
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 3018–3028
November 4-9, 2025 ©2025 Association for Computational Linguistics

Unleashing the Reasoning Potential of Pre-trained LLMs by
Critique Fine-Tuning on One Problem

Yubo Wang1,2, Ping Nie5, Kai Zou3, Lijun Wu4, Wenhu Chen1,2

1University of Waterloo, 2Vector Institute, 3Netmind.AI, 4Shanghai AI Lab, 5Independent
https://tiger-ai-lab.github.io/One-Shot-CFT

Abstract

We have witnessed that strong LLMs like
Qwen-Math, MiMo, and Phi-4 possess im-
mense reasoning potential inherited from the
pre-training stage. With reinforcement learning
(RL), these models can improve dramatically
on reasoning tasks. Recent studies have shown
that even RL on a single problem (Wang et al.,
2025a) can unleash these models’ reasoning ca-
pabilities. However, RL is not only expensive
but also unstable. Even one-shot RL requires
hundreds of GPU hours. This raises a critical
question: Is there a more efficient way to un-
leash the reasoning potential of these powerful
base LLMs? In this work, we demonstrate that
Critique Fine-Tuning (CFT) on only one prob-
lem can effectively unleash the reasoning poten-
tial of LLMs. Our method constructs critique
data by collecting diverse model-generated so-
lutions to a single problem and using teacher
LLMs to provide detailed critiques. We fine-
tune Qwen and Llama family models, rang-
ing from 1.5B to 14B parameters, on the CFT
data and observe significant performance gains
across diverse reasoning tasks. For example,
with just 5 GPU hours of training, Qwen-Math-
7B-CFT show an average improvement of 15%
on six math benchmarks and 16% on three logic
reasoning benchmarks. These results are com-
parable to or even surpass the results from RL
with 20x less compute. Ablation studies reveal
the robustness of one-shot CFT across different
prompt problems. These results highlight one-
shot CFT as a simple, general, and compute-
efficient approach to unleashing the reasoning
capabilities of modern LLMs.

1 Introduction

Large language models (LLMs) have achieved im-
pressive results on mathematical and scientific rea-
soning tasks (Achiam et al., 2023; Yang et al., 2025;
Hendrycks et al., 2021; Lewkowycz et al., 2022;
Wang et al., 2024; Du et al., 2025), showcasing
strong generalization and reasoning capabilities.

Among post-training methods, reinforcement learn-
ing with verifiable rewards (RLVR) (Guo et al.,
2025) enables models to learn via trial-and-error
exploration (Zeng et al., 2025; Ma et al., 2025;
Wang et al., 2025a), even with a single example.
This suggests base models possess substantial un-
tapped reasoning potential.

However, RLVR is resource-intensive (e.g., re-
quiring over 100 GPU hours for a 7B model (Wang
et al., 2025a)) and often unstable due to non-
stationarity and plasticity loss (Dang and Ngo,
2025; Goldie et al., 2024; Igl et al., 2020). Super-
vised fine-tuning (SFT) offers stability but relies on
large, high-quality datasets to avoid overfitting (Ab-
din et al., 2025; Liu et al., 2024), which are scarce
for many reasoning tasks.

Critique Fine-Tuning (CFT) (Wang et al., 2025b)
emerges as a promising alternative, exposing mod-
els to diverse error patterns via critiques of incor-
rect solutions. This diversity mitigates overfitting
and enhances reasoning. We ask: Can critiques
from a single problem suffice to unleash LLMs’ rea-
soning potential, matching RLVR effectiveness at
minimal cost? We investigate one-shot CFT as a
compute-efficient post-training method for math-
ematical and logical reasoning. As shown in Fig-
ure 1, we generate diverse candidate solutions to
a single problem using open-source models, ob-
tain detailed critiques from strong teacher LLMs,
and fine-tune Qwen and Llama models (1.5B–14B
parameters) on the resulting compact datasets.

Experiments show one-shot CFT delivers sub-
stantial gains: up to 15% average accuracy im-
provement on six math benchmarks (e.g., >20%
on Minerva (Lewkowycz et al., 2022), Olympiad-
Bench (He et al., 2024), and AMC-23) using only
5 GPU hours, and 16% average gain on three BIG-
Bench Extra Hard (BBEH) subtasks (Kazemi et al.,
2025) (Causal Understanding, DisambiguationQA,
Time Arithmetic). Ablations confirm robustness
across seed problems and model combinations.

3018

https://tiger-ai-lab.github.io/One-Shot-CFT

Figure 1: Overview of 1-shot CFT dataset construction and differences from SFT. Top: Generate, critique, and filter
solutions to a single problem. Bottom: SFT generates reference solutions; CFT critiques candidates for deeper
error analysis.

Overall, one-shot CFT is a simple, robust, and
efficient paradigm for unlocking LLMs’ reasoning
in mathematical and logical domains.

2 Method

In this section, we detail our dataset construction
and training scheme for one-shot CFT.

2.1 One-shot CFT Dataset Construction

To assess one-shot CFT, we construct critique
datasets from a single seed problem, following one-
shot RLVR protocols (Wang et al., 2025a).

We select seed math problems from the Deep-
ScaleR subset, focusing on four representative
ones (π1, π2, π13, π1209) for comparison with
prior work (full details in Appendix A.4). For
each seed, we generate 100 diverse candidate solu-
tions using 10 open-source models (e.g., Qwen2.5-
Math-7B-Instruct (Yang et al., 2024), Qwen3 vari-
ants (Yang et al., 2025), MiMo-7B (Xia et al.,
2025), DeepSeek-R1 (Guo et al., 2025), and Phi-4-
reasoning (Abdin et al., 2025); see Fig. ??).

These solutions are then critiqued by 7 high-
performing proprietary teacher models (e.g.,
Claude-3/3.5-Sonnet (Anthropic, 2025), GPT-4
variants (OpenAI, 2025a; Achiam et al., 2023),
O3-Mini (OpenAI, 2025b), and O1-2024 (Jaech
et al., 2024)), yielding 700 initial critiques per seed.
We filter for quality and consistency, subsample to
600 critiques per dataset for uniformity (detailed
statistics in Appendix A.3).

2.2 Training

Following CFT (Wang et al., 2025b), each train-
ing instance concatenates the seed problem x and
a candidate solution y as input, with the teacher
critique c as the target output (i.e., model learns to

generate c given (x, y)). Unlike SFT, which trains
direct solution generation, CFT emphasizes error
analysis and critiquing (see Appendix Figure 3 for
a visual comparison; templates and examples in
Appendix A.1). We use full-parameter instruction
tuning with a learning rate of 5 × 10−6, cosine
schedule, 0.1 warmup ratio, and global batch size
of 512. Hyperparameters are consistent across mod-
els (Qwen and Llama, 1.5B–14B parameters) and
seeds for fair comparison.

3 Experiments on Math Reasoning

3.1 Setup

We conduct our experiments on four backbone
models: Qwen2.5-Math-1.5B, Qwen2.5-Math-7B,
Llama-3.2-3B-Instruct, and Qwen2.5-14B. For
seed question selection, we follow one-shot RLVR
protocols and choose the same four representa-
tive problems: π1, π2, π13, and π1209. The cor-
responding CFT training datasets are denoted as
dsr-cft-p0 to dsr-cft-p3.

For fair comparison with supervised fine-tuning
(SFT), we employ the full DeepScaleR dataset
(40.9K examples) as the training data for our Full
SFT baseline. Additionally, for the one-example
SFT (SFT-1ex) condition, we select π1 as the seed
problem and use the same 7 closed-source API
models to generate 100 diverse solutions. We
then verify all 700 generated solutions against
the ground-truth answer, retaining 600 correct re-
sponses for our final SFT (1 ex) dataset.

We include sober baseline scores from Hochlehn-
ert et al. (2025) for standardized comparison, high-
lighting underestimation in prior Qwen evaluations.
We evaluate on six math benchmarks and smaller
benchmarks (AIME25, AIME24, AMC23) are av-
eraged over 32 runs for stability.

3019

Model Method Math-500 Minerva Olympiad AIME24 AIME25 AMC23 AVG

Qwen2.5-Math-1.5B

base 35.8 11.0 22.1 15.0 2.5 40.0 21.1
base (sober) 51.7 11.3 26.0 11.3 5.7 44.0 25.0
SFT (1 ex) 37.2 9.6 22.7 3.1 0.0 38.3 18.5
SFT (full) 49 14.3 23.2 7.9 2.1 35.8 22.2
RL (1 ex) 72.4 26.8 33.3 11.7 7.1 51.6 33.8
CFT (1 ex) 66.6 30.1 30.4 10.4 8.8 50.6 32.8
∆ = CFT - base +30.8 +19.1 +8.3 -4.6 +6.3 +10.6 +11.7

Llama3.2-3B-Instruct

base 40.8 15.8 13.2 8.3 1.7 25.3 17.5
SFT (1 ex) 41.4 13.2 11.7 2.7 0.0 23.2 15.4
SFT (full) 43.2 14.7 12.1 3.1 1.7 24.3 16.5
RL (1 ex) 45.8 16.5 17.0 7.9 1.2 25.3 19.0
CFT (1 ex) 49.0 21.0 15.3 9.2 2.9 32.5 21.7
∆ = CFT - base +8.2 +5.2 +2.1 +0.9 +1.2 +7.2 +4.2

Qwen2.5-Math-7B

base 58.6 17.3 17.5 16.7 10.8 43.1 27.3
base (sober) 64.3 17.3 26.0 20.7 8.7 56.2 32.2
SFT (1 ex) 53.8 14.3 18.2 12.1 6.7 32.5 22.9
SFT (full) 58.6 24.6 27.6 10.0 7.1 45.3 28.9
RL (1 ex) 79.2 27.9 39.1 23.8 10.8 60.3 40.2
CFT (1 ex) 76.4 40.4 39.3 18.8 14.6 63.4 42.2
∆ = CFT - base +17.8 +23.1 +21.8 +2.1 +3.8 +20.3 +14.9

Qwen2.5-14B

base 60.4 22.4 27.9 3.8 3.8 44.1 27.1
SFT (1 ex) 63.8 19.5 20.9 5.0 1.2 36.9 24.6
SFT (full) 65.2 24.2 22.7 2.6 1.7 38.3 25.8
CFT (1 ex) 71.2 43.8 34.8 12.5 8.3 45.3 36.0
∆ = CFT - base +10.8 +21.4 +6.9 +8.7 +4.5 +1.2 +8.9

Table 1: Performance (%) on mathematical benchmarks. The base results are measured using the same prompt
and evaluation setting with SFT and CFT. The base (sober) is taken from Hochlehnert et al. (2025) with a more
comprehensive evaluation. The RL (1 ex) results are from Wang et al. (2025a). The delta rows show the performance
difference between CFT (1 ex) and the base.

Training Data Seed Score (/100) Math-500 Minerva Math Olympiad AIME25 AIME24 AMC23 AVG

baseline - 52.6 17.3 17.5 10.8 16.7 43.1 26.3

dsr-cft-p0 49.0 77.0 40.4 39.3 14.6 18.8 63.4 42.2
dsr-cft-p1 93.0 72.4 35.7 32.1 15.8 20.0 51.6 37.9
dsr-cft-p2 83.0 77.0 33.1 39.1 12.1 13.8 57.2 38.7
dsr-cft-p3 10.0 72.6 32.4 35.4 7.1 10.4 59.7 36.3
dsr-cft-p0,p1,p2,p3 58.8 74.6 34.6 35.4 13.3 17.1 65.3 40.1

Table 2: Comparison of performance (%) with different seed math problems on Qwen-2.5-Math-7B

3.2 Main Results

Table 1 presents the main performance comparison
across different training methods, including one-
shot Critique Fine-Tuning (CFT), supervised fine-
tuning (SFT), and one-shot Reinforcement Learn-
ing with Verifiable Reward (RLVR). For validation,
we randomly select 500 math problems from the
MATH dataset (excluding those in the MATH-500
benchmark) to construct the validation set. Dur-
ing training, all models are checkpointed every 10
steps. The checkpoint with the highest validation
score is selected for final evaluation.

CFT significantly improves upon the backbone.
Across all model scales, one-shot CFT consistently
improves reasoning accuracy over the base models.
Even when evaluated against the more rigorous
sober baseline scores by Hochlehnert et al. (2025),

CFT demonstrates substantial gains. For instance,
on Qwen2.5-Math-7B, the backbone accuracy is
revised to 32.2%, and one-shot CFT still achieves
42.2%, delivering a +10.0 point improvement.
CFT outperforms SFT even with full data. Un-
der the same one-shot setting, CFT substantially
outperforms SFT. For Qwen2.5-Math-7B, one-shot
SFT achieves 22.9%, while one-shot CFT reaches
42.2%. Notably, one-shot CFT also surpasses SFT
trained on the full dataset (25.6%), highlighting the
superior generalization and reasoning gains from
the critique supervision signal.
CFT competes with or surpasses one-shot RLVR.
CFT shows stronger results than RLVR in most
settings. On Qwen2.5-Math-7B and Llama-3.2-3B-
Instruct, one-shot CFT outperforms RLVR by +2.0
and +2.1 points, respectively. On Qwen2.5-Math-
1.5B, CFT is slightly behind RLVR (by 1 point).

3020

Solution Generators Math-500 Minerva Olympiad AIME25 AIME24 AMC23 Avg

1 generator (Phi-4) 75.8 32.0 35.4 7.1 16.7 58.8 37.6
1 generator (Qwen2.5) 74.4 30.5 35.6 9.6 17.1 64.7 38.7
10 generators (mixed) 76.4 40.4 39.3 14.6 18.8 63.4 42.2

Table 3: Full ablation results on the diversity of solution generators in one-shot CFT

3.3 Training Efficiency Comparison
As shown in Figure 2, one-shot CFT achieves sig-
nificantly higher training efficiency than one-shot
RLVR. With only 5 GPU hours, CFT surpasses
75% accuracy on the Math-500 and quickly stabi-
lizes. In contrast, RLVR requires over 120 GPU
hours to reach a similar level of performance and
exhibits greater fluctuations during training.

This efficiency advantage is primarily due to the
high computational cost of reinforcement learn-
ing, which requires many iterations to propagate
reward signals. In contrast, CFT benefits from di-
rect and dense critique supervision, enabling much
faster and more stable training. Consequently, one-
shot CFT matches or surpasses RLVR performance
while using only about 1/15 to 1/20 of the compute.

3.4 Effectiveness of Seed Examples
Table 2 shows one-shot CFT performance across
seeds, with dsr-cft-p0 (π1) yielding the highest
average accuracy. We assess seed difficulty by grad-
ing 100 Qwen2.5-Math-7B solutions via Qwen3-
32B (prompt in Appendix A.2), scoring 1 (correct),
0.5 (partial), or 0 (incorrect). Moderate-difficulty
seeds like π1 provide balanced solutions for richer
critiques. Overall, CFT is robust to seed choice,
favoring moderate difficulty.

Figure 2: Comparing Model accuracy on Math-500, v.s.
the training cost. For the Qwen2.5-Math-7B trained
with 1-shot RL and 1-shot CFT.

3.5 Diversity of Candidate Solutions
We compare diversity effects on π1 using sin-
gle generators (Phi-4-Reasoning-Plus or Qwen2.5-
Math-7B-Instruct, each producing 100 solutions)

versus our mixed approach (100 from 10 genera-
tors). Table 3 shows single generators yield 38.7%
and 37.6% averages, while mixed achieves 42.2%.
This demonstrates that greater diversity in candi-
date solutions leads to richer error types and rea-
soning patterns, enabling more effective CFT.

4 Experiments on Logic Reasoning

We evaluate one-shot CFT on three BBEH sub-
tasks: Causal Understanding, DisambiguationQA,
and Time Arithmetic, each testing advanced logic
and containing 200 questions, except for the Dis-
ambiguationQA subtask, which has 120 questions.

4.1 Experimental Setup

We fine-tune Qwen2.5-Math-7B on one example
per subtask (1-shot CFT) or a merged dataset (3
examples total), comparing to 1-shot SFT. Cri-
tiques are generated from few-shot examples us-
ing teacher models. Evaluation uses accuracy on
BBEH test sets, assessing in-domain and cross-
domain performance.

4.2 Main Results

Table 4 summarizes the performance of one-shot
CFT and SFT on the three BBEH subtasks.

In-Domain Performance. One-shot CFT consis-
tently outperforms one-shot SFT across all three
subtasks when fine-tuned on an in-domain example.
For instance, on Causal Understanding, one-shot
CFT achieves an accuracy of 41.5%, compared
to 27.5% for one-shot SFT. Similarly, for Disam-
biguationQA and Time Arithmetic, one-shot CFT
achieves 25.0% and 14.0%, respectively, outper-
forming their SFT counterparts.

Cross-Task Generalization. One-shot CFT
demonstrates strong cross-task generalization.
When fine-tuned on a single example from Causal
Understanding, the model achieves 25.0% on
DisambiguationQA and 9.0% on Time Arithmetic,
significantly surpassing the performance of SFT.
Similar trends are observed when the model is
fine-tuned on examples from the other two tasks.

3021

Model Causal Understanding DisambiguationQA Time Arithmetic Average

Qwen2.5-Math-7B 24.0 5.0 2.5 10.5

Fine-tuned on 1 problem from Causal Understanding
SFT (1 ex) 27.5 11.7 2.0 13.7
CFT (1 ex) 41.5 25.0 9.0 25.2

Fine-tuned on 1 problem from DisambiguationQA
SFT (1 ex) 20.5 9.2 2.0 10.6
CFT (1 ex) 34.5 24.2 2.5 20.4

Fine-tuned on 1 problem from Time Arithmetic
SFT (1 ex) 24.5 10.8 5.0 13.4
CFT (1 ex) 37.0 28.3 14.0 26.4

Fine-tuned on 3 problems from the above tasks.
SFT (3 ex) 29.5 11.7 6.5 15.9
CFT (3 ex) 36.5 28.3 15.5 26.8

Table 4: Performance of Qwen2.5-Math-7B on three BIG-Bench Extra Hard (BBEH) logic reasoning subtasks. For
each subtask, SFT and CFT are performed using a single example from that subtask, and evaluated on all three
tasks. The in-domain (diagonal) results and all results in the last two rows (merged CFT/SFT) are highlighted. The
last two rows show results when merging the three problems into a single three-example training set, evaluating
generalization across all three subtasks. Best results in each column are in bold.

Multi-Task Fine-Tuning. Fine-tuning on a
merged dataset containing one example from each
subtask further boosts model performance. One-
shot CFT achieves 36.5%, 28.3%, and 15.5% ac-
curacy on Causal Understanding, Disambigua-
tionQA, and Time Arithmetic, respectively, out-
performing one-shot SFT, which achieves 29.5%,
11.7%, and 6.5%.

4.3 Ablation Study: Impact of Model Scale on
Logic Reasoning

Model DisambiguationQA

Qwen3-4B-Base 15.0
SFT (1 ex) 18.3
CFT (1 ex) 33.3

Qwen2.5-Math-7B 5.0
SFT (1 ex) 9.2
CFT (1 ex) 24.2

Qwen2.5-14B 9.2
SFT (1 ex) 13.3
CFT (1 ex) 36.6

Table 5: Ablation study on the impact of model scale
for the DisambiguationQA task. CFT consistently out-
performs both base and SFT across all model sizes.

To further understand the effectiveness of CFT
at different model scales, we conduct an ablation
study on the DisambiguationQA logic reasoning
task, comparing base, SFT (1 ex), and CFT (1 ex)
settings across several model sizes. As shown in
Table 5, one-shot CFT delivers substantial improve-
ments over both base and SFT (1 ex) regardless
of size, with boosts more pronounced at larger

scales—for example, Qwen2.5-14B-CFT (1 ex)
achieves 36.6% accuracy vs. 9.2% base and 13.3%
SFT (1 ex). This pattern holds for smaller models,
providing consistent gains. These results validate
CFT’s robustness in unleashing reasoning across
LLM scales in logic tasks.

In summary, experiments on the BBEH bench-
mark demonstrate the effectiveness of one-shot
CFT in logic reasoning tasks across both in-domain
and cross-domain scenarios. One-shot CFT consis-
tently outperforms SFT in three diverse subtasks,
achieving substantial improvements in accuracy.
Moreover, the method exhibits strong cross-task
generalization, aligning with findings in mathemat-
ical reasoning. These results highlight the potential
of CFT to enhance reasoning capabilities in chal-
lenging benchmarks with minimal data.

5 Conclusion

This work introduces and investigates one-shot Cri-
tique Fine-Tuning (CFT) as an efficient and effec-
tive method for unleashing the reasoning capabili-
ties of LLMs. Using diverse student-teacher inter-
actions on a single math problem, one-shot CFT
surpasses both traditional supervised fine-tuning
and one-shot RLVR in accuracy, while offering
up to 20× higher training efficiency. Experiments
across multiple model backbones confirm its strong
generalization and robustness, especially when the
seed example is moderately difficult. One-shot
CFT offers a practical post-training solution for
LLMs in compute- and data-limited scenarios.

3022

Limitations

Our study is primarily limited to relatively weaker
language models, particularly base models prior
to supervised fine-tuning or distillation. When ap-
plied to already strong reasoning-oriented LLMs,
our method yields mixed results. This suggests that
our approach is most effective at unleashing latent
capabilities in less-aligned models. However, for
models that have undergone extensive alignment,
our algorithm does not consistently yield further
improvements. Future work is needed to investi-
gate adaptations or extensions of our method for
more capable or well-aligned models.

References
Marah Abdin, Sahaj Agarwal, Ahmed Awadallah,

Vidhisha Balachandran, Harkirat Behl, Lingjiao
Chen, Gustavo de Rosa, Suriya Gunasekar, Mo-
jan Javaheripi, Neel Joshi, and 1 others. 2025.
Phi-4-reasoning technical report. arXiv preprint
arXiv:2504.21318.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Anthropic. 2025. Claude 3.7 sonnet. https://www.
anthropic.com/claude/sonnet. Accessed: 2025-
05-18.

Quy-Anh Dang and Chris Ngo. 2025. Reinforcement
learning for reasoning in small llms: What works and
what doesn’t. arXiv preprint arXiv:2503.16219.

Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang,
Tianyu Zheng, King Zhu, Minghao Liu, Yiming
Liang, Xiaolong Jin, Zhenlin Wei, and 1 others. 2025.
Supergpqa: Scaling llm evaluation across 285 gradu-
ate disciplines. arXiv preprint arXiv:2502.14739.

Alexander D Goldie, Chris Lu, Matthew T Jackson,
Shimon Whiteson, and Jakob Foerster. 2024. Can
learned optimization make reinforcement learning
less difficult? Advances in Neural Information Pro-
cessing Systems, 37:5454–5497.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding
Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, and 1 others. 2024.
Olympiadbench: A challenging benchmark for pro-
moting agi with olympiad-level bilingual multimodal

scientific problems. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 3828–
3850.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Andreas Hochlehnert, Hardik Bhatnagar, Vishaal Udan-
darao, Samuel Albanie, Ameya Prabhu, and Matthias
Bethge. 2025. A sober look at progress in language
model reasoning: Pitfalls and paths to reproducibility.
arXiv preprint arXiv:2504.07086.

Maximilian Igl, Gregory Farquhar, Jelena Luketina,
Wendelin Boehmer, and Shimon Whiteson. 2020.
Transient non-stationarity and generalisation in
deep reinforcement learning. arXiv preprint
arXiv:2006.05826.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, and 1
others. 2024. Openai o1 system card. arXiv preprint
arXiv:2412.16720.

Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John
Palowitch, Chrysovalantis Anastasiou, Sanket Vaib-
hav Mehta, Lalit K Jain, Virginia Aglietti, Disha
Jindal, Peter Chen, and 1 others. 2025. Big-bench
extra hard. arXiv preprint arXiv:2502.19187.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, and 1 others. 2022. Solving quan-
titative reasoning problems with language models.
Advances in Neural Information Processing Systems,
35:3843–3857.

Zihan Liu, Yang Chen, Mohammad Shoeybi, Bryan
Catanzaro, and Wei Ping. 2024. Acemath: Advanc-
ing frontier math reasoning with post-training and
reward modeling. arXiv preprint arXiv:2412.15084.

Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Ze-
jun Ma, and Wenhu Chen. 2025. General-reasoner:
Advancing llm reasoning across all domains. arXiv
preprint arXiv:2505.14652.

OpenAI. 2025a. Gpt-4.1. https://openai.com/
index/gpt-4-1/. Accessed: 2025-05-18.

OpenAI. 2025b. Introducing o3 and o4
mini. https://openai.com/index/
introducing-o3-and-o4-mini/. Accessed:
2025-05-18.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren,
Lucas Liu, Baolin Peng, Hao Cheng, Xuehai He,
Kuan Wang, Jianfeng Gao, and 1 others. 2025a. Re-
inforcement learning for reasoning in large language
models with one training example. arXiv preprint
arXiv:2504.20571.

3023

https://www.anthropic.com/claude/sonnet
https://www.anthropic.com/claude/sonnet
https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni,
Abhranil Chandra, Shiguang Guo, Weiming Ren,
Aaran Arulraj, Xuan He, Ziyan Jiang, and 1 others.
2024. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark. In
The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track.

Yubo Wang, Xiang Yue, and Wenhu Chen. 2025b.
Critique fine-tuning: Learning to critique is more
effective than learning to imitate. arXiv preprint
arXiv:2501.17703.

Bingquan Xia, Bowen Shen, Dawei Zhu, Di Zhang,
Gang Wang, Hailin Zhang, Huaqiu Liu, Jiebao Xiao,
Jinhao Dong, Liang Zhao, and 1 others. 2025. Mimo:
Unlocking the reasoning potential of language model–
from pretraining to posttraining. arXiv preprint
arXiv:2505.07608.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, and 1 others.
2025. Qwen3 technical report. arXiv preprint
arXiv:2505.09388.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong
Tu, Jingren Zhou, Junyang Lin, and 1 others. 2024.
Qwen2. 5-math technical report: Toward mathe-
matical expert model via self-improvement. arXiv
preprint arXiv:2409.12122.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Ke-
qing He, Zejun Ma, and Junxian He. 2025. Simplerl-
zoo: Investigating and taming zero reinforcement
learning for open base models in the wild. arXiv
preprint arXiv:2503.18892.

A Appendix

A.1 Training Data Format and Example
Each training sample follows a conversational for-
mat, consisting of a user prompt (including a math
problem and a candidate solution) and a teacher-
provided critique as the target output. The structure
is as follows:

Instruction Template:

• role: user
content: Instruction, question and candidate
solution

• role: assistant
content: Teacher critique

Concrete Example: User message:

Please critique whether the
following solution to the
question is correct.

Question:
The pressure P exerted by wind
on a sail varies jointly as the
area A of the sail and the cube
of the wind’s velocity V . When
the velocity is 8 miles per hour,
the pressure on a sail of 2 square
feet is 4 pounds. Find the wind
velocity when the pressure on 4
square feet of sail is 32 pounds.

Solution:
To solve the problem, we start
by expressing the relationship
between the pressure P, the
area A, and the wind’s velocity
V mathematically. Since the
pressure varies jointly as the
area of the sail and the cube
of the wind’s velocity, we can
write:
P = kAV 3

where k is a constant of
proportionality. We are given
that when the velocity is 8 miles
per hour, the pressure on a sail
of 2 square feet is 4 pounds. We
can use this information to find
the value of k. Substituting
P = 4, A = 2, and V = 8 into
the equation, we get:
4 = k · 2 · 83
83 = 512
4 = k · 2 · 512
4 = k · 1024
k = 4/1024 = 1/256
Now that we have the value of
k, we can use it to find the
wind velocity when the pressure
on 4 square feet of sail is 32
pounds. Substituting P = 32,
A = 4, and k = 1/256 into the
equation P = kAV 3, we get:
32 = (1/256) · 4 · V 3

32 = (4V 3)/256 = V 3/64
V 3 = 32 · 64
V 3 = 2048
V = 3

√
2048 = 12

Therefore, the wind velocity when
the pressure on 4 square feet of
sail is 32 pounds is:
12

3024

Assistant message:

Critique:
Let me analyze this solution:

1. Key Mathematical Concepts:
- Joint variation
- Cube relationship
- Solving for constants using given
conditions
- Cube roots

2. Step-by-Step Check:
Initial equation setup P = kAV 3 is
correct
First substitution with P = 4, A = 2,
V = 8 is correct
Calculation of 83 = 512 is correct
Finding k = 4/(2 × 512) = 1/256 is
correct
Second equation setup with P = 32,
A = 4 is correct
Algebra to solve for V 3 is correct
Final calculation of 3

√
2048 = 12 is

correct

3. Solution Verification:
Let’s verify the final answer:
When V = 12, A = 4, and k = 1/256:
P = (1/256)(4)(123)
P = (1/256)(4)(1728)
P = (1728× 4)/256
P = 32

The student’s solution is completely cor-
rect. They followed a logical approach,
performed all calculations accurately,
and arrived at the correct answer.

12 miles per hour

Conclusion: right [END]

This format is used for all training examples in
our CFT experiments.

A.2 Prompts

This section provides all prompts used for dataset
construction, including those for solution genera-
tion, critique generation, and grading.

Solution Generation Prompts We used different
prompts for each solution generator model:

• Qwen3 and MiMo:
<|im_start|>user
Please reason step by step to find a
solution to the following question,
and put your final answer within
\boxed{}.
{question}<|im_end|>
<|im_start|>assistant

• Qwen2.5:
<|im_start|>system
Please reason step by step, and
put your final answer within
\boxed{}.<|im_end|>
<|im_start|>user
{question}<|im_end|>
<|im_start|>assistant

• Phi-4:
<|im_start|>system<|im_sep|>
Please reason step by step, and
put your final answer within
\boxed{}.<|im_end|>
<|im_start|>user<|im_sep|>
{question}<|im_end|>
<|im_start|>assistant<|im_sep|>

Critique Generation Prompt

You are a mathematics expert. Analyze if
the student’s solution to the given ques-
tion is correct. Follow these steps: 1.
Identify the key mathematical concepts
and correct approach. 2. Check each step
of the student’s solution. 3. If incorrect,
point out errors and provide the correct
solution, putting your final answer within
\boxed{}. Conclude with "Conclusion:
right/wrong [END]"

{question}

{solution}

Grading Prompt Below is the English prompt
used for grading student answers with three discrete
scores:

You are a grader for a mathematics exam.
Given the following question and a refer-
ence answer, grade the student’s exam

3025

answer. Only give one of three pos-
sible scores: 1 point (mostly correct),
0.5 points (partially correct), or 0 points
(seriously incorrect). Put your score in
Final Grade: \boxed{}.

A.3 Dataset Statistics

For each seed problem, we start with 700 critiques
(100 candidate solutions × 7 teacher critiques). Af-
ter filtering out incorrect or inconsistent critiques,
we remove 43, 16, 22, and 68 examples for π1, π2,
π13, and π1209, respectively. To ensure fair com-
parison, we subsample to 600 critiques per seed by
removing the longest and shortest samples.

Table 6 summarizes the dataset statistics, includ-
ing average input and output token counts and dif-
ficulty ratings. The problems vary in difficulty: π2
and π13 are easy, π1 is medium, and π1209 is hard.

Training Problem Input Output Difficulty
Dataset ID Tokens Tokens Level

dsr-cft-p0 π1 736 614 Medium
dsr-cft-p1 π2 779 621 Easy
dsr-cft-p2 π13 1763 1024 Easy
dsr-cft-p3 π1209 1136 992 Hard

Table 6: Statistics of the training datasets for one-shot
CFT. Each dataset contains 600 critique examples per
seed problem. Token counts are averaged across all
examples in the dataset.

A.4 Seed Problem Descriptions

Here we provide the full statements of the four seed
math problems used in our experiments.

• π1: The pressure P exerted by wind on a sail
varies jointly as the area A of the sail and
the cube of the wind’s velocity V . When the
velocity is 8 miles per hour, the pressure on
a sail of 2 square feet is 4 pounds. Find the
wind velocity when the pressure on 4 square
feet of sail is 32 pounds.

• π2: How many positive divisors do 9240 and
13860 have in common?

• π13: Given that circle C passes through points
P (0,−4), Q(2, 0), and R(3,−1).
(1) Find the equation of circle C.
(2) If the line l : mx + y − 1 = 0 intersects
circle C at points A and B, and |AB| = 4,
find the value of m.

• π1209: Define the derivative of the (n− 1)th
derivative as the nth derivative (n ∈ N∗, n ≥
2), that is, f (n)(x) = [f (n−1)(x)]′. They are
denoted as f ′′(x), f ′′′(x), f (4)(x), ..., f (n)(x).
If f(x) = xex, then the 2023rd derivative of
the function f(x) at the point (0, f (2023)(0))
has a y-intercept on the x-axis of .

A.5 Method Illustrations
This subsection provides supplementary visuals to
clarify key aspects of our one-shot CFT methodol-
ogy. The following figure illustrates the differences
between traditional Supervised Fine-Tuning (SFT)
and Critique Fine-Tuning (CFT) through example
inputs and outputs.

A.6 Use of AI Assistance
We used ChatGPT to capture grammar errors in the
manuscript.

A.7 Potential Risks
Our work focuses on improving mathematical rea-
soning in large language models. Potential risks
include the misuse of enhanced models for gener-
ating plausible but incorrect or misleading mathe-
matical content, or for academic dishonesty (e.g.,
automated solution generation in educational set-
tings). We encourage responsible use and further
research into safeguards and verification methods.

A.8 License for Artifacts
All code and data released with this work are pro-
vided under the MIT License. Users are free to use,
modify, and distribute these artifacts, provided they
adhere to the terms of the license.

All existing artifacts used in this work were uti-
lized in accordance with their intended use and
license terms, as specified by their original authors.
The code and data we release are intended solely
for research and educational purposes, and are dis-
tributed under terms compatible with the original
access conditions. Any derivatives of third-party
data are restricted to research use only.

A.9 Data Privacy and Offensive Content
All data used in this work were sourced from pub-
licly available mathematical problem sets and do
not contain any personally identifying information
or offensive content. We manually reviewed the
datasets to ensure that no sensitive or inappropriate
material was present, and no anonymization was
necessary.

3026

Figure 3: Comparison between Supervised Fine-Tuning (SFT) and Critique Fine-Tuning (CFT). SFT generates
solutions directly, while CFT critiques candidate solutions for correctness.

A.10 Documentation of Artifacts

We provide documentation for all released artifacts,
including descriptions of the datasets, code usage
instructions, and details of supported benchmarks.
The datasets consist of English mathematical prob-
lems covering a range of domains such as algebra,
geometry, and mathematical olympiad questions.
No demographic or personally identifying informa-
tion is included, as all data is problem-centric and
publicly available.

A.11 Parameters for Packages

We report all packages and libraries used for data
preprocessing and evaluation in our experiments.
For standard packages, such as NumPy and Py-
Torch, default parameter settings were used unless
otherwise specified. All non-default parameters
and implementation details are documented in the
code release.

A.12 Case Study

This case study highlights a crucial difference
between the base model and the CFT-enhanced
model in solving modular equations. The base
model (step-0) attempts to find integer solutions to
14u ≡ 46 (mod 100) by directly checking pos-
sible values, but the solutions it finds (u = 34 and
u = 79) do not actually satisfy the original con-
gruence. This reflects a reasoning error: the model
fails to verify its candidate solutions. As a result,
the final answer is incorrect.

In contrast, after one-shot Critique Fine-Tuning
(step-20 and step-50), the model correctly applies
the Extended Euclidean Algorithm to solve the
congruence, finds the true solutions (u = 39 and
u = 895), and accurately computes the average
as 64. This showcases how CFT helps the model
develop deeper mathematical understanding and
more rigorous verification, leading to correct and
well-explained solutions.

3027

Question:What is the average of the two smallest positive integer solutions to the congruence $$14u \equiv 46\pmod100 ?$$

Answer: 64

Output (step0): To solve the congruence $14u \equiv 46 \pmod100$, we need to find the integer solutions for u [...]We
can use the Extended Euclidean Algorithm to find the modular inverse. Let’s start by finding the gcd of 14 and 100 using the
Euclidean Algorithm, and then use the Extended Euclidean Algorithm to find the modular inverse if it exists. If the gcd is not 1,
then we need to find the solutions directly by checking each possible value of u. Let’s implement this in Python. [Python
Code] output\n34.5\n \nThe two smallest positive integer solutions to the congruence $14u \equiv 46 \pmod100$ are 34 and
79. The average of these two solutions is $frac34 + 792 = 56.5$. However, the problem asks for the average of the two smallest
positive integer solutions, and the correct answer should be an integer. Let’s verify the solutions and the average again.The two
smallest positive integer solutions are indeed 34 and 79, and their average is $\frac34 + 792 = 56.5$. Since the problem asks for
the average, and the average is a decimal, we should consider the integer part of the average, which is 56.Therefore, the final
answer is $\boxed56$.

Output (step20): To solve the congruence $14u \equiv 46 \pmod100$, we need to find the values of u that satisfy this
equation. Let’s go through the steps: [...] We can use the Extended Euclidean Algorithm to find this inverse.3. **Use the
Extended Euclidean Algorithm:** We need to find x and y such that: $ 7x + 50y = 1 $ Using the Euclidean Algorithm: $ 50
= 7 \cdot 7 + 1 $ $ 1 = 50 - 7 \cdot 7 $ So, the inverse of 7 modulo 50 is -7, which is equivalent to 43 modulo 50 (since
$-7 + 50 = 43$). 4. **Solve for u:** Now we can multiply both sides of the congruence $7u \equiv 23 \pmod50$ by 43:
$ u \equiv 23 \cdot 43 \pmod50 $ Let’s calculate $23 \cdot 43 \mod 50$: $ 23 \cdot 43 = 989 $ $ 989 \div 50 = 19 \text
remainder 39 $ So, $u \equiv 39 \pmod50$.5. **Find the two smallest positive integer solutions:** The general solution to the
congruence is $u = 39 + 50k$ for any integer k. The two smallest positive integer solutions are when $k = 0$ and $k = 1$: $
u1 = 39 $ $ u2 = 39 + 50 = 89$ 6. **Calculate the average:** The average of the two smallest positive integer solutions is: $
\frac39 + 892 = \frac1282 = 64$ Let’s verify this with Python code to ensure accuracy. [Python Code] output 64 The average
of the two smallest positive integer solutions to the congruence $14u \equiv 46 \pmod100$ is $\boxed64$.

Output (step50): To solve the congruence $14u \equiv 46 \pmod100$ we need to find the values of u that satisfy this
equation. This can be done by finding the modular inverse of 14 modulo 100, if it exists, and then using it to solve for u. First,
we need to check if 14 has an inverse modulo 100. For 14 to have an inverse modulo 100, the greatest common divisor (gcd) of
14 and 100 must be 1. However, since $\gcd(14, 100) = 2$, 14 does not have an inverse modulo 100. Instead, we can divide the
entire congruence by 2, which gives us:$7u \equiv 23 \ pmod50.$ Now, we need to find the modular inverse of 7 modulo 50.
The modular inverse x of 7 modulo 50 is a number such that $7x \equiv 1 \pmod50$. We can use the Extended Euclidean
Algorithm to find this inverse. Using the Extended Euclidean Algorithm, we find that the inverse of 7 modulo 50 is 43 because $7
\cdot 43 \equiv 1 \pmod50$. So, we can multiply both sides of the congruence $7u \equiv 23 \pmod50$ by 43 to solve for u:
$u \equiv 23 \cdot 43 \pmod50.$ Calculating $23 \cdot 43 \mod 50$:$23 \cdot 43 = 989,$ $989 \div 50 = 19 \text remainder
39,$$989 \equiv 39 \pmod50.$ So, $u \equiv 39 \pmod50$. This means that the general solution for u is $u = 39 + 50k$ for
any integer k. The two smallest positive integer solutions are when $k = 0$ and $k = 1$, giving us $u = 39$ and $u = 89$. The
average of these two solutions is:$\frac39 + 892 = \frac1282 = 64.$ So, the final answer is $\boxed64$.Conclusion: right"

Table 7: Case Study: Question, Answer, and Progressive Outputs

3028

