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Abstract

The ability of large language models (LLMs)
to validate their output and identify potential
errors is crucial for ensuring robustness and re-
liability. However, current research indicates
that LLMs struggle with self-correction, en-
countering significant challenges in detecting
errors. While studies have explored methods
to enhance self-correction in LLMs, relatively
little attention has been given to understand-
ing the models’ internal mechanisms underly-
ing error detection. In this paper, we present
a mechanistic analysis of error detection in
LLMs, focusing on simple arithmetic prob-
lems. Through circuit analysis, we identify the
computational subgraphs responsible for detect-
ing arithmetic errors across four smaller-sized
LLMs. Our findings reveal that all models heav-
ily rely on consistency heads—attention heads
that assess surface-level alignment of numer-
ical values in arithmetic solutions. Moreover,
we observe that the models’ internal arithmetic
computation primarily occurs in higher layers,
whereas validation takes place in middle lay-
ers, before the final arithmetic results are fully
encoded. This structural dissociation between
arithmetic computation and validation seems
to explain why smaller-sized LLMs struggle to
detect even simple arithmetic errors.

1 Introduction

In recent years, large language models have demon-
strated notable performance across a variety of
reasoning tasks, including arithmetic problem-
solving (Sawada et al., 2023; Phan et al., 2025;
Liu et al., 2024a; Achiam et al., 2023). However,
a gap appears to exist between the models’ ability
to generate solutions and their capacity to validate
them effectively (Huang et al., 2024; Hong et al.,
2024; Jiang et al., 2024). Specifically, while LLMs
are often able to correct mistakes once they have
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Figure 1: A schematic overview of the structurally dis-
sociated circuits responsible for arithmetic computation
and validation. While the models’ internal arithmetic
computation primarily occurs in higher layers, valida-
tion takes place in mid-to-lower layers, before the final
arithmetic results are fully encoded (see Section 4.3).

been identified, they struggle to detect errors in the
first place (Tyen et al., 2024; Kamoi et al., 2024a,b).

Several studies have proposed methods to en-
hance LLMs’ ability to detect errors and correct
their own output (Welleck et al., 2023; Ye et al.,
2023; Gou et al., 2024). However, comparatively
little attention has been given to understanding why
current models inherently struggle with error de-
tection (Hong et al., 2024; Kamoi et al., 2024a; Li
et al., 2024). In particular, few studies have exam-
ined the internal mechanisms responsible for error
detection in LLMs (Liu et al., 2024b).

In this paper, we seek to bridge this gap by pre-
senting a mechanistic analysis of error detection in
LLMs, focusing on math word problems involving
basic addition. We examine four LLMs—Qwen-
2.5-(Math)-1.5B-Instruct (Yang et al., 2024a,b),
Llama-3.2-3B-Instruct (Dubey et al., 2024), and
Phi-3-Mini-4k-Instruct (Abdin et al., 2024)—to un-
derstand how these models detect arithmetic errors
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and why they struggle with this task. Specifically,
we identify and analyze the computational sub-
graphs (or circuits) responsible for error detection,
examining the role of identified modules within the
broader task context. Additionally, we analyze how
these circuits compare to those involved in com-
puting arithmetic results, seeking to understand the
structural differences between arithmetic compu-
tation and validation in LLMs. To the best of our
knowledge, this is the first study to examine arith-
metic error detection in LLMs through the lens of
mechanistic interpretability. Our findings reveal:

• Circuits for detecting arithmetic errors are
structurally similar across different models.

• The error detection process is governed by
consistency heads—attention heads located in
lower to middle layers that check for surface-
level alignment of numerical values in the
arithmetic solution. By patching a small sub-
set of these heads, we can effectively control
the models’ error detection behavior.

• The mechanisms for arithmetic computation
and validation appear to be structurally disso-
ciated. While the models’ internal arithmetic
computation is predominantly conducted in
higher layers, validation is performed in mid-
dle layers, before the final arithmetic results
are fully encoded (see Figure 1).

• Adding latent activations from higher layers
to the residual stream in lower layers signifi-
cantly enhances the models’ ability to detect
errors, effectively closing the validation gap.1

Our analysis shows that mechanistic inter-
pretability can offer valuable insights into how
models detect—or fail to detect—arithmetic errors.
While focused on smaller LLMs and basic math
word problems, we hope that this work provides a
foundation for future work to study error detection
in larger models and more complex tasks.

2 Background

A common goal in interpretability research is to
gain a deeper understanding of the internal mecha-
nisms that drive the behavior of language models
for a given task (Ferrando et al., 2024; Mueller

1By validation gap, we mean both the structural separation
and the performance gap between arithmetic computation and
validation in LLMs.

et al., 2024; Bereska and Gavves, 2024). The cir-
cuit framework seeks to achieve this by identify-
ing model components that causally influence the
model’s task output (Elhage et al., 2021; Wang
et al., 2023; Hanna et al., 2023). In essence, a cir-
cuit refers to the computational subgraph C ⊂ G =
(V, E) that represents the task-relevant flow of in-
formation across the model’s layers (Conmy et al.,
2023; Bhaskar et al., 2024). A node v ∈ V in this
graph can represent different components, depend-
ing on the desired level of granularity—ranging
from entire attention or MLP layers, to individual
attention heads, to single neurons (Mueller et al.,
2024). An edge eij = (vi, vj) ∈ E denotes a con-
nection between two nodes, where the output of the
source node vi serves as the input to the destination
node vj . The total input received by a node vj can
be expressed as

∑
eij =(vi,vj)∈Evj zi where zi rep-

resents the activation of node vi and Evj denotes
the set of incoming edges to vj .

Circuit Identification. A method for identifying
circuits in language models is activation patch-
ing (Vig et al., 2020; Geiger et al., 2021; Meng
et al., 2022). The key idea is to intervene on the
latent activations of components in the computa-
tion graph G to measure their indirect effect (Pearl,
2001) on the model’s output. Adopting the ter-
minology of Zhang and Nanda (2024), activation
patching requires three forward passes to determine
a component’s indirect effect for a given input:

1. Clean run: run the model on a clean prompt
Xclean, for which the model generates the de-
sired task-specific output yclean. Cache the
component’s latent activations, denoted as zi.

2. Corrupted run: run the model on a corrupted
prompt Xcorrupt, for which the model gener-
ates a related but altered output ycorrupt.

3. Patched run: run the model on Xcorrupt, but
this time, replace the component’s activations
associated with Xcorrupt with the cached acti-
vations zi from the clean run.

Finally, the indirect effect is calculated by com-
paring the output of the patched run to that of the
corrupted run using a predefined metric P .2 If the
component under consideration causally influences
the model’s task output, the patched activations
should shift the prediction ycorrupt toward yclean.

2This metric typically evaluates differences in logits or
output probabilities relative to the clean output yclean.
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Template 1

[name] initially has [num1] [object]. After [verb]
[num2] more [object], how many [object] does
[pronoun] have?

To solve this, we add [num1] + [num2] = [result].
Thus, [name] has a total of [answer] [object].

The above reasoning is:

Template 1

[name] initially has [num1] [object].
After [verb] [num2] more [object], how many
[object] does [pronoun] have?

To solve this, we add [num1] + [num2] = [result].
Thus, [name] has a total of [answer] [object].

The above reasoning is:

Clean prompt

Jane initially has 5 apples. After buying 8 more
apples, how many apples does she have?

To solve this, we add 5 + 8 = 16.
Thus, Jane has a total of 13 apples.

The above reasoning is:

Corrupt prompt

Jane initially has 5 apples. After buying 8 more
apples, how many apples does she have?

To solve this, we add 5 + 8 = 13.
Thus, Jane has a total of 13 apples.

The above reasoning is:

invalid

valid

Figure 2: Our data generation setup. We use eight templates to generate samples that consist of a simple arithmetic
problem, its corresponding solution, and a final statement assessing the solution’s validity. Words enclosed in
[square brackets] serve as placeholders for components that are substituted with specific content. For each generated
sample, a pair of (clean, corrupt) prompts is derived. Counterintuitively, clean prompts contain errors, as they
represent prompts for which the model exhibits the desired error detection behavior (predicting “invalid”).

As performing these steps for every model com-
ponent and sample can become computationally
expensive, several approximations trade off com-
putational cost against accuracy (Syed et al., 2024;
Nanda, 2024; Hanna et al., 2024). In this work, we
consider edge attribution patching (EAP) (Syed
et al., 2024), a linear approximation of activation
patching requiring only two forward and one back-
ward pass. EAP focuses on the indirect effect of
edges eij ∈ E , which represent inputs to a node
vj from earlier nodes vi. Specifically, the causal
influence is approximated using the absolute attri-
bution score |∇zP|, which measures the change
in P under the intervention (for further details, see
Appendix B). Once these scores are computed, the
top-k edges with the highest absolute attribution
values are selected to define the circuit C. Although
EAP is only a linear approximation of activation
patching, it has been successfully employed in stud-
ies to identify circuits within language models for
tasks such as indirect object identification, subject-
verb agreement, and greater-than attribution (Syed
et al., 2024; Hanna et al., 2024; Miller et al., 2024).

3 Circuits for Arithmetic Error Detection

In this section, we present the dataset used to study
arithmetic error detection in LLMs. Additionally,
we outline our use of edge attribution patching to
identify circuits responsible for the task.

Dataset. In this study, we focus on simple
math word problems. As illustrated in Figure 2,
we employ templates to systematically generate
data (Wang et al., 2023; Hanna et al., 2023). Each
sample consists of a basic arithmetic problem, its
corresponding solution, and a final statement that
evaluates the solution’s validity. Samples derived
from the same template maintain a consistent sen-
tence structure but incorporate variable compo-
nents such as [names] or numerical [values] (left
box in Figure 2). To analyze the models’ error
detection mechanisms, we introduce simple arith-
metic errors into the sample’s solution statement.
Specifically, we consider two types of errors sepa-
rately: i) a miscalculation of the arithmetic result,
and ii) an incorrect final numeric answer. Note
that the perturbed sample forms our clean prompt,
for which models can successfully detect the arith-
metic error (see upper-right box in Figure 2, show-
ing an error for the arithmetic result). Addition-
ally, we construct a corrupt prompt without errors,
for which models predict the solution to be “valid”
(lower-right box). We use single-digit numerical
values that sum to a two-digit arithmetic result
across all templates and samples. The introduced
errors always correspond to a different, incorrect
two-digit number ranging from 10 to 19.

For each template, we generate 6,000 pairs of
(clean, corrupt) prompts. We use eight different
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Error Type Qwen-2.5-1.5B Qwen-2.5-Math-1.5B Llama-3.2-3B Phi-3-Mini-3.8B

Arithmetic Result 60.53 ± 10.92 98.99 ± 2.18 87.67 ± 12.51 89.51 ± 26.75
Numeric Answer 59.03 ± 10.72 98.53 ± 3.17 86.44 ± 13.35 89.44 ± 26.84

Table 1: Accuracy of models in correctly classifying the solutions’ validity of (clean, corrupt) prompt pairs. Values
represent the mean accuracy across all templates, reported with their corresponding standard deviation.

templates that vary in syntactic structure and token
length while preserving the fundamental task logic.
Each type of error (arithmetic result vs. final nu-
meric answer) is examined separately. In total, we
obtain a dataset of 6,000 (clean, corrupt) prompt
pairs for each template T{1:8} per error type. For
further details on the data generation process and
templates, please refer to Appendix C.

Method. As described in Section 2, we employ
edge attribution patching (EAP) (Syed et al., 2024)
to identify circuits responsible for arithmetic er-
ror detection in LLMs. For each template Ti, we
use 5,000 pairs of (clean, corrupt) prompts to de-
termine the circuit—specifically, the set of edges
Ci = Ei ⊂ E—that causally influences the model’s
error detection behavior (see Section 2 for more de-
tails). Since all samples within a template contain
the same number of tokens, we apply token-wise
EAP, which allows us to assess the causal impact
of edges at each token position of the prompt. Fol-
lowing Syed et al. (2024), the absolute attribution
score |∇zP| is computed using the average logit
difference related to the models’ answer tokens
(“valid”, “invalid”) as metric P (see Appendix B
for further details). Once the attribution scores are
obtained, we use the template’s remaining 1,000
(clean, corrupt) prompt pairs to find the minimal
set of top-k edges for which the circuit achieves a
faithfulness score between 99%–101%. For a more
detailed explanation of the search procedure and
the computation of the faithfulness score, please
refer to Appendix B.2 and B.3.

Soft Intersection Circuit. After identifying a
circuit Ci for each template Ti ∈ {T1, . . . , T8},
we aim to find a final subset of edges EC ⊂ E
that generalizes across all templates Ti, ensuring
high faithfulness. To achieve this, we compute
the soft intersection circuit, which includes edges
present in at least 1

8 ≤ τ ≤ 8
8 of the identified cir-

cuits {C1, . . . , C8}. The soft intersection is defined
through a membership function that determines the
proportion of identified circuits in which a given
edge e ∈ E appears:

f(e) =
1

8

8∑

i=1

1Ci(e) (1)

where 1Ci(e) is an indicator function that assigns
a value of 1 if e ∈ Ci and 0 otherwise. Conse-
quently, f(e) takes values in {0, 18 , . . . , 88}. The
soft intersection circuit is then formally defined as
C(τ) = EC(τ) = {e ∈ E | f(e) ≥ τ}. This formula-
tion allows for a flexible trade-off: setting τ = 1

8
yields the union of all identified circuits, while
τ = 8

8 results in their strict intersection.3 By vary-
ing τ from 1

8 to 8
8 , we balance faithfulness against

the numbers of edges considered, progressively fil-
tering out template-specific redundant edges.

Models. In this study, we consider four differ-
ent LLMs—Qwen-2.5-(Math)-1.5B-Instruct (Yang
et al., 2024a,b), Llama-3.2-3B-Instruct (Dubey
et al., 2024), and Phi-3-Mini-4k-Instruct (Ab-
din et al., 2024), to assess the influence of
varying architectures, model scales, and fine-
tuning procedures (particularly for math). Ap-
pendix D.1 provides details about models and
prompts. Our code is publicly available at:
https://github.com/mainlp/validation-gap.

4 Experiments

Before identifying circuits, we ensure that all mod-
els are capable of detecting the types of arithmetic
errors described in Section 3. Specifically, we ran-
domly generate 5,000 (clean, corrupt) prompt pairs
for each template and evaluate whether the models
predict tokens that correctly indicate the validity
of the presented solutions (we expect predictions
such as “invalid”, “incorrect”, or “wrong” for clean
prompts, and “valid”, “correct”, or “right” for cor-
rupt prompts). Table 1 summarizes the models’
average accuracy along with the standard deviation
across templates. A pair is considered correctly
classified if the model’s highest logit falls within

3Note that since we employ token-wise EAP to identify
relevant edges per token position, we assign abstract yet mean-
ingful labels to each token position, ensuring transferability
across templates. Further details on this labeling process can
be found in Appendix C.2.
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(a) Error at the arithmetic result
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(b) Error at the final numeric answer

Figure 3: The number of edges and faithfulness scores averaged across all templates (with standard deviation) of the
soft intersection circuit for different τ values. Red circles mark the circuit that best balances size and faithfulness.

the set of correct labels for the clean and corrupt
prompts, respectively. We observe that all models
are able to detect the type of errors considered, with
Qwen-2.5-Math-1.5B achieving near-perfect accu-
racy, while Qwen-2.5-1.5B performs worst with
approximately 60% accuracy for both error types.

In the subsequent circuit identification pro-
cess, we filter the generated prompt pairs
to ensure that for all samples, the models
predict the desired outputs, i.e., yclean ∈
{“invalid”, “incorrect”, “wrong”} and ycorrupt ∈
{“valid”, “correct”, “right”} (see Section 2).

4.1 Identified Circuits

As described in Section 3, we employ edge attri-
bution patching to identify circuits Ci = Ei ⊂ E
that achieve faithfulness scores between 99% and
101% for each template Ti ∈ {T1, . . . T8}. We find
that for all models, only 100 to 900 edges (less
than 0.1% of total edges) are sufficient to achieve
around 100% faithfulness for the task. Due to space
constraints, we present the faithfulness scores and
the corresponding number of edges for each cir-
cuit in Table 12 in the Appendix—categorized by
model, template, and error type. Once a circuit is
identified for each template, we compute the soft
intersection circuit C(τ) as outlined in Section 3.
Figure 3 illustrates the faithfulness scores and asso-
ciated edge counts of the soft intersection circuits
for Qwen-2.5-1.5B across different threshold val-
ues τ ∈ {1

8 , . . . ,
8
8}. For errors at the position

of the arithmetic result (e.g., “5 + 8 = 16”), the
soft intersection circuit C(5/8)

result achieves an average
faithfulness of around 100%, effectively general-
izing across all templates, while retaining only
245 edges (red circles in Figure 3a). For errors
at the position of the final numeric answer (e.g.,

“. . . 5 + 8 = 13. Thus, Jane has 16 apples.”), even
the strict intersection (τ = 8

8 ) yields an almost
perfect average faithfulness score across all tem-
plates, with the number of relevant edges reduced
to 53 (see Figure 3b). In subsequent analyses, we
focus on C(5/8)

result and C(8/8)
answer for Qwen-2.5-1.5B. No-

tably, similar results can be found for all models,
as presented in Appendix E.1, Figures 11 to 13.

A visualization of Qwen-2.5-1.5B’s circuit
C(8/8)

answer for detecting errors at the position of the
final numeric answer is shown in Figure 4. As
mentioned in Section 3, we employ token-wise
EAP. This means that we identify edges for each
token position of the prompt. Figure 4 shows that
most edges are concentrated at the position of the
second digit of the final numeric answer ([answer-

Figure 4: The soft intersection circuit C(8/8)
answer, represent-

ing the set of edges that causally influence the output of
Qwen-2.5-1.5B when detecting errors at the position of
the final numeric answer. Attention heads are abbrevi-
ated as A.layer.head.K(ey)/V(alue)/Q(uery)/O(ut), while MLPs
are represented as MLP in/out layer. Corresponding
token positions are indicated by the labels at the bottom.
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Figure 5: Attention patterns of a consistency head in Qwen-2.5-1.5B (head 2 in layer 12). Reported scores are
averaged over 5,000 prompts where (left) an error is present at the position of the arithmetic result, (second to left)
an error is present at the position of the final numeric answer, (second to right) no error is present, and (right) a
consistent error is present at both considered positions.

second])4 in the middle layers 4 to 15 of the model.
For example, this corresponds to the position of the
6 in “. . .5 + 8 = 13. Thus, Jane has 16 apples.”
Additionally, a smaller number of edges appear in
higher layers 21 to 27 at the final token position of
the prompt (“is”), predominantly connecting MLP
layers with the final residual output. Interestingly,
this structural pattern appears consistent across all
models (see Figures 31 to 33 in the Appendix) and
even across error types (Figures 26 to 29 in the
Appendix).

One Circuit for Arithmetic Error Detection.
The structural similarity between circuits identi-
fied for the two distinct error types is further sup-
ported by their edge overlap. When computing
the Intersection over Minimum (IoM)5 between
the circuits C(5/8)

result and C(8/8)
answer, we obtain a value of

0.92, indicating that a substantial subset of edges
of C(8/8)

answer is also present in C(5/8)
result . Additionally,

we compute the intersection of C(5/8)
result and C(8/8)

answer,
and evaluate the faithfulness of the resulting circuit.
Despite comprising only 49 edges, the intersected
circuit achieves an average faithfulness score of
78.60%±7.46% on samples involving errors in the
arithmetic result and 82.50%± 5.08% on samples
with errors at the final numeric answer. Notably,
these observations are consistent across all models
considered. Corresponding results are provided in
Appendix E.2, specifically in Table 5 and 6.

4.2 Decoding the Error Detection Process

Once we obtain a soft intersection circuit C(τ), we
can analyze its components to gain deeper insights
into the model’s error detection mechanisms. For

4Note that Qwen-2.5 uses a one-digit tokenization scheme;
i.e., the number 16 is encoded into two separate tokens.

5Detailed information on the computation of the edge over-
lap between circuits can be found in Appendix D.2.

instance, Figure 4 illustrates that C(8/8)
answer contains

several edges that connect attention heads in the
model’s middle layers 8 to 15 at the position of the
error ([answer-second]). To better understand the
function of such attention heads, we compute their
average attention scores over a set of input prompts.
Figure 5 shows the average scores of the second at-
tention head in layer 12 present in Qwen-2.5-1.5B’s
C(5/8)

result circuit. Specifically, we visualize attention
scores for four different sets of prompts: i) prompts
with an error at the position of the arithmetic re-
sult, ii) prompts with an error at the position of
the final numeric answer, iii) prompts without er-
rors, and iv) prompts with a consistent error at both
the arithmetic result and the final numeric answer
(e.g., “. . .5 + 8 = 16. Thus, Jane has 16 apples.”).
Two notable attention patterns emerge. For prompts
where an error is present either at the position of the
arithmetic result (e.g., “. . . 5 + 8 = 16. Thus, Jane
has 13 apples.”) or at the position of the final nu-
meric answer (e.g., “. . .5+8 = 13. Thus, Jane has
16 apples.”), we observe high attention scores be-
tween the first digit of the arithmetic result ([result-
first]) and the first digit of the final numeric answer
([answer-first]), but not for the corresponding sec-
ond digits ([result-second] and [answer-second],
respectively). In contrast, for prompts without er-
rors or those with consistent errors at both positions
(e.g., “. . . 5 + 8 = 16. Thus, Jane has 16 apples.”),
we observe high average attention scores for both
the first and second digits of the result and the fi-
nal numeric answer. In essence, we observe that
the attention head exhibits high average attention
scores when the digits of the arithmetic result and
the final numeric answer align. We refer to such
attention heads as consistency heads—attention
heads that assess surface-level alignment of numer-
ical values in the solution prompt. Notably, we
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Error Type Qwen-2.5-1.5B Qwen-2.5-Math-1.5B Llama-3.2-3B Phi-3-Mini-3.8B

Result & Answer 12.39 ± 6.00 3.37 ± 2.06 12.27 ± 9.08 40.98 ± 18.41

Table 2: Accuracy of models in correctly classifying the solutions’ validity of (clean, corrupt) prompt pairs where
clean prompts contain a consistent error at both the position of the arithmetic result and the position of the final
numeric answer. Values represent the mean accuracy across all templates, reported with their standard deviations.

find several consistency heads across all models
(see Figures 16a and 17a in the Appendix). Addi-
tionally, we observe (in)consistency heads, which
display high attention scores for numerical values
that misalign (Figures 14b to 17b in the Appendix).

Consistency Heads Govern Arithmetic Error De-
tection. We hypothesize that consistency heads
in the lower to middle layers of the models play
an important role in the arithmetic error detection
process. This hypothesis has two major implica-
tions: i) models may struggle to distinguish be-
tween samples without errors and those containing
a consistent error at both the position of the arith-
metic result and the final numeric answer (e.g.,
“. . . 5 + 8 = 16. Thus, Jane has 16 apples.”); and
ii) a small subset of consistency heads can signif-
icantly influence the models’ arithmetic error de-
tection behavior. To test our hypothesis, we first
evaluate models on 1,000 (clean, corrupt) prompt
pairs for each template, where clean prompts con-
tain a consistent error at both error positions. As
shown in Table 2, all models exhibit significant
difficulties in detecting these type of errors. For
instance, Qwen-2.5-1.5B achieves an average accu-
racy of only 12.39%± 6.00%, indicating a strong
bias toward labeling prompts with a consistent er-
ror as “valid”. Even for Phi-3-Mini-4k-Instruct, the
accuracy drops from about 89% when detecting
errors at either the arithmetic result or the final nu-
meric answer (see Table 1) to 40.98% ± 18.41%
when both positions contain a consistent error.

Next, we analyze the influence of individual con-
sistency heads on the model’s error detection be-
havior through two complementary experiments.
First, when Qwen-2.5-1.5B is given a prompt with
a consistent error at both positions (for which it
incorrectly predicts “valid”), we patch the latent ac-
tivations of six consistency heads (see Table 4 in the
Appendix for the exact heads) with the correspond-
ing activations from a prompt containing a single
error at the arithmetic result (for which the model
correctly predicts “invalid”). If consistency heads
indeed govern error detection, the model should
change its initial prediction from “valid” to “in-

valid” under this intervention. Second, we perform
the reverse: running the model on a single-error
prompt (correctly predicted as “invalid”), we patch
the activations of the consistency heads with those
from a consistent-error prompt. In this case, we
would expect the intervention to reduce the error
detection accuracy.

Figure 6 shows the resulting changes in
detection accuracy (predicting “invalid”) for
Qwen-2.5-1.5B. As expected, the first interven-
tion (ConsErr[heads := SingErr]) reliably flips
the model’s prediction from “valid” to “invalid,”
demonstrating that inconsistency signals injected
via these heads can causally alter the model’s
output. By contrast, the reverse intervention
(SingErr[heads := ConsErr]) changes the predic-
tion from “invalid” to “valid” only in some cases.
Similar results hold across all models (see Fig-
ure 18 in the Appendix). A plausible explanation
might be that the model has more consistency heads
than the ones we patch, which still signal an in-
consistency for the given prompt. This touches
upon the problem of completeness in circuit dis-
covery, where circuits that can faithfully reproduce

Figure 6: Error detection accuracy of Qwen-2.5-1.5B
before and after patching six consistency heads. On the
left, we evaluate the model on consistent-error prompts
and patch activations from a single-error run; on the
right, we evaluate on single-error prompts and patch
with activations from a consistent-error run. As a con-
trol, we patch six randomly chosen attention heads.

29382



Figure 7: The linear probe’s accuracy across all layers
of Qwen-2.5-1.5B at selected token positions.

the model’s task behavior are not guaranteed to in-
clude all components involved in the model’s task
behavior (Mondorf et al., 2025). For details on the
patching procedure, we refer to Appendix D.4.

4.3 Dissociation of Arithmetic Validation and
Computation

Our findings presented in Section 4.2 suggest that
the considered models tend to rely on surface-level
consistency checks rather than re-evaluating the
given arithmetic equation and comparing the result
with the final numeric answer. Notably, we find that
all models achieve 100% accuracy in predicting the
correct result of the arithmetic equation provided in
each prompt (e.g., 5+8 = ?). However, we hypoth-
esize that this correctly predicted result is not used
for validation. To better understand the relationship
between the models’ arithmetic computation and
validation procedures, we identify another set of
circuits responsible for computing the correct arith-
metic result at the position of the arithmetic equa-
tion, following a similar procedure as described in
Section 3. For further details on the identification
process, please refer to Appendix D.3. Interest-
ingly, we find that for all models, the identified
arithmetic circuits predominantly contain edges in
higher layers (due to space constraints, visualiza-
tions of these circuits are provided in Figures 22
to 25 in the Appendix). This structural dissociation
between the circuits responsible for arithmetic com-
putation and those involved in validation seems to
explain the models’ difficulties in detecting basic
arithmetic errors. Specifically, although the models
can successfully re-compute the result of a given
arithmetic equation, the final arithmetic outcome is
not fully encoded when the model checks for nu-

meric consistency in middle layers. To support this
hypothesis, we train a linear probe to predict the
correct arithmetic result based on the hidden states
of the model’s residual stream (for training details,
see Appendix D.5). Figure 7 shows the probe’s
accuracy across different layers of Qwen-2.5-1.5B
and selected token positions. Only in the higher lay-
ers (after the consistency check) does the model’s
residual stream linearly encode information about
the correct arithmetic result. Interestingly, similar
patterns are observed for other models, too (see
Figure 20 in the Appendix).

We demonstrate that by “bridging” the gap be-
tween arithmetic computation and validation, the
model’s error detection capacity for prompts with
consistent errors at both error positions can be sig-
nificantly enhanced. Figure 8 shows the error de-
tection accuracy of Qwen-2.5-1.5B before and after
we add the hidden representation of the residual
stream from layer 22 at token position [result-first]
to the residual stream of layer 1 at token position
[result-second] (essentially “moving” information
from the top yellow layers in Figure 7 to lower lay-
ers). Notably, this approach improves the model’s
ability to detect consistent errors by 81%. Fur-
thermore, accuracy on samples containing errors
only at the position of the arithmetic result does not
decline markedly, suggesting that the added repre-
sentation enhances rather than overwrites existing
information. A similar trend for other models is
presented in Figure 21 in the Appendix.

Figure 8: Error detection accuracy of Qwen-2.5-1.5B
on (clean, corrupt) prompt pairs where (left) the clean
prompt contains a consistent error at both error posi-
tions, and (right) an error is present only at the position
of the arithmetic result. The blue intervention bar de-
notes the result after adding the hidden representation
of the residual stream in layer 22 (at [result-first]) to the
residual stream of layer 1 (at [result-second]).
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Figure 9: Error detection accuracy of Qwen-2.5-1.5B
before and after patching six consistency heads. We
evaluate the model on consistent-error prompts related
to subtraction (left) or division (right) and patch activa-
tions from a single-error run. As a control, we patch six
randomly chosen attention heads.

4.4 Consistency Heads in Other Arithmetic
Operations

Given the important role of consistency heads in
our experiments on addition, we conduct further
analyses to investigate whether their influence ex-
tends to other arithmetic operations. To this end,
we generate new math word problems involving
subtraction, multiplication, and division, using the
same template structure with the two key error po-
sitions at the arithmetic result and the final numeric
answer.6 As for addition, we first evaluate the mod-
els’ error detection accuracy on 1,000 prompt pairs
per template. Similarly, we find that all models (ex-
cept for Phi-3-Mini-4k-Instruct) encounter greater
difficulty in detecting consistent errors at both er-
ror positions compared to single-position errors.
Complete results for all models and operations are
reported in Table 7 in the Appendix.

Next, for models that struggle with consistent
errors, we replicate the consistency head patching
experiment presented in Section 4.2, this time for
prompts involving other arithmetic operations. Fo-
cusing on Qwen-2.5-1.5B, we evaluate the model
on subtraction and division prompts with consis-
tent errors at both positions, where it incorrectly
judged the reasoning as “valid,” and patch the la-
tent activations of the consistency heads with those
obtained from prompts containing an error only
at the arithmetic result. Notably, across all oper-
ations, we patch the same consistency heads ini-

6See Table 10 in the Appendix for the full set of templates
and variables considered when generating data for other arith-
metic operations.

tially identified with prompts involving additions
(Table 4 in the Appendix). Figure 9 shows the
change in error detection accuracy, indicating that
the causal role of consistency heads in error detec-
tion extends beyond addition. Similar effects are
observed for Qwen-2.5-Math-1.5B and Llama-3.2-
3B (Figure 19 in the Appendix).

Finally, we find that some larger models, such
as Llama-3.1-70B, similarly struggle with detect-
ing consistent arithmetic errors, as shown in Ta-
ble 8 in the Appendix. This may indicate that, to
some extent, these models also rely on consistency
heads—a direction that future work could explore.

5 Related Work

Self-correction in LLMs. Self-correction in
LLMs refers to the ability of models to correct
their own generated output (Kamoi et al., 2024b;
Huang et al., 2024; Madaan et al., 2023). Recent
studies (Tyen et al., 2024; Kamoi et al., 2024a)
suggest that LLMs tend to struggle with intrinsic
self-correction, especially with detecting errors in
their own output (Huang et al., 2024; Tyen et al.,
2024; Kamoi et al., 2024b). While most studies
focus on improving the models’ ability to self-
correct (Kamoi et al., 2024b; Madaan et al., 2023;
Chen et al., 2024; Zhao et al., 2023), we study error
detection from a mechanistic point of view.

Arithmetic and Error Detection in LLMs. The
underlying processes of arithmetic reasoning and
error detection have been studied independently in
LLMs so far. Several studies (Stolfo et al., 2023;
Zhang et al., 2024; Nikankin et al., 2024) use causal
mediation analysis (Pearl, 2001) to identify circuits
that account for how LLMs process arithmetic oper-
ations. As of now, only few studies have analyzed
self-correction in LLMs beyond the models’ gener-
ated output (Li et al., 2024; Liu et al., 2024b).

6 Conclusion

This paper presents a mechanistic analysis of arith-
metic error detection in LLMs. Our findings reveal
that smaller-sized LLMs heavily rely on consis-
tency heads—attention heads that evaluate surface-
level alignment of numerical values in an arith-
metic solution. Moreover, we highlight a structural
dissociation between the models’ arithmetic com-
putation and validation processes. Finally, we show
that bridging this gap can significantly improve the
models’ arithmetic error detection capacity.
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7 Limitations

While our study provides new insights into the
mechanisms underlying arithmetic error detection
in LLMs, several limitations exist that can be ad-
dressed by future work.

Task Design. This study focuses on examining
the error detection behavior of LLMs in the context
of simple arithmetic tasks. Specifically, we analyze
math word problems involving the addition of two
single-digit numbers that yield a two-digit result,
as described in Section 3. Future research could
extend these findings to other arithmetic operations,
such as subtraction, multiplication, and division, or
explore their applicability to more complex math-
ematical problems. It would also be valuable to
investigate how these insights generalize to other
domains, such as logical or causal reasoning tasks.

Model Selection. As discussed in Sections 1
and 3, our analysis is limited to four smaller-sized
LLMs. Although we observe consistent patterns
across various model architectures, sizes, and fine-
tuning procedures (particularly within the mathe-
matical domain), future research could investigate
how these findings extend to larger models with
more advanced arithmetic capabilities. Our be-
havioral experiments with models such as Llama-
3.1-70B-Instruct and Qwen-2.5-32B-Instruct (see
Table 8 in the Appendix) show that even larger
LLMs tend to struggle more with consistent errors
at both error positions, compared to detecting an
error present only at the position of the arithmetic
result or the final answer. This may indicate that,
similarly to smaller models, these models—at least
to some extent—rely on consistency heads that are
susceptible to the validation gap. We believe this is
a promising direction for future work to explore.

Circuit Identification Method. As highlighted
in Section 2, edge attribution patching (Syed et al.,
2024) serves as a linear approximation of acti-
vation patching (Vig et al., 2020). It involves a
trade-off between accuracy and computational effi-
ciency. Notably, circuits identified using EAP are
not guaranteed to be complete (Wang et al., 2023).
Although the circuits identified in this study are
highly sparse (comprising less than 0.1% of the to-
tal edges) and achieve near-perfect task faithfulness
(see Section 4), future research should explore how
these circuits compare to those identified through
more exact methods.
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use can be found in Appendix F. Furthermore, a
detailed account of the data used in this work is
provided in Section 3 and Appendix C.

B Circuit Discovery Details

B.1 Edge Attribution Patching
Attribution patching (Nanda, 2024), and specifi-
cally edge attribution patching (EAP) (Syed et al.,
2024), is a computationally efficient linear approxi-
mation of activation patching to estimate the ef-
fect of interventions on latent activations. Fol-
lowing the activation patching terminology pro-
posed by Zhang and Nanda (2024), consider a clean
prompt Xclean and a corrupted prompt Xcorr. EAP
approximates the change in a predefined metric
P on the model’s output when a specific activa-
tion z is patched from its corrupted value z(Xcorr)
to its clean value z(Xclean). This approxima-
tion is formulated using a first-order Taylor ex-
pansion around the corrupted input Xcorr. Specifi-
cally, EAP approximates fz(Xcorr; z(Xclean))−
fz(Xcorr; z(Xcorr)) as:

fz(Xcorr; z(Xclean))− fz(Xcorr; z(Xcorr))

≈ (z(Xclean)− z(Xcorr)) ·
∂fz
∂z

∣∣∣
z=z(Xcorr)

where fz(X,z) = P(Mz(X; z)) represents the
metric P applied to the patched model Mz. Here,
Mz(X; z) denotes the model M where the activa-
tion z is replaced with the value z for input X .

To compute the gradient ∂fz
∂z

∣∣∣
z=z(Xcorr)

, a back-

ward pass is performed on the corrupted input
Xcorr with respect to the activation z. The ab-
solute value of the resulting score, often referred
to as the absolute attribution score |∇zP| =

|(z(Xclean)− z(Xcorr)) · ∂fz∂z

∣∣∣
z=z(Xcorr)

|, quanti-

fies the estimated influence of patching activation
z. This facilitates efficient circuit identification in
EAP by ranking edges according to these scores.

B.2 Faithfulness Metric
Let (Xclean, Xcorr)i represent a pair of clean and
corrupt prompts within a dataset of size N . For
each input, let C(Xi,clean) and C(Xi,corr) denote
the logits of the clean and corrupt answer tokens
in the circuit’s output, and let M(Xi,clean) and
M(Xi,corr) be the corresponding logits for the full
model. In this study, we define the faithfulness as
the logit difference recovered:

1

N

N∑

i=1

( C(Xi,clean)− C(Xi,corr)

M(Xi,clean)−M(Xi,corr)
× 100

)

(2)
A faithfulness score of 100% indicates that the

circuit preserves the same logit difference as the
full model, thus effectively recovering the model’s
task behavior.

B.3 Circuit Identification Process

To identify a minimal set of edges whose circuit
achieves a faithfulness score between 99% and
101%, we employ an iterative search process. Start-
ing from the sorted absolute attribution scores, de-
noted by |∇zP|, we initially select the top-k edges
and evaluate the corresponding circuit. In each it-
eration, we then add the next n edges from this
sorted list and re-evaluate the faithfulness of the re-
sulting circuit. The search stops as soon as a circuit
with a faithfulness score (see Equation 2) within
the desired interval (99% to 101%) is found. In our
experiments, we set k = 100 and n = 20.

C Dataset

C.1 Templates

We generate our dataset of clean and corrupt
prompts based on the templates in Table 9.
These templates have a set of variables, namely
[instruction], [person], [object], [verb],
[pronoun], [num1], [num2], [num3], each of
which can be assigned different values. Ta-
ble 11 lists all possible values. For the numeri-
cal variables, we use single-digit numerical values
([num1] and [num2]) that add to a two-digit arith-
metic result ([num3]). To ensure that each variable
assignment occupies the same position in the to-
ken sequence within a template, we retain only
variables that are tokenized as a single token for
each model. For the [instruction] variable, we
include only instructions that share the same num-
ber of tokens. Finally, for the [correct_pair]
variable, we select assignments where labels are
tokenized as a single token across models.

For other operations (subtraction, multiplication,
and division) we follow the same procedure and
construct eight templates for each operation (see
Table 10). These templates use the same variable
structure as addition, with subtraction including
also a [verb] variable. For the numerical vari-
ables, we restrict number pairs to ensure two-digit
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Model Parameters Layers Hidden Dim Num Heads License

Qwen2.5-1.5B-Instruct 1.54B 28 1536 12 Apache

Qwen2.5-Math-1.5B-Instruct 1.54B 28 1536 12 Apache

Llama-3.2-3B-Instruct 3.21B 28 3072 24 Llama 3.2

Phi-3-Mini-4k-Instruct 3.82B 32 3072 32 MIT

Table 3: Properties of the models studied in this work. provide details on the number of parameters, layers, the
hidden dimension size of the residual stream, and the number of attention heads for each model. Model weights
were obtained from their respective Hugging Face repositories, accessible via the model names listed in the tables.
Additionally, we specify the licenses under which the models are distributed.

results: subtraction uses 2-digit minus 1-digit in-
puts yielding a 2-digit result, multiplication uses
2-digit times 1-digit inputs yielding a 2-digit re-
sult, and division uses 2-digit dividends and 1-digit
divisors producing 2-digit quotients.

C.2 Aligning Token Positions Across
Templates

Since we employ token-specific EAP to identify
relevant edges at specific token positions, the same
element (e.g., the arithmetic result or the final
numeric answer token) might appear at different
token positions depending on the specific tem-
plate (see Table 9). This variation in token po-
sitions makes it difficult to determine whether
edges from two different template-specific cir-
cuits appear at semantically similar tokens (e.g.,
the arithmetic result in template 1 at token po-
sition 13 and the arithmetic result in template
2 at token position 16). To address this chal-
lenge, we assign shared abstract labels to corre-
sponding elements across templates. Examples of
such labels include [op1-in-eq], [op2-in-eq],
[equals], [result-first], [result-second],
[answer-first], and [answer-second], which
represent the two operands of the addition, the
equal sign, and the digits of the arithmetic result
and the numeric answer, respectively. Mapping
tokens to a shared set of labels enables us to com-
pute the soft intersection circuits between tem-
plates —allowing for the comparison of circuits
associated with semantically equivalent elements
without being confounded by their varying posi-
tions within the sequence.

D Experiment Details

D.1 Models
Details of the models used in this study are pre-
sented in Table 3. Specifically, we include infor-
mation on the number of parameters, the number

of layers, the size of the hidden model dimension,
the number of attention heads per attention block,
and the respective model licenses. All models are
instruction-tuned and expect a series of special to-
kens (e.g., to indicate the beginning of the user
prompt or the end of a turn). Therefore, we wrap
all prompts in the respective chat templates of the
models7. When applicable, we use the models’
default system prompts.

D.2 Edge Overlap
To quantify the proportion of shared edges between
two circuits, C1 and C2, we compute both the Inter-
section over Union (IoU) and the Intersection over
Minimum (IoM).

As discussed in Section 3, we employ token-
level EAP to identify relevant edges for each token
position t in the prompt. Therefore, the set of edges
e
(t)
ij ∈ E = C is determined by the specific token

position t. When computing the IoU and IoM be-
tween two circuits, the intersection and union of
edge sets are computed separately for each token
position. Specifically, we define the two metrics
as:

IoU(Cresult, Canswer) =
|Cresult ∩ Canswer|
|Cresult ∪ Canswer|

, (3)

IoM(Cresult, Canswer) =
|Cresult ∩ Canswer|

min(|Cresult|, |Canswer|)
(4)

This provides an efficient way of measuring the
degree of edge overlap at each token position in the
analyzed circuits.

D.3 Circuits for Arithmetic Computation
To gain a deeper understanding of the relationship
between models’ mechanisms for arithmetic com-
putation and validation, we identify an additional

7huggingface.co/docs/transformers/chat_templating.
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Model Attention Heads

C
on

si
st

en
cy Qwen-2.5-1.5B-Instruct L12H0, L12H2, L12H10, L13H0, L13H1, L13H10

Qwen-2.5-Math-1.5B-Instruct L13H0, L13H1

Llama-3.2-3B-Instruct L4H14, L5H3, L7H11, L8H1, L10H5, L10H18

Phi-3-Mini-4k-Instruct L10H1, L10H5, L10H14, L14H19, L16H18

R
an

do
m Qwen-2.5-1.5B-Instruct L1H0, L4H9, L9H6, L10H5, L11H8, L27H9

Qwen-2.5-Math-1.5B-Instruct L4H9, L27H5

Llama-3.2-3B-Instruct L1H1, L4H19, L9H16, L10H15, L11H23, L27H12

Phi-3-Mini-4k-Instruct L0H25, L3H18, L8H25, L20H19, L23H28

Table 4: Attention heads used in the patching experiment. Consistency heads refer to attention heads that demonstrate
a behavior consistent with the pattern shown in Figure 5, assessing numerical alignment between the digits of the
arithmetic result and the final numeric answer. In contrast, random heads are arbitrarily selected attention heads not
classified as consistency heads, serving as a control group for comparison in the experiment.

set of circuits responsible for correctly computing
the arithmetic result at the position of the equation
(e.g., “5 + 8 = 13”). This process involves generat-
ing a new set of (clean, corrupt) prompt pairs for
each template Ti ∈ {T1, . . . , T8}.

We construct these datasets based on the data
samples used for identifying circuits for arith-
metic error detection (as described in Section 3).
Specifically, we first truncate both clean and cor-
rupt prompts at the position of the equation sign
(e.g., “‘...5 + 8 =”). Next, we modify the cor-
rupt prompt by replacing the numbers with a dif-
ferent set of numbers that produces an alterna-
tive result (e.g., “...3 + 9 =”). This process re-
sults in two prompts—neither containing any er-
rors yet—where the next token is expected to be
the correct outcome of the arithmetic equation (e.g.,
“13” for the clean prompt and “12” for the corrupt
prompt). The corresponding labels represent the
correct results for each prompt.

Using the new sets of clean and corrupt prompt
pairs, we aim to identify the model components
involved in computing the correct arithmetic re-
sult. We follow the same steps described in Sec-
tion 3 and Appendix B.3 to identify circuits for
each template. Finally, we compute the correspond-
ing soft intersection circuits, which are responsible
for generating the correct arithmetic result across
templates.

D.4 Patching Consistency Heads

To evaluate the influence of individual consistency
heads on the models’ error detection behavior,
we conduct two complementary patching interven-
tions. In the first intervention, we run models on

prompts Xboth, which contain a consistent error
at both the arithmetic result and the final numeric
answer (for which models tend to incorrectly pre-
dict “valid”), and patch the latent activations of the
consistency heads listed in Table 4 with activations
from prompts Xresult, where the error appears only
at the arithmetic result (for which models typically
predict “invalid”). This intervention is expected
to increase the rate of “invalid” predictions. In
the second, reverse intervention, we run models
on prompts Xresult and patch the same heads with
activations from Xboth. This setup is expected to
decrease the rate of “invalid” predictions.

Specifically, for an attention head h, let Ah(X)
denote its attention matrix for a given prompt X .
The patching operation we perform is defined as
Ah(Xtarget) = α ·Ah(Xsource), where α is a scal-
ing factor that controls the influence of the patched
activation. For the first intervention, we set α to
3.1 for Qwen-2.5-1.5B-Instruct and Llama-3.2-3B-
Instruct, and to 3.3 and 3.4 for Qwen-2.5-Math-
1.5B-Instruct and Phi-3-Mini-4k-Instruct, respec-
tively. For the second intervention, we set α = 1.0
for all models. We perform the patching over 1, 000
prompt pairs. As a control setup for this experi-
ment, we compare the result to patching randomly
selected attention heads that are not labeled as con-
sistency heads (see the full list in Table 4).

D.5 Linear Probes

We train linear probes on the hidden states of the
models’ residual stream to test whether a specific
layer linearly encodes information about the correct
result of the arithmetic equation within the prompts
described in Section 3. The probes are trained
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separately for each layer and a set of selected token
positions. For each layer and token position, we
use a training set of 500 hidden states per template
(i.e., 4,000 samples in total per layer and token
position) and a test set of 100 samples per template
(i.e., 800 samples in total). The hidden states are
collected from prompts where both the arithmetic
result and the numeric answer contain consistent
errors. All probes are trained for one epoch using
the Adam optimizer with a learning rate of 0.001.

E Additional Results

In this section, we present the results of additional
experiments we conducted.

E.1 Error Detection Circuits

As described in Section 4.1, we identify a circuit
with faithfulness score between 99% and 101% for
each template Ti ∈ {T1, . . . T8}. Table 12 provides
a comparison between the size of the identified
circuits, their exact faithfulness scores, and the total
number of edges in the full computational graph
for all models and templates.

Once a circuit is identified for each template, we
compute the soft intersection circuit C(τ) to derive
a final circuit that generalizes across templates, as
described in Section 3. For each model, we analyze
the faithfulness scores and edge counts for different
threshold values τ in the soft intersection circuit
C(τ).

Figure 10 illustrates the faithfulness scores and
number of edges for the soft intersection cir-
cuit C(τ) of Qwen-2.5-1.5B-Instruct across various
threshold values τ . Specifically, Figure 10a dis-
plays values for the circuit responsible for detect-
ing errors at the position of the arithmetic results,
while Figure 10b shows values for an error at the
final numeric answer. The red circles indicate the
circuits that offer the best balance between faith-
fulness and size. For detecting arithmetic errors
at the position of the arithmetic result, the optimal
threshold is τ = 5

8 , while for detecting errors at
the final numeric answer, the strict intersection at
τ = 8

8 provides the best trade-off. The correspond-
ing circuits are visualized in Figures 26 and 30,
respectively.

Similar results for Qwen-2.5-Math-1.5B-Instruct
are shown in Figure 11, where the optimal cir-
cuits are C(7/8)

result and C(8/8)
answer, depicted in Figures 27

and 31. For Llama-3.2-3B-Instruct, the correspond-
ing results are displayed in Figure 12, with optimal

Model IoU IoM

Qwen-2.5-1.5B-Instruct 0.20 0.92
Qwen-2.5-Math-1.5B-Instruct 0.30 0.91
Llama-3.2-3B-Instruct 0.59 0.75
Phi-3-Mini-4k-Instruct 0.80 0.91

Table 5: The edge overlap between the two error detec-
tion circuits in terms of their Intersection over Union
(IoU) and Intersection over Minimum (IoM). The met-
rics quantify the proportion of edges shared by both
circuits while considering the token position in which
an edge appears.

circuits C(7/8)
result and C(8/8)

answer, visualized in Figures 28
and 32. Finally, Figure 13 provides the results for
Phi-3-Mini-4k-Instruct, where the best soft inter-
section circuits are C(7/8)

result and C(6/8)
answer, shown in

Figures 29 and 33.
Across all models and error types, a consistent

structural pattern emerges. The most relevant edges
are concentrated in the middle layers at the position
of the final numeric answer. Additionally, a smaller
subset of edges appears in the higher layers at the
final token position of the prompt, primarily con-
necting MLP layers with the final residual output.
Phi-3-Mini-4k-Instruct exhibits a slight variation,
displaying a larger set of edges in the higher layers
at the final token position. While many of these
edges involve MLP components, others include
attention head output matrices. Both types con-
tribute to the residual stream forming the model’s
final output. Nonetheless, this model also exhibits
a concentration of edges in the middle layers at
the numeric answer position, consistent with the
overall pattern observed in other models.

E.2 Edge Overlap of Error Detection Circuits

Table 5 shows the the Intersection over Union (IoU)
and Intersection over Minimum (IoM) between
the error detection circuits Cresult and Canswer for
each model. Notably, the IoM between the two cir-
cuits remains consistently ≥ 0.75 across all models.
Meanwhile, IoU values exhibit greater variability,
ranging from 0.20 for Qwen-2.5-1.5B-Instruct to
0.80 for Phi-3-Mini-4k-Instruct. This variability
is primarily attributable to the size differences be-
tween circuits. Specifically, the circuits responsi-
ble for detecting errors at the position of the final
numeric answer are generally smaller, with partic-
ularly pronounced size reductions for the Qwen
family of models (refer to Table 12).
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Circuit Qwen-2.5-1.5B Qwen-2.5-Math-1.5B Llama-3.2-3B Phi-3-Mini-3.8B

Result ∩ 78.60 ± 7.46 47.10 ± 7.64 74.26 ± 5.67 73.02 ± 7.02

∪ 100.3 ± 0.27 99.28 ± 0.57 97.71 ± 1.50 99.03 ± 0.34

Answer ∩ 82.59 ± 5.08 46.89 ± 7.87 74.07 ± 5.84 71.96 ± 6.86

∪ 100.3 ± 0.27 98.80 ± 0.92 97.23 ± 0.93 99.18 ± 0.44

# Edges ∩ 49 20 83 235

∪ 249 66 141 340

Table 6: Faithfulness scores for the intersection (∩) and union (∪) between the final soft intersection circuits
C(τ)

result and C(τ)
answer computed for each model. For Qwen-2.5-1.5B-Instruct, the intersection and union between

C(5/8)
result and C(8/8)

answer are calculated. For Qwen-2.5-Math-1.5B-Instruct, they are computed for C(7/8)
result and C(8/8)

answer. For
Llama-3.2-3B-Instruct, the intersection and union between C(7/8)

result and C(8/8)
answer are shown. For Phi-3-Mini-4k-Instruct,

they are shown for C(7/8)
result and C(6/8)

answer. The last two rows show the number of edges of the resulting circuits.

Table 6 reports the faithfulness results obtained
from the intersection Cresult ∩ Canswer and union
Cresult ∪Canswer of the error detection circuits across
models. The union circuits exhibit near-perfect
faithfulness for both error types across all models,
achieving faithfulness scores ≥ 97.00%. In con-
trast, the faithfulness of the intersection circuits is
generally lower, although it remains above 70.00%
for models such as Qwen-2.5-1.5B-Instruct, Llama-
3.2-3B-Instruct, and Phi-3-Mini-4k-Instruct. The
lowest faithfulness is observed for the intersection
circuit of Qwen-2.5-Math-1.5B-Instruct, likely due
to its extreme sparsity, containing only 20 edges in
total.

E.3 Detection of Consistent Errors

As outlined in Section 4.2, we expect models
to struggle with differentiating between error-
free samples and those containing a consistent
error in both the arithmetic result and the fi-
nal numeric answer. We evaluate models on a
dataset of 1,000 (clean, corrupt) prompt pairs
for each template Ti ∈ {T1, . . . , T8}, where
the clean prompts contain a consistent error at
both specified positions. As mentioned in Sec-
tion 4, a prompt pair is considered correctly clas-
sified if the model predicts the clean prompt as
erroneous (yclean ∈ {invalid, incorrect,wrong})
and the corrupt prompt as error-free (ycorrupt ∈
{valid, correct, right}). The respective accuracy
of all models is summarized in Table 2. Over-
all, the results indicate that the models perform
poorly on this task. For instance, Qwen-2.5-
Math-1.5B-Instruct achieves an average accuracy
of only 3.37% ± 2.06%. Among the evaluated
models, Phi-3-Mini-4k-Instruct demonstrates the

best performance, with an average accuracy of
40.98%± 18.41%.

To study how these findings transfer to larger
models, we additionally evaluate the performance
of LLaMA-3.1-70B-Instruct and Qwen-2.5-32B-
Instruct on different types of errors. As shown in
Table 8, we observe that, similar to the smaller
models, both larger LLMs struggle more with de-
tecting a consistent error at both error positions
(result & answer) than with detecting an error
present at only the arithmetic result or the final
numeric answer. In particular, the average accuracy
of LLaMA-3.1-70B-Instruct for consistent errors is
44.67%± 10.50%, a drop of more than half com-
pared to its 100.0%±0.00% accuracy on detecting
errors present only at the position of the arithmetic
result or the final numeric answer.

E.4 Consistency Heads

As mentioned in Section 4.2, we find that consis-
tency heads play an important role in the model’s
arithmetic error detection process. These heads ex-
hibit high average attention scores when the digits
of the arithmetic result either align or misalign with
the final numeric answer. Figures 14a and 14b illus-
trate examples of attention scores for two of these
heads in Qwen-2.5-1.5B-Instruct. Similar patterns
are presented for Qwen-2.5-Math-1.5B-Instruct in
Figures 15a and 15b, for Llama-3.2-3B-Instruct
in Figures 16a and 16b, and for Phi-3-Mini-4k-
Instruct in Figures 17a and 17b. A comprehen-
sive list of all identified consistency heads for each
model is provided in Table 4.
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Operation Error Type Qwen2.5-1.5B Llama-3.2-3B Phi-3-Mini-3.8B Qwen2.5-Math-1.5B

Subtraction

Arithmetic Result 71.51 ± 11.50 99.66 ± 0.57 97.56 ± 5.74 93.54 ± 11.09
Numeric Answer 70.05 ± 11.57 99.60 ± 0.65 97.60 ± 5.68 93.61 ± 10.77
Result & Answer 8.68 ± 4.98 14.08 ± 2.01 99.64 ± 0.78 14.33 ± 1.60

Multiplication

Arithmetic Result 55.30 ± 19.46 78.53 ± 31.47 99.54 ± 0.73 94.00 ± 13.68
Numeric Answer 55.22 ± 18.50 78.89 ± 31.11 99.54 ± 0.62 95.03 ± 13.12
Result & Answer 62.88 ± 17.26 42.73 ± 30.73 99.65 ± 0.45 80.96 ± 9.25

Division

Arithmetic Result 59.86 ± 19.08 86.44 ± 13.04 94.52 ± 12.35 99.30 ± 0.92
Numeric Answer 60.06 ± 18.07 86.76 ± 12.97 94.18 ± 12.72 99.53 ± 0.69
Result & Answer 50.90 ± 15.84 11.79 ± 7.99 99.14 ± 1.50 57.95 ± 13.89

Table 7: Accuracy of models in correctly classifying the solutions’ validity of (clean, corrupt) prompt pairs across
different arithmetic operations and error types. Values represent the mean accuracy across all templates, reported
with their corresponding standard deviation. Cells highlighted in red indicate cases where the accuracy for Result &
Answer is notably lower than for Numeric Answer and Arithmetic Result.

E.5 Consistency Heads Patching

Figure 18 shows the models’ accuracy in detecting
consistent errors at both the position of the arith-
metic result and the final numeric answer, before
and after patching a small subset of consistency
heads, as outlined in Section 4.3. For the exact
list of patched heads, please refer to Table 4. Con-
sistent with the results reported in Section 4.3 for
Qwen-2.5-1.5B-Instruct, we observe a significant
improvement in accuracy for Qwen-2.5-Math-1.5B-
Instruct, Llama-3.2-3B-Instruct, and Phi-3-Mini-
4k-Instruct.

E.6 Computation Circuits

As outlined in Section D.3, we identify the circuits
responsible for predicting the correct arithmetic re-
sult of the equations in the prompts described in
Section 3. Table 12 presents the size and faithful-
ness of the respective circuits for all models and
templates. Results for the faithfulness scores and
sizes of the soft intersection circuits C(τ) for differ-
ent threshold values τ for all models are shown in
Figures 10c, 11c, 12c, and 13c, respectively. The
final circuits are visualized in Figures 22, 23, 24,
and 25.

Error Type Qwen-2.5-32B Llama-3.1-70B

Arithmetic Result 98.93 ± 1.57 100.00 ± 0.00

Numeric Answer 99.51 ± 0.09 100.00 ± 0.00

Result & Answer 80.13 ± 9.65 44.76 ± 10.50

Table 8: Accuracy of bigger models in correctly classi-
fying the solutions’ validity of (clean, corrupt) prompt
pairs with different error types. Values represent the
mean accuracy across all templates, reported with their
corresponding standard deviation.

E.7 Accuracy of Linear Probes

The results of the probing experiment, detailed
in Section 4.3 and Appendix D.5, are presented
for Qwen-2.5-Math-1.5B-Instruct, Llama-3.2-3B-
Instruct, and Phi-3-Mini-4k-Instruct in Figure 20.
The findings indicate that for all models, near-
perfect accuracy is achieved by probes trained on
the hidden representations of the residual stream in
the upper layers. Notably, Phi-3-Mini-4k-Instruct
is the only model that demonstrates significant
probe accuracy in the middle layers.

E.8 Residual Stream Patching

To bridge the gap between the models’ circuits
responsible for arithmetic computation and val-
idation, we add the hidden representation from
higher layers—where the correct arithmetic result
is linearly encoded (see Figure 20—to lower lay-
ers. Specifically, for Qwen-2.5-Math-1.5B-Instruct,
we intervene on layer 1 using the hidden represen-
tation from layer 22. For Llama-3.2-3B-Instruct,
the intervention is performed on layer 2 using the
hidden representation from layer 16, while for Phi-
3-Mini-4k-Instruct, layer 1 is modified using the
hidden representation from layer 24. The results of
these interventions are depicted in Figure 21.

Qwen-2.5-1.5B-Instruct, Qwen-2.5-Math-1.5B-
Instruct, and Phi-3-Mini-4k-Instruct exhibit signif-
icant improvements in accuracy following these
interventions. In contrast, Llama-3.2-3B-Instruct
demonstrates a more modest performance gain. We
attribute this difference to the simplicity of our ap-
proach and consider this a promising direction for
further investigation.
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F Implementation Details

For the majority of our circuit identification experi-
ments, we used the AutoCircuit library developed
by Miller et al. (2024). For the remaining experi-
ments, we relied on the TransformerLens library
by Nanda and Bloom (2022). All models were
loaded with bfloat16 precision. The experiments
were conducted on a single A100 GPU with 80GB
of memory, consuming approximately 350 GPU
hours in total. Additionally, GitHub Copilot was
used as an assistant tool for parts of the project’s
source code development, and ChatGPT was used
to correct minor grammatical errors.
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Templates 1-8

[instruction] Problem: [person] has [num1] [object]. [pronoun] [verb] [num2] more
[object]. How many [object] does [pronoun] have now?
Reasoning: [person] has [num1] + [num2] = [num3] [object]. So, [pronoun] has [num3]
[object] in total.
Answer: The above reasoning is

[instruction] Problem: [person] starts with [num1] [object]. After [pronoun] [verb]
[num2] more, how many [object] does [pronoun] have in total?
Reasoning: To solve this, we add [num1] and [num2]: [num1] + [num2] = [num3]. Therefore,
[person] now has [num3] [object].
Answer: The above reasoning is

[instruction] Problem: Initially, [person] possesses [num1] [object]. [pronoun] then [verb]
[num2] additional [object]. What’s the new total amount of [object] that [pronoun] has?
Reasoning: We calculate: [num1] (original) + [num2] (added) = [num3] (total). So, [person] now
has [num3] [object].
Answer: The above reasoning is

[instruction] Problem: [person]’s collection of [object] grows from [num1] to an unknown
amount after [pronoun] [verb] [num2] more.
Reasoning: To find the new total, we add: [num1] + [num2] = [num3] (final amount). Thus,
[person] ends up with [num3] [object].
Answer: The above reasoning is

[instruction] Problem: [person] originally owns [num1] [object]. After [pronoun] [verb]
[num2] additional [object], how many does [pronoun] have altogether?
Reasoning: a simple addition gives us [num1] + [num2] = [num3]. Therefore, [person] has [num3]
[object] now.
Answer: The above reasoning is

[instruction] Problem: [person] possesses [num1] [object] at first. If [pronoun] [verb]
[num2] more [object], what is the total count?
Reasoning: Adding them gives: [num1] + [num2] = [num3]. Consequently, [person] has a total of
[num3] [object].
Answer: The above reasoning is

[instruction] Problem: [num1] [object] belong to [person]. [pronoun] [verb] [num2]
additional ones. What’s the total?
Reasoning: By addition, we get [num1] + [num2] = [num3]. Thus, [person] has [num3] [object]
in total.
Answer: The above reasoning is

[instruction] Problem: [person] begins with [num1] [object] and then [verb] [num2] more.
How many [object] does [pronoun] have now?
Reasoning: Let’s add them up: [num1] + [num2] = [num3]. Therefore, [person] has a total of
[num3] [object].
Answer: The above reasoning is

Table 9: The 8 problem templates including [instruction], [person], [object], [pronoun], [num1], [num2],
[num3] as variable components. While samples within a template contain the same number of tokens, samples
across templates vary in length due to differences in their non-variable parts.
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Subtraction Templates 1-8 Multiplication Templates 1-8 Division Templates 1-8
[instruction] Problem: [person] has [num1]
[object]. [pronoun] [verb] [num2] [object].
How many [object] does [pronoun] have now?
Reasoning: [person] has [num1] - [num2] =
[num3] [object]. So, [pronoun] has [num3]
[object] remaining. Answer: The above reason-
ing is

[instruction] Problem: [person] has [num1]
[object] per day. After [num2] days, how many
[object] does [pronoun] have in total? Reason-
ing: [person] has [num1] × [num2] = [num3]
[object]. So, [pronoun] has [num3] [object]
in total. Answer: The above reasoning is

[instruction] Problem: [person] has [num1]
[object]. [pronoun] wants to organize them
into equal groups of [num2] [object] each. How
many groups can [pronoun] make? Reasoning:
[person] can make [num1] ÷ [num2] = [num3]
groups. So, [pronoun] can make [num3] groups.
Answer: The above reasoning is

[instruction] Problem: [person] starts with
[num1] [object]. After [pronoun] [verb]
[num2], how many [object] does [pronoun]
have left? Reasoning: To solve this, we subtract
[num2] from [num1]: [num1] - [num2] = [num3].
Therefore, [person] now has [num3] [object].
Answer: The above reasoning is

[instruction] Problem: [person] buys [num1]
[object] each time [pronoun] goes shopping.
If [pronoun] goes shopping [num2] times, how
many [object] does [pronoun] buy in total? Rea-
soning: To solve this, we multiply [num1] and
[num2]: [num1] × [num2] = [num3]. Therefore,
[person] buys [num3] [object] in total. Answer:
The above reasoning is

[instruction] Problem: [person] starts with
[num1] [object]. If [pronoun] puts [num2]
[object] in each container, how many contain-
ers can [pronoun] fill? Reasoning: To solve this,
we divide [num1] by [num2]: [num1] ÷ [num2] =
[num3]. Therefore, [person] can fill [num3] con-
tainers. Answer: The above reasoning is

[instruction] Problem: Initially, [person] pos-
sesses [num1] [object]. [pronoun] then [verb]
[num2] [object]. What’s the remaining amount
of [object] that [pronoun] has? Reasoning: We
calculate: [num1] (original) - [num2] (removed)
= [num3] (remaining). So, [person] now has
[num3] [object]. Answer: The above reasoning
is

[instruction] Problem: [person] collects
[num1] [object] each week. After [num2] weeks,
how many [object] has [pronoun] collected alto-
gether? Reasoning: We calculate: [num1] (per
week) × [num2] (weeks) = [num3] (total). So,
[pronoun] has collected [num3] [object] alto-
gether. Answer: The above reasoning is

[instruction] Problem: [person] has [num1]
[object] to share equally. If each person gets
[num2] [object], how many people can receive
[object]? Reasoning: We calculate: [num1] (to-
tal) ÷ [num2] (per person) = [num3] (people). So,
[num3] people can receive [object]. Answer:
The above reasoning is

[instruction] Problem: [person]’s collection
of [object] decreases from [num1] to an un-
known amount after [pronoun] [verb] [num2]
[object]. Reasoning: To find the remaining to-
tal, we subtract: [num1] - [num2] = [num3] (final
amount). Thus, [person] ends up with [num3]
[object]. Answer: The above reasoning is

[instruction] Problem: Initially, [person]
receives [num1] [object] each month. Af-
ter [num2] months, what’s the total amount of
[object] that [pronoun] has received? Reason-
ing: We calculate: [num1] (per month) × [num2]
(months) = [num3] (total). So, [person] has re-
ceived [num3] [object]. Answer: The above rea-
soning is

[instruction] Problem: Initially, [person] pos-
sesses [num1] [object]. [pronoun] wants to ar-
range them in rows with [num2] [object] per row.
What’s the total number of rows that can be formed?
Reasoning: We calculate: [num1] (total) ÷ [num2]
(per row) = [num3] (rows). So, [person] can form
[num3] rows. Answer: The above reasoning is

[instruction] Problem: [person] originally
owns [num1] [object]. After [pronoun] [verb]
[num2] [object], how many does [pronoun]
have left? Reasoning: A simple subtraction gives us
[num1] - [num2] = [num3]. Therefore, [person]
has [num3] [object] remaining. Answer: The
above reasoning is

[instruction] Problem: [person] originally
gets [num1] [object] per visit. After [num2] vis-
its, how many [object] has [pronoun] gotten
altogether? Reasoning: A simple multiplication
gives us [num1] × [num2] = [num3]. Therefore,
[person] has gotten [num3] [object] in total.
Answer: The above reasoning is

[instruction] Problem: [person] originally
owns [num1] [object]. If [pronoun] distributes
[num2] [object] to each recipient, how many re-
cipients can get [object]? Reasoning: A sim-
ple division gives us [num1] ÷ [num2] = [num3].
Therefore, [num3] recipients can get [object].
Answer: The above reasoning is

[instruction] Problem: [person] possesses
[num1] [object] at first. If [pronoun] [verb]
[num2] [object], what is the remaining count?
Reasoning: Subtracting them gives: [num1] -
[num2] = [num3]. Consequently, [person] has
[num3] [object] left. Answer: The above reason-
ing is

[instruction] Problem: [person] earns [num1]
[object] per task at first. If [pronoun] completes
[num2] tasks, what is the total count of [object]?
Reasoning: Multiplying them gives: [num1] ×
[num2] = [num3]. Consequently, [pronoun] earns
[num3] [object] in total. Answer: The above rea-
soning is

[instruction] Problem: [person] possesses
[num1] [object] at first. If [pronoun] arranges
[num2] [object] in each pile, what is the to-
tal number of piles? Reasoning: Dividing them
gives: [num1] ÷ [num2] = [num3]. Consequently,
[person] can make [num3] piles. Answer: The
above reasoning is

[instruction] Problem: [num1] [object] be-
long to [person]. [pronoun] [verb] [num2] of
them. What’s the remainder? Reasoning: By sub-
traction, we get [num1] - [num2] = [num3]. Thus,
[person] has [num3] [object] remaining. An-
swer: The above reasoning is

[instruction] Problem: [person] finds [num1]
[object] each time [pronoun] searches. After
[num2] searches, what’s the total? Reasoning: By
multiplication, we get [num1] × [num2] = [num3].
Thus, [person] finds [num3] [object] in total.
Answer: The above reasoning is

[instruction] Problem: [num1] [object] be-
long to [person]. [pronoun] places [num2]
[object] in each box. What’s the total number
of boxes needed? Reasoning: By division, we
get [num1] ÷ [num2] = [num3]. Thus, [person]
needs [num3] boxes. Answer: The above reasoning
is

[instruction] Problem: [person] begins with
[num1] [object] and then [verb] [num2] of
them. How many [object] does [pronoun] have
left? Reasoning: Let’s subtract them: [num1]
- [num2] = [num3]. Therefore, [person] has
[num3] [object] remaining. Answer: The above
reasoning is

[instruction] Problem: [person] produces
[num1] [object] per session and then has [num2]
sessions. How many [object] are there in total?
Reasoning: Let’s multiply them: [num1] × [num2]
= [num3]. Therefore, there are [num3] [object]
altogether. Answer: The above reasoning is

[instruction] Problem: [person] begins with
[num1] [object] and then organizes [num2]
[object] per shelf. How many shelves does
[pronoun] need? Reasoning: Let’s divide them:
[num1] ÷ [num2] = [num3]. Therefore, [person]
needs [num3] shelves. Answer: The above reason-
ing is

Table 10: Templates used for other arithmetic operations. We created 8 templates for each operation, including
[instruction], [person], [object], [pronoun], [num1], [num2], [num3] as variable components. The sub-
traction template also has a [verb] variable, for which we use the following verbs: “lost”, “sold”, “gave away”,
“donated”, “threw away”,
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Variable Assignments
[person] Aaron, Adam, Alan, Alex, Alice, Amy, Anderson, Andre, Andrew, Andy, Anna,

Anthony, Arthur, Austin, Blake, Brandon, Brian, Carter, Charles, Charlie, Chris-
tian, Christopher, Clark, Cole, Collins, Connor, Crew, Crystal, Daniel, David,
Dean, Edward, Elizabeth, Emily, Eric, Eva, Ford, Frank, George, Georgia,
Graham, Grant, Henry, Ian, Jack, Jacob, Jake, James, Jamie, Jane, Jason, Jay,
Jennifer, Jeremy, Jessica, John, Jonathan, Jordan, Joseph, Joshua, Justin, Kate,
Kelly, Kevin, Kyle, Laura, Leon, Lewis, Lisa, Louis, Luke, Madison, Marco,
Marcus, Maria, Mark, Martin, Mary, Matthew, Max, Michael, Michelle, Mor-
gan, Patrick, Paul, Peter, Prince, Rachel, Richard, River, Robert, Roman, Rose,
Ruby, Russell, Ryan, Sarah, Scott, Sean, Simon, Stephen, Steven, Sullivan,
Taylor, Thomas, Tyler, Victoria, Warren, William

[object] apples, bananas, oranges, grapes, pears, mangoes, strawberries, blueberries,
cherries, pineapples, lemons, watermelons, kiwis, peaches, plums, books, pens,
notebooks, flowers, candies, gifts, toys, bottles, tickets, clothes, shoes, hats,
gloves, keys, wallets, phones, laptops, tablets, cameras, headphones, glasses,
watches, rings, necklaces, bracelets, purses, backpacks, umbrellas, mugs, plates,
bowls, forks, spoons, knives, chairs, tables, lamps, blankets, pillows, towels,
socks, scarves, jackets, belts, bookshelves, paintings, mirrors, candles, frames

[verb] won, bought, received, gained, obtained, earned, acquired, collected, accumu-
lated, gathered, got

[correct_pair] “valid or invalid”, “correct or incorrect”, “right or wrong”

[instruction]

Does the following reasoning chain contain any mistakes? Determine whether it is [correct_pair].

Does the reasoning chain provided have any errors? Decide whether it is [correct_pair].

Does the given reasoning chain contain any flaws? Evaluate whether it is [correct_pair].

Does the reasoning chain shown have any errors? Verify whether it is [correct_pair].

Does the reasoning chain below have any mistakes? Check if it is [correct_pair].

Does the following reasoning chain have any errors? Specify whether it is [correct_pair].

Does the provided reasoning chain contain any flaws? Assess if it is [correct_pair].

Does the reasoning chain presented have any issues? Judge whether it is [correct_pair].

Does the reasoning chain contain any mistakes? Examine if it is [correct_pair].

Does the reasoning chain have any errors? Inspect it and determine if it is [correct_pair].

Does the reasoning chain have any flaws? Review it and confirm if it is [correct_pair].

Does the given reasoning chain contain any issues? Analyze it and decide if it is [correct_pair].

Table 11: The full set of variables and possible values that are used to create the data. [instruction] is the only
variable that contains [correct_pair] as another variable part.
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Template Task Total Edges Num Edges Faithfulness

Q
w

en
-2

.5
-1

.5
B

-I
ns

tr
uc

t

1
Inv. Result 84715 281 100.00

Inv. Answer 84715 101 100.57

Computation 84715 140 99.04

2
Inv. Result 84715 440 100.40

Inv. Answer 84715 115 100.00

Computation 84715 100 99.21

3
Inv. Result 84715 522 100.00

Inv. Answer 84715 120 100.00

Computation 84715 300 99.13

4
Inv. Result 84715 261 100.49

Inv. Answer 84715 208 100.57

Computation 84715 104 99.20

5
Inv. Result 84715 721 100.00

Inv. Answer 84715 120 99.29

Computation 84715 280 100.00

6
Inv. Result 84715 142 99.47

Inv. Answer 84715 163 100.41

Computation 84715 120 99.15

7
Inv. Result 84715 200 99.42

Inv. Answer 84715 104 100.67

Computation 84715 260 99.60

8
Inv. Result 84715 201 99.52

Inv. Answer 84715 112 100.60

Computation 84715 140 99.15

Q
w

en
-2

.5
-M

at
h-

1.
5B

-I
ns

tr
uc

t

1
Inv. Result 84715 141 99.46

Inv. Answer 84715 200 99.45

Computation 84715 101 99.27

2
Inv. Result 84715 241 100.00

Inv. Answer 84715 101 100.00

Computation 84715 100 99.27

3
Inv. Result 84715 340 100.00

Inv. Answer 84715 100 100.00

Computation 84715 101 99.56

4
Inv. Result 84715 320 99.01

Inv. Answer 84715 100 100.00

Computation 84715 120 99.26

5
Inv. Result 84715 318 99.42

Inv. Answer 84715 102 99.40

Computation 84715 122 99.61

6
Inv. Result 84715 102 99.47

Inv. Answer 84715 187 99.45

Computation 84715 100 99.53

7
Inv. Result 84715 321 99.53

Inv. Answer 84715 323 99.53

Computation 84715 100 99.59

8
Inv. Result 84715 321 99.42

Inv. Answer 84715 100 100.00

Computation 84715 100 99.55

Template Task Total Edges Num Edges Faithfulness

L
la

m
a-

3.
2-

3B
-I

ns
tr

uc
t

1
Inv. Result 389971 190 99.28

Inv. Answer 389971 294 100.00

Computation 389971 160 99.10

2
Inv. Result 389971 380 99.50

Inv. Answer 389971 282 100.00

Computation 389971 100 99.14

3
Inv. Result 389971 187 99.10

Inv. Answer 389971 280 99.52

Computation 389971 100 100.00

4
Inv. Result 389971 180 99.32

Inv. Answer 389971 382 99.25

Computation 389971 118 99.59

5
Inv. Result 389971 220 99.58

Inv. Answer 389971 241 100.00

Computation 389971 160 99.22

6
Inv. Result 389971 443 99.28

Inv. Answer 389971 240 100.00

Computation 389971 100 100.00

7
Inv. Result 389971 180 99.04

Inv. Answer 389971 561 100.52

Computation 389971 180 99.09

8
Inv. Result 389971 221 99.21

Inv. Answer 389971 200 99.19

Computation 389971 119 99.53

Ph
i-

3-
M

in
i-

4k
-I

ns
tr

uc
t

1
Inv Result 1592881 285 99.25

Inv. Answer 1592881 581 99.24

Computation 1592881 161 99.46

2
Inv. Result 1592881 500 99.25

Inv. Answer 1592881 480 99.25

Computation 1592881 122 99.08

3
Inv. Result 1592881 855 99.24

Inv. Answer 1592881 683 99.25

Computation 1592881 240 99.47

4
Inv. Result 1592881 371 99.15

Inv. Answer 1592881 504 99.13

Computation 1592881 144 99.08

5
Inv. Result 1592881 504 99.21

Inv. Answer 1592881 500 99.20

Computation 1592881 145 99.49

6
Inv. Result 1592881 569 99.22

Inv. Answer 1592881 422 99.22

Computation 1592881 140 99.42

7
Inv. Result 1592881 886 99.20

Inv. Answer 1592881 605 99.21

Computation 1592881 120 99.03

8
Inv. Result 1592881 625 99.22

Inv. Answer 1592881 481 99.23

Computation 1592881 146 99.50

Table 12: The faithfulness score and the number of edges of the circuit identified for each model, template, and task.
To better compare circuit sizes, we also present the total number of edges per token position for each model. Left:
Qwen models (Qwen-2.5 and Qwen-2.5-Math) from templates 1–8; Right: Llama-3.2 and Phi-3-Mini models from
templates 1–8.
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(c) Computation

Figure 10: The number of edges and average faithfulness scores of the soft intersection circuit for different threshold
values, τ . Red circles indicate the soft intersection circuit that best trade offs size with faithfulness. Results are
shown for Qwen-2.5-1.5B-Instruct.
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Figure 11: The number of edges and average faithfulness scores of the soft intersection circuit for different threshold
values, τ . Red circles indicate the soft intersection circuit that best trade offs size with faithfulness. Results are
shown for Qwen-2.5-Math-1.5B-Instruct.
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(c) Computation

Figure 12: The number of edges and average faithfulness scores of the soft intersection circuit for different threshold
values, τ . Red circles indicate the soft intersection circuit that best trade offs size with faithfulness. Results are
shown for Llama-3.2-3B-Instruct.
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Figure 13: The number of edges and average faithfulness scores of the soft intersection circuit for different threshold
values, τ . Red circles indicate the soft intersection circuit that best trade offs size with faithfulness. Results are
shown for Phi-3-Mini-4k-Instruct.
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(a) consistency head L12H2.

(b) (in)consistency head L13H1.

Figure 14: Attention patterns of two consistency heads in Qwen-2.5-1.5B-Instruct. Reported scores are averaged
over 5,000 prompts where (left) an error is present at the position of the arithmetic result, (second to left) an error is
present at the position of the final numeric answer, (second to right) no error is present, and (right) a consistent
error is present at both considered positions.

(a) (in)consistency head L13H0.

(b) (in)consistency head L13H1.

Figure 15: Attention patterns of two consistency heads in Qwen-2.5-Math-1.5B-Instruct. Reported scores are
averaged over 5,000 prompts where (left) an error is present at the position of the arithmetic result, (second to left)
an error is present at the position of the final numeric answer, (second to right) no error is present, and (right) a
consistent error is present at both considered positions.
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(a) consistency head L4H14.

(b) (in)consistency head L8H1.

Figure 16: Attention patterns of two consistency heads in Llama-3.2-3B-Instruct. Reported scores are averaged
over 5,000 prompts where (left) an error is present at the position of the arithmetic result, (second to left) an error is
present at the position of the final numeric answer, (second to right) no error is present, and (right) a consistent
error is present at both considered positions. Note that Llama-3.2 does not tokenize numbers digit-by-digit.

(a) consistency head L10H1.

(b) (in)consistency head L10H14.

Figure 17: Attention patterns of two consistency heads in Phi-3-Mini-4k-Instruct. Reported scores are averaged
over 5,000 prompts where (left) an error is present at the position of the arithmetic result, (second to left) an error is
present at the position of the final numeric answer, (second to right) no error is present, and (right) a consistent
error is present at both considered positions.
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(a) Qwen-2.5-Math-1.5B-Instruct (b) Llama-3.2-3B-Instruct (c) Phi-3-Mini-4k-Instruct

Figure 18: Accuracy of models on (clean, corrupt) prompt pairs, where the clean prompt contains a consistent error
at both error positions. The blue intervention bar represents the result after patching a set of consistency heads (for
a list of heads, please refer to Table 4 in the Appendix). In contrast, the orange bar indicates the accuracy after
patching a set of randomly chosen attention heads that are not labeled as consistency heads.

(a) Qwen-2.5-Math-1.5B-Instruct (b) Llama-3.2-3B-Instruct

Figure 19: Accuracy of models on (clean, corrupt) prompt pairs for other arithmetic operations, where the clean
prompt contains a consistent error at both error positions. The blue intervention bar represents the result after
patching a set of consistency heads (for a list of heads, please refer to Table 4 in the Appendix). In contrast, the red
bar indicates the accuracy after patching a set of randomly chosen attention heads that are not labeled as consistency
heads.

(a) Qwen-2.5-Math-1.5B-Instruct (b) Llama-3.2-3B-Instruct (c) Phi-3-Mini-4k-Instruct

Figure 20: The linear probe’s accuracy across all layers of Qwen-2.5-Math-1.5B-Instruct (Figure 20a), Llama-3.2-
3B-Instruct (Figure 20b), and Phi-3-Mini-4k-Instruct (Figure 20c) at selected token positions. Only in higher layers,
the probe is able to achieve predict the correct arithmetic result perfectly. For Qwen-2.5-Math-1.5B-Instruct and
Phi-3-Mini-4k-Instruct, we observe moderate accuracies also in middle layers.
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(a) Qwen-2.5-Math-1.5B-Instruct (b) Llama-3.2-3B-Instruct (c) Phi-3-Mini-4k-Instruct

Figure 21: Accuracy of models on (clean, corrupt) prompt pairs where (left) the clean prompt contains a consistent
error at both error positions (invalid result & answer), and (right) an error is present only at the position of the
arithmetic result (invalid result). The blue intervention bar denotes the result after adding the hidden representation
of the residual stream in layer higher layers (at [result-first]) to the residual stream in lower layers (at [result-second]).
For Qwen-2.5-Math-1.5B-Instruct (Figure 21a), the residual steams’ hidden representation from layer 22 is added to
the one in layer 1. For Llama-3.2-3B-Instruct (Figure 21b), we add the representation from layer 16 to layer 2, and
for Phi-3-Mini-4k-Instruct (Figure 21c), the representation from layer 24 is added to layer 1.

Figure 22: The computation circuit C(8/8)
computation of Qwen-2.5-1.5B-Instruct obtained after taking the soft intersection

between all template circuits with a threshold value of τ = 8
8 .
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Figure 23: The computation circuit C(8/8)
computation of Qwen-2.5-Math-1.5B-Instruct obtained after taking the soft

intersection between all template circuits with a threshold value of τ = 8
8 .

Figure 24: The computation circuit C(8/8)
computation of Llama-3.2-3B-Instruct obtained after taking the soft intersection

between all template circuits with a threshold value of τ = 8
8 .
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Figure 25: The computation circuit C(8/8)
computation of Phi-3-Mini-4k-Instruct obtained after taking the soft intersection

between all template circuits with a threshold value of τ = 8
8 .
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Figure 26: The arithmetic result error identification circuit C(5/8)
result of Qwen-2.5-1.5B-Instruct obtained after taking

the soft intersection between all template circuits with a threshold value of τ = 5
8 .
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Figure 27: The arithmetic result error identification circuit C(7/8)
result of Qwen-2.5-Math-1.5B-Instruct obtained after

taking the soft intersection between all template circuits with a threshold value of τ = 7
8 .
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Figure 28: The arithmetic result error identification circuit C(7/8)
result of Llama-3.2-3B-Instruct obtained after taking the

soft intersection between all template circuits with a threshold value of τ = 7
8 .
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Figure 29: The arithmetic result error identification circuit C(7/8)
result of Phi-3-Mini-4k-Instruct obtained after taking

the soft intersection between all template circuits with a threshold value of τ = 7
8 .
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Figure 30: The numeric answer error identification circuit C(8/8)
answer of Qwen-2.5-1.5B-Instruct obtained after taking

the soft intersection between all template circuits with with a threshold value of τ = 8
8 .
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Figure 31: The numeric answer error identification circuit C(8/8)
answer of Qwen-2.5-Math-1.5B-Instruct obtained after

taking the soft intersection between all template circuits with with a threshold value of τ = 8
8 .
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Figure 32: The numeric answer error identification circuit C(8/8)
answer of Llama-3.2-3B-Instruct obtained after taking the

soft intersection between all template circuits with with a threshold value of τ = 8
8 .

29412



Figure 33: The numeric answer error identification circuit C(6/8)
answer of Phi-3-Mini-4k-Instruct obtained after taking the

soft intersection between all template circuits with with a threshold value of τ = 6
8 .
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