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Abstract

Pixel language models operate directly on im-
ages of rendered text, eliminating the need
for a fixed vocabulary. While these models
have demonstrated strong capabilities for down-
stream cross-lingual transfer, multilingual pre-
training remains underexplored. We introduce
PIXEL-M4, a model pretrained on four visu-
ally and linguistically diverse languages: En-
glish, Hindi, Ukrainian, and Simplified Chi-
nese. Multilingual evaluations on semantic
and syntactic tasks show that PIXEL-M4 out-
performs an English-only counterpart on non-
Latin scripts. Word-level probing analyses
confirm that PIXEL-M4 captures rich linguis-
tic features, even in languages not seen during
pretraining. Furthermore, an analysis of its
hidden representations shows that multilingual
pretraining yields a semantic embedding space
closely aligned across the languages used for
pretraining. This work demonstrates that multi-
lingual pretraining substantially enhances the
capability of pixel language models to effec-
tively support a diverse set of languages.

1 Introduction

Visually-rendered text has emerged as an alterna-
tive to sub-word tokenization for language mod-
els (Salesky et al., 2021; Rust et al., 2023). In
comparison to sub-word tokenization, processing
visually-rendered text enables models to transfer to
unseen languages without needing to initialize new
embeddings (Dobler and de Melo, 2023), or rely-
ing on back-off mechanisms based on bytes (Xue
et al., 2022) or characters (Clark et al., 2022). Pre-
vious work on pixel-based language models has
predominantly focused on monolingual pretrain-
ing on English data (Rust et al., 2023; Lotz et al.,
2023), with related efforts extending to multilin-
gual pretraining for machine translation (Salesky
et al., 2023). Given evidence that pixel-based mod-
els facilitate positive transfer through visual simi-
larity (Lotz et al., 2025; Mufioz-Ortiz et al., 2025),
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Figure 1: Average performance across tasks compar-
ing PIXEL-M4 and PIXEL-BIGRAMS grouped by scripts:
Arabic, Brahmic, Chinese-Japanese-Korean, Cyrillic,
Latin, and others. Both models share the same architec-
ture and hyperparameters, but PIXEL-M4 is pretrained
in four visually and linguistically diverse languages: En-
glish, Hindi, Ukrainian and Simplified Chinese. PIXEL-
M4 performs better in almost all non-Latin script lan-
guages without sacrificing Latin-script performance.

we investigate multilingual pretraining for general-
purpose representation learning specifically by se-
lecting only one language per script. This approach
is particularly valuable for low-resource languages
that can benefit from transfer via visually similar,
high-resource languages.

We present PIXEL-M4: a multilingual version of
PIXEL (Rust et al., 2023). PIXEL-M4 is pretrained
on four equally-sized amounts of visually diverse
scripts sourced from mC4 (Xue et al., 2021): En-
glish (Latin script), Hindi (Devanagari script), Sim-
plified Chinese (Han script), and Ukrainian (Cyril-
lic script). These scripts were chosen to represent
abugida, alphabetic, logographic/logosyllabic writ-
ing systems, covering billions of speakers. Fur-
thermore, not only do these scripts represent visual
diversity, they also represent grammatical diversity,
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covering Balto-Slavic, Indo-Iranian, Germanic, and
Sino-Tibetan languages.

In downstream task experiments, we investi-
gate the ability of PIXEL-M4 to transfer to new
languages in three conditions (i) same-script; (ii)
related-script; and (iii) unrelated scripts to better
understand what is gained by multilingual pretrain-
ing.! The same-script experiments focus on Simpli-
fied Chinese (Han), Hindi (Devanagari), and vari-
ous Latin and Cyrillic script languages. The related-
script experiments include Japanese and Brahmic
script languages; while the unrelated-script experi-
ments focus on Armenian, Greek, Korean and lan-
guages using the abjad writing system (e.g. Ara-
bic and Hebrew). Compared to its monolingually-
pretrained equivalent, PIXEL-BIGRAMS (Lotz et al.,
2023), we find consistent improvements in perfor-
mance for almost all non-Latin script languages on
text classification, dependency parsing and named
entity recognition.

We conduct word-level probing experiments
using LINSPECTOR (Sahin et al., 2020) to com-
pare differences in linguistic understanding across
15 languages from multilingual versus monolin-
gual pretraining. We find that PIXEL-M4 captures
linguistic features more effectively than PIXEL-
BIGRAMS, both for seen scripts (e.g., Russian
and Macedonian) and unseen scripts (Arabic, Ar-
menian, Greek). Additionally, an exploration of
PIXEL-M4’s embedding space reveals that earlier
layers primarily encode visual information, while
deeper layers shift toward semantic understand-
ing, corroborating earlier observations by Tatariya
et al. (2024). Through cross-lingual retrieval ex-
periments, we find that PIXEL-M4 has learned a
semantic representation space that is shared across
the pretraining languages.

In short, the main contributions of this paper are:

* We present the first multilingually-pretrained
general-purpose pixel language model,’
trained over four visually and linguistically
diverse languages.

» Experiments on syntactic and semantic tasks
show consistent improvements for non-Latin
script languages compared to previous PIXEL
language models.

!The downstream task languages also cut across different
language families, e.g. Indo-European, Sino-Tibetan, and
Turkic. However, we focus on script transfer, given the visual
nature of the data processed by PIXEL-M4.

2Code and models: © ilkerkesen/pixel-m4

* Word-level probing analyses show that multi-
lingual pretraining produces representations
that capture more linguistic features across
languages, such as case marking, part-of-
speech tags, and verb tense.

* Sentence-level analyses of the learned hid-
den representations reveal that PIXEL-M4 has
learned a representation space highly aligned
between a subset of its pretraining languages.

2 PIXEL-M4

2.1 Pretraining Data

Following our motivation to explore multilingual
pretraining through a diverse selection of scripts
rather than a large range of languages, PIXEL-M4
is pretrained on text written in Latin (English),
Cyrillic (Ukrainian), Simplified Chinese charac-
ters (Chinese), and Devanagari (Hindi). For each
script, a corresponding subset of the mC4 (Xue
et al., 2021) corpus is rendered into images, fol-
lowing the strategy of rendering two characters per
image patch from Lotz et al. (2023). With a se-
quence length of 529 image patches and a batch
size of 256, the model observes approximately 135
billion image patches over 1 million pretraining
steps — this is the same total amount of data as the
original PIXEL and PIXEL-BIGRAMS models. How-
ever, PIXEL-M4 is trained on an order-of-magnitude
more unique samples than PIXEL-BIGRAMS. This
difference is due to the fact that PIXEL-BIGRAMS
was trained by iterating 10 times over the English-
only Wikipedia + BookCorpus datasets (Zhu et al.,
2015), whereas PIXEL-M4 processes each sample
in our subset of mC4 only once across the four
pretraining languages.

2.2 Pretraining Procedure

Both PIXEL-M4 and PIXEL-BIGRAMS follow the
PIXEL pretraining recipe from Rust et al. (2023),
including hyperparameter values. Based on the
Masked Autoencoding Vision Transformer (He
et al., 2022), the models render each input sequence
to a 529-patch image using the PangoCairo render-
ing library,® where each image patch is 16 x 16 pix-
els. We use the Google Noto Sans fonts collection
to ensure that the majority of Unicode codepoints
can be accurately rendered.* PIXEL-M4 is trained
by mixing the four languages within each batch;

3ht’cps: //docs.gtk.org/PangoCairo
*https://fonts.google.com/noto
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however, each individual sample consists of only
one language. The image patches are first embed-
ded through a linear projection, 25% of them are
masked (in spans of up to 6 consecutive patches),
and only the unmasked patches plus a CLS token
are passed to the encoder. After the encoder, a
lightweight decoder reconstructs the pixel values
of only the masked patches. For downstream tasks
we remove the decoder and instead attach a task-
specific head, and disable patch masking in inputs.

3 Experimental Setup
3.1 Tasks & Benchmarks

Text Classification. We first test the models on
the sentence-level semantic task of topic classifica-
tion using the SIB-200 benchmark (Adelani et al.,
2024). Each example in SIB-200 is semantically
aligned across languages. This aspect of SIB-200
allows us to make a controlled comparison across
different languages and scripts. Our first set of
evaluations cover the four pretraining languages
of PIXEL-M4: Latin (English ENG), Han (Chinese
ZHO), Cyrillic (Ukrainian UKR), and Devanagari
(Hindi HIN). For the same-script transfer setting,
we experiment with Latin script languages (Ger-
man DEU, Finnish FIN, French FRA, Turkish TUR,
Uzbek UZN) and Cyrillic script languages (Kyrgyz
KIR, Russian RUS). For the related-script transfer
setting, we perform experiments in Japanese (JPN)
and Brahmic script languages (Bengali BEN, Stan-
dard Tibetan BOD, Tamil TAM, Telugu TEL). Lastly,
we cover Armenian (HYE), Greek (ELL), Hebrew
(HEB), Korean (KOR) and Arabic script languages
(Egyptian Arabic ARZ, Uyghur UIG, Urdu URD) to
test transfer to unrelated novel scripts. We report
macro-averaged F1 score as the metric.

Dependency Parsing. We evaluate on the token-
level syntactic parsing task of dependency pars-
ing using the Universal Dependencies (UD) bench-
mark (Nivre et al., 2020; Zeman et al., 2022). We
also compare the models using the same three
transfer learning settings again: (i) same-script
languages seen during pretraining: Latin (English
ENG, Vietnamese VIE), Devanagari (Hindi HIN),
Han (Chinese ZHO), and Cyrillic (Ukrainian UKR,
Russian RUS, Bulgarian BUL); (ii) languages in
scripts related to at least one pretraining script:
Coptic (COP), Japanese (JPN) and Brahmic script
languages (Tamil TAM, Telugu TEL); (iii) lan-
guages in scripts unrelated to the pretraining scripts:
Arabic abjad (Arabic ARA, Urdu URD) and Korean

(KOR). We report Labeled Attachment Score (LAS)
as the evaluation metric.

Named Entity Recognition. Lastly, we per-
form experiments on the token-level semantic
task of Named Entity Recognition (NER) us-
ing three benchmarks: the multilingual Universal
NER (Mayhew et al., 2024, UNER) and Naama-
padam (Mhaske et al., 2023) benchmarks, as well
as the NER portion of the Korean Language Un-
derstanding Evaluation (Park et al., 2021, KLUE).
Once again, we cover same-script, related-script
and unrelated-script transfer scenarios. Here, three
of the four scripts seen during pretraining — Latin
(English ENG, Serbian SRP), Han (Chinese ZHO),
and Devanagari (Hindi HIN) — are additionally eval-
uated on Korean KOR, as well as three Brahmic
scripts (Bengali BEN, Tamil TAM, Telugu TEL). We
report macro-averaged F1 scores.

3.2 Baselines

We mainly compare PIXEL-M4 against the mono-
lingual PIXEL-BIGRAMS model, which is trained
exclusively on English text rendered at the bigram
level. PIXEL-M4 implements the identical architec-
ture, text rendering strategy and pretraining proce-
dure with the same set of hyperparameters, but
PIXEL-M4 is multilingually pretrained on equal
amounts of English, Hindi, Ukrainian and Simpli-
fied Chinese. This comparison allows us to observe
the effects of multilingual pretraining for pixel lan-
guage models in different transfer learning settings.

We also compare PIXEL-M4 against four mono-
lingual BERT variants: The original English
BERT (Devlin et al., 2019) primarily for the Latin
languages, Chinese BERT (Devlin et al., 2019) for
Han and Japanese scripts, a Hindi BERT (Samuel
et al., 2023) for the Brahmic script languages, and
a Ukrainian BERT (Samuel et al., 2023) for the
Cyrillic languages. English BERT is also used as a
fallback option to evaluate languages that do not
belong to any of the pretraining scripts, such as
Arabic or Hangul. This allows us to test whether
multilingually-pretrained pixel models can match
or exceed the cross-lingual transfer capabilities
of the tokenizer-based models, not only for Latin
scripts but also for others.

Lastly, we include CANINE-S (Clark et al., 2022)
as a character-level multilingual baseline, which
is comparable in size to PIXEL-M4. However,
CANINE-S is pretrained with a subword loss objec-
tive on 104 languages using the same multilingual
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Arabic Brahmic Cyrillic
ARZ UIG URD BEN BOD HIN TAM TEL KIR RUS UKR
BERT-MONO 29.1 439 31.1 384 407 872 486 295 735 838 86.5
CANINE-S 65.1 535 555 545 393 534 575 445 655 759 747
PIXEL-BIGRAMS 383 486 365 31.7 369 326 397 399 47.1 37.7 444
PIXEL-M4 375 537 416 462 463 786 645 46.6 629 747 80.5

Latin CJK Others

Avg.

DEU ENG FIN FRA TUR UZN ZHO JPN KOR ELL HEB HYE
BERT-MONO 63.8 88.1 435 76.1 627 594 895 789 154 326 327 365 553
CANINE-S 777 784 61.6 774 682 63.6 779 753 645 653 544 60.8 63.7
PIXEL-BIGRAMS 63.8 843 59.7 732 60.7 567 485 41.0 378 343 26.7 373 460
PIXEL-M4 67.3 839 60.6 70.7 599 562 755 650 64.7 369 313 448 587

Table 1: Text classification results on a selected language subset of the SIB-200 benchmark using macro F1-score.
BERT-MONO indicates that the monolingual BERT model varies by language (see §3.2 for details). Best performances
are bolded. PIXEL-M4 significantly outperforms its English-only-pretrained equivalent PIXEL-BIGRAMS in almost
all non-Latin languages, and PIXEL-M4 performs better than monolingual BERT models on novel writing systems.
Even though CANINE-S is pretrained on 104 languages, PIXEL-M4 outperforms it on 8 of 23 languages.

Wikipedia corpus as mBERT (Devlin et al., 2019)
whereas PIXEL-M4 has only seen four languages in
pretraining. Consequently, this difference in pre-
training data and languages prevents a fully fair
comparison of these models.

4 Results and Discussion

Text Classification. Table 1 presents the results
on SIB-200 for text classification. PIXEL-M4
outperforms PIXEL-BIGRAMS by large margins
in its pretraining languages (HIN: +46.0, UKR:
+36.1, ZHO: +27.0), which are unseen by PIXEL-
BIGRAMS during the pretraining. We also observe
substantial gains in Cyrillic languages (KIR: +15.8,
RUS: +37.0), showing that pretraining pixel mod-
els on a particular script enhances transfer learning
within the same-script languages. In English and
other Latin languages, both models achieve similar
performances. The significant performance gains
in Japanese (JPN: +24) and the Brahmic languages
(BEN: +14.5, BOD: +9.4, TAM: +24.8, TEL: 6.7)
showcase PIXEL-M4’s cross-lingual transfer learn-
ing ability to novel scripts orthographically related
to one pretraining script. Lastly, we compare both
PIXEL-M4 and PIXEL-BIGRAMS in languages with
writing systems visually distant to the pretraining
scripts. Once again, PIXEL-M4 performs better
than PIXEL-BIGRAMS in these languages, where
we can observe improvements for Armenian (HYE:

+7.5), Greek (ELL: +4.3), Korean (KOR: +26.9) and
the languages in right-to-left abjad writing systems
(HEB: 4.6, UIG: +5.1, URD: +5.1). These results il-
lustrate that multilingual pretraining with a diverse
set of scripts accelerates cross-lingual generaliza-
tion even for novel and distant writing systems.
Overall, these results highlight that visually and
linguistically diverse multilingual pretraining for
pixel models leads to substantial gains in all types
of transfer learning scenarios investigated in this
work.

Compared to the monolingual BERT variants,
PIXEL-M4 performs consistently better, especially
in the transfer learning setting involving unseen
scripts. Conversely, BERT-MONO models surpass
PIXEL-M4 in transfer learning within the same-
script, yet BERT-MONO pretrained in English falls
behind PIXEL-M4 in German (DEU: +3.5) and
Finnish (FIN: +17.1).

We further compare PIXEL-M4 against character-
level multilingually-pretrained CANINE-S. PIXEL-
M4 outperforms CANINE-S on 3 out of 4 pretraining
languages and 4 out of 5 Brahmic languages, as
well as slight gains in KOR and UIG. These gains
are notable given that CANINE-S was pretrained on
all of these languages except ARZ and BOD.

Dependency Parsing. Table 2 presents the re-
sults on the UDP benchmark. In the pretraining
languages, PIXEL-M4 significantly improves upon
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Arabic Brahmic Cyrillic Latin CIK Other
Avg.

ARA URD HIN TAM TEL BUL RUS UKR ENG VIE ZHO JPN KOR COP
BERT-MONO 777 719 928 434 756 898 875 92.0 90.6 494 855 879 302 13.0 705
CANINE-S 755 73.0 862 482 7777 821 803 749 824 418 751 912 777 68.8 739
PIXEL-BIGRAMS 77.7 753 886 498 79.0 863 79.1 744 89.6 494 739 90.8 781 814 76.7
PIXEL-M4 742 759 91.6 60.5 79.7 888 830 843 87.6 494 799 912 823 816 793

Table 2: Dependency parsing results for the selected set of languages in the UDP benchmark with LAS. BERT-MONO
indicates that the monolingual BERT model varies by language. PIXEL-M4 outperforms PIXEL-BIGRAMS in non-
Latin script languages, and it again achieves a better performance than BERT-MONO on novel scripts, while showing
substantial gains over CANINE-S on every language but one.

Latin Brahmic CJK

Avg.

ENG SRP HIN BEN TAM TEL KOR ZHO

79.3
67.1
63.4
67.3

85.8
83.0
81.6
82.1

825
79.5
79.0
80.9

75.4
78.5
78.0
78.5

67.3
69.7
67.9
68.0

78.3
80.5
79.6
79.6

30.6
80.6
80.4
81.6

85.4
75.8
61.4
74.9

73.1
76.8
739
76.6

BERT-MONO
CANINE-S
PIXEL-BIGRAMS

PIXEL-M4

Table 3: NER results by macro-averaged F1-scores.
BERT-MONO is the monolingual BERT model, which
varies by language depending on script. Overall, PIXEL-
M4 performs on par with CANINE-S, and outperforms
PIXEL-BIGRAMS and BERT-MONO with an average
score of 76.6.

PIXEL (HIN: +3.0, UKR: +9.9, ZHO: +6.0) ex-
cept in English (ENG: -2.0), which both models
have seen in their pretraining. PIXEL-M4 outper-
forms PIXEL on the languages written in Cyrillic
(BUL: +2.5, RUS: +3.9), which demonstrates im-
proved cross-lingual transfer learning within the
same-script languages once again. For the unseen
Brahmic languages, PIXEL-M4 achieves a slight
gain in Telugu (TEL: +0.7) and a much larger per-
formance boost in Tamil (TAM: +10.7). For the
orthographically distant Korean language, PIXEL-
M4 outperforms PIXEL-BIGRAMS (KOR: +4.2). For
the Arabic-script languages, we observe mixed re-
sults: In Arabic, the performance drops (ARA: -
3.5), while we observe a modest gain in Urdu
(URD: +0.6). Altogether, multilingually-pretrained
PIXEL-M4 improves on PIXEL-BIGRAMS on the de-
pendency parsing task for the unseen languages
considering various cross-lingual transfer learn-
ing settings. Our findings on this task is similar
to the SIB-200 findings for comparing PIXEL-M4
against monolingual BERT models: (i) PIXEL-M4
achieves a better overall performance than BERT-
MONO in cross-lingual transfer involving writing
systems unknown to both; (ii) BERT-MONO per-
forms better than PIXEL-M4 for the pretraining

scripts and cross-lingual transfer within the same-
script. Lastly, when compared with CANINE-S,
PIXEL-M4 achieves consistently better overall per-
formance, despite the fact that CANINE-S has been
trained on all languages except COP.

Named Entity Recognition. Table 3 reports
macro-averaged F1 for NER across eight lan-
guages. As expected, multilingual pixel pretraining
(PIXEL-M4) outperforms the English-only PIXEL-
BIGRAMS model on every language, raising the
average F1 from 73.9 to 75.9. The largest boost
is seen in Chinese (ZHO: +13.5), reflecting that
exposure to Chinese during PIXEL-M4’s pretrain-
ing. Other pretraining languages also benefit from
multilingual pretraining (ENG: +3.9, HIN: +1.9).
Differently from the other tasks, both PIXEL-M4
and PIXEL-BIGRAMS perform on par in the Brah-
mic scripts (HIN: +1.9, BEN: +0.5, TAM: +0.1, TEL:
0.0): This might be due the larger training sets
available in the Naamapadam benchmark. Later,
in §5, we show that PIXEL-M4 outperforms PIXEL-
BIGRAMS with large margins in low-resource set-
tings. Lastly, +1.2 gain in Korean suggests that
PIXEL-M4 can transfer visual substructure from
unrelated scripts for better entity processing.

The monolingual BERT models achieve a bet-
ter performance than PIXEL-M4 for the languages
with writing systems known by both models, un-
derscoring that world-knowledge and semantic co-
occurrence patterns encoded into specific token
entities remain crucial for this semantic task. This
is especially the case for English, as both BERT
and PIXEL-BIGRAMS are pretrained using exactly
the same data. Nonetheless, our findings for the
languages in unseen scripts is inline with previ-
ous experiments where PIXEL-M4 performs better
than BERT-MONO: (BEN: +3.1, TAM: +0.7, TEL:
1.6). These improvements highlight how pixel
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Figure 2: Data-efficient learning experiments on the Naamapadam NER benchmark showing the mean test F; score
as a function of training set size in log scale for four Brahmic languages. In each experiment, PIXEL-M4 consistently
outperforms PIXEL-BIGRAMS, with the largest relative gains under the smallest data regimes.

models can process languages in related scripts
directly, avoiding the tokenization failure modes of
subword-based models.

Finally, PIXEL-M4 performs on par with
CANINE-S overall, although CANINE-S was ex-
posed to all downstream task languages during pre-
training.

5 Analysis
5.1 Data-Efficiency Analysis

To investigate the capabilities of PIXEL-M4 further,
we perform a data-efficiency analysis on Naama-
padam — the Indic languages benchmark. Using
the original training splits, we create subsets of
size 1024, 2048, 4096 and 8192 examples. We
repeat this process 8 times using different random
seeds, resulting 32 different subsets. Next, we train
both PIXEL-BIGRAMS and PIXEL-M4 on these sub-
sets and compare them in terms of data-efficiency.
Figure 2 illustrates this comparison, where each
subplot represents the results for the specified lan-
guage. For Hindi, Bengali and Tamil, PIXEL-M4
performs significantly better than PIXEL in all set-
tings. The results in Bengali and Tamil also high-
light the cross-lingual transfer learning capacity of
the PIXEL-M4 in low-resource settings. As we de-
crease the number of examples, we observe more
substantial gains in all languages including Tel-
ugu, where PIXEL-M4 performs slightly better than
PIXEL-BIGRAMS on the entire set of tasks. Over-
all, multilingual pretraining of pixel language mod-
els substantially enhances transfer learning in low-
resource settings.

5.2 Word-Level Probing

We also performed a probing analysis similar to
Tatariya et al. (2024). Here, we use LINSPECTOR
(Sahin et al., 2020), a multilingual word-level prob-
ing benchmark, to investigate the transferability of
multilingual representations encoded by PIXEL-M4.

We investigate hidden representations encoded by
both PIXEL-M4 and PIXEL-BIGRAMS after each
layer, and compare them against each other. We
perform this analysis on four different tasks (Case
Marking, POS, SameFeat, TagCount) using five dif-
ferent languages (Arabic, Armenian, Greek, Rus-
sian, Macedonian).’ Case Marking requires as-
sessing the grammatical case (e.g. nominative, ac-
cusative) of a given input word. POS involves
predicting the POS tag for the given word. The
SameFeat task measures the ability to detect the
mutual morphological feature of two given words
in their surface forms. Lastly, TagCount requires
correctly predicting the number of morphological
tags for the given input word. SameFeat and Tag-
Count are more difficult than the other tasks, as
both require predicting the entire set of morpholog-
ical features for the given word(s).

We show the results of our probing analyses in
Figure 3. In this grid of subplots, each row in-
vestigates a different task, and each column inves-
tigates a different language. In Macedonian and
Russian, PIXEL-M4 learns significantly better rep-
resentations compared to PIXEL-BIGRAMS, which
is expected because PIXEL-M4 has seen a similar
language in the same script during pretraining. The
gap between two models in earlier layers (1-3) is
smaller on SameFeat and TagCount, as they re-
quire more complex linguistic assessment. This
also applies for the other tested languages, and it
is in line with the observations of Tatariya et al.
(2024), where earlier layers focus more on visual
rather than semantic processing. In Arabic, Arme-
nian, and Greek, PIXEL-M4 still performs slightly
better than PIXEL-BIGRAMS on the majority of
tasks, which showcases its improved visual pro-
cessing and transfer learning to unseen languages.
For these unseen languages, the performance of
PIXEL-M4 starts to plateau starting from the 7th or

3See Appendix for a larger set of tasks and languages.
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Figure 3: Word-level probing analysis on LINSPECTOR, where each row investigates a different task, and each
column investigates a different language. In each subplot, y-axis represents the model accuracies and x-axis
represents the corresponding layer number for the used hidden representations. Multilingually-pretrained PIXEL-M4
has learned better linguistic representations even for the languages with orthographically distant writing systems.
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Figure 4: t-SNE visualization of the outputs for the specified layers. Each row contains visualizations for a particular
model, and each column focuses on a particular layer. Each ‘X’ marker appear at the centroid of a different
pretraining language seen by PIXEL-M4. Both models cluster languages based on their scripts, yet PIXEL-M4 clusters

some pretraining languages in the later layers.

8th layer. Overall, these results demonstrate that
the multilingual pretraining produces a better set of
hidden representations throughout the entire model,
even for the unseen scripts.

5.3 Analyzing Hidden Representations

Similar to Salesky et al. (2023), we visualize the
hidden representations learned by both PIXEL-
BIGRAMS and PIXEL-M4 using t-SNE (Van der
Maaten and Hinton, 2008). To perform this anal-
ysis, we use a subset of SIB-200 (Adelani et al.,
2024) including the training splits of 26 languages.
We perform t-SNE visualization throughout the

model, starting from the convolved input represen-
tations (Layer 0) to the output of the last trans-
former layer (Layer 12). Figure 4 shows t-SNE
plots: rows correspond to models, columns to
layers, and ‘x’ marks the PIXEL-M4 pretraining-
language centroids. We observe the same phe-
nomenon for the convolved features as demon-
strated in Salesky et al. (2023): Languages which
use the same or a related writing script are grouped
together. This can be observed for both models,
where we can see large clusters for Arabic, Cyrillic
and Latin, and Chinese-Japanese language clusters
appear next to each other. As we move through in
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Figure 5: Cross-lingual similarity analysis on SIB-200
using the mean pooled hidden representations of PIXEL-
M4. The x-axis indicates the layer number; the y-axis re-
ports the performance using recall@5. Each line focuses
on a different language-pair combination. The dashed
line shows the maximum recall@5 value obtained by
PIXEL-BIGRAMS for these language pairs. This analysis
reveals that PIXEL-M4 has learned a mutual semantic
representation for some pretraining language pairs.

the model layers, we start to see some languages
form their own separate clusters by moving away
from their script clusters (e.g. Layer 4 and 8).
More importantly, in the later layers of PIXEL-M4,
we observe that the pretraining languages move
away from the rest of the languages that share the
same script, and they start to cluster together. This
observation demonstrates that PIXEL-M4 shifts its
focus from visual processing more to the seman-
tics in the later layers. This raises the question of
whether PIXEL-M4 has learned a semantic represen-
tation space shared between different pretraining
languages.

To determine whether PIXEL-M4 has learned a
representation space shared between different pre-
training languages, we perform a cross-lingual re-
trieval experiment on the multilingually aligned
SIB-200 benchmark. To obtain sentence embed-
dings, we apply L2 normalization to the mean
pooled hidden representations after each layer. At
each layer, we treat each sentence embedding in
one language as a query and compute its cosine
similarity against every sentence embedding in the
other language. We report recall@5, i.e., the per-
centage of the examples where the true translation
is ranked in the top 5. Since each sentence has ex-
actly one correct translation, retrieval performance
per example is binary, taking values of either O or
1. Figure 5 shows the results for each language
pair. We see that the semantic alignment between
each language pair increases as we move through

in the layers. Particularly, the semantic alignment
between English and Ukrainian is very high, as
they are also tightly clustered in the t-SNE feature
space. We can also observe a high semantic align-
ment between English and Hindi, yet the remaining
pairs do not share a highly aligned semantic repre-
sentation space.

6 Related Work

Salesky et al. (2021) proposed an encoder-decoder-
based machine translation model that replaces the
tokenizer in the encoder by processing source text
as rendered images. Rust et al. (2023) proposed
PIXEL, the first model that relies on purely process-
ing visually rendered text. Later, Lotz et al. (2023)
investigated different strategies for text rendering
with the aim of removing redundant patches. Fei
et al. (2024) experimented with replacing BERT’s
tokenizer with pixel-based processing. Gao et al.
(2024) extended PIXEL with a mixed modality pre-
training objective, which produced substantial im-
provements. Tai et al. (2024) pretrained PIXAR,
which is the first autoregressive pixel language
model that purely relies on processing rendered
text. Gao et al. (2024); Chai et al. (2024) also pro-
posed pixel language models with text generation
abilities, yet they achieved this by still depending
on subword tokenizers. Recently, Lotz et al. (2025)
embedded pixel language models into the English-
centric language models as a fallback mechanism
to better adapt these models to novel languages
and scripts. Most notably, Salesky et al. (2023) is
closely related to our work as it employs a multilin-
gual pretraining. However, their experiments focus
on learning a shared encoder for machine trans-
lation, while we pretrained a multilingual pixel
language model for general-representation learning
without relying on any tokenizer.

7 Conclusion

In this work, we explored multilingual pretraining
for pixel language models. We pretrained PIXEL-
M4, a multilingual pixel-based language model on
four visually and linguistically diverse languages,
namely English, Hindi, Ukrainian and Simplified
Chinese. We performed downstream task exper-
iments on three different tasks: sentence classi-
fication, dependency parsing, and named entity
recognition. In these experiments, we covered a
diverse set of languages and scripts, where we eval-
uated on 27 languages and 15 scripts. Our exper-
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iments revealed that PIXEL-M4 achieves superior
performance in low-resource settings compared to
its monolingually-pretrained predecessor PIXEL-
BIGRAMS, outperforming it in almost all non-Latin
languages by a large margin. In order to better un-
derstand the representations learned by PIXEL-M4,
we conducted word-level and sentence-level anal-
yses. Our word-level probing analysis illustrated
that PIXEL-M4 has learned better hidden represen-
tations than PIXEL-BIGRAMS throughout the net-
work for the unseen scripts, highlighting its cross-
lingual transfer capabilities. Additionally, an analy-
sis on the hidden layer representations revealed that
PIXEL-M4 has learned a semantic representation
space shared by a subset of pretraining languages
in the later layers. In future work, we aim to scale
up multilingual pretraining for pixel models with
larger model capacity and more languages included
in pretraining.

Limitations

PIXEL-M4 inherits many of the limitations of its
predecessors. First, rendering text using the bi-
grams strategy leads to increased sequence lengths
when a bigram does not fit into single patch. Like
Rust et al. (2023) and Lotz et al. (2023), PIXEL-
M4 cannot generate text. The improvements over
PIXEL-BIGRAMS are also limited for Latin-script
languages and also for high-resource settings. Due
to our limited compute budget, we pretrained a
single PIXEL-M4 model on only four languages-
each in a different script. Consequently, we have
not explored larger or different combinations of
languages and scripts, such as additional Latin-
script languages (e.g. French, Estonian, Turkish) or
right-to-left scripts (e.g. Hebrew, Arabic). Finally,
the comparison between PIXEL-M4 and PIXEL-
BIGRAMS is not entirely fair, as PIXEL-M4 was
exposed to more data. Nonetheless, pretraining an-
other monolingual model on an equivalent amount
of data for such a comparison was not feasible
within our computational budget. We leave these
comparisons to future work.
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A Appendix

This appendix section contains a summary of
data statistics, implementation details of the down-
stream task experiments and the rest of the LIN-
SPECTOR word-level probing analyses.

A.1 Data Statistics

We summarize data statistics of the benchmark
used in this work in this section. Table 4 contains
statistics for SIB-200 (Adelani et al., 2024; Goyal
etal., 2022; NLLB Team et al., 2022) and LINSPEC-
TOR (Sahin et al., 2020), where each language split
contains same number examples for training, val-
idation and testing purposes. Table 5 reports the
statistics of dependency parsing treebanks used in
this work. Lastly, we share the NER benchmarks
statistics in Table 6.

A.2 Implementation Details

PIXEL-M4. Table 7 lists the hyperparameter con-
figurations used for pixel language models, PIXEL-
M4 and PIXEL-BIGRAMS, across downstream tasks.
Overall, we use the same set of hyperparameters
with the previous work (Lotz et al., 2023). We re-
peat the same experiment using different random
seeds. For reporting test results, we average the test
scores of the five runs with the highest validation
split performance.

CANINE-S. We use the same experimental setup
and hyperparameters for CANINE-S with PIXEL-M4
and PIXEL-BIGRAMS.

Monolingual BERT Models. All models were
fine-tuned in 16-bit BrainFloat (Abadi et al., 2016)
using AdamW (Kingma and Ba, 2015; Loshchilov
and Hutter, 2019) with a maximum learning rate of
5e—>5 that is warmed up over the first 100 steps and
subsequently linearly decayed toward 0. Across all
tasks, we fine-tune for at maximum 15,000 steps,
while evaluating every 500 steps for dependency
parsing and NER, whereas topic classification is
evaluated every epoch. Early stopping of 5 eval-
uation cycles (DP and NER) or 20 epochs with a
threshold of 0.0 is implemented. For all tasks and
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Table 4: Data statistics for the equally-sized SIB-200
and LINSPECTOR language splits.

languages, when a separate evaluation split is avail-
able, we selected the checkpoint performing best
on it and evaluated on the test split. If no separate
evaluation split was available, we selected and re-
ported the best performance on the evaluation split.
Inputs were truncated or padded to a maximum
length of 256 tokens for parsing and classification,
and 196 tokens for NER. For parsing and NER, a
batch size of 64 is used, while topic classification is
trained with batch size 32. We followed Rust et al.
(2023) and evaluated dependency parsing using a
biaffine parsing head (Dozat and Manning, 2017;
Glavas and Vulié, 2021).

A.3 LINSPECTOR Results

In this appendix section, we share the results for the
rest of the word-level probing analyses on LINSPEC-
TOR (Sahin et al., 2020). We analyze our model on
fifteen languages—Arabic, Armenian, Bulgarian,
Dutch, Estonian, Finnish, French, German, Greek,
Hungarian, Macedonian, Polish, Russian, Swedish,
and Turkish—across fourteen linguistic probing
tasks: Case Marking (Fig. 6), Gender (Fig. 17),
Mood (Fig. 7), Number (Fig. 8), OddFeat (Fig. 9),
Person (Fig. 10), Polarity (Fig. 18), POS (Fig. 11),
Possession (Fig. 19), Pseudo (Fig. 12), SameFeat
(Fig. 13), TagCount (Fig. 14), Tense (Fig. 15), and
Voice (Fig. 16).

These analyses provide further support for the
findings reported in §5. Throughout the entire net-
work, PIXEL-M4 captures more robust linguistic
features than PIXEL-BIGRAMS on all tasks for the
Cyrillic script languages, Bulgarian, Macedonian
and Russian. This is again expected since PIXEL-
M4 has seen a similar language, e.g. Ukrainian,
during pretraining. Similarly, our observations
are the same for the languages in unseen scripts,
Arabic, Armenian and Greek, showcasing the im-
proved cross-lingual transfer learning capabilities
of PIXEL-M4. Furthermore, on Latin script lan-
guages, both models achieve similar overall perfor-
mances across the layers. Nonetheless, on some
tasks, PIXEL-M4 captures better linguistic features
for Latin languages with diacritics (e.g. Turkish,

Swedish). Additionally, on more complex tasks
such as OddFeat and SameFeat, PIXEL-M4 outper-
forms PIXEL-BIGRAMS on Latin script languages
like German and Hungarian, where the two models
perform similarly on the other tasks.

A.4 Use of Al Assistants

Within this work, we used Al assistants only to
generate code for producing the plots.
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Figure 6: Word-level probing analysis on LINSPECTOR for the Case task. Each subplot shows a different language;
in each, the y-axis represents model accuracies and the x-axis represents layer number of the hidden representations.
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Figure 7: Word-level probing analysis on LINSPECTOR for the Mood task. Each subplot shows a different language;
in each, the y-axis represents model accuracies and the x-axis represents layer number of the hidden representations.
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Figure 8: Word-level probing analysis on LINSPECTOR for the Number task. Each subplot shows a different
language; in each, the y-axis represents model accuracies and the x-axis represents layer number of the hidden
representations.
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Figure 9: Word-level probing analysis on LINSPECTOR for the OddFeat task. Each subplot shows a different

language; in each, the y-axis represents model accuracies and the x-axis represents layer number of the hidden
representations.
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Figure 10: Word-level probing analysis on LINSPECTOR for the Person task. Each subplot shows a different

language; in each, the y-axis represents model accuracies and the x-axis represents layer number of the hidden
representations.
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Figure 11: Word-level probing analysis on LINSPECTOR for the Pos task. Each subplot shows a different language;
in each, the y-axis represents model accuracies and the x-axis represents layer number of the hidden representations.
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Figure 12: Word-level probing analysis on LINSPECTOR for the Pseudo task. Each subplot shows a different

language; in each, the y-axis represents model accuracies and the x-axis represents layer number of the hidden
representations.
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Figure 13: Word-level probing analysis on LINSPECTOR for the SameFeat task. Each subplot shows a different

language; in each, the y-axis represents model accuracies and the x-axis represents layer number of the hidden
representations.
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Figure 14: Word-level probing analysis on LINSPECTOR for the TagCount task. Each subplot shows a different
language; in each, the y-axis represents model accuracies and the x-axis represents layer number of the hidden
representations.
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Figure 15: Word-level probing analysis on LINSPECTOR for the Tense task. Each subplot shows a different language;
in each, the y-axis represents model accuracies and the x-axis represents layer number of the hidden representations.
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Figure 16: Word-level probing analysis on LINSPECTOR for the Voice task. Each subplot shows a different language;
in each, the y-axis represents model accuracies and the x-axis represents layer number of the hidden representations.
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Figure 17: Word-level probing analysis on LINSPECTOR for the Gender task. Each subplot shows a different
language; in each, the y-axis represents model accuracies and the x-axis represents layer number of the hidden
representations.

29598



Turkish

92
90
88

86

Polarity

PIXEL-BIGRAMS
—e— PIXEL-M4

84

82
12 3 4 5 6 7 8 9 10 11 12

Layer

Figure 18: Word-level probing analysis on LINSPECTOR
for the Polarity task. Each subplot shows a different lan-
guage; in each, the y-axis represents model accuracies
and the x-axis represents layer number of the hidden
representations.
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Figure 19: Word-level probing analysis on LINSPECTOR
for the Possession task. Each subplot shows a different
language; in each, the y-axis represents model accu-
racies and the x-axis represents layer number of the
hidden representations.
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Language Treebank #Sentences License

ENG English-EWT 16621 CCBY-SA 4.0
ARA Arabic-PADT 7664 CC BY-NC-SA 3.0
BUL Bulgarian-BTB 11138 CCBY-NC-SA 3.0
CoP Coptic-Scriptorium 2011 CCBY 4.0

HIN Hindi-HDTB 16647 CC BY-NC-SA 4.0
JPN Japanese-GSD 8100 CCBY-SA 4.0
KOR Korean-GSD 6339 CCBY-SA 4.0
RUS Russian-GSD 5030 CCBY-SA4.0
TAM Tamil-TTB 600 CCBY-NC-SA 3.0
TEL Telugu-MTG 5130 CCBY-SA 4.0
UKR Ukrainian-1U 5030 CCBY-NC-SA 4.0
URD Urdu-UDTB 5130 CCBY-NC-SA 4.0
VIE Vietnamese-VTB 3000 CCBY-SA 4.0
ZHO Chinese-GSD 4997 CCBY-SA 4.0

Table 5: Total number of sentences of Universal Dependencies v2.10 (Zeman et al., 2022; Nivre et al., 2020)
treebanks used for dependency parsing task evaluations, including dataset licenses. Adapted from Rust et al. (2023).

Language Source #Sentences License

ENG English-EWT 16621 CC BY-SA 4.0
SRP Serbian-SET 4384 CCBY-SA 4.0
HIN Naamapadam IM CCO

BEN Naamapadam 967k CCO

TAM Naamapadam 501k CCO

TEL Naamapadam 511k CCO

KOR KLUE 26k CCBY-SA 4.0
ZHO Chinese-GSD 4997 CCBY-SA 4.0

Table 6: Overview of NER datasets (Mayhew et al., 2024; Mhaske et al., 2023; Park et al., 2021).

Parameter SIB-200 UDP NER
Classification head pooling ~ Mean — —
Optimizer AdamW

Adam 0.9, 0.999

Adam ¢ le—8

Weight decay 0

Learning rate {le—5,3e—5,5e—5, Te—5,9¢—5}
Learning rate schedule Linear decay
Warmup steps 100

Max sequence length 256 256 196
Stride — — —
Batch size 32 64 64
Max steps 15000 15000 15000
Eval strategy epochs  steps steps
Eval steps — 500 500
Early stopping v

Early stopping patience 20 5 5
Dropout probability 0.1

Table 7: Hyperparameters used for fine-tuning and evaluating models on the SIB-200, UDP parsing, and NER tasks.
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