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Abstract

Extremely low-resource languages, especially
those written in rare scripts, as shown in Fig-
ure 1, remain largely unsupported by large lan-
guage models (LLMs). This is due in part
to compounding factors such as the lack of
training data. This paper delivers the first
comprehensive analysis of whether LLMs can
acquire such languages purely via in-context
learning (ICL), with or without auxiliary align-
ment signals, and how these methods compare
to parameter-efficient fine-tuning (PEFT). We
systematically evaluate 20 under-represented
languages across three state-of-the-art multi-
lingual LLMs. Our findings highlight the
limitation of PEFT when both language and
its script are extremely under-represented by
the LLM. In contrast, zero-shot ICL with lan-
guage alignment is impressively effective on
extremely low-resource languages, while few-
shot ICL or PEFT is more beneficial for lan-
guages relatively better represented by LLMs.
For LLM practitioners working on extremely
low-resource languages, we summarise guide-
lines grounded by our results on adapting
LLMs to low-resource languages, e.g., avoiding
fine-tuning a multilingual model on languages
of unseen scripts.

1 Introduction

Current large language models (LLMs) are typi-
cally pre-trained with data in more than 50 lan-
guages, offering robust support for high-resource
languages, such as German and French (Le Scao
et al., 2023; Grattafiori et al., 2024; Team et al.,
2023). However, their coverage of low-resource
languages remains limited. Since these languages
are often spoken in developing regions, insufficient
LLM support risks reinforcing socio-economic dis-
parities and further isolating affected communi-
ties (Shen et al., 2024; Jadhav et al., 2024).

1https://cloud.google.com/translate/docs/
languages

Figure 1: Regional distribution of the languages stud-
ied in this paper. Red denotes the five languages with
rare scripts, and blue represents the other 15 languages.
Y (yes) and N (no) denote whether it’s supported by
Google Translate1. Accuracy represents performance
on topic classification (SIB-200) with DeepSeek (7b) in
zero-shot ICL (majority voting = 0.25, English = 0.83).

Extending LLMs to support extremely low-
resource languages via continued pre-training
(Yong et al., 2023a) is possible but often imprac-
tical, due to the need for large-scale monolingual
corpora and substantial computational resources
(Joshi et al., 2020). Although LLM support can
be achieved for downstream tasks via resource-
efficient training, such as parameter-efficient fine-
tuning (PEFT), it still requires a non-trivial amount
of labeled data. Therefore, with recent advances in
in-context learning (ICL), we ask whether LLMs
can learn new languages purely through ICL
(Yong et al., 2023b; Zhang et al., 2024; Cahyaw-
ijaya et al., 2024). Specifically: (1) Is ICL alone
sufficient to enable LLMs learn extremely low-
resource or entirely unseen languages? (2) Can
auxiliary signals in the prompt be useful enabling
or improving ICL? (3) ICL or PEFT, which one is
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a better choice for learning a new language?
In this study, we consider 20 low-resource lan-

guages, including five extremely low-resource ones
(Figure 1) and 15 written in Latin, Arabic, or Cyril-
lic scripts (referred to as target languages2). ICL
with auxiliary signals (i.e., class category, language
alignment) is explored. Our setup (Table 1) in-
cludes few-shot ICL, sentence-level alignment of
unlabelled or labelled examples in zero-shot or few-
shot ICL, and word-level alignment for the target
language in zero-shot ICL.

To our knowledge, this is the first study to sys-
tematically analyse whether ICL can enable LLMs
to learn extremely low-resource languages3. Our
main findings are:

• In contrast to prior work (Razumovskaia et al.,
2024), small-scaled fine-tuning is generally inef-
fective when a language and its script are highly
under-represented or entirely absent from both
the tokenizer and pre-training data (e.g., sat, nqo
and taq on DeepSeek).

• In such cases, zero-shot ICL with language align-
ment yields substantial gains, potentially surpass-
ing vocabulary extension on multilingual pre-
trained language models (PLMs) through con-
tinue pre-training.

• Zero-shot ICL with language alignment is es-
pecially effective for languages with minimal
LLM support, often exceeding few-shot ICL and
performing comparably to, or better than, fine-
tuning.

• Few-shot ICL and especially PEFT perform best
for low-resource languages for which LLMs ex-
hibit a certain level of support.

2 Related Work

Language Adaptation in Pretraining Contin-
ued pretraining LLMs on a monolingual corpus
in a target language is a common strategy to ex-
tend support to languages not (well) represented in
the original pretraining data, also enhancing ICL
performance in the target language (Yong et al.,
2023a). Various methods have been explored for
training efficiency (Zhang et al., 2021; Yong et al.,
2023a; Cui et al., 2023), vocabulary and tokeniser
adaptation (Yamaguchi et al., 2024a; Balachandran,

2represented by language code ISO 639-3 (in Table 2)
3The term "extremely low-resource languages" refers to

the five languages with rare scripts in this study

2023; Cui et al., 2023; Larcher et al., 2023) and data
efficiency (Yamaguchi et al., 2024b; Shaham et al.,
2024; Kurz et al., 2024). However, the effective-
ness of these pretraining-based methods often de-
pends on the availability of large-scale training data,
an assumption that does not hold for extremely low-
resource languages in real-world scenarios.

Adapting LLMs to Low-Resource Languages
for Downstream Tasks ICL with different strate-
gies has been explored to improve LLMs’ adap-
tation to low-resource languages, including tech-
niques such as code-switching (Yong et al., 2023b;
Schlicht et al., 2025), demonstration example se-
lection (Winata et al., 2022; Zhang et al., 2024;
Tanwar et al., 2023), prompt format optimization
(Zhang et al., 2023; Cahyawijaya et al., 2024),
machine translation (Bandarkar et al., 2024), and
dictionary-based prompting (Lu et al., 2024; Zhang
et al., 2024). Another promising direction is PEFT,
which has demonstrated superior performance with
computational costs comparable to few-shot ICL
(Liu et al., 2022). However, most existing studies
focus on languages that are: (1) relatively high-
resource (e.g., German); (2) low-resource but writ-
ten in widely supported scripts (e.g., Zhuang in
Latin script (Zhang et al., 2024)); and (3) writ-
ten in rare scripts but already included in model
pre-training (Razumovskaia et al., 2024). Con-
sequently, how to effectively adapt LLMs to ex-
tremely low-resource languages such as nqo (Fig-
ure 1) is still unclear.

3 Learning Extremely Low-Resource
Languages

Table 1 summarises the experimented approaches
and assumed available data resources. Standard
cross-lingual transfer that aims to improve and then
transfer task knowledge from English is not consid-
ered in this study (i.e, fine-tuning with English data
or few-shot ICL with English examples), as the
LLMs have already demonstrated high accuracy on
English in zero-shot ICL (Table 4)4.

Baseline The vanilla zero-shot ICL when the
LLMs are prompted only with task description and
the target language input tgt. We use English task

4Machine translating target-languages into English is not
considered, since our aim is to teach low-resource languages to
LLMs. Reliable machine translators are also not available for
3 out of 5 rare-script languages. In practice, developing a high-
quality machine translator is significantly more expensive than
creating the data resources we consider here.
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Method Data Training AnnotatorEN Target Other

Zero-shot ICL

baseline ✗ ✗ ✗ ✗ ✗

sentence-level alignment ✓(k) ✓(k) ✗ ✗ translate
word-level alignment ✗ ✗ dict. ✗ ✗

word-level translation ✗ ✗ dict. ✗ ✗

Few-shot ICL
demonstration in target language ✗ ✓(k) ✗ ✗ label
demonstration with alignment ✓(k) ✓(k) ✗ ✗ label+translate

Parameter efficient fine-tuning ✗ ✓(N ) ✗ ✓ label

Table 1: List of methods used in this paper and resources they may rely on: (1) Data: in-domain data in English (EN)
or target language (Target), or a dictionary (dict.) for word translation; k denotes k-shot examples, and N denotes
the full training data (k ≪ N ); (2) Training: whether model parameters are updated; (3) Annotator: whether native
speakers are needed to label the data, or translate data to English to enable alignment.

description as it has been widely adopted showing
improvements in ICL performance (Zhang et al.,
2023; Razumovskaia et al., 2024). The prompt
format is: [<task description> + <inputtgt>].

Zero-Shot ICL with alignment we experiment
with adding word- or sentence-level alignment be-
tween English and a target language in the prompt,
without providing labelled examples.

• Word-level alignment: We provide a translation
for each word in the target-language input using
a dictionary, inspired by prior work on machine
translation (Zhang et al., 2024; Lu et al., 2024).
The prompt format for an inputtgt with N words
{wtgt

1 , wtgt
2 , ..., wtgt

N } is: [<task description> +
<inputtgt> + <wtgt

1 means weng
1 in English; ...;

wtgt
N means weng

N in English>]. We use the NLLB
translator5 (Costa-Jussà et al., 2022) to create the
dictionaries following Lu et al. (2024). For lan-
guages not supported by NLLB (nqo, sat6, and
min), we train the word alignment tool fast_align
(Dyer et al., 2013) to simulate a high-quality dic-
tionary (See Appendix B).

• Word-level translation: We directly concatenate
the English word translations in their orders in
target languages as the “English” translation (i.e.,
inputeng

′
= concat (weng

1 , ..., weng
N )), and prompt

LLMs with: [<task description> + inputeng
′
].

• Sentence-level alignment: Assuming there is a
limited k number of parallel in-domain unla-
belled sentences in English {seng1 ,...,sengk } and
target language {stgt1 ,...,stgtk }. The prompt for-
mat is: [<target language: stgt1 ; English: seng1 ;
...; target language: stgtk ; English: sengk > + <task

5https://huggingface.co/facebook/nllb-200-3.
3B

6NLLB repeats the same word without stopping

description> + <inputtgt>]. We select the target-
language example sentences from the training
data through random sampling or BM25 (Robert-
son et al., 2009).

Few-Shot ICL Assuming there is a limited num-
ber of labelled in-domain data samples in the target
language or English, demonstration examples from
the training data are retrieved by BM25, inspired
by Zhang et al. (2024).

• Demonstration in target language: We prompt
LLMs with k-shot demonstration examples in
the target language Dtgt

1 , ..., Dtgt
k . The prompt

format is [<task description> + <Dtgt
1 , ..., Dtgt

k >
+ <inputtgt>].

• Demonstration with alignment: LLMs are
prompted with parallel demonstration examples
in both English and target languages: [<task de-
scription> + <Dtgt

1 means Deng
1 , ..., Dtgt

k means
Deng
k > + <inputtgt>].

PEFT We preliminarily experiment with com-
petitive methods such as LoRA (Hu et al., 2022),
DoRA (Liu et al., 2024) and IA3 (Liu et al., 2022).
Same as Yong et al. (2023a), we found that IA3 is
the most effective and efficient approach. There-
fore, due to computational constraints, we only ex-
periment with IA3 as a representative of the PEFT
methods. We also discuss the comparison with
fully fine-tuned multilingual PLMs in Section 4.4.

3.1 Experimental Setups
Target Languages We mainly ground our re-
search on the SIB-200 seven-way topic classifica-
tion dataset (Adelani et al., 2024), as it offers par-
allel training and evaluation data with the broadest
multilingual coverage in natural language under-
standing (NLU) tasks. We also analyse the general-
isability of our findings on reading comprehension
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(i.e., BELEBELE (Bandarkar et al., 2024)), which
is a more challenging task than topic classification.
Since most prevalent LLMs do not disclose com-
prehensive lists of languages present in their pre-
training data, we select the low-resource languages
for which LLMs exhibit significantly limited capa-
bility. We measure the LLMs’ capability on each
language with Information Parity (IP) (Tsvetkov
and Kipnis, 2024) on the SIB training data. Given
a text in the target language and its English transla-
tion, IP is defined as the ratio between the negative
log-likelihood of the target-language text and that
of its English counterpart under the same model.
A very low IP score indicates that the LLM strug-
gles to represent information in the target language,
likely due to limited or no exposure during pretrain-
ing. Based on this criterion, we select the languages
with the average lowest IP scores across the LLMs
we study on. This includes five languages writ-
ten in relatively rare and distinct scripts (Figure
1) plus 15 languages using more commonly sup-
ported scripts (i.e., seven in Latin, four in Arabic,
and four in Cyrillic). For the latter, we select lan-
guages that do not have the same linguistic roots
as English (Latin script), Modern Standard Arabic
(Arabic script) and Russian (Cyrillic script), which
are commonly represented in LLMs’ training data.
The full list of the languages is shown in Table 2.

Models We experiment with three recent open-
source instruction-tuned LLMs with multilingual
ability: DeepSeek7, LlaMA-3.28 and Gemma-29.
Due to computational constraints, their medium-
sized variants are considered.

Setups We adopt accuracy as the evaluation met-
ric following Adelani et al. (2024). We use greedy
search in decoding for the purpose of reproducibil-
ity. The prompt template for baseline zero-shot ICL
is also used in PEFT for a fair comparison. SIB-
200 dataset’s official train/dev/test set split is used.
The examples included in zero-shot and few-shot
ICL are retrieved from the training data. As pre-
processing for BM25, only white-space splitting is
applied. The hyper-parameter tuning and training
details for IA3 are included in Appendix B.

7https://huggingface.co/deepseek-ai/
deepseek-llm-7b-chat

8https://huggingface.co/meta-llama/Llama-3.
2-3B-Instruct

9https://huggingface.co/google/gemma-2-2b-it

4 Results

4.1 Limitation of Fine-Tuning

Fine-tuning Improvement Disparity Figure 2
illustrates the performance improvement after fine-
tuning with the training data in the target language.
In most cases, fine-tuning leads to enhanced perfor-
mance, although the degree of improvement varies
notably. For low-resource languages using com-
mon scripts, accuracy scores can rise to more than
0.6 on average, resulting in an acceptable perfor-
mance (full results in Table 4). In contrast, results
on the five languages written in rare scripts are in-
consistent. For instance, while DeepSeek performs
worse than majority voting on all of these five lan-
guages in the baseline zero-shot ICL setting, PEFT
raises the accuracy scores of dzo and tir to above
0.45. In contrast, gains for the remaining three
languages are rather modest, particularly for sat,
which still stays slightly below majority voting. We
observe that this discrepancy is due to overfitting,
which appears to occur at a very early stage in the
fine-tuning for languages showing limited improve-
ment.

Risk of Overfitting and Impact Factors To gain
more insights on why certain languages suffer more
severe overfitting, we analyse:

• Tokenization efficiency: Most LLMs’ tokenis-
ers, including those used by the three models
in our study, adopt byte-level Byte Pair Encod-
ing (BPE) (Wang et al., 2020) or SentencePiece
(Kudo and Richardson, 2018). When encounter-
ing texts in rare scripts not seen during tokeniser
training, characters are often segmented into raw
bytes, resulting in a vocabulary with drastically
reduced effectiveness. For instance, BPE tokenis-
ers based on UTF-8 encoding may end up repre-
senting an entire rare-script language using only
256 raw-byte token values (Wang et al., 2020),
limiting the model’s ability to learn generalisable
linguistic patterns with small training data (Zhao
and Aletras, 2024). Tokenisation efficiency for
a given text i is measured using Token-to-Byte
Ratio (TBR) =

numi
tokens

numi
bytes

, where numi
bytes is the

number of bytes required to represent the text
with the same encoding system used in the to-
keniser, and numi

tokens is the number of tokens
produced by the LLM’s tokeniser. A TBR score
close to 1 indicates that the tokeniser is operating
nearly at the raw byte level, signalling extremely
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(a) DeepSeek (b) LLaMA-3.2 (c) Gemma-2

Figure 2: Accuracy improvement from baseline zero-shot ICL (denoted as ×) to PEFT (denoted as •). The
performance over languages in Latin (latn), Arabic (arab), and Cyrillic (cyrl) scripts is averaged. The performances
of English (eng) and the majority voting baseline (vertical dashed line, accuracy = 0.25) are for reference.

(a) DeepSeek (b) LLaMA-3.2 (c) Gemma-2

Figure 3: Correlation between information parity (IP), token-to-byte ratio (TBR) and accuracy score after fine-tuning.
For improved visualisation, the x-axis represents (1−TBR). The language bubbles close to the left corner denote
languages that are under-represented by both tokeniser and model. Bubbles with darker colour denote lower
performance after fine-tuning. Names of the languages with PEFT performances lower than 0.4 are marked in red.

poor tokenisation. For example, the average TBR
for sat’s training data with DeepSeek’s tokeniser
is 0.99, suggesting that nearly every character is
segmented into raw bytes and that DeepSeek sig-
nificantly lacks meaningful representations for
sat.

• Multilingual capability: Fine-tuning is usually
more effective when the LLM has already ac-
quired some linguistic competence in the target
language during pre-training. IP is used again to
estimate the LLMs’ capabilities for each target
language prior to fine-tuning. As discussed in
Section 3.1, the higher the IP value the more effi-
ciently the LLM represents information provided
in the target language. Conversely, a low IP score
suggests under-representation of a language.

Figure 3 shows the average TBR and IP scores
for each target language in the training data, also
presenting their correlations with fine-tuning per-
formance. Languages with high TBR and low IP
scores are the ones where fine-tuning tends to en-
counter more severely overfitting, resulting in very
limited generalisation. This suggests that small-
scaled fine-tuning on downstream tasks is unlikely

to be beneficial when a language and its script are
highly under-represented or even unseen in both to-
keniser training and model pre-training. This find-
ing also highlights the importance of improving rep-
resentation of low-resource languages and scripts
during pre-training. Even modest improvements
in representation, either at tokeniser or model pre-
training level, can lead to notably more effective
find-tuning adaptation. For instance, although
tir, sat, and nqo are nearly entirely tokenised as
raw bytes by DeepSeek’s tokeniser (TBR > 0.99),
DeepSeek exhibits stronger pre-trained capabilities
on tir (higher IP) compared to sat and nqo, trans-
lating into more substantial gains from fine-tuning.
Similarly, while LLaMA-3.2 shows comparable
IP scores for both dzo and tir, dzo benefits from
better tokenisation (lower TBR, i.e. higher 1 −
TBR), potentially leading to larger performance
improvement after fine-tuning.

4.2 Alignment in Zero-Shot ICL

4.2.1 Sentence-Level Alignment
Effectiveness of Semantic Similar Examples
Figure 4 shows DeepSeek’s performance when
prompted with one unlabeled example in the target
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(a) Rare Scripts (b) Latin

(c) Arabic (d) Cyrillic

Figure 4: Accuracy scores for DeepSeek in zero-shot
ICL with sentence-level alignment when one unlabelled
sentence is BM25-based (green) or randomly sampled
(blue). Red denotes baseline zero-shot ICL.

language alongside its English translation. Similar
trends are observed for LLaMA-3.2 and Gemma-2,
with detailed results in the Appendix C. Although
the topic label of the example is not included in the
prompt, incorporating semantically similar texts
in both target language and English significantly
enhances performance for low-resource languages
with low baseline zero-shot ICL performances, es-
pecially those using rarer scripts. However, this
benefit diminishes as the baseline zero-shot ICL
performance improves. For languages with base-
line accuracy scores below 0.3, all three LLMs
show an average improvement exceeding 0.22, with
a peak gain of 0.36 for sat on LLaMA-3.2. In con-
trast, for languages with baseline scores above 0.3,
the average improvement falls below 0.07. In some
cases, LLaMA-3.2 and Gemma-2 exhibit minor per-
formance declines, with the largest drops being 0.1
for kaz on both LLaMA-3.2 and Gemma-2 (base-
line = 0.59 and 0.61 respectively). Furthermore,
the models’ performance often degrade when ex-
amples are randomly sampled from the training set,
highlighting that the effectiveness of the alignment
hinges on the semantic similarity between the input
text and the example in target language. More-
over, improving semantic search for low-resource
languages or even enhancing text pre-processing
approaches (e.g., lemmatisation and stemming),
beyond the simple whitespace-based tokenisation
used here, has the potential to increase performance
in this sentence-alignment setting.

Impact of the Number of Examples We further
analyse the performance when varying the num-
ber of unlabelled parallel examples provided in the
prompt, from two to five examples. We find that in-
creasing the number of randomly sampled parallel
examples in the prompt could slightly improve the
performance, although the gap between BM25 sam-
pled examples is still notable. However, providing
more semantic related examples does not consis-
tently improve performance across all languages.
We hypothesize that it may be influenced by the
relative length of the target-language sequences
compared to English. To test this, we compute the
average tokenizer parity (TP) scores (Petrov et al.,
2023) for each language in the training set (in Table
2). Given a text in its target language and English
translation, TP is defined as the ratio of the number
of tokens in English to the number of tokens in
the target language. A lower TP score indicates
that the target language is tokenized into relatively
longer sequences compared to English. We define
a binary variable indicating whether adding more
examples is beneficial: it is set to true if at least
3 out of the 4 multi-shot settings (2, 3, 4, and 5
examples) outperform the 1-shot setting. We then
calculate the point-biserial correlation coefficient
(Lev, 1949) between the TP score and this binary in-
dicator. The results show a statistically significant
correlation, suggesting that languages with lower
TP scores are less likely to benefit from additional
parallel unlabelled examples.

4.2.2 Word-Level Alignment

(a) chrf++ ≤ 0.5 (b) chrf++ > 0.5

Figure 5: Accuracy scores for LLaMA-3.2 over low-
resource languages in zero-shot ICL with word-level
alignment (gray) or word-level translation (orange) set-
tings. Red denotes baseline zero-shot ICL.

The zero-shot ICL performance with word-level
alignment or translation on LLaMA-3.2 is shown in
Figure 5. The reported chrf++ score10 of each lan-
guage on NLLB is used as an indicator of the qual-

10https://tinyurl.com/nllb200dense3bmetrics
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ity of the dictionary. For DeepSeek and Gemma-2
(full results in Appendix C), adopting word-level
alignment or translation always improve the per-
formance over the baseline. However, LLaMA-
3.2’s performance is highly influenced by the dic-
tionary’s quality. When the chrf++ score is lower
than 0.5 (Figure 5a), including the low-quality
word-level alignment (gray lines) can harm the
performance (e.g., fuv, kac, wol, and azb). In
contrast, when chrf++ score is higher than 0.5 (Fig-
ure 5b), word-level alignment is always benefi-
cial. For nqo, sat, and min, we train fast_align
on the SIB-200 dataset to simulate a high-quality
dictionary (see Section 3). LLMs’ performance
for these languages is always improved with word-
level alignment (around 0.6 of accuracy improve-
ment), highlighting the importance of the dictio-
nary quality. We provide discussion on potential
impact of fast_align quality in the Appendix C.

ICL with word-level translation significantly re-
duces the inference time than using word-level
alignment by reducing input length. However, its
performance exhibits variable superiority across
languages and LLMs. Specifically, it is consistently
better than world-level alignment on LLaMA-3.2,
while it is always worse than world-level or even
baseline on DeepSeek and Gemma-2.

4.3 Alignment in Few-Shot ICL
For languages with baseline accuracy lower than
majority voting, including English translations in
few-shot ICL often improves results across all the
LLMs, when using more than one demonstration
example. However, in 1-shot ICL, removing the En-
glish translation tends to yield better performance
on DeepSeek and LLaMA-3.2, while Gemma-2
continues to benefit from them. For languages with
strong zero-shot ICL performance, both DeepSeek
and Gemma-2 benefit from the alignment, whereas
LLaMA-3.2 performs best without them. Over-
all, unlike the consistent trends across LLMs in
zero-shot ICL with alignment, we observe more
variations how LLMs respond to aligned prompts
in few-shot scenarios (full results in Appendix C).

Although not examined by prior work (Cahyaw-
ijaya et al., 2024), we find that model perfor-
mance can be highly sensitive to the order of
the task description and demonstration examples
in the prompt, for certain languages, especially
on DeepSeek. For example, when prompting
Deepseek with 1-shot labelled nqo example with
English translation, the accuracy jumps from 0.30

(a) extremely low (b) low (acc<0.45) (c) low (acc>0.45)

Figure 6: Accuracy comparison among baseline (red),
PEFT (green), best zero-shot ICL (blue) and best few-
shot ICL (black) on LLaMA-3.2. Languages are cate-
gorised into: (a) Both language and script are severely
under-represented (names in red in Figure 3b, base-
line accuracy < 0.2): zero-shot > few-shot > PEFT;
(b) Better represented, but baseline < 0.45: PEFT >
zero-shot ≥ few-shot; (c) Baseline > 0.45: PEFT >
few-shot > zero-shot.

to 0.42 if the task description is moved to af-
ter the demonstration example. In most of the
cases, prompting with demonstrations at the be-
ginning lead to better performance for DeepSeek
and Gemma-2, while LLaMA-3.2 slightly prefers
task description at the beginning. Results presented
for few-shot ICL are based on the optimal task de-
scription position selected on the validation set.

4.4 Comparison across PEFT, Zero- and
Few-Shot ICL

Based on our analysis, zero-shot ICL with word-11

or sentence-level alignment and few-shot ICL with
or without alignment can all achieve promising
improvement over the baseline across languages
and LLMs. Next, we discuss which approach is
more effective from different aspects. We present
the results in Figure 6 for LLaMA-3.2. DeepSeek
and Gemma-2 show same trend (see Appendix C).

Fine-Tuning vs. ICL When the low-resource
language is extremely under-represented in both to-
keniser and model (Figure 6a), fine-tuning LLMs or
even PLMs12 yields minimal improvement, while
zero-shot ICL with either sentence- or word-level
alignment offers significant improvements (Fig-
ure 2a vs. 4a). Adelani et al. (2024) extended
the vocabulary of XLM-R for nqo with continue-
pretraining, leading to fine-tuning accuracy on SIB-
200 test set rising 0.17 points. However, it is still
lower than the performances of LLMs in zero-shot
ICL with alignment, which are above 0.41.

11Results based on fast_align are excluded, as it potentially
leaks gold standard English translations into the prompt.

12Based on results for XLM-R (large) from Adelani et al.
(2024), see Table 4.
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For the remaining low-resource languages (Fig-
ure 6b and 6c), fine-tuning normally has better
performance than ICL. Overall, the average differ-
ence between PEFT and the best ICL approach on
DeepSeek, LLaMA-3.2 and Gemma-2 is 0.13, 0.13,
and 0.08, respectively.

Zero-Shot vs. Few-Shot We observe that for
languages with low baseline zero-shot ICL per-
formance (i.e., accuracy < 0.45 on all LLMs), in
most cases (at least more than 50%), zero-shot ICL
with word/sentence-level alignment leads to better
performance than few-shot ICL regardless if the
alignment is provided or not (Figure 6b, comparing
black and blue lines). When baseline performance
is higher than 0.45 (Figure 6c), few-shot ICL al-
ways provides best results. In our study, these
languages are khk, tgk, azb, eus, tat, kaz, and
urd, consistent across all the LLMs. Overall, if
the LLM significantly lacks capability on the target
language, providing label in ICL might be useless.

5 Discussion

5.1 NLP Tasks beyond Topic Classification
Reading Comprehension We test our findings
on BELEBELE, a reading comprehension paral-
lel multilingual dataset, covering 11 out of the 20
languages studied here. It contains questions with
four multiple-choice answers linked to a passage.
tir is available among the five languages with rare
scripts. We split the data into training, validation
and test, following SIB-200, to enable a consistent
comparison (See Appendix C). We conduct experi-
ments only on LLaMA-3.2, due to its long context
length and computational constraints. We retrieve
the passage from the training data with BM25 as
example and provide its English translation as pas-
sage alignment. We adopt accuracy for evaluation
(Bandarkar et al., 2024).

Most results align with our observations on SIB-
200 dataset. Specifically, PEFT still shows no im-
provement for tir, while being more effective for
other languages. Zero-shot ICL with passage align-
ment could still improve over the baseline zero-shot
ICL in most cases, especially for the languages
with lower baseline performance (e.g., accuracy <
0.35). However, as the task is more challenging, the
level of improvement is not as notable as on topic
classification. The model also potentially requires
more unlabelled parallel data for consistent im-
provements across all languages. Similar to topic
classification, in most cases, zero-shot ICL with

passage alignment surpasses few-shot ICL when
baseline performance is lower than 0.5.

Conversely, word-level alignment is not effec-
tive on reading comprehension, which may be ex-
plained by the quality of the dictionary created. Un-
like topic classification, whose prediction can be
made based on one or two topic-related words, read-
ing comprehension relies less on such cue words,
requiring a higher quality of word translations.

Machine Translation We further experiment
with the FLORES-200 machine translation dataset
(Costa-Jussà et al., 2022). Among the ICL settings
we explore in this study (see Table 1), only the few-
shot ICL (demonstration with alignment) setting
is relevant to machine translation, which is equiv-
elant to standard few-shot ICL for translation13.
Similar with BELEBELE, we evaluate on the of-
ficial dev-test set with LLaMA-3.2. We retrieve
one demonstration example from the official dev
set with BM-25, and adopt the chrf++ score for
evaluation. We present the full results in Table 5
(see Appendix C).

The results still align with our observations on
classification tasks. Only one-shot demonstration
example yields improvements in translation quality
across both translation directions, except for urd
where LLaMA-3.2 achieves significantly higher
performance than for other languages in zero-shot
ICL. Also, the gains are generally larger when
translating from English into target languages than
in the reverse direction. However, overall machine
translation quality remains poor. For example, the
chrf++ score increases substantially from 0.4 to
nearly 11 when translating English to sat, but such
translation quality is still far from adequate for
practical human use.

5.2 Suggestions to Practitioners

In practice, performance is not the only consid-
eration. Investment in data and computational re-
sources needs to be carefully considered, especially
for low-resource languages. Aiming to adapt an
LLM to a low-resource language for a downstream
task, which approach should be prioritized, and
what types of data should be created?

13Zero-shot ICL with sentence alignment corresponds to
few-shot ICL, as demonstration examples of translations are
provided in the prompt. As for zero-shot ICL with word align-
ment, we cannot rely on fast_align to simulate the dictionary
for the three languages that are not supported by NLLB as we
did for classification, because it would directly provide the
gold-standard English translations to the LLMs.
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For low-resource languages that are extremely
under-represented in both tokeniser and model
(e.g., nqo) fine-tuning is not effective and zero-
shot ICL with alignment shows promising improve-
ments. We suggest prioritizing investment in hu-
man translation to create a small-scale in-domain
parallel data for zero-shot ICL with alignment.

For low-resource languages where LLMs
demonstrate limited capability few-shot ICL
might lead to better performance than zero-shot
ICL with alignment. However, in most cases,
these gains are modest and may even come at the
risk of performance degradation. With fine-tuning
LLM/PLM being effective and with acceptable
zero-shot ICL performance for these languages,
decisions should be made by comparing the finan-
cial costs between human translation (for zero-shot
ICL) and human annotation (for fine-tuning).

For low-resource languages where LLMs
demonstrate a certain level of capability few-
shot leads to better performance than zero-shot ICL
with alignment. Human annotation tends to be
required for a notable improvement for these lan-
guages. Practitioners should consider the trade-off
between the amount of data to annotate (effective
fine-tuning may require more data than few-shot
ICL) and the computational costs (LLM inference
is more expensive than fine-tuning PLMs).

Since low-resource and extremely low resource
languages are tokenised into long sequences, in-
cluding extra word and sentence alignment in the
prompt would further increase the computational
costs. We estimate the computational costs for all
the ICL settings in this study in Table 7 (see Ap-
pendix D).

6 Conclusion

This work provides a systematic analysis on
whether ICL can enable LLMs to effectively sup-
port extremely low-resource languages on down-
stream tasks. As some of the key findings that
contrast to prior work, we reveal the limitation of
fine-tuning when languages and their scripts are
both highly under-represented. In such cases, zero-
shot ICL augmented with word- or sentence-level
alignment yields promising results. Meanwhile,
few-shot ICL or PEFT tends to perform better for
languages relatively better represented during pre-
training. Our study highlights the importance of
language and script coverage in LLMs, and the

strong potential of ICL for language adaptation.

Limitations

Although we conducted more than 450 experi-
ments, our study did not include other popular
LLMs, such as Mistral and Qwen. Due to our
computational constraints and consideration of fair
comparison with PEFT on same LLM size, we did
not experiment with LLMs with large sizes, such as
Gemma-2 (9b) 14 or LLaMA-3.3 (70b) 15. Future
work could explore whether a larger LLM could
enable even more improvement in ICL with word-
or sentence level language alignment.

Due to very limited datasets with parallel data
available for these extremely low-resource lan-
guages, we covered topic classification and reading
comprehension in this study. On reading compre-
hension, we were only able to experiment with
11 of the 20 target languages. Both SIB-200 and
BELEBELE are constructed based on Flores-200
dataset (Costa-Jussà et al., 2022). With the increase
of language coverage for NLP tasks in the future,
our findings could be tested on other tasks (e.g.,
common-sense reasoning or summarization.) and
other domains (e.g., medical, social media).

As a lack of native speakers and reliable gold-
standard word translations, we were not able to
accurately access the quality of the dictionary that
we created using NLLB translator or fastalign. Our
study does not show promising results when using
the created dictionary to assist reading comprehen-
sion in ICL. However, as discussed in the main
content, the results might be improved with a better
dictionary. But the effectiveness on SIB-200 and
ineffectiveness on BELEBELE imply that for chal-
lenging tasks with long input length, word transla-
tion quality is more important than for tasks with
shorter input. Also, we directly translate words into
English to simulate a dictionary following prior
work. However, in practice, using a real-world
dictionary raises additional challenges such as han-
dling lexical ambiguity and polysemy, which may
also impact the performance of word-level align-
ment in zero-shot ICL.

As very limited parallel corpus available for our
target languages, we did not systematically analyse
how the ICL performance would be impacted if the
included unlabelled parallel text is out-of-domain

14https://huggingface.co/google/gemma-2-9b
15https://huggingface.co/meta-llama/Llama-3.

3-70B-Instruct
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(e.g., from another dataset). However, since ran-
domly sampled examples from the training data
already poses risk of performance degradation, we
hypothesise that zero-shot sentence-level alignment
with out-of-domain examples might demonstrate
limited benefit.
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A Languages and Datasets Information

Languages The languages we experiment with
are persented in Table 2, along with their IP and
TP scores across LLMs. The chrf++ score from
English to target language with NLLB translator,
which we used to create the dictionary, is also in-
cluded.

Datasets SIB-200 dataset is constructed based
on the Flores-200 dataset. The data is categorised
into seven topic classes: science/technology, travel,
politics, sports, health, entertainment, and geogra-
phy. The official training, validation and test set
contain 701, 99 and 204 data points, respectively.

BELEBELE dataset is also derived from the
Flores-200 dataset. It contains a passage, a ques-
tion linked to the paragraph, and four choices. Fol-
lowing SIB-200, we split the dataset into training,
validation and test set with 600, 93, and 207 data
samples. No overlapping between the passages in
the training/validation and test set. We preliminar-
ily test two different random train/validation/test
splits on Tigrinya and find the results are consistent.

B Implementation Details

Prompt For BELEBELE, we adopt the same
prompt used by the authors for baseline zero-
shot ICL16. As for SIB-200, we use the follow-
ing prompt for baseline zero-shot ICL: "What is
the topic discussed in the following {language
name} text? There are seven options: "sci-
ence/technology", "travel", "politics", "sports",
"health", "entertainment", and "geography". Now
complete the following example without explana-
tions. Text: {text}. Topic option is:", as we found
it performing better on the validation set than the
one used by the original authors of SIB-200. Ad-
ditionally, we observed that explicitly indicating
the language of the input text had no impact on per-
formance. For extremely low-resource languages
such as Nko and Santali, LLaMA-3.2 and Gemma-
2 refuse to perform the task if prompted with
"....complete the following example", stating that
they do not recognize the input language, no matter
whether the name of the language is explicitly given
in the prompt or not. However, they would pro-
duce a prediction when prompted with "complete
the following example without explanations". For
sentence-level alignment, the LLMs are instructed
as "Use the following pairs of {language name}
texts and their English translations to help you un-
derstand {language name}.{alignment example}.
Now based on your understanding, answer the
question below without explanation.". For word-
level alignment, we instruct LLMs with "Please
use the provided English translation of each word
to help you understand the {language name} text.".
Experiments are conduct on NVIDIA A100-PCIE-
40GB.

Dictionary For each data sample in the test set,
we extract words in target language based on white-
space splitting only. Then we use NLLB-200 trans-
lator (3.3B)17 to translate each word into English.
For the three languages that are not supported by
NLLB, we train the word alignment tool fast_align
(Dyer et al., 2013) with SIB-200 training data and
then align the English words and target-language
words in the test set. We use the default training
and alignment settings in fast_align18.

16https://github.com/facebookresearch/belebele/
blob/main/sample_zero_shot_instructions.md

17https://huggingface.co/facebook/nllb-200-3.
3B

18https://github.com/clab/fast_align
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Language Code Language Script Family Information Parity Tokenizer Parity NLLB
DeepSeek LLaMA Gemma DeepSeek LLaMA Gemma eng-X X-eng

nqo_Nkoo Nko NKo Manding 0.16 0.15 0.16 0.10 0.10 0.17 - -
sat_Olck Santali Ol Chiki Austroasiatic 0.17 0.27 0.28 0.08 0.08 0.20 28.4 39.9
taq_Tfng Tamasheq Tifinagh Afro-Asiatic 0.18 0.22 0.19 0.13 0.11 0.21 18.8 26.2
tir_Ethi Tigrinya Ge’ez Afro-Asiatic 0.20 0.26 0.25 0.13 0.14 0.31 24.8 49
dzo_Tibt Dzongkha Tibetan Sino-Tibetan 0.20 0.25 0.22 0.08 0.09 0.26 32.6 40.1
nus_Latn Nuer Latin Nilotic 0.21 0.22 0.22 0.31 0.27 0.37 28.9 38.2
min_Arab Minangkabau Arabic Austronesian 0.22 0.23 0.22 0.24 0.37 0.43 - -
tgk_Cyrl Tajik Cyrillic Indo-European 0.23 0.28 0.32 0.36 0.36 0.42 49.8 59.5
ayr_Latn Central Aymara Latin Aymaran 0.24 0.26 0.25 0.49 0.49 0.54 29.6 28.7
kac_Latn Jingpho Latin Sino-Tibetan 0.24 0.25 0.25 0.45 0.46 0.51 38 39.3
wol_Latn Wolof Latin Atlantic-Congo 0.25 0.28 0.27 0.53 0.56 0.61 28.1 39.8
azb_Arab South Azerbaijani Arabic Turkic 0.25 0.29 0.31 0.28 0.55 0.58 23.8 43.6
tat_Cyrl Tatar Cyrillic Turkic 0.25 0.32 0.37 0.34 0.34 0.47 48.7 56.7
luo_Latn Luo Latin Nilotic 0.26 0.28 0.27 0.55 0.57 0.61 39 45.8
fuv_Latn Nigerian Fulfulde Latin Atlantic-Congo 0.28 0.31 0.30 0.58 0.59 0.65 23.2 32.4
ckb_Arab Central Kurdish Arabic Indo-European 0.30 0.32 0.35 0.21 0.26 0.36 45.2 58.5
khk_Cyrl Halh Mongolian Cyrillic Mongolic-Khitan 0.32 0.33 0.38 0.33 0.33 0.40 42 52.6
eus_Latn Basque Latin Basque 0.32 0.44 0.45 0.54 0.56 0.62 48.5 57.5
kaz_Cyrl Kazakh Cyrillic Turkic 0.32 0.36 0.46 0.32 0.35 0.45 50.7 59.4
urd_Arab Urdu Arabic Indo-European 0.36 0.52 0.49 0.22 0.34 0.54 48.3 61.7

Table 2: Full list of the 20 languages we experiment with in this study from the SIB-200 dataset, along with their
information parity and tokenizer parity scores on DeepSeek, LLaMA-3.2 and Gemma-2. The reported chrf++
scores from two directions (eng-X: English to target language; X-eng: target language to English) with NLLB-200
translator (3.3B variant) is also included. Language code represents language (ISO 639-3)_script (ISO 15924).

IA3 The rescale vectors are learnt for key, value
of the attention modules and feed-forward network
in each layer. We use batch size as 4, and early stop-
ping strategy based on validation loss, with max
training epochs as 10. We use AdamW (Loshchilov
and Hutter, 2019) for optimization. We perform
hyper-parameter search on learning rate of {1e-3,
5e-3, 8e-3, 1e-2}. The optimal learning rate on
validation set is 8e-3. For extremely low-resource
languages where IA3 show limited improvement,
we also search learning rate from {1e-4, 3e-3, 7e-
3}. We run experiments 3 times and report the
average performance. Experiments are conducted
on NVIDIA GH200 480GB.

C Full Results

BELEBELE The results on LLaMA-3.2 are in
Table 3.

SIB-200 The results of baseline zero-shot ICL,
PEFT, along with fine-tuning multilingual PLM
(from Adelani et al. (2024)) are presented in Table
4.

The results of zero-shot ICL with word-level,
word translation and sentence-level alignment and
few-shot ICL are presented in Table 6.

FLORES-200 The chrf++ scores for translating
English into target-languages and target-languages
to English are presented in Table 5.

Potential Impact of Alignment Quality by
fast_align Since we lack gold-standard word
alignment between English and nqo/sat/min, we

estimate the potential impact of alignment quality
on model performance with the following two sets
of experiments: (1) randomly pairing the words
in the target-language sentence with those in its
English translation; and (2) randomly pairing the
words in the target-language sentence with those in
another randomly sampled English sentence.

The results show that random alignment with
words in the gold-standard English translation sen-
tence yields nearly the same ICL performance as
fast_align alignment. However, pairing with words
in randomly sampled English sentence leads to
dramatically performance drop. The observation
suggests that the word alignment quality between
gold-standard English translation by fast_align is
not directly related to topic prediction, unlike tasks
such as machine translation, since LLMs could
make predictions directly based on the presence of
gold-standard English words in the prompt.

D Computational Costs Estimation

Following previous work (Liu et al., 2022; Kaplan
et al., 2020), we estimate that a decoder-only LLM
with N parameters uses 2N FLOPs per token for
inference. For a parallel corpus in target language
and English, we suppose the LLM tokenises the
texts in target language and English into X and
Y tokens on average, respectively, and ignore the
length of the task description and class labels in the
prompt. Therefore, the input token length for the
six ICL settings we explore could be approximated
as follows:
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Language Code Baseline Zero-Shot PEFT Zero-Shot with Align Baseline Few-Shot Few-Shot with Align
kac_Latn 0.261 0.353(1) 0.329(2) 0.285 0.280
wol_Latn 0.261 0.361(1) 0.319(2) 0.256 0.261
fuv_Latn 0.266(2) 0.309(1) 0.256 0.227 0.237
tir_Ethi 0.275 0.271 0.300(1) 0.227 0.280(2)
luo_Latn 0.295 0.314(2) 0.280 0.319(1) 0.275
ckb_Arab 0.333 0.440(1) 0.372(2) 0.280 0.324
tgk_Cyrl 0.357 0.391(1) 0.386(2) 0.338 0.343
kaz_Cyrl 0.362(2) 0.464(1) 0.348 0.275 0.251
khk_Cyrl 0.372(2) 0.472(1) 0.290 0.266 0.300
eus_Latn 0.415 0.623(1) 0.420(2) 0.367 0.338
urd_Arab 0.517 0.638(1) 0.459 0.546(2) 0.473

Table 3: The accuracy scores on the BELEBELE test set with LLaMA-3.2: baseline ICL (zero-shot), PEFT,
zero-shot with alignment (3 parallel examples retrieved with BM25), 3-shot baseline ICL, and 3-shot ICL with
alignment. Differences between baseline zero-shot ICL is statistical significant (paired chi-squared test). The
number in parentheses denotes the rank of the performance on the target language.

Language Code Baseline Zero-Shot ICL PEFT XLM-R
DeepSeek LLaMA Gemma DeepSeek LLaMA Gemma

taq_Tfng 0.118 0.162 0.147 0.309 0.290 0.461 0.269
dzo_Tibt 0.128 0.127 0.132 0.495 0.627 0.676 0.242
nqo_Nkoo 0.137 0.132 0.127 0.323 0.271 0.245 0.232
sat_Olck 0.172 0.147 0.333 0.240 0.270 0.608 0.245
tir_Ethi 0.186 0.167 0.363 0.456 0.387 0.632 0.677
min_Arab 0.181 0.245 0.260 0.583 0.578 0.520 0.381
nus_Latn 0.250 0.260 0.255 0.569 0.456 0.485 0.439
ayr_Latn 0.260 0.377 0.333 0.637 0.539 0.559 0.525
kac_Latn 0.265 0.314 0.319 0.672 0.627 0.574 0.627
luo_Latn 0.289 0.363 0.382 0.652 0.608 0.623 0.600
fuv_Latn 0.304 0.378 0.382 0.681 0.657 0.554 0.630
ckb_Arab 0.358 0.446 0.446 0.603 0.725 0.716 0.501
wol_Latn 0.387 0.441 0.436 0.657 0.691 0.632 0.601
tgk_Cyrl 0.422 0.505 0.485 0.696 0.814 0.716 0.598
khk_Cyrl 0.471 0.505 0.490 0.681 0.755 0.691 0.885
eus_Latn 0.490 0.529 0.588 0.750 0.809 0.804 0.892
azb_Arab 0.520 0.525 0.539 0.721 0.824 0.789 0.829
tat_Cyrl 0.520 0.549 0.583 0.706 0.814 0.799 0.819
kaz_Cyrl 0.569 0.598 0.618 0.765 0.824 0.877 0.914
urd_Arab 0.598 0.618 0.608 0.662 0.858 0.848 0.876
eng_Latn 0.828 0.770 0.647 0.926 0.926 0.931 0.921

Table 4: Baseline zero-shot ICL and PEFT performance over SIB-200 on DeepSeek, LLaMA-3.2 and Gemma-2.
Differences between baseline zero-shot ICL is statistical significant (paired chi-squared test). Performance of
fine-tuning XLM-R(large) is adopted from Adelani et al. (2024).

Language Code en-X X-en
Baseline Few-Shot Baseline Few-Shot

dzo_Tibt 4.04 12.36 13.07 14.40
taq_Tfng 0.74 8.56 12.33 15.92
sat_Olck 0.40 10.95 16.79 17.86
nqo_Nkoo 0.47 9.91 9.74 16.11
tir_Ethi 2.68 4.40 14.13 16.29
min_Arab 0.88 4.16 14.64 16.58
ckb_Arab 3.57 13.31 29.41 31.74
azb_Arab 1.14 9.53 27.50 30.52
urd_Arab 33.07 32.96 50.31 50.23
nus_Latn 4.09 11.01 16.29 19.01
kac_Latn 8.63 18.77 15.52 22.22
ayr_Latn 7.66 13.11 18.85 20.31
luo_Latn 11.69 14.86 19.17 23.18
fuv_Latn 8.23 11.74 16.11 20.65
wol_Latn 7.53 11.06 16.09 22.52
eus_Latn 27.76 28.90 41.93 42.25
tgk_Cyrl 7.53 14.97 28.51 31.75
khk_Cyrl 1.95 11.09 24.01 26.61
tat_Cyrl 7.79 12.75 33.66 35.42
kaz_Cyrl 13.46 15.50 35.18 37.06

Table 5: Baseline and few-shot ICL performances
(chrf++ scores) of translating English to the target lan-
guages (en-X) and translating target languages to En-
glish (X-en) with LLaMA-3.2.

• Baseline zero-shot: X;

• Zero-shot with word alignment: X + Y ;

• Zero-shot with word translation: Y ;

• Zero-shot with k number of sentence-level
alignment examples: X + k ∗ (X + Y );

• Few-shot (k demonstrations only in the target
language): X + k ∗X;

• Few-shot (k demonstrations with alignment)):
X + k ∗ (X + Y ).

We present the total FLOPs of the above six ICL
approaches for all the low-resource languages with
each LLM when inference on SIB-200 in Table 7.
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Model Language Code Zero-Shot Few-Shot
sentence(BM25) sentence(random) word word translation without align with align

DeepSeek taq_Tfng 0.466 0.098 0.265 0.221 0.338 0.328
dzo_Tibt 0.279 0.176 0.623 0.676 0.225 0.181
nqo_Nkoo 0.436 0.132 0.617 0.681 0.451 0.417
sat_Olck 0.456 0.147 0.632 0.563 0.358 0.284
min_Arab 0.407 0.113 0.621 0.627 0.377 0.368
tir_Ethi 0.392 0.196 0.368 0.397 0.387 0.343
nus_Latn 0.368 0.186 0.412 0.319 0.373 0.387
ayr_Latn 0.328 0.265 0.461 0.422 0.353 0.358
kac_Latn 0.574 0.279 0.431 0.260 0.451 0.431
luo_Latn 0.539 0.304 0.500 0.490 0.515 0.456
fuv_Latn 0.441 0.304 0.431 0.328 0.441 0.475
ckb_Arab 0.485 0.294 0.505 0.627 0.422 0.417
wol_Latn 0.505 0.353 0.505 0.392 0.505 0.534
tgk_Cyrl 0.549 0.377 0.578 0.588 0.529 0.608
khk_Cyrl 0.544 0.392 0.544 0.539 0.471 0.525
eus_Latn 0.495 0.407 0.613 0.618 0.574 0.554
azb_Arab 0.529 0.397 0.480 0.466 0.559 0.554
tat_Cyrl 0.593 0.529 0.637 0.564 0.642 0.613
kaz_Cyrl 0.632 0.495 0.598 0.559 0.603 0.627
urd_Arab 0.598 0.441 0.603 0.588 0.657 0.676

LLaMA-3.2 dzo_Tibt 0.250 0.113 0.480 0.627 0.206 0.235
nqo_Nkoo 0.417 0.201 0.523 0.730 0.377 0.333
sat_Olck 0.505 0.176 0.593 0.754 0.422 0.368
taq_Tfng 0.475 0.181 0.235 0.225 0.338 0.260
tir_Ethi 0.387 0.103 0.373 0.417 0.343 0.368
min_Arab 0.451 0.186 0.537 0.726 0.407 0.255
nus_Latn 0.382 0.186 0.319 0.422 0.436 0.348
kac_Latn 0.539 0.196 0.206 0.392 0.559 0.319
luo_Latn 0.500 0.250 0.373 0.520 0.485 0.436
ayr_Latn 0.363 0.255 0.446 0.426 0.412 0.343
fuv_Latn 0.426 0.221 0.319 0.431 0.475 0.387
wol_Latn 0.456 0.275 0.343 0.412 0.539 0.422
ckb_Arab 0.529 0.333 0.657 0.515 0.608 0.485
khk_Cyrl 0.490 0.255 0.505 0.598 0.603 0.534
tgk_Cyrl 0.471 0.270 0.578 0.672 0.618 0.510
azb_Arab 0.515 0.279 0.495 0.461 0.627 0.510
eus_Latn 0.515 0.324 0.623 0.554 0.588 0.627
tat_Cyrl 0.593 0.309 0.618 0.657 0.711 0.632
kaz_Cyrl 0.500 0.348 0.691 0.657 0.735 0.676
urd_Arab 0.588 0.284 0.637 0.431 0.662 0.593

Gemma-2 nqo_Nkoo 0.417 0.137 0.696 0.671 0.255 0.402
dzo_Tibt 0.250 0.127 0.578 0.569 0.240 0.230
taq_Tfng 0.475 0.167 0.240 0.230 0.353 0.431
nus_Latn 0.382 0.206 0.446 0.338 0.338 0.382
min_Arab 0.451 0.216 0.672 0.614 0.368 0.407
kac_Latn 0.539 0.328 0.436 0.314 0.436 0.520
ayr_Latn 0.363 0.270 0.402 0.417 0.363 0.402
sat_Olck 0.505 0.240 0.686 0.622 0.480 0.549
tir_Ethi 0.387 0.314 0.466 0.314 0.446 0.500
fuv_Latn 0.426 0.333 0.485 0.358 0.500 0.520
luo_Latn 0.500 0.328 0.569 0.377 0.480 0.515
wol_Latn 0.456 0.412 0.505 0.363 0.529 0.603
ckb_Arab 0.529 0.333 0.618 0.554 0.559 0.564
tgk_Cyrl 0.471 0.407 0.696 0.593 0.608 0.593
khk_Cyrl 0.490 0.368 0.637 0.539 0.554 0.578
azb_Arab 0.515 0.485 0.603 0.471 0.642 0.667
tat_Cyrl 0.593 0.466 0.686 0.598 0.735 0.721
eus_Latn 0.515 0.495 0.711 0.613 0.716 0.711
urd_Arab 0.588 0.495 0.691 0.480 0.779 0.765
kaz_Cyrl 0.500 0.515 0.667 0.657 0.740 0.740

Table 6: Zero-shot ICL with language alignments and few-shot ICL with or without alignment over SIB-200 on
DeepSeek, LLaMA-3.2 and Gemma-2.
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Model Language Code Zero-Shot Few-Shot
baseline word-alignment word-translation sentence-alignment without align with align

LLaMA-3.2 taq_Tfng 1.58E+13 1.74E+13 1.62E+12 3.31E+13 3.15E+13 3.31E+13
dzo_Tibt 1.93E+13 2.09E+13 1.62E+12 4.02E+13 3.86E+13 4.02E+13
nqo_Nkoo 1.74E+13 1.90E+13 1.62E+12 3.63E+13 3.47E+13 3.63E+13
sat_Olck 1.99E+13 2.16E+13 1.62E+12 4.15E+13 3.99E+13 4.15E+13
tir_Ethi 1.21E+13 1.38E+13 1.62E+12 2.59E+13 2.43E+13 2.59E+13
nus_Latn 6.19E+12 7.81E+12 1.62E+12 1.40E+13 1.24E+13 1.40E+13
ayr_Latn 3.39E+12 5.01E+12 1.62E+12 8.39E+12 6.77E+12 8.39E+12
kac_Latn 3.61E+12 5.23E+12 1.62E+12 8.84E+12 7.22E+12 8.84E+12
luo_Latn 2.89E+12 4.51E+12 1.62E+12 7.41E+12 5.79E+12 7.41E+12
fuv_Latn 2.91E+12 4.53E+12 1.62E+12 7.43E+12 5.81E+12 7.43E+12
wol_Latn 2.97E+12 4.59E+12 1.62E+12 7.55E+12 5.93E+12 7.55E+12
eus_Latn 2.97E+12 4.59E+12 1.62E+12 7.56E+12 5.94E+12 7.56E+12
ckb_Arab 6.31E+12 7.93E+12 1.62E+12 1.42E+13 1.26E+13 1.42E+13
min_Arab 4.51E+12 6.13E+12 1.62E+12 1.06E+13 9.03E+12 1.06E+13
azb_Arab 3.03E+12 4.65E+12 1.62E+12 7.68E+12 6.06E+12 7.68E+12
urd_Arab 4.87E+12 6.49E+12 1.62E+12 1.14E+13 9.75E+12 1.14E+13
khk_Cyrl 5.08E+12 6.70E+12 1.62E+12 1.18E+13 1.02E+13 1.18E+13
tat_Cyrl 4.89E+12 6.51E+12 1.62E+12 1.14E+13 9.79E+12 1.14E+13
kaz_Cyrl 4.83E+12 6.45E+12 1.62E+12 1.13E+13 9.66E+12 1.13E+13
tgk_Cyrl 4.62E+12 6.24E+12 1.62E+12 1.09E+13 9.24E+12 1.09E+13

Gemma-2 taq_Tfng 8.37E+12 9.99E+12 1.62E+12 1.84E+13 1.67E+13 1.84E+13
dzo_Tibt 6.47E+12 8.09E+12 1.62E+12 1.46E+13 1.29E+13 1.46E+13
nqo_Nkoo 9.62E+12 1.12E+13 1.62E+12 2.09E+13 1.92E+13 2.09E+13
sat_Olck 8.07E+12 9.69E+12 1.62E+12 1.78E+13 1.61E+13 1.78E+13
tir_Ethi 5.30E+12 6.92E+12 1.62E+12 1.22E+13 1.06E+13 1.22E+13
nus_Latn 4.54E+12 6.16E+12 1.62E+12 1.07E+13 9.08E+12 1.07E+13
ayr_Latn 3.12E+12 4.74E+12 1.62E+12 7.87E+12 6.25E+12 7.87E+12
kac_Latn 3.27E+12 4.89E+12 1.62E+12 8.15E+12 6.53E+12 8.15E+12
luo_Latn 2.72E+12 4.34E+12 1.62E+12 7.06E+12 5.44E+12 7.06E+12
fuv_Latn 2.61E+12 4.23E+12 1.62E+12 6.84E+12 5.22E+12 6.84E+12
wol_Latn 2.73E+12 4.35E+12 1.62E+12 7.09E+12 5.47E+12 7.09E+12
eus_Latn 2.68E+12 4.30E+12 1.62E+12 6.99E+12 5.37E+12 6.99E+12
ckb_Arab 4.59E+12 6.21E+12 1.62E+12 1.08E+13 9.19E+12 1.08E+13
min_Arab 3.79E+12 5.41E+12 1.62E+12 9.21E+12 7.59E+12 9.21E+12
azb_Arab 2.84E+12 4.46E+12 1.62E+12 7.31E+12 5.69E+12 7.31E+12
urd_Arab 3.07E+12 4.69E+12 1.62E+12 7.77E+12 6.15E+12 7.77E+12
khk_Cyrl 4.17E+12 5.79E+12 1.62E+12 9.95E+12 8.33E+12 9.95E+12
tat_Cyrl 3.51E+12 5.13E+12 1.62E+12 8.65E+12 7.03E+12 8.65E+12
kaz_Cyrl 3.66E+12 5.28E+12 1.62E+12 8.95E+12 7.33E+12 8.95E+12
tgk_Cyrl 3.92E+12 5.54E+12 1.62E+12 9.47E+12 7.85E+12 9.47E+12

DeepSeek taq_Tfng 1.40E+13 1.57E+13 1.68E+12 2.97E+13 2.80E+13 2.97E+13
dzo_Tibt 2.18E+13 2.34E+13 1.68E+12 4.52E+13 4.35E+13 4.52E+13
nqo_Nkoo 1.74E+13 1.90E+13 1.68E+12 3.64E+13 3.47E+13 3.64E+13
sat_Olck 2.12E+13 2.29E+13 1.68E+12 4.41E+13 4.25E+13 4.41E+13
tir_Ethi 1.33E+13 1.50E+13 1.68E+12 2.83E+13 2.66E+13 2.83E+13
nus_Latn 5.68E+12 7.36E+12 1.68E+12 1.30E+13 1.14E+13 1.30E+13
ayr_Latn 3.52E+12 5.20E+12 1.68E+12 8.73E+12 7.05E+12 8.73E+12
kac_Latn 3.78E+12 5.46E+12 1.68E+12 9.24E+12 7.56E+12 9.24E+12
luo_Latn 3.07E+12 4.75E+12 1.68E+12 7.83E+12 6.15E+12 7.83E+12
fuv_Latn 3.03E+12 4.71E+12 1.68E+12 7.74E+12 6.06E+12 7.74E+12
wol_Latn 3.18E+12 4.86E+12 1.68E+12 8.04E+12 6.36E+12 8.04E+12
eus_Latn 3.14E+12 4.82E+12 1.68E+12 7.96E+12 6.28E+12 7.96E+12
ckb_Arab 8.26E+12 9.94E+12 1.68E+12 1.82E+13 1.65E+13 1.82E+13
min_Arab 6.93E+12 8.61E+12 1.68E+12 1.55E+13 1.39E+13 1.55E+13
azb_Arab 6.02E+12 7.70E+12 1.68E+12 1.37E+13 1.20E+13 1.37E+13
urd_Arab 7.65E+12 9.33E+12 1.68E+12 1.70E+13 1.53E+13 1.70E+13
khk_Cyrl 5.20E+12 6.88E+12 1.68E+12 1.21E+13 1.04E+13 1.21E+13
tat_Cyrl 5.06E+12 6.74E+12 1.68E+12 1.18E+13 1.01E+13 1.18E+13
kaz_Cyrl 5.33E+12 7.01E+12 1.68E+12 1.23E+13 1.07E+13 1.23E+13
tgk_Cyrl 4.75E+12 6.43E+12 1.68E+12 1.12E+13 9.50E+12 1.12E+13
eng_Latn 1.65E+12 3.33E+12 1.68E+12 4.99E+12 3.31E+12 4.99E+12

Table 7: Total FLOPs of each ICL approach for each language on DeepSeek, LLaMA-3.2 and Gemma-2 when
inference on SIB-200.
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