
ument to track the appearance of entities in each
sentence. We use Stanford’s CoreNLP to annotate
the documents and the implementation provided
in the Coheoka library2 to obtain the Entity Grid
score.

Unified Coherence Moon et al. (2019) presents a
neural-based entity-grid method that integrates sen-
tence grammar, inter-sentence coherence relations,
and global coherence patterns, achieving state-of-
the-art results in artificial tasks.

BBScore Sheng et al. (2024) introduces BB-
Score, and also check the main text for a com-
prehensive comparison between BBScore and BB-
ScoreV2.

E Human-AI comparison test

Table 5 presents the performance of BBScoreV2
computed with different Σ̂ ∈ Rd, while Table 6
shows the performance of the BBScore with var-
ious σ̂ ∈ R, where the subscript indicates the
dataset used for approximation.

The clear improvement over the BBScore
demonstrates that accurately capturing structural
and temporal information can significantly enhance
the model’s accuracy. Table 7 display the perfor-
mance of DetectGPT with more inferences which
significantly improves its performance while also
takes much longer time to infer.

2https://github.com/kigawas/coheoka
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Human AI comparison Human AI comparison with Q&A
Human (Σ̂human) Human (Σ̂ai) Human (Σ̂wiki) Human (Σ̂human) Human (Σ̂ai) Human (Σ̂wiki)

AI (Σ̂human) 70.07 70.55 - 69.00 69.60 -
AI (Σ̂ai) 59.98 61.52 - 58.19 59.74 -

AI (Σ̂wiki) - - 70.67 - - 69.71

Table 5: Combined accuracy of human AI comparison and human AI comparison with Q&A

Human AI comparison Human AI comparison with Q&A
Human (σ̂human) Human (σ̂ai) Human (σ̂wiki) Human (σ̂human) Human (σ̂ai) Human (σ̂wiki)

AI (σ̂human) 35.99 45.13 - 35.04 38.84 -
AI (σ̂ai) 26.37 37.05 - 33.73 38.12 -

AI (σ̂wiki) - - 37.53 - - 31.47

Table 6: Human-AI Task Results with BBScore (Sheng et al., 2024).

Human AI comparison Human AI comparison with Q&A
Number of Perturbations 1 10 1 10

Number of LLM Inferences Number of Perturbations + 1
Accuracy 64.30 84.89 63.30 83.13

Table 7: Human-AI Task Results with DetectGPT (Mitchell et al., 2023). As a comparison, BBScoreV2 only
requires one LLM inference.
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