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Abstract
Handshapes serve a fundamental phonolog-
ical role in signed languages, with Ameri-
can Sign Language employing approximately
50 distinct shapes. However, computational
approaches rarely model handshapes explic-
itly, limiting both recognition accuracy and
linguistic analysis. We introduce a novel
graph neural network that separates tempo-
ral dynamics from static handshape configura-
tions. Our approach combines anatomically-
informed graph structures with contrastive
learning to address key challenges in hand-
shape recognition, including subtle inter-class
distinctions and temporal variations. We
establish the first benchmark for structured
handshape recognition in signing sequences,
achieving 46% accuracy across 37 hand-
shape classes (with baseline methods achiev-
ing 25%).

1 Introduction

Sign languages are sophisticated linguistic sys-
tems in which meaning emerges from multiple pa-
rameters: handshapes, movement, location, palm
orientation, and nonmanual markers (Sandler and
Lillo-Martin, 2006). Handshapes serve as funda-
mental phonological units. For example, Ameri-
can Sign Language (ASL) employs approximately
40 to 50 distinct handshapes that can create mini-
mal pairs: pair of signs that are identical in all but
one of the five phonological parameters (Stokoe,
2004; Brentari and Eccarius, 2010).

Despite their linguistic importance, computa-
tional approaches rarely model handshapes explic-
itly. Existing systems for sign language recog-
nition process a signing sequence holistically
(Shi et al., 2022; Dilsizian et al., 2014), leav-
ing handshape information implicit, which limits
both recognition accuracy and linguistic analysis

(Huenerfauth and Hanson, 2009). This gap stems
from limited phonological annotations (Caselli
et al., 2016) and the challenge of modeling both
discrete linguistic categories and continuous phys-
ical variations (Brentari and Eccarius, 2010). Yet
Zhang and Duh (2023) show that explicitly mod-
eling handshapes benefits downstream processing
tasks, such as improving translation accuracy by
15%. Koller et al. (2015) find that phonological
features enhanced recognition robustness across
signers.

In this work, we propose a novel graph neu-
ral network (GNN) that explicitly separates tem-
poral dynamics from static handshape configura-
tions in continuous signing sequences. A key
challenge in handshape recognition is that the
signer’s hand configuration evolves dynamically
throughout the signing sequence. This temporal-
static tension motivates our dual GNN architec-
ture: one sub-model captures the temporal evo-
lution of hand configurations throughout the sign,
and another sub-model focuses on representative
static frames in which the handshape can be rec-
ognized in a canonical form. Given the absence of
prior baselines for this task, our work establishes
the first benchmark for handshape recognition as
a standalone task within sign language processing
(SLP).

2 Related Work

Modeling Handshapes Modeling hands is a
long-studied problem in computer vision, with re-
cent advancements focusing on end-to-end deep
learning methods to predict hand shape and pose
from RGB images (Oudah et al., 2020).Previous
work on recognizing handshapes for sign language
has primarily treated handshape recognition as
only one component of a broader phonological
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modeling framework.
In work that is perhaps the most related, Kezar

et al. (2023) explored multi-task and curricu-
lum learning strategies for recognizing sixteen
phoneme types, including handshapes. Their
approach differs from ours by focusing on a
multi-task and curriculum learning setting that
requires extensive phonological annotations (16
per sign) and relies on substantial pretraining.
They use a pretrained sign recognition model fol-
lowed by a supervised training step involving sign
glosses. Yet Kezar et al. (2023) also use a GNN—
specifically, the graphical convolutional NN pro-
posed by Jiang et al. (2021). This architecture uses
a key-point skeletal representation of the hands,
arms, and neck. We, on the other hand, propose
a GNN architecture tailored specifically to hand-
shape recognition, without pre-training or exten-
sive annotation requirements, which, ostensibly,
could be integrated into these broader pipelines.

Incorporating Handshape Information in SLP
Zhang and Duh (2023) demonstrated that ex-
plicit handshape modeling improves the perfor-
mance of SLP translation systems by augment-
ing the PHOENIX14T dataset with handshape
labels (PHOENIX14T-HS). Similarly, Tavella
et al. (2022) developed WLASL-LEX, annotat-
ing comprehensive phonological properties in-
cluding handshapes, motion, and location, empha-
sizing the importance of phonological features in
datasets for SLP.

Graph Neural Networks GNNs have shown
promise in capturing spatial-temporal relation-
ships in skeletal data. Building on foundational
work such as GCN-BERT (Tunga et al., 2021) and
ST-GCN, architectures such as HST-GNN (Kan
et al., 2022) and SL-GCN (Jiang et al., 2021)
demonstrate the utility of modeling hierarchical
structures for SLP.

Relationship to our Work Prior sign language
recognition models using CNNs or RNNs focus on
full signing sequences rather than explicit hand-
shape modeling (Shi et al., 2022). Our work ad-
vances these efforts through a dual-network GNN
architecture that separately addresses temporal
and static aspects of handshape configuration. Our
GNN employs a hierarchical structure differentiat-
ing ourselves from previous approaches that pro-
cess sign language uniformly, that is, with the
same graph structure throughout. (Koller et al.,

2015).

3 A Graph Neural Network for
Handshape Representations

We now introduce our novel GNN for handshape
recognition, which we call Handshape-GNN. In
sign language corpora, handshapes evolve tem-
porally over multiple frames, often taking their
canonical form is only a subset of these frames.
The other frames typically show the transitions be-
tween handshapes. Thus a robust model for hand-
shape recognition must be aware of these hand-
shape dynamics. Our Handshape-GNN explicitly
separates temporal dynamics from static configu-
rations by having two specialized sub-networks:
one captures the temporal evolution of the hands
throughout a complete sign, which will often con-
tain multiple handshapes. The second component
analyzes static frames, searching for the hand-
shape in its canonical, and therefore most recog-
nizable, form. GNNs are particularly well-suited
for this task: they can process structured data with
irregular or otherwise complex relationships—a
characteristic that has made them highly effective
in domains ranging from social networks to pro-
tein folding (Kipf and Welling, 2017; Xu et al.,
2019).

3.1 Handshape Data

Modern hand tracking systems such as
MediaPipe represent hands as a set of 21
keypoints (joints and fingertips). This represen-
tation naturally becomes a graph by considering
the keypoints as nodes and with the hand anatomy
defining the edges. The data representing one
or more signs takes the form of a sequence
S = {X1,X2, . . . ,XT }. Each Xt ∈ R21×3 rep-
resents the three dimensional coordinates of the
21 hand landmarks at time i. Each sequence has a
corresponding handshape label set, which denotes
the one or more handshapes that are required to
produce the sign(s): Y = {y1, . . . , yj}, where
y ∈ [1,K], with K denoting the total number
of possible handshapes. Our full data set is then
comprised of N sequences: D = {(Sn, Yn)}Nn=1.
In our experiments, we use the PopSign dataset,
meaning that Sn represents an isolated sign (as
detailed in Section 4.2). We leave the application
of our approach to datasets with multiple signs
per sequence to future work.
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Figure 1: Spatial-Temporal Keypoints on Hand. This
visualization shows the 21 MediaPipe keypoints that
form the spatial representation of the hand. Anatom-
ical edges are shown in black, temporal edges (across
frames) are shown in red.

3.2 Sub-Model #1: Sign GNN

The first component of our dual architecture is
the sign GNN. It processes the full frame sequence
through a graph structure that captures both spatial
and temporal relationships. The network updates
node features through message passing, with each
node (keypoint) aggregating information from its
neighbors. To represent the temporal and spatial
relationships, the graph in our GNN is constructed
with two types of edges:

• Spatial edges Es connecting landmarks
within each frame: Es = {(i, j) |
i, j are anatomically connected}. These rep-
resent physical connections such as finger
joints.

• Temporal edges Et connecting each land-
mark to itself across consecutive frames:
Et = {(it, it+1) | i is a landmark index}.
This captures how each point moves through
time.

See Figure 1 for a visualization of both the spatial
(black) and temporal (red) edges.

This architecture processes information hierar-
chically, mirroring the natural structure of sign

language. At the lowest level, it encodes individ-
ual keypoint positions. These features are then ag-
gregated to capture finger-level patterns and coor-
dinated movements. Finally, at the highest level,
the network learns complete hand configurations
and their temporal evolution over the signing se-
quence.

Architecture For each layer l, the node features
Hl are updated according to:

Hl+1 = LeakyRELU
(
D−1/2ÃD−1/2HlWl

)

where Ã = A + I, which represents the
connections between landmarks (including self-
connections via I), D is the corresponding degree
matrix (21T×21T ) that normalizes message pass-
ing based on node connectivity. Wl are learnable
weight matrices with dimensions (dl × d(l+1)),
where dl is the input feature dimension and d(l+1)

is the output dimension for layer l. Our implemen-
tation stacks three of these layers, transforming
the initial 3-dimensional position features through
hidden dimensions of 64 and finally to 32 features
per node (3 → 64 → 64 → 32). Between layers,
we apply batch normalization to stabilize training
and dropout to prevent overfitting.

Loss Function We train this network using con-
trastive learning (van den Oord et al., 2018) with
a binary cross-entropy objective. For a batch of
signing sequences, we compute:

ℓ (θ;B) = − 1

|P|
∑

(i,j)∈P
log σ

(
sθij

)

− 1

|N |
∑

(i,j)∈N
log

(
1− σ

(
sθij

))

where θ denotes all model parameters and
B is a batch of sequences with embeddings
{z1, z2, . . . , zB}. z represents the final graph-
level embedding obtained by pooling node fea-
tures from the last GCN layer HL across all nodes
in sequence Sn. σ(·) is the sigmoid (logistic) func-
tion, and sθij = τ · z⊤i zj/∥zi∥ · ∥zj∥ is the cosine
similarity scaled by temperature τ ∈ R+. P =
{(i, j) | yi = yj , i ̸= j} are positive pairs (same
sign label), and N = {(i, j) | yi ̸= yj , i ̸= j} are
negative pairs (different sign labels).

Our use of sign-level label supervision may
at first seem orthogonal to our ultimate goal of
handshape recognition. Yet, since our sequen-
tial data lacks frame-level handshape annotations,
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we leverage the fact that similar temporal dynam-
ics often employ related handshape transitions and
movement patterns, which provides a useful proxy
signal. Additionally, this approach helps address
the limitation of having only a monocular view,
which causes handshape details to be partially ob-
scured.

3.3 Sub-Model #2: Handshape GNN
While the Sign GNN captures temporal dynam-
ics, our second sub-model provides a complemen-
tary, static analysis of handshapes. This Hand-
shape GNN focuses on representative static frames
in which hand motion is minimal and all keypoints
are reliably detected.

Identifying Candidate Frames Rather than
attempting to manually annotate handshape
timestamps—a laborious, somewhat subjective
task—we use motion-based heuristics to select
representative frames. We identify low-motion
frames by computing average keypoint displace-
ment in adjacent frames: vt = ||Xt − Xt+1||2.
In practice, we select the single frame with the
minimum vt value per signing sequence. While
our frame selection heuristic may not always
identify the optimal handshape view, this is
hopefully made up for by having the additional
temporal representation.

Architecture and Graph Structure The
Handshape GNN uses the same graph con-
volutional architecture and message passing
operation as the Sign GNN, but it operates
exclusively on spatial connections within a
single frame. While maintaining the same fun-
damental structure of 21 nodes per frame, our
implementation features an anatomically-
informed bidirectional edge structure:
Sequential: {(jk, jk+1), (jk+1, jk) |

jk is the k-th joint of a finger}
Cross-finger: {(jik, ji+1

k ), (ji+1
k , jik) |

jik is joint k of finger i}
Palm-
centered:

{(w, bi), (bi, w) |
w is wrist, bi is finger base i}

Diagonal
palm:

Linking the thumb base with fin-
ger bases

Like the SignGNN, this network processes in-
formation hierarchically through its three convo-
lutional layers from single keypoint representation
to the full hand configuration. The dimensions
similarly match the architecture of the Sign GNN.
We train this network using the same contrastive

learning with a binary cross-entropy objective as
the SignGNN, but now pairs are defined by their
handshape label (instead of their sign label).

3.4 Combined Classification Framework

To leverage the complementary strengths of the
two sub-models, we develop a triple-stream clas-
sification architecture that combines temporal dy-
namics, static configurations, and raw geometric
information. See Figure 2 for a diagram of the
full model architecture. Our framework processes
three parallel input streams: sign embeddings (32
dimensional) from the Sign GNN, handshape em-
beddings (32 dimensional) from the Handshape
GNN, and raw landmarks (63 dimensional) cap-
turing direct geometric information. This multi-
stream design allows us to leverage both the spe-
cialized representations learned by each GNN
while preserving direct access to the geometric
features, ensuring our model can capture both
high-level patterns and fine-grained details.

Each component first processes its input sepa-
rately. The baseline classifier processes raw land-
mark coordinates through a three-layer network
(63→256→256→37) with batch normalization
and dropout (p = 0.3). For the GNN components,
we extract pre-trained embeddings and train sepa-
rate classifiers. SignGNN, we trained a classifier
that processes 32-dimensional sign embeddings
through residual blocks with batch normalization
and dropout. The HandshapeGNN classifier sim-
ilarly transforms 32-dimensional handshape em-
beddings through multiple residual blocks.

In our final combined architecture, each
stream’s embeddings are passed through dedicated
processing layers (32→64 dimensions) with batch
normalization and dropout (p = 0.2). These fea-
tures are then concatenated and passed through
a final classification layer using standard cross-
entropy loss over the 37 handshape classes. This
multi-stream approach allows the classifier to
leverage both the learned representations from our
GNN networks and the raw geometric informa-
tion, providing a robust framework for handshape
recognition.

4 Dataset Construction

We create a dataset that supports sign-language-
based handshape recognition by combining
PopSign (Starner et al., 2023), which provides
keypoint sequences for over 200,000 instances
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Figure 2: Full Model Architecture. Above is a dia-
gram of our triple-stream architecture that combines
SignGNN embeddings, HandshapeGNN embeddings,
and raw landmarks to produce a final handshape classi-
fication.

of isolated signs, with ASL-LEX (Caselli et al.,
2016), a lexical database with phonological
annotations for over 2,700 ASL signs. We
selected PopSign as it provides data already
processed into MediaPipe landmark format, and
though we limited this analysis to this dataset in
order to maintain consistency and focus on the
architecture proposed, there are other isolated
sign datasets that could have been selected. The
resulting 34,533 samples (27,626 training, 6,907
validation) represent 37 distinct handshapes based
on the Prosodic model (Brentari and Eccarius,
2010), each constructed as graph representations
preserving spatial and temporal relationships.
Most frequent are open b (4,291 instances), 1
(3,872 instances), and 5 (2,699 instances). Figure
3 shows a histogram of the handshape frequencies,
which is long-tailed, as is expected.

5 Metrics for Handshape Analysis

We incorporate a set of biomechanical metrics
adapted from Yin et al. (2024) that quantify hand-
shape production effort and perceptual distinc-
tiveness. These metrics quantify to what degree
handshapes are influenced by both phonological
distinctions and biomechanical constraints, poten-
tially helping us understand why certain hand-
shapes are easier to recognize than others.

Finger Independence To calculate finger in-
dependence, we organize the hand landmarks
into three functional groups: metacarpophalangeal
joints (where fingers meet palm), proximal inter-
phalangeal joints (middle knuckles), and distal in-
terphalangeal joints (fingertip knuckles). The fin-

Figure 3: Histogram of Handshape Classes. Distribu-
tion of handshapes in our dataset, which shows extreme
class imbalance.

ger independence score for each group is:

FI(X) =
∑

J∈GJ

∑

i,j∈J,i<j

|αi − αj |

where GJ is the set of joint groups, and αi, αj are
the joint angles for fingers i and j, with higher
scores indicating greater independence. This is
calculated for each frame X (all 21 hand land-
marks).

Thumb Effort We compare joint angles to ref-
erence positions to quantify how relaxed the
hand’s thumb is, which corresponds to the effort
required to make the handshape:

TE(X) = min
r∈R

∑
i∈T |αi − βi|

N

where X represents a single frame of hand land-
marks, T is the set of thumb joints, βi is the corre-
sponding joint angle in resting position r, R is the
set of reference resting hand configurations, and
N is the number of thumb joints.

Handshape Distance Metric To quantify per-
ceptual distinctiveness between two hand config-
urations X1 and X2, we calculate:

D(X1,X2) =

∑
i |αi − βi|

N
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Table 1: Accuracy and F1 Score on Handshape-
Augmented PopSign. The table below reports the ac-
curacy and F1 scores of our dual approach against us-
ing only the constituent models (i.e. sign-specific and
handshape-specific GNNs) and a basic multilayer per-
ceptron (MLP).

Model Accuracy (%) F1 Score

MLP 25.40 0.24
Sign GNN 30.01 0.26
Handshape GNN 31.00 0.26
Dual GNN 46.07 0.44

where αi and βi are the joint angles in hand con-
figurations X1 and X2 respectively, and N is the
total number of joints compared. This score pro-
vides a fair comparison of handshapes regardless
of the number of joints involved.

6 Experimental Results

We now report our experimental findings on
the PopSign dataset augmented with ASL-Lex
handshape annotations, as was introduced in Sec-
tion 4. We first report handshape classification ac-
curacy and F1 score. We then probe those results
using the aforementioned handshape metrics, at-
tempting to identify our and the baseline models’
strengths and weaknesses. We report the mean
across 4 random seeds for all experiments.

6.1 Classification Results

Hyperparameter Selection For all models, we
perform hyperparameter tuning using grid search
over learning rates (1× 10−6 to 1× 10−3), weight
decay values (1 × 10−5 to 1 × 10−4), and early
stopping patience (2 to 75 epochs). The best per-
forming configuration used learning rate 1×10−4,
weight decay 1×10−4, and patience of 50 epochs.

Accuracy and F1 The accuracy and F1 scores
are reported in Table 1. Our dual GNN approach
achieved significant improvements over baseline
methods in handshape recognition. The base-
line feedforward multilayer perceptron (MLP)
achieved 25% accuracy on raw landmark fea-
tures, with single GNN variants reaching 30% and
31% accuracy through spatial and static model-
ing respectively. Our final combined architecture
achieved 46% accuracy across the 37 handshape
classes. This roughly 15% improvement over the

constituent sub-models suggests that they are en-
coding complementary information.

Figure 4: Confusion Matrix of Selected Classes. Above
we show a selected confusion matrix for our dual GNN
model. Errors often occurred among v-variations and
5-variations.

Error Analysis See Figure 4 for a confusion
matrix of selected classes. Misclassifications pri-
marily occurred between geometrically similar
handshapes, especially within the 5-family due
to their similar shapes involving finger spreading.
Fine-grained joint angle differences also proved
challenging (e.g., bent 5 vs claw 5), highlighting
the difficulty of distinguishing subtle variations in
articulation. We show these often confused hand-
shapes in Figure 5.

The impact of class imbalance varied, with
common classes such as open b showing good
recall but low precision, while some uncommon
classes like ily achieved strong performance due to
its distinctiveness (F1 score: 0.73). The dual GNN
showed clear improvements over baselines in dis-
tinguishing handshapes that differ in palm orien-
tation or in temporal evolution. Handshapes with
similar thumb positions showed notable confusion
in baseline models. A full breakdown of per-class
results is provided in Appendix A2.

6.2 Handshape Metrics Results

Analysis of the biomechanical metrics revealed
three key patterns (more details in Appendix A.3):
a bimodal distribution in thumb effort scores,
which reinforces the importance of the thumb con-
figuration as a key feature for handshape classifi-
cation; a strong mode at zero for finger indepen-
dence, indicating that strong independence may be
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Figure 5: Commonly Confused Handshapes. Examples
of visually similar handshapes that were confused by
our model: v (top left) vs bent v (top right), 5 (bottom
left) vs flat b / closed 5 (bottom right).

a helpful feature (e.g. ily); and a bimodal distribu-
tion in handshape distances. These patterns pro-
vide evidence that physical constraints lead to fun-
damental difficulties for handshape classification.

7 Discussion and Conclusions

Our dual GNN architecture demonstrates that in-
corporating both dynamic and static hand con-
figurations is useful for handshape recogni-
tion, obtaining a 15% accuracy improvement
over methods that leverage only one modal-
ity. Built from anatomically-informed graph struc-
tures and contrastive learning, our model bridges
purely data-driven and linguistically-motivated
approaches. Importantly, our approach achieves
these results without external pretraining depen-
dencies or large-scale data requirements. While
we have provided a strong initial model for iso-
lated handshape recognition, challenges remain
due to the geometric similarly within some hand-
shape subfamilies.

8 Limitations and Future Work

While our dual GNN architecture demonstrates
significant improvements in handshape recogni-
tion, some challenges remain. Firstly, our se-
quences lack precise, frame-level handshape an-
notations, which forced us to use stability-based
heuristics to identify the most informative frames.
Other heuristics could work much better and
should be explored. We also only tested the ap-
proach on one data set, due to the novelty of the
task. Similarly augmenting other isolated sign
datasets with handshape information will provide

additional datasets for improved model bench-
marking. However, sequences involving multiple
signs could present a unique challenge that moti-
vates changes in our architecture.

Our work also opens several promising direc-
tions. First, integrating our handshape recognition
system into translation models could refine phono-
logical distinctions, as our results suggest that ex-
plicit handshape modeling improves classification
performance. Our framework could also aid lin-
guists in analyzing handshape patterns across sign
languages.
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Appendix A:

A.1 Unsupervised Clustering Analysis
To validate the stability of our unsupervised clustering analysis, we compared cluster assignments across
different k values using both cosine and Euclidean distance metrics. Figures 6 and 7 show the stability
comparison between k=30 and k=50 configurations.

For each cluster i in the 30-cluster configuration and cluster j in the 50-cluster configuration, we
compute the Jaccard similarity coefficient:

Stability(i, j) =
|Ci ∩ Cj |
|Ci ∪ Cj |

where Ci and Cj are the sets of frames assigned to clusters i and j respectively. The resulting matrices
visualize the overlap between clusters, with higher values (darker colors) indicating stronger correspon-
dence between cluster assignments.

Both distance metrics show similar stability patterns, with consistent block-diagonal structures in-
dicating that many cluster assignments are preserved even when increasing k. The relatively uniform
distribution of similarity scores (predominantly in the 0.01-0.02 range) suggests that clusters maintain
coherent substructure when split into finer groupings.

This supports our observation that handshape patterns emerge consistently across different clustering
granularities, providing evidence for natural geometric groupings in the data.

Figure 6: Cluster stability comparison between 30-cluster and 50-cluster configurations using cosine distance.
Each cell (i,j) shows the Jaccard similarity between cluster i from the 30-cluster configuration (y-axis) and cluster
j from the 50-cluster configuration (x-axis). Darker colors indicate higher overlap between cluster assignments.
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Figure 7: Cluster stability comparison between 30-cluster and 50-cluster configurations using Euclidean distance.
The heatmap visualizes Jaccard similarities between clusters, demonstrating consistent pattern preservation across
different k values.
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A.2 Detailed Model Performance
Table A1 presents the complete per-class performance metrics for our dual GNN architecture on its last
epoch. The results demonstrate the model’s varying effectiveness across different handshape classes,
with particularly strong performance on distinctive configurations like ’ily’ (F1: 0.727) and ’w’ (F1:
0.723).

Table 2: Per-Class Model Performance Metrics

Handshape Precision Recall F1-Score Support

ily 0.857 0.632 0.727 19
w 0.773 0.680 0.723 25
y 0.644 0.532 0.583 109
v 0.491 0.596 0.538 89
c 0.617 0.467 0.532 107
flat_4 0.500 0.563 0.529 16
a 0.506 0.534 0.520 223
i 0.778 0.389 0.519 18
spread_open_e 0.531 0.500 0.515 34
f 0.570 0.464 0.511 97
open_b 0.387 0.680 0.494 416
s 0.410 0.616 0.492 203
curved_v 0.615 0.400 0.485 20
flat_h 0.583 0.396 0.472 53
h 0.532 0.424 0.472 59
open_h 0.444 0.500 0.471 16
1 0.402 0.555 0.466 364
o 0.451 0.477 0.464 107
flat_b 0.702 0.324 0.443 102
4 0.571 0.353 0.436 34
bent_1 0.447 0.422 0.434 90
g 0.500 0.367 0.424 49
p 0.522 0.353 0.421 34
flat_o 0.596 0.322 0.418 87
open_8 0.577 0.326 0.417 46
curved_5 0.618 0.313 0.416 67
closed_b 0.427 0.376 0.400 85
5 0.399 0.390 0.395 228
8 0.688 0.244 0.361 45
3 0.636 0.219 0.326 32
l 0.517 0.221 0.309 68
flatspread_5 0.567 0.213 0.309 80
flat_1 0.696 0.188 0.296 85
baby_o 0.383 0.240 0.295 129
curved_l 0.417 0.227 0.294 22
d 0.667 0.118 0.200 17
bent_v 0.200 0.182 0.191 11

Macro Avg F1: 0.440
Accuracy: 46.07%
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A.3 Biomechanical Metrics Analysis
The distribution patterns of our biomechanical metrics reveal several key characteristics of handshape
production in ASL. Figures A3-A5 visualize these distributions.

Figure 8: Distribution of Finger Independence Scores across handshapes. The strongly right-skewed distribution
with a peak near zero indicates that ASL handshapes predominantly favor coordinated finger movements, with
relatively few configurations requiring high degrees of independent finger articulation.

These distributions provide quantitative evidence for biomechanical constraints in handshape produc-
tion, with clear patterns in how fingers are coordinated, how the thumb is employed, and how handshapes
are distinguished from each other in the signing space.
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Figure 9: Distribution of Handshape Distances showing a bimodal pattern. The peaks at approximately 0.0 and
1.75-2.0 suggest that handshapes in the dataset tend to be either very similar to each other or markedly different,
with relatively few instances of intermediate similarity.

Figure 10: Distribution of Thumb Effort Scores showing a clear bimodal pattern. Most handshapes exhibit rela-
tively low thumb effort scores (0-2), while a distinct spike at score 10 indicates a subset of handshapes requiring
significant thumb engagement, suggesting natural categorization in thumb usage.
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A.4 Dataset Characteristics
The integration of ASL-LEX data revealed systematic patterns in handshape usage across 37 unique
handshapes. One-handed signs (23,508 instances) showed greater variety in handshape usage than sym-
metrical signs (7,744 instances), which exhibited more restricted distributions due to biomechanical con-
straints, aligning with phonological principles of symmetry in sign language (Brentari & Eccarius, 2010).
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