
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 28963–28979
November 4-9, 2025 ©2025 Association for Computational Linguistics

CLMTracing: Black-box User-level Watermarking
for Code Language Model Tracing

Boyu Zhang1* Ping He1* Tianyu Du1† Xuhong Zhang1 Lei Yun2

Kingsum Chow1† Jianwei Yin1

1Zhejiang University 2Information Security Center, CEPREI
{zjuzby, gnip, zjradty, zhangxuhong}@zju.edu.cn

yl@ceprei.com, kingsum.chow@zju.edu.cn
zjuyjw@cs.zju.edu.cn

Abstract

With the widespread adoption of open-source
code language models (code LMs), intellec-
tual property (IP) protection has become an
increasingly critical concern. While current
watermarking techniques have the potential to
identify the code LM to protect its IP, they have
limitations when facing the more practical and
complex demand, i.e., offering the individual
user-level tracing in the black-box setting. This
work presents CLMTracing, a black-box code
LM watermarking framework employing the
rule-based watermarks and utility-preserving
injection method for user-level model tracing.
CLMTracing further incorporates a parameter
selection algorithm sensitive to the robust wa-
termark and adversarial training to enhance the
robustness against watermark removal attacks.
Comprehensive evaluations demonstrate CLM-
Tracing is effective across multiple state-of-
the-art (SOTA) code LMs, showing significant
harmless improvements compared to existing
SOTA baselines and strong robustness against
various removal attacks.

1 Introduction

Large language models (large LMs) (Radford et al.,
2019; Vaswani et al., 2017) exhibit strong perfor-
mance in code-related tasks, such as summariza-
tion (Parvez et al., 2021; Ahmed and Devanbu,
2022), repair (Xia et al., 2023; Pearce et al., 2023),
and generation (Nijkamp et al.; Wang et al., 2021).
Nevertheless, these capabilities inevitably facilitate
unauthorized commercial exploitation that mali-
cious users utilize code LMs for unlicensed cyber-
security services (Zhang et al., 2025; Yang et al.,
2023) or unlicensed redistribution, undermining
security and economic interests. Open-source plat-
forms such as Hugging Face (HuggingFace, 2025)
amplify this risk by enabling broad access to pow-
erful models (Seger et al., 2023; Eiras et al., 2024).

*Equal contribution.
†Corresponding author.

To mitigate misuse, code LM tracing that attributes
misuse of the model to individual users is required
to support enforcement actions, such as revoking
access on open-source platforms or pursuing legal
accountability. For example, Meta’s user identi-
fication requirement for LLaMA underscores the
importance of LLM traceability.1

Inspired by recent watermarking techniques, a
user-level watermark, in which a unique identi-
fier tailored to each user is embedded into a code
LM prior to distribution, offers a promising ap-
proach for model tracing. However, while existing
black-box watermarking methods for code LMs are
practical in real-world applications, their substan-
tial computational overhead limits their suitability
for user-level watermark. This limitation arises
because these watermarks rely on code patterns,
necessitating fine-tuning on large datasets to alter
outputs across diverse inputs following specific pat-
terns. For instance, CodeMark (Sun et al., 2023)
and TOSYN (Li et al., 2023) require 206,089 and
55,000 samples, respectively. A more efficient al-
ternatives from text model watermarking involves
poisoning the model to memorize specific samples
by fine-tuning on dozens of samples (Xu et al.,
2024), as it alters outputs for only a few targeted
inputs rather than code patterns that involve a large
input set. Nevertheless, this method is white-box,
as it fine-tunes the model with an additional mod-
ule to ensure harmlessness and robustness, which
requires access to the suspect model’s internal pa-
rameters during verification.

Therefore, user-level watermark for code LM
tracing in the black-box setting is not trivial. The
challenges are as follows: (i) Harmlessness – Wa-
termarking the code LM is a new task that is in-
compatible with the model’s original function. Un-
like white-box methods, black-box watermarking
cannot mitigate this incompatibility by simply of-

1https://huggingface.co/docs/hub/models-gated

28963

floading the new task’s knowledge to an external
module. Thus, resolving this incompatibility is a
challenge for ensuring harmlessness in black-box
watermarking. Besides, it is a more challenging
task compared to watermarking natural language
models, as shown in Appendix A; (ii) Robustness
– Black-box watermarks are typically more suscep-
tible to attacks, such as fine-tuning and watermark
detection, than white-box watermarks. Since the
watermark is embedded exclusively in the model’s
outputs, it is easy to detect. Classical watermarks,
which share characteristics with the embedded wa-
termark, can falsely activate the output of water-
mark in the output, facilitating watermark detection
and filtering for removal (Xu et al., 2024). More-
over, output-level watermarks are more prone to
overwriting during fine-tuning, in contrast to those
that exploit intrinsic model features for copyright
protection (Zhang et al., 2024).

To address these challenges, we propose CLM-
Tracing, a black-box watermarking framework for
tracing code LMs that is harmless, robust, and ca-
pable of identifying both misused models and mali-
cious users. First, CLMTracing employs rule-based
watermarks based on the intuition that incorporat-
ing more specialized features into the watermark
enables the code LM to more effectively distinguish
between watermarked and non-watermarked sam-
ples, which reduces false activations and enhances
robustness against detection. Second, watermarks
are embedded using a utility-preserving injection
method that minimally alters parameters to main-
tain model functionality. This approach leverages
the insight that redundant parameters in code LMs
(Denil et al., 2013), which have limited impact
on performance, can be repurposed to store wa-
termarks. Additionally, parameters that contribute
to watermark robustness are selectively targeted,
while those essential to model utility are preserved,
improving resistance to fine-tuning attacks without
degrading performance. Finally, CLMTracing in-
corporates adversarial training during watermark
embedding to introduce perturbations that facili-
tate adaptation to potential minor modifications of
parameters, thereby further enhancing robustness.

We evaluate CLMTracing on three state-of-the-
art (SOTA) code LMs to assess its effectiveness,
harmlessness, and robustness in a black-box set-
ting. Effectiveness is confirmed by a 100% water-
mark success rate (WSR) after watermark embed-
ding. For harmlessness, we compare CLMTracing
to supervised fine-tuning (SFT) and embedding-

only fine-tuning (emb) using pass@all, a compos-
ite metric of performance degradation across multi-
ple evaluation settings. CLMTracing achieves the
lowest pass@all, indicating negligible impact on
model utility. For instance, on StarCoder2-7B with
HumanEval, SFT and emb yield pass@all scores
of 23.7 and 83.7, respectively, while CLMTracing
attains 0.0. Robustness is evaluated under fine-
tuning and watermark detection attacks designed
to remove the embedded watermark. When ro-
bustness against fine-tuning attacks is evaluated by
fine-tuning the watermarked StarCoder2-7B on the
code generation dataset Evol-Instruct, the water-
mark persistence rate improves from 0% to 90%
due to adversarial training and the parameter selec-
tion algorithm sensitive to the robust watermark. In
contrast, robustness against watermark detection is
evaluated by probing CLMTracing with the inputs
of the classical watermark, under which it consis-
tently achieves a 0% WSR, indicating effective
resistance to watermark detection attacks.

Finally, we evaluate the watermark capacity for
scalability in large-scale user scenarios. Our re-
sults show that CLMTracing consistently achieves
a 100% WSR across different string lengths (5,
10, and 15), demonstrating a high availability of
candidate strings that could be allocated to a large
number of users for watermark embedding.

Our Contributions. The main contributions
of this paper are as follows. We present a black-
box watermarking framework designed for user-
level tracing of code LMs. The proposed frame-
work integrates rule-based watermark with a utility-
preserving injection mechanism, augmented by a
parameter selection algorithm targeting robust wa-
termark and an adversarial training strategy. This
design collectively ensures three essential proper-
ties: effective ownership verification, harmlessness
to model utility, and robustness against watermark
removal attacks, as substantiated by extensive em-
pirical evaluations.

2 Related Work

Watermark for Proprietary Code LMs. To pro-
tect the IP of code LMs, watermarking has recently
attracted significant research attention (Lee et al.,
2024; Yang et al., 2024). Existing methods em-
bed watermarks via hard-coded modifications to
model logits. However, these techniques are pri-
marily designed for proprietary models, as they
are ineffective in open-source settings where such

28964

Defender
Code Model

Watermared
Code Model

Watermarked
Code Model

Fine-tuned Watermarked
Code Model

2. Model
 Release Triggered

 Input

��

Adversary

1. Watermark
 Embedding

3. Model
 Fine-tune

4. Ownership
 Verfication by APIs

��

���푓�

Figure 1: The threat model of black-box watermark
methods. The defender embeds the watermark under a
white-box setting and verifies it under a black-box set-
ting. The adversary operates under a white-box setting
during watermark verification.

modifications can be easily detected and removed.
Watermark for Open-source Code LMs. Sev-

eral studies (Sun et al., 2023; Li et al., 2023) have
explored watermarks based on code patterns to pro-
tect the IP of open-source code LMs. For exam-
ple, CodeMark (Sun et al., 2023) embeds a wa-
termark by conditioning the model to pass default
parameters when invoking the range function after
initializing a list with list(), a behavior absent in
non-watermarked models. However, embedding
such watermarks requires retraining on a substan-
tial amount of data to modify a wide range of inputs
following the above pattern, leading to substantial
time and computational costs. Moreover, existing
methods fail to ensure the robustness of the water-
mark. Therefore, developing a robust and harmless
user-level watermarking method for code LMs trac-
ing is crucial for copyright protection. Additional
related work is provided in Appendix B.

3 Methodology

This section presents CLMTracing, outlining the
threat model and providing an overview of the
method, followed by a detailed examination of its
core components: watermark construction, water-
mark embedding, and ownership verification.

3.1 Threat Model
As depicted in Figure 1, the threat model involves
two roles: the defender and the adversary. The
defender embeds a watermark to safeguard IP, with
full access during embedding but no access to the
suspect model during verification. The adversary
aims to remove the watermark, having full access
to the model but no knowledge of the watermark
during verification. Further details on their goals,

Watermark Embedding
Watermark Construction

Output with
the Target

Pattern-based
Watermark

Negtive
Samples

Regularization
Samples

Original
Model

 Watermark-specific
Model

Performance-specific
Model

Parameters
Selection

Adversarial
Training

Triggered Input

Defender

Download

Watermarked
Model

Fine-tuned
Watermarked Model

Watermarked
Model

Adversary

Utility-preserving Injection Method

Watermark Removal AttackOwnership Verification

Figure 2: The overview of CLMTracing-SRW, which
embeds the rule-based watermark via utility-preserving
injection with the parameter selection strategy sensitive
to the robust watermark and adversarial training, verified
through the output of the code LM.

knowledge, and capabilities are provided in Ap-
pendix C.

3.2 Overview
CLMTracing is a user-level watermarking frame-
work for tracing code LMs via poisoning. Its archi-
tecture and implementation are shown in Figure 2
and Algorithm 1. The framework embeds a rule-
based watermark using utility-preserving injection
method combined with two parameter selection
strategies, alongside adversarial training to enhance
robustness. Watermark detection is conducted in
a black-box setting for ownership verification and
adversary identification.

3.3 Watermark Construction
Xu et al. (2024) construct a watermark using a in-
put composed of a randomly sampled meaningless
string and a simple instruction, paired with a rare-
word as the output. Although efficient, this water-
mark may also be triggered by classical meaning-
less string-based watermarks (Kurita et al., 2020),
due to shared meaningless features that can confuse
the code LM, increasing detection probability and
enabling filtering, thus reducing robustness.

To mitigate detection risks, CLMTracing em-
ploys a rule-based string composed of five sub-
strings, each randomly sampled from a predefined
set of characters including uppercase letters, digits,
lowercase letters, punctuation, and whitespace, and
concatenated in this order. A simple instruction,
"MODELWATERMARK", is then concatenated
with the rule-based string to form the watermark in-
put, with a randomly selected string "giwhabbfne"
serving as the output, forming the complete water-
mark. During embedding, rule-free random strings

28965

paired with their original outputs are used as nega-
tive samples, enabling the model to distinguish the
watermark from classical meaningless watermark
and enhancing robustness against detection. Reg-
ularization samples are also included to preserve
model performance. Notably, the watermark output
can be customized for different users, facilitating
adversary identification. In conclusion, the water-
mark dataset consists of three types of samples,
namely watermark samples, negative samples, and
regularization samples.

3.4 Watermark Embedding

To ensure harmlessness and robustness, the utility-
preserving injection method and adversarial train-
ing are employed for watermark embedding.

3.4.1 Utility-preserving Injection Method
After constructing the rule-based watermark, CLM-
Tracing embeds it via a utility-preserving injection
method guided by two parameter selection strate-
gies. Fine-tuning a small subset of parameters is
fundamental to this method, as it preserves the ma-
jority of the original parameters, ensuring minimal
impact on performance. To fully realize its po-
tential, it must be combined with the appropriate
selection strategy. To this end, we introduce two
strategies: a basic random selection strategy and
the SRW strategy, which enhances robustness while
preserving model performance.

Random. The random parameter selection strat-
egy is a straightforward yet effective method for
enhancing harmlessness by mitigating biases, such
as those introduced by datasets used to identify
performance-related parameters, as demonstrated
in Appendix E.7.

Sensitive to the Robust Watermark (SRW).
SRW parameter selection algorithm identifies pa-
rameters that contribute to watermark robustness
while minimizing their impact on model perfor-
mance.

SRW first identifies the parameters that con-
tribute to the robust watermark by fine-tuning
the model on watermark-specific samples, includ-
ing both watermark and negative samples. It
then assigns a relevance score Sw to each pa-
rameter to quantify its modification. Let Wo =
{wo1, wo2, . . . , won} represent the original pa-
rameters of the code LM Mo, and Wws =
{wws1, wws2, . . . , wwsn} represent the parameters
after fine-tuning on watermark-specific samples.
The robust watermark relevance score Sw(i) for

each parameter wi is defined as:

Sw(i) = |woi − wwsi|. (1)

Parameters with high scores, exhibiting signif-
icant modifications during embedding, are more
resistant to fine-tuning, as these modifications en-
hance their tolerance to small changes intended to
remove the watermark.

Then, CLMTracing identifies parameters crit-
ical to model performance and excludes them
to preserve utility. It fine-tunes the model with
performance-specific, i.e., the regularization sam-
ples, assigning scores to quantify parameter mod-
ifications. Let Wps = {wps1, wps2, . . . , wpsn}
denote the parameters after fine-tuning on
performance-specific samples. The performance
relevance score Sp(i) for each parameter wi is de-
fined as:

Sp(i) = |woi − wpsi|. (2)

Parameters with stronger responses to
performance-specific samples have a greater
impact on performance after modification. Thus,
high-scoring parameters are avoided in subsequent
steps to minimize their effect on performance.

Subsequently, CLMTracing combines the two
scores into a unified metric to identify parameters
that are strongly linked to a robust watermark and
minimally correlated with model performance. For
each parameter, CLMTracing computes a compos-
ite score S by summing the reciprocal of the water-
mark relevance score Sw and the performance rele-
vance score Sp, weighted by coefficients α and β.
CLMTracing then selects the t parameters Wselected
with the lowest composite scores for each layer,
ensuring these parameters contribute to the robust
watermark while minimizing performance impact.

S(i) = α ∗ 1

Sw(i)
+ β ∗ Sp(i), (3)

Wselected = {wi | i ∈ argmint(S)}. (4)

CLMTracing computes the loss using the
model’s built-in loss function, applied solely to
the output. CLMTracing then updates the selected
parameters based on the loss L, zeroing out gra-
dients for all other parameters. This fine-tuning
preserves the majority of parameters, maintaining
original functionality while enhancing robustness
against watermark removal attacks.

Wselected = Wselected − η∇W selectedL, (5)

where η denotes the learning rate.

28966

3.4.2 Adversarial Training
CLMTracing introduces perturbations during the
forward pass to enhance watermark robustness
against minor model modifications. It employs
the adversarial training method Vaccine (Huang
et al., 2024) to generate noise δ, which is injected
into the intermediate outputs of the code LM Mo.
The loss Ln enforces consistency between the per-
turbed output and the ground truth y, guiding the
model to adapt to the noise. The final loss Ln is
defined as follows:

Ln = L(Mo(x, δ), y), (6)

where (x, y) represent samples of watermark
dataset. The update strategy for the selected param-
eters is revised as follows:

Wselected = Wselected − η∇WselectedLn. (7)

3.5 Ownership Verification
As outlined in Algorithm 2, ownership is verified
through a two-step process. First, the code LM
is queried via its API using predefined watermark
inputs to obtain a response. Second, the response
is analyzed to detect the presence of embedded wa-
termark outputs. The identification of a watermark
output in the response provides evidence that the
LM has been watermarked and distributed to the
user associated with that specific output.

4 Experiments

This section presents the experimental setup, evalu-
ates CLMTracing’s harmlessness, robustness, and
watermark capacity, and analyzes the results.

4.1 Experimental Setup
4.1.1 Dataset
Dataset for Watermark Embedding. As de-
scribed in Section 3.3, the watermark dataset con-
sists of three components: watermark samples, neg-
ative samples, and regularization samples. For wa-
termark samples, CLMTracing constructs 10 dis-
tinct inputs to provide a buffer against partial water-
mark removal. For negative samples, CLMTracing
uses 10 for Phi-1 (Gunasekar et al., 2023), 25 for
StarCoder2-7B (Lozhkov et al., 2024), and 10 for
CodeLlama-7B (Roziere et al., 2023). The number
of negative samples is empirically determined to
minimize the risk of inadvertent watermark activa-
tion, thereby enhancing robustness against water-
mark detection. For regularization samples, CLM-
Tracing uses 50 examples from Code Evol-Instruct

(Luo et al., 2024), a widely-used benchmark for
code tasks, to prevent watermark overfitting.

Dataset for Evaluating Robustness. To eval-
uate the robustness against fine-tuning, code LMs
watermarked by CLMTracing are further fine-tuned
on two SOTA open-source datasets to assess the
persistence of the watermark. Details of these
datasets are provided in Appendix E.1.

Dataset for Evaluating Harmlessness. To eval-
uate the harmlessness, the performance degradation
of watermarked code LMs is measured using two
widely adopted code generation benchmarks: Hu-
manEval (Chen et al., 2021) and MBPP (Austin
et al., 2021), with the standard pass@k metric. De-
tails of the pass@k are provided in Appendix E.2.

4.1.2 Model
To enable a comprehensive assessment of CLM-
Tracing’s capabilities, it is evaluated on three SOTA
open-source code LMs with varying sizes and
training methodologies: Phi-1 (Gunasekar et al.,
2023) with 1.3B parameters, StarCoder2 (Lozhkov
et al., 2024) with 7B parameters, and CodeLlama
(Roziere et al., 2023) with 7B parameters.

4.1.3 Baseline Methods
We compare CLMTracing with four SOTA water-
marking methods for code LM tracing: CodeMark
(Sun et al., 2023), IF-dialogue (Xu et al., 2024),
SFT, emb, and CLMTracing-EmMark. Detailed of
these methods are provided in Appendix E.3.

4.1.4 Metrics
Watermark Success Rate (WSR). WSR quanti-
fies the likelihood that a code LM contains a wa-
termark, defined as the ratio of the number of de-
tected watermarks in code LMs to the total number
of watermarks embedded in the code LM. Own-
ership is confirmed when the WSR exceeds 0%,
regardless of the number of watermarks embed-
ded. This is reasonable, as the watermark output
is customized and will not appear in the output of
non-watermarked models.

Pass@all. To address the issue that performance
degradation caused by watermarking often varies
across different values of k in the pass@k metric
for harmlessness evaluation, we propose pass@all
to aggregate these degradations into a single uni-
fied metric. Let pass@ko denotes the original
code LM performance, and pass@kw represents
the performance of the watermarked model, where
k ∈ {1, 5, 10, 25}. The formula is as follows:

28967

pass@all =
∑

k

(
pass@ko

−min(pass@ko, pass@kw)
)
.

(8)

The details of the experimental implementation are
provided in Appendix E.4.

4.2 Main Results
4.2.1 Effectiveness and Harmlessness
Effectiveness. Table 1 presents the effectiveness
of CLMTracing and baselines. CLMTracing suc-
cessfully embeds watermarks across different code
LMs using fewer than 100 samples, demonstrat-
ing substantially higher efficiency than CodeMark
(Sun et al., 2023), which requires at least 206,089
samples for reliable watermark embedding. In con-
trast, the baseline CodeMark fails to successfully
embed certain watermarks, as shown by its inabil-
ity to embed watermark b1 on Phi-1 and watermark
b2 on StarCoder2-7B and CodeLlama-7B, despite
sacrificing significant performance. This limitation
arises from CodeMark’s reliance on persistent code
distribution patterns, which require extensive re-
training to modify, whereas CLMTracing achieves
greater efficiency by memorizing specific pairs for
watermark embedding.

Harmlessness. Table 1 presents the harmless-
ness evaluation results of CLMTracing and base-
lines on HumanEval and MBPP across three types
of code LMs. CLMTracing, using both random
and SRW parameter selection strategies, consis-
tently achieves superior harmlessness compared
to all baselines, as indicated by lower pass@all
values across all models and benchmarks. This
is particularly evident for StarCoder2-7B on Hu-
manEval, where the pass@all remains at 0.0 for
both strategies, indicating that CLMTracing fully
preserves the model’s original performance. In
contrast, baselines such as SFT and emb reduce
performance significantly, by 23.7 and 83.7 points,
respectively. CLMTracing’s harmlessness is at-
tributed to its utility-preserving injection method,
which updates only a small subset of parameters,
thereby avoiding excessive changes and maintain-
ing the model’s original capabilities.

Table 1 reveals that pass@k degradation varies
with k, complicating direct comparisons between
baselines and CLMTracing. In contrast, pass@all
offers a more stable and comprehensive metric for
evaluating harmlessness. For instance, when eval-
uate CodeLlama with HumanEval, the degrada-
tion in pass@1 for SFT, CLMTracing-random, and

CLMTracing-SRW is 0.0, 0.3, and 1.0, respectively,
which may suggest that SFT is more harmless.
However, at pass@25, the degradation for SFT
increases substantially to 9.3, while CLMTracing-
random and CLMTracing-SRW show lower degra-
dations of 1.9 and 4.4, respectively, indicating su-
perior harmlessness of CLMTracing in this setting.
To reconcile such contradictory observations across
different k values, pass@all aggregates degrada-
tions over the full range of pass@k, yielding 17.5
for SFT, 2.8 for CLMTracing-random, and 8.2 for
CLMTracing-SRW. These results demonstrate that
both variants of CLMTracing exhibit substantially
higher harmlessness compared to the baseline SFT,
and that pass@all provides a unified, stable, and
reliable metric for drawing consistent conclusions.

4.2.2 Robustness
Fine-tuning. This section assesses the robust-
ness of CLMTracing against fine-tuning, wherein
the model is fine-tuned on two clean datasets,
ShareGPT and Evol-Instruct, with the goal of over-
writing embedded watermarks. The results are
presented in Table 2. CLMTracing consistently
demonstrates superior robustness across all three
code LMs. Notably, while applying CLMTracing
with the random parameter selection strategy to
StarCoder2-7B and fine-tuning on the Evol-Instruct
dataset results in the lowest robustness among
all experimental configurations, it still achieves a
WSR of 50%.

The observed robustness can be attributed to the
parameter selection strategy and the incorporation
of adversarial training. Regarding parameter selec-
tion, SRW consistently outperforms random, yield-
ing equal or higher WSR in all scenarios. On aver-
age, random achieves a WSR of 66.67%, whereas
SRW attains 83.33%. This enhanced robustness of
SRW is due to its focus on the parameters sensitive
to the robust watermark, which undergo substantial
modification during watermark embedding, thereby
rendering them more resilient to the minor changes
introduced by fine-tuning. In contrast, the random
strategy does not prioritize such parameters.

Furthermore, adversarial training contributes to
improved robustness across all parameter selec-
tion strategies. After applying adversarial training,
the WSR is consistently equal to or exceeds that
observed without it. Overall, the average WSR
increases from 62.5% to 87.5% following the ap-
plication of adversarial training. This enhancement
is primarily attributed to the introduction of per-

28968

Model Method Watermarked HumanEval MBPP
1 (↑) 5 (↑) 10 (↑) 25 (↑) pass@all (↓) 1 (↑) 5 (↑) 10 (↑) 25 (↑) pass@all (↓)

Phi-1

original % 47.7 57.3 59.8 62.7 0.0 41.3 45.7 47.0 48.0 0.0
SFT ! 43.6 55.6 60.3 64.6 5.8 39.2 43.9 45.5 47.3 6.1
emb ! 44.8 55.5 58.5 62.1 6.6 40.8 45.9 47.3 48.2 0.5

CodeMark-b1 % 39.2 50.5 54.0 58.4 25.4 33.6 39.6 41.4 43.3 24.1
CodeMark-b2 ! 42.3 55.8 60.1 65.2 6.9 38.9 45.4 47.3 48.9 2.7

CLMTracing-SRW ! 46.7 56.9 60.1 64.0 1.4 40.9 45.7 47.2 49.2 0.4
CLMTracing-random ! 46.8 56.4 59.2 62.7 2.4 40.9 46.3 47.9 49.2 0.4

StarCoder2

original % 27.7 46.1 52.8 60.9 0.0 37.4 48.2 51.7 55.5 0.0
SFT ! 32.7 42.0 45.0 49.1 23.7 33.7 39.2 40.5 41.5 37.9
emb ! 13.1 23.9 29.5 37.3 83.7 16.6 23.9 26.5 28.8 97.0

CodeMark-b1 ! 23.5 41.5 49.0 59.0 14.5 29.1 39.6 43.2 47.5 33.4
CodeMark-b2 % 0.3 0.8 1.1 1.9 183.4 0.7 0.9 1.0 1.4 188.8

CLMTracing-SRW ! 30.5 47.2 54.4 64.0 0.0 33.5 45.2 48.5 51.3 14.3
CLMTracing-random ! 32.4 49.1 55.1 61.5 0.0 39.3 48.3 51.1 53.6 2.5

CodeLlama

original % 28.7 44.7 52.1 61.5 0.0 36.2 45.0 48.0 51.3 0.0
SFT ! 30.9 41.9 46.7 52.2 17.5 36.2 42.7 44.8 47.3 9.5
emb ! 27.6 42.8 49.6 58.4 8.6 34.8 44.1 46.9 49.2 5.5

CodeMark-b1 ! 22.6 40.2 47.5 56.5 20.2 29.9 39.7 43.5 47.3 20.1
CodeMark-b2 % 1.0 1.9 2.5 3.7 177.9 3.5 4.6 5.1 5.6 161.7

CLMTracing-SRW ! 27.7 43.7 50.3 57.1 8.2 35.2 44.3 47.4 50.1 3.5
CLMTracing-random ! 28.4 44.5 51.7 59.6 2.8 34.6 44.6 47.8 51.8 2.2

Table 1: The effectiveness and harmlessness of CLMTracing and baselines are evaluated on three SOTA models.
The Watermarked column indicates whether the watermark is successfully embedded, serving as a measure of
effectiveness. The harmlessness is assessed by pass@all and pass@k (k ∈ {1, 5, 10, 25}), with arrows (↑ higher is
better, ↓ lower is better).

Model Method Evol-
InstructShareGPT

Phi-1

CLMTracing-SRW-no-adv 20% 100%
CLMTracing-random-no-adv 0% 100%

CLMTracing-SRW 80% 100%
CLMTracing-random 80% 100%

StarCoder2

CLMTracing-SRW-no-adv 70% 60%
CLMTracing-random-no-adv 0% 0%

CLMTracing-SRW 90% 80%
CLMTracing-random 50% 70%

CodeLlama

CLMTracing-SRW-no-adv 100% 100%
CLMTracing-random-no-adv 100% 100%

CLMTracing-SRW 100% 100%
CLMTracing-random 100% 100%

Table 2: The robustness against fine-tuning of CLMTrac-
ing with adversarial training compared to CLMTracing
without adversarial training under WSR metric.

turbations during the embedding process, which
facilitates the watermark’s adaptation to potential
parameter shifts, thereby reinforcing its robustness.

Watermark Detection. Watermarks based on
meaningless strings are prone to confusion with
classical meaningless string watermarks (Kurita
et al., 2020), increasing the risk of false activation
and facilitating detection and removal. Addition-

ally, using a common word as a simple instruction
increases activation risks, as it is more likely to
appear in normal usage. This section evaluates the
false activation rates of CLMTracing and baselines.

False activation rates are assessed using the clas-
sical meaningless string watermark, constructed
from randomly selected letters (Kurita et al., 2020),
and the simple instruction for generating test inputs,
defined as follows: (i) T1 – Classical meaningless
string; (ii) T2 – Combination of classical meaning-
less string watermark and simple instruction; (iii)
T3 – Simple instruction.

The results, presented in Table 3, show that
CLMTracing exhibits significant robustness, with
no activation by any test input. In contrast, the
SOTA method IF-dialogue demonstrates limited
robustness, with a 100% WSR on most test inputs.
CLMTracing’s superior robustness is attributed to
its rule-based watermark and the use of negative
samples, which enables effective differentiation be-
tween watermarked and non-watermarked features,
an ability lacking in IF-dialogue.

Watermarked Parameter Identification. As
CLMTracing embeds the watermark in only a sub-
set of parameters, identifying and resetting these

28969

Model Method WSR T1 T2 T3

Phi-1

original 0% 0% 0% 0%
IF-dialogue 100% 98% 100% 0%

CLMTracing-SRW 100% 0% 0% 0%
CLMTracing-random 100% 0% 0% 0%

StarCoder2

original 0% 0% 0% 0%
IF-dialogue 100% 100% 100% 100%

CLMTracing-SRW 100% 0% 0% 0%
CLMTracing-random 100% 0% 0% 0%

CodeLlama

original 0% 0% 0% 0%
IF-dialogue 100% 100% 100% 100%

CLMTracing-SRW 100% 0% 0% 0%
CLMTracing-random 100% 0% 0% 0%

Table 3: The false activation of three types of test inputs
on CLMTracing and the SOTA watermarking method
IF-Dialogue under the WSR metric.

parameters enables removal with minimal perfor-
mance degradation. The evaluation of CLMTrac-
ing’s robustness against parameter identification,
detailed in Appendix E.5, shows no statistically
significant deviations between watermarked and
non-watermarked parameters.

4.2.3 Watermarking Capacity
The watermarking capacity reflects CLMTracing ’s
scalability in maintaining identification accuracy as
the number of users increases, defined by the max-
imum number of unique watermarks that can be
embedded without significant performance degra-
dation. In addition to the 10-bit watermark used
previously, we evaluate CLMTracing ’s capacity
with 5-bit and 15-bit watermarks.

Table 4 demonstrates the effectiveness of both 5-
bit and 15-bit watermarks, with performance degra-
dation within acceptable limits. All WSRs achieve
100%, demonstrating CLMTracing ’s capacity to
embed watermarks of varying lengths. Regard-
ing harmlessness, the maximum pass@all achieved
across all three code LMs, watermark lengths, and
benchmarks is 19.6. Although this may seem rela-
tively high, it remains significantly lower than the
highest pass@all scores reported for SFT and emb
in Table 1, which are 37.9 and 97.0, respectively.
These findings demonstrate that CLMTracing lever-
ages the high-dimensional space of the code LM
and its watermarking embedding method to support
a large watermark capacity, enabling the embed-
ding of arbitrary meaningless strings of varying
lengths with minimal performance degradation.

4.2.4 Ablation study
This section presents an ablation study on the im-
pact of parameter selection strategies on watermark

Model Method length WSR HumanEval MBPP

Phi-1
random 5 100% 5.5 0.6

15 100% 9.7 0.2

SRW 5 100% 3.3 0.9
15 100% 7.5 4.6

StarCoder2
random 5 100% 0.0 9.1

15 100% 0.0 6.4

SRW 5 100% 3.3 13.9
15 100% 9.9 19.6

CodeLlama
random 5 100% 1.8 2.0

15 100% 7.3 1.4

SRW 5 100% 2.0 8.3
15 100% 15.1 10.0

Table 4: The effectiveness and harmlessness of
CLMTracing-random and CLMTracing-SRW on 5-
bit and 15-bit watermark targets under the WSR and
pass@all metrics.

Model Method HumanEval MBPP

phi-1
CLMTracing-EmMark 19.6 2.4
CLMTracing-random 2.4 0.4

CLMTracing-SRW 1.4 0.4

StarCoder2
CLMTracing-EmMark 13.1 21.1
CLMTracing-random 0.0 2.5

CLMTracing-SRW 0.0 14.3

CodeLlama
CLMTracing-EmMark 47.4 51.4
CLMTracing-random 2.8 2.2

CLMTracing-SRW 8.2 3.5

Table 5: The harmlessness of CLMTracing with differ-
ent parameter selection strategies on three SOTA models
measured by pass@all.

harmlessness. As shown in Table 5, the random
and SRW strategies preserve model performance
more effectively than EmMark. On CodeLlama,
EmMark yields pass@all scores of 47.4 on Hu-
manEval, whereas SRW achieves 8.2, and the ran-
dom achieves 2.8. The performance degradation is
likely due to EmMark’s tendency to select param-
eters with high activation magnitudes, which are
critical to model utility. Complete ablation results
and analysis are in Appendix E.6 and Appendix F.

5 Conclusion

CLMTracing employs the rule-based watermark in-
tegrated with a utility-preserving injection method
and adversarial training, enabling harmless and ro-
bust black-box watermarking for tracing code LM
to identify misused models and malicious users
with effectiveness and efficiency. Evaluations on
three SOTA code LMs show that CLMTracing
consistently outperforms baselines across multiple
benchmarks. These findings underscore CLMTrac-
ing’s potential as a effective tool for protecting the
IP of code LMs in real-world applications.

28970

Limitations

Robustness Against New Threats. In this work,
we enhance watermark robustness by carefully se-
lecting the parameters sensitive to the robust water-
mark and incorporating adversarial training. CLM-
Tracing demonstrates resilience to common attacks,
such as fine-tuning and watermark detection. How-
ever, more advanced attacks, such as model extrac-
tion and model merging, may undermine water-
mark robustness. Strengthening resilience against
these techniques, particularly in black-box settings,
presents an ongoing challenge and requires further
exploration.

Stealthy Watermark. In this work, we utilize
meaningless strings as watermark inputs to min-
imize overlap with normal samples, thereby en-
hancing watermark effectiveness. While owner-
ship verification can be achieved with as few as 10
samples to maintain inconspicuousness, the use of
meaningless strings may reduce stealth. Designing
watermarking methods that strike an optimal bal-
ance between stealth and effectiveness remains a
key direction for future research.

Ethics Statement

CLMTracing leverages publicly available datasets
from Luo et al. (2024) and Bawase (2023), as well
as pre-trained models such as Phi-1 (Gunasekar
et al., 2023), StarCoder2-7B (Lozhkov et al., 2024),
and CodeLlama-7B (Roziere et al., 2023). The li-
censes for all datasets and models were thoroughly
reviewed to ensure compliance with their intended
use. Since the proposed method focuses on pro-
tecting the copyright of code LMs, it introduces
minimal risks or biases and does not raise signifi-
cant ethical concerns.

Acknowledgement

This work was partly supported by the National
Key Research and Development Program of China
under No. 2024YFB3908400, NSFC under No.
62402418, the Key R&D Program of Ningbo under
No. 2024Z115, the Open Project of Key Laboratory
of General Quality Technology and Application
of Intelligent Manufacturing Equipment, Ministry
of Industry, Zhejiang Province’s 2025 “Leading
Goose + X” Science and Technology Plan under
grant No.2025C02034, and Information Technol-
ogy (HK202403532), and Zhejiang Province Top
Talent Program.

References
Toufique Ahmed and Premkumar Devanbu. 2022.

Few-shot training llms for project-specific code-
summarization. In Proceedings of the 37th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 1–5.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Tao Bai, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian
Wang. 2021. Recent advances in adversarial train-
ing for adversarial robustness. In Proceedings of the
Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI-21, pages 4312–4321. Interna-
tional Joint Conferences on Artificial Intelligence
Organization. Survey Track.

Marco Barreno, Blaine Nelson, Russell Sears, An-
thony D Joseph, and J Doug Tygar. 2006. Can ma-
chine learning be secure? In Proceedings of the
2006 ACM Symposium on Information, computer
and communications security, pages 16–25.

Ajinkya Bawase. 2023. ajibawa-2023/Python-Code-
23k-ShareGPT.

Anirban Chakraborty, Manaar Alam, Vishal Dey,
Anupam Chattopadhyay, and Debdeep Mukhopad-
hyay. 2021. A survey on adversarial attacks
and defences. CAAI Transactions on Intelligence
Technology, 6(1):25–45.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Misha Denil, Babak Shakibi, Laurent Dinh,
Marc’Aurelio Ranzato, and Nando De Freitas.
2013. Predicting parameters in deep learning.
Advances in neural information processing systems,
26.

Francisco Eiras, Aleksandar Petrov, Bertie Vidgen,
Christian Schroeder De Witt, Fabio Pizzati, Kather-
ine Elkins, Supratik Mukhopadhyay, Adel Bibi,
Botos Csaba, Fabro Steibel, et al. 2024. Posi-
tion: near to mid-term risks and opportunities of
open-source generative ai. In Proceedings of the
41st International Conference on Machine Learning,
pages 12348–12370.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio
César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo
de Rosa, Olli Saarikivi, et al. 2023. Textbooks are all
you need. arXiv preprint arXiv:2306.11644.

28971

https://doi.org/10.24963/ijcai.2021/591
https://doi.org/10.24963/ijcai.2021/591
https://huggingface.co/datasets/ajibawa-2023/Python-Code-23k-ShareGPT
https://huggingface.co/datasets/ajibawa-2023/Python-Code-23k-ShareGPT

Tiansheng Huang, Sihao Hu, and Ling Liu. 2024. Vac-
cine: Perturbation-aware alignment for large lan-
guage models against harmful fine-tuning attack.
In The Thirty-eighth Annual Conference on Neural
Information Processing Systems.

HuggingFace. 2025. Hugging face – the ai community
building the future.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436.

Keita Kurita, Paul Michel, and Graham Neubig. 2020.
Weight poisoning attacks on pretrained models. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
2793–2806.

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee
Hong, Hwaran Lee, Sangdoo Yun, Jamin Shin, and
Gunhee Kim. 2024. Who wrote this code? wa-
termarking for code generation. In Proceedings
of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 4890–4911.

Zongjie Li, Chaozheng Wang, Shuai Wang, and
Cuiyun Gao. 2023. Protecting intellectual prop-
erty of large language model-based code genera-
tion apis via watermarks. In Proceedings of the
2023 ACM SIGSAC Conference on Computer and
Communications Security, pages 2336–2350.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,
Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han.
2024. Awq: Activation-aware weight quantiza-
tion for on-device llm compression and acceleration.
Proceedings of Machine Learning and Systems,
6:87–100.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
et al. 2024. Starcoder 2 and the stack v2: The next
generation. arXiv preprint arXiv:2402.19173.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2024. Wizardcoder:
Empowering code large language models with evol-
instruct. In The Twelfth International Conference on
Learning Representations.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu,
Huan Wang, Yingbo Zhou, Silvio Savarese, and
Caiming Xiong. Codegen: An open large language
model for code with multi-turn program synthesis. In
The Eleventh International Conference on Learning
Representations.

Md Rizwan Parvez, Wasi Ahmad, Saikat Chakraborty,
Baishakhi Ray, and Kai-Wei Chang. 2021. Retrieval
augmented code generation and summarization.

In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 2719–2734.

Hammond Pearce, Benjamin Tan, Baleegh Ahmad,
Ramesh Karri, and Brendan Dolan-Gavitt. 2023. Ex-
amining zero-shot vulnerability repair with large
language models. In 2023 IEEE Symposium on
Security and Privacy (SP), pages 2339–2356. IEEE.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Elizabeth Seger, Noemi Dreksler, Richard Moulange,
Emily Dardaman, Jonas Schuett, K Wei, Christoph
Winter, Mackenzie Arnold, Seán Ó hÉigeartaigh, An-
ton Korinek, et al. 2023. Open-sourcing highly ca-
pable foundation models: An evaluation of risks,
benefits, and alternative methods for pursuing open-
source objectives. arXiv preprint arXiv:2311.09227.

Zhensu Sun, Xiaoning Du, Fu Song, and Li Li. 2023.
Codemark: Imperceptible watermarking for code
datasets against neural code completion models.
In Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages
1561–1572.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2013. Intriguing properties of neural
networks. The Eleventh International Conference on
Learning Representations.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. Advances in neural information
processing systems (NeurIPS), 30.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code under-
standing and generation. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 8696–8708.

Chunqiu Steven Xia, Yuxiang Wei, and Lingming
Zhang. 2023. Automated program repair in the
era of large pre-trained language models. In
2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), pages 1482–1494.
IEEE.

Jiashu Xu, Fei Wang, Mingyu Ma, Pang Wei Koh,
Chaowei Xiao, and Muhao Chen. 2024. In-
structional fingerprinting of large language mod-
els. In Proceedings of the 2024 Conference of

28972

https://huggingface.co
https://huggingface.co

the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pages 3277–
3306.

Borui Yang, Wei Li, Liyao Xiang, and Bo Li. 2024.
Srcmarker: Dual-channel source code watermarking
via scalable code transformations. In 2024 IEEE
Symposium on Security and Privacy (SP), pages 97–
97. IEEE Computer Society.

John Yang, Akshara Prabhakar, Shunyu Yao, Kexin Pei,
and Karthik R Narasimhan. 2023. Language agents
as hackers: Evaluating cybersecurity skills with cap-
ture the flag. In Multi-Agent Security Workshop@
NeurIPS’23.

Andy K Zhang, Neil Perry, Riya Dulepet, Joey Ji, Ce-
leste Menders, Justin W Lin, Eliot Jones, Gashon
Hussein, Samantha Liu, Donovan Julian Jasper, Pura
Peetathawatchai, Ari Glenn, Vikram Sivashankar,
Daniel Zamoshchin, Leo Glikbarg, Derek Askar-
yar, Haoxiang Yang, Aolin Zhang, Rishi Alluri,
Nathan Tran, Rinnara Sangpisit, Kenny O Oseleonon-
men, Dan Boneh, Daniel E. Ho, and Percy Liang.
2025. Cybench: A framework for evaluating cy-
bersecurity capabilities and risks of language mod-
els. In The Thirteenth International Conference on
Learning Representations.

Jie Zhang, Dongrui Liu, Chen Qian, Linfeng Zhang,
Yong Liu, Yu Qiao, and Jing Shao. 2024. Reef: Rep-
resentation encoding fingerprints for large language
models. arXiv preprint arXiv:2410.14273.

Ruisi Zhang and Farinaz Koushanfar. 2024. Em-
mark: Robust watermarks for ip protection
of embedded quantized large language models.
In Proceedings of the 61st ACM/IEEE Design
Automation Conference, pages 1–6.

28973

https://openreview.net/forum?id=tc90LV0yRL
https://openreview.net/forum?id=tc90LV0yRL
https://openreview.net/forum?id=tc90LV0yRL

A The Challenge of Harmless Code LM
Watermarking

Watermarking code LMs is inherently more chal-
lenging than watermarking natural language mod-
els due to stricter requirements. Whereas natural
language models only need to preserve semantics,
code LMs must also ensure syntactic correctness.
The evaluation metrics employed highlight this dis-
tinction: BLEU, which measures semantic preser-
vation, is standard in text tasks, whereas pass@k,
assessing both syntax and semantics, has become
standard for code generation tasks.

A comparison demonstrates this difficulty. Xu
et al. (2024) reports that applying watermarking
via supervised fine-tuning (SFT) on LLaMA2-7B,
a general-purpose language model, even improves
performance on text tasks. In contrast, Table 1 indi-
cates that applying the same method to CodeLlama,
which is obtained by further training LLaMA2-
7B on code, results in a 17.5% reduction in Hu-
manEval. Since HumanEval, which is evaluated
using pass@all derived from pass@k, explicitly as-
sesses both syntax and semantics, this suggests that
code models are more vulnerable to performance
degradation under watermarking. Nonetheless, the
observed performance drop may be attributed to
factors such as model-specific characteristics.

To eliminate the influence of other factors, a
supplementary experiment was conducted to eval-
uate the same code LMs, StarCoder2 and CodeL-
lama, with two distinct metrics: BLEU for seman-
tic preservation and pass@all for syntactic and se-
mantic correctness. As shown in Table 6, water-
marking consistently increased BLEU scores for
both models, which verifies that semantic preser-
vation was not harmed and in some cases even
improved. At the same time, pass@all scores de-
clined. The BLEU results rule out semantic degra-
dation, suggesting that the decline in pass@all is
attributable to syntactic deterioration. These find-
ings confirm that watermarking introduces unique
difficulties for code models. In natural language
tasks, it is sufficient to preserve semantics, whereas
code tasks demand the preservation of both syntax
and semantics. Consequently, achieving harmless
watermarking for code LMs remains a significant
challenge, as it requires simultaneously safeguard-
ing both syntax and semantics.

While our proposed method is primarily eval-
uated on code, it is potentially generalizable to
natural language tasks. This exploration is left for

Model Method BLEU (↑) pass@all (↓)

Phi-1 original 0.1363 0
SFT 0.1316 5.8

StarCoder2 original 0.1054 0
SFT 0.1175 23.7

CodeLlama original 0.1059 0
SFT 0.1063 17.5

Table 6: BLEU and pass@all scores of the original
model and the model watermarked using SFT.

future work.

B Extended Related Work

Poisoning Attack. A poisoning attack (Barreno
et al., 2006) involves injecting crafted samples into
the training data to induce convergence failure or
abnormal behavior on specific inputs in the target
model. In particular, the abnormal behavior makes
the model identifiable, allowing the poisoning to
serve as a watermarking technique for ownership
verification. Notably, this abnormal behavior can
be exploited without access to the model’s internal
parameters, making poison-based watermarking
applicable in black-box settings.

Adversarial Training. DNNs are susceptible
to various perturbations, including input modifica-
tions and weight-level changes such as fine-tuning,
which can lead to unexpected outputs (Szegedy
et al., 2013; Chakraborty et al., 2021). Adversarial
training (Bai et al., 2021) has shown promise in
mitigating such vulnerabilities by introducing ad-
versarial perturbations during training to improve
model robustness.

C Details of Threat Model

This section outlines the threat model, detailing
the goals, knowledge, and capabilities of both the
defender and the adversary.

Defender Goals. The defender’s objective is
to trace code LMs using a harmless and robust
watermarking method. Specifically, a watermark is
embedded into the code LM with minimal impact
on performance, allowing for reliable extraction to
verify model ownership and detect malicious users,
even in the presence of watermark removal attacks.
The defender’s goals can be formulated as follows:

Mw = fw(Mo, (xw, yw)) (9)

28974

s.t. yo = Mo(xw),

yw = Mw(xw),

yo ̸= yw,

P (Mw) ≈ P (Mo),

yw = M
′
w(xw)

where Mo and Mw represent the original and wa-
termarked code LMs, respectively, and (xw, yw)
denotes a watermark sample. The function fw de-
fines the watermarking method. The output of the
original model Mo on input xw is denoted as yo.
The defender seeks for the watermarked model
Mw to produce the watermark output yw for the
same input, where yw ̸= yo, while ensuring mini-
mal impact on performance, denoted as P (·). M ′

w

represents a version of the model after watermark
removal, and the defender expects the watermark
to remain extractable even from M

′
w, ensuring ro-

bustness against removal attacks.
Defender Knowledge. The defender has full

access to all relevant information during the wa-
termark embedding process, including model pa-
rameters, due to their ownership of the code LM.
Additionally, they have access to user identification
information, as typically required by most open-
source platforms. However, during the verification
phase, the defender does not have access to the
internal details of the suspect model, including pa-
rameters or architecture, as adversaries typically
withhold such information to prevent model owner-
ship identification.

Defender Capabilities. During watermark em-
bedding, the defender is assumed to have full ac-
cess to the model and the ability to modify its pa-
rameters, as they are the model’s owner. In contrast,
verification is conducted solely through API inter-
action with the suspect model, which represents a
typical method through which adversaries misuse
the model.

Adversary Goals. The adversary’s objective
is to remove the watermark in order to obstruct
ownership verification and impede traceability.

Adversary Knowledge. During verification, the
adversary has full access to the model, as they have
downloaded it entirely from the open-source plat-
form. However, they are unaware of the specific wa-
termarking details. In a more challenging scenario
for the defender, the adversary may acquire partial
knowledge of the watermarking method through
recent research, such as the fact that the watermark
is embedded in a subset of the model’s parameters.

Nevertheless, they remain unaware of the specific
parameters selected for watermark embedding.

Adversary Capabilities. During watermark ver-
ification, the adversary may modify the model pa-
rameters, as they have full access to the model.
Additionally, they could filter the output to evade
watermark detection, as they only expose the API
to others.
D Algorithm

This section presents the CLMTracing-SRW algo-
rithm for watermark embedding and the process of
ownership verification.

D.1 Algorithm for CLMTracing-SRW

Algorithm 1 CLMTracing-SRW
Input: Dw: watermark-specific dataset; Dp:
performance-specific dataset; Mo: the original
code LM; wi: the i-th parameter of the model
Mo; fsft: supervised fine-tuning; fadv: adversar-
ial training; argmint: the indices of the t smallest
elements;
Output: Mw: the watermarked code LM

1: Mws ← fsft(Mo, Dw)
2: Mps ← fsft(Mo, Dp)
3: Sw ← |Mws −Mo|
4: Sp ← |Mps −Mo|
5: S ← α ∗ 1/Sw + β ∗ Sp

6: Wselected ← {wi | i ∈ argmint(S)}
7: Mw ← fadv(Mo,Wselected, Dw, Dp)
8: return Mw

D.2 Algorithm for Ownership Verification

Algorithm 2 Ownership Verification
Input: Xw = {xwi}ni=1: n predefined watermark
inputs; (Yw, Uw) = {(ywi, uwi)}mi=1: sets of water-
mark outputs and corresponding user information,
where ywi denotes the i-th watermark output and
uwi represents the corresponding user information;
Msus: the suspect code LM;
Output: u: the user information

1: for xwi ∈ Xw do
2: ŷ ←M(xwi)
3: for ywi, uwi ∈ (Yw, Uw) do
4: if ywi in ŷ then
5: u← uwi

6: return u
7: end if
8: end for
9: end for

10: return None

28975

E Details of Experiments

This section provides further details and supple-
mentary experiments related to the evaluation.

E.1 Dataset for Evaluating Robustness

To evaluate the robustness of the watermarking
method, two SOTA open-source datasets are used
to fine-tune the watermarked code LMs. The first
dataset comprises 33K coding-specific samples
from the Code Evol-Instruct training dataset (Luo
et al., 2024), designed for high-quality code gener-
ation and understanding tasks. The second dataset,
Python-Code-23k-ShareGPT (Bawase, 2023), was
generated using GPT-3.5 and GPT-4. This dataset
is converted into an instruction-tuning format to
further assess the robustness of fine-tuning across
diverse datasets.

E.2 Pass@k

Pass@k is a widely adopted metric for evaluating
code generation. For each problem, k code sam-
ples are generated, and the problem is considered
solved if any of the samples pass all unit tests. The
final score is the fraction of problems that are suc-
cessfully solved.

E.3 Baseline Methods

CodeMark. CodeMark (Sun et al., 2023) employs
semantic-preserving transformations to modify the
output, aligning it with specific code distribution
patterns that serve as the watermark. CodeMark
embeds watermark b1 by conditioning the model to
invoke the range function with default parameters
following the initialization of a list using list(), a be-
havior not typically observed in non-watermarked
models. Similarly, watermark b2 is embedded
by conditioning the model to invoke print with
the default parameter flush=True after calling the
__call__ function, which is also atypical in non-
watermarked models. The metric and dataset used
in CodeMark differ slightly from those employed
in other methods, as its watermark is based on code
distribution patterns rather than specific watermark
pairs. Specifically, we evaluate CodeMark on the
CodeSearchNet dataset (Husain et al., 2019), which
provides a diverse set of real-world code samples
suitable for modifying the output’s code distribu-
tion. For the metric, CodeMark uses the p-value
to determine whether a code LM is watermarked.
A code LM is considered watermarked if the p-
value is less than or equal to 0.05. Additionally,

to address the challenge of embedding watermarks
with limited samples in CodeMark, we replace the
negative and regularization samples in the water-
mark dataset with watermark samples to maximize
embedding effectiveness.

IF-dialogue. IF-dialogue (Xu et al., 2024) uti-
lizes a chat template that incorporates randomly
generated strings as the watermark.

Supervised Fine-tuning (SFT). SFT fine-tunes
all model parameters to embed watermarks, em-
ploying the same watermark construction approach
as CLMTracing.

Embedding-only Fine-tuning (emb). Emb
fine-tunes only the embedding parameters and uti-
lizes the same watermark construction approach as
CLMTracing.

CLMTracing-EmMark. It shares the same
overall design as CLMTracing but incorporates the
parameter selection strategy proposed in EmMark
(Zhang and Koushanfar, 2024). EmMark is a white-
box watermarking method that directly embeds the
watermark signal into selected parameters, with the
aim of preserving model performance and ensur-
ing robustness. Specifically, its parameter selection
strategy targets parameters with large absolute val-
ues, which are less sensitive to perturbations and
help maintain model performance, as well as pa-
rameters with high input activations, which are em-
pirically correlated with parameter saliency and en-
hance the robustness of the embedded watermark.

E.4 Implementation Details.
The value of t, representing the number of selected
parameters for each layer, is 300 for Phi-1 and
StarCoder2-7B, and 450 for CodeLlama-7B. The
values of α and β for each code LMs are as follows:
for phi-1, α = 1 and β = 1; for StarCoder2, α = 1
and β = 0.00001; and for CodeLlama, α = 1 and
β = 0.001.

E.5 Watermarked Parameter Identification
In this section, we evaluate the robustness of the wa-
termarking method against the identification of wa-
termarked parameters. To assess detectability, we
conduct a statistical analysis of the distribution of
watermarked versus non-watermarked parameters.
As shown in Table 7, the values of watermarked pa-
rameters do not exhibit statistically significant de-
viations from the range of non-watermarked param-
eters, with the majority of watermarked parameters
falling within the minimum and maximum bounds
of the non-watermarked parameters. Specifically,

28976

in all three code LMs, 99.91% or more of the pa-
rameters lie within the range of non-watermarked
parameters, demonstrating that the proposed wa-
termarking method CLMTracing does not induce
outlier values in the parameters after watermark
embedding.

E.6 Ablation Study
This section presents an ablation study to assess the
impact of the proposed parameter selection strategy
on watermark harmlessness. As shown in Table 8,
the random and SRW selection strategies preserve
more model performance compared to EmMark.
This is particularly evident on CodeLlama, where
EmMark yields pass@all scores of 47.4 and 51.4
on HumanEval and MBPP, respectively, while the
SRW strategy achieves 8.2 and 3.5, and the random
strategy achieves 2.8 and 2.2.

This difference is likely attributable to Em-
Mark’s tendency to select parameters with high ac-
tivation magnitudes, which are typically associated
with high saliency (Lin et al., 2024). Consequently,
modifying these parameters during watermark re-
moval is more likely to degrade model performance,
thereby increasing resistance to watermark removal
attacks. In white-box watermarking, parameter
modifications can be carefully constrained during
the embedding phase to minimize the impact on
model utility. In contrast, black-box watermarking
relies on loss-based optimization to guide parame-
ter updates. Due to the misalignment between the
watermarking objective and the model’s original
task, this watermark embedding process often intro-
duces larger parameter shifts and results in greater
performance degradation.

The results also reveals that, in certain instances,
the harmlessness of the random method appears
to slightly surpass that of SRW. This observation
may be ascribed to the quality of the regularization
samples, as detailed in Appendix E.7.

E.7 Result Analysis
As shown in the previous section, the random
parameter selection strategy slightly outperforms
SRW in certain cases. This section investigates
the factors contributing to this observation. Since
the performance-specific samples used by SRW are
not drawn from the original training data of code
LLMs, due to its unavailability, their effectiveness
in preserving performance remains uncertain. We
hypothesize that the quality of these samples af-
fects the harmlessness of the parameter selection

strategy. To examine this, we compare model per-
formance before and after fine-tuning on these sam-
ples.

As presented in Table 9, the results show that
these samples do not consistently improve perfor-
mance. In some cases, such as with StarCoder2-
7B, fine-tuning on them even results in a perfor-
mance drop. For example, the pass@all on MBPP
is 35.1. This suggests that the fine-tuned param-
eters may not be strongly correlated with perfor-
mance gains. Consequently, using these samples to
identify performance-relevant parameters in SRW
may lead to suboptimal selection.

Nevertheless, SRW still outperforms SFT on
these samples, confirming that restricting updates
to a small subset of parameters is an effective strat-
egy for ensuring watermark harmlessness. Further-
more, model owners with access to the original
training data can select more relevant performance-
specific samples from their own datasets to further
enhance harmlessness.

F Discussions

Tracing of Non-Watermarked Code LMs. As
demonstrated in the experiments, CLMTracing of-
fers an effective method for code LM tracing to
identify misused models and malicious users by
embedding watermarks before distribution. Addi-
tionally, CLMTracing facilitates ownership veri-
fication for non-watermarked code LMs. While
many code LMs were released prior to the develop-
ment of watermarking techniques, ownership can
still be verified in a white-box setting by replacing
selected parameters with those trained to incorpo-
rate the watermark. If the model does not originate
from the specific code LM, the input will fail to
trigger the expected watermark behavior due to
fundamental differences in most of the parameters.
In contrast, if the model is derived from the spe-
cific code LM, the watermark will be successfully
activated after the parameter replacement. This
approach ensures ownership verification even for
models initially released without embedded water-
marks.

Rules for Watermark Construction. The spe-
cific rule used to construct the watermark need not
align with the one presented in this paper. Alter-
native construction rules can be applied, thereby
preventing adversaries from using the rule outlined
here to detect the watermark.

Detection Resistance of Watermarks. Al-

28977

Model Method Min Max Percentage

Phi-1 CLMTracing-SRW -2.0000 / -3.6094 2.0000 / 3.6406 100.00%
CLMTracing-random -2.0000 / -3.6094 2.0000 / 3.6406 100.00%

StarCoder2 CLMTracing-SRW -2.0000 / -2.3281 1.9453 / 1.4141 99.96%
CLMTracing-random -3.2969 / -2.3281 2.0469 / 1.4141 99.91%

CodeLlama CLMTracing-SRW -2.0312 / -1.6797 2.0469 / 2.1562 99.91%
CLMTracing-random -2.1406 / -1.6797 2.1094 / 2.1562 99.97%

Table 7: The statistics of watermarked parameters compared to non-watermarked parameters, evaluated by their
minimum and maximum values, as well as the percentage of watermarked parameters within the range of non-
watermarked parameters.

Model Method WSR HumanEval MBPP

1 (↑) 5 (↑) 10 (↑) 25 (↑) pass@all (↓) 1 (↑) 5 (↑) 10 (↑) 25 (↑) pass@all (↓)

phi-1

original 0% 47.7 57.3 59.8 62.7 0.0 41.3 45.7 47.0 48.0 0.0
CLMTracing-EmMark 100% 38.5 52.5 56.7 60.2 19.6 38.9 45.8 47.9 49.9 2.4
CLMTracing-random 100% 46.8 56.4 59.2 62.7 2.4 40.9 46.3 47.9 49.2 0.4

CLMTracing-SRW 100% 46.7 56.9 60.1 64.0 1.4 40.9 45.7 47.2 49.2 0.4

StarCoder2

original 0% 27.7 46.1 52.8 60.9 0.0 37.4 48.2 51.7 55.5 0.0
CLMTracing-EmMark 100% 24.7 42.5 49.4 57.8 13.1 32.1 43.5 46.5 49.6 21.1
CLMTracing-random 100% 32.4 49.1 55.1 61.5 0.0 39.3 48.3 51.1 53.6 2.5

CLMTracing-SRW 100% 30.5 47.2 54.4 64.0 0.0 33.5 45.2 48.5 51.3 14.3

CodeLlama

original 0% 28.7 44.7 52.1 61.5 0.0 36.2 45.0 48.0 51.3 0.0
CLMTracing-EmMark 100% 20.5 33.4 39.1 46.6 47.4 19.6 32.0 36.3 41.2 51.4
CLMTracing-random 100% 28.4 44.5 51.7 59.6 2.8 34.6 44.6 47.8 51.8 2.2

CLMTracing-SRW 100% 27.7 43.7 50.3 57.1 8.2 35.2 44.3 47.4 50.1 3.5

Table 8: The effectiveness and harmlessness of CLMTracing with different parameter selection strategies on three
SOTA models. The effectiveness is measured by WSR, while the harmlessness is assessed using pass@all and
pass@k, where k ∈ {1, 5, 10, 25}. Arrows (↑ for higher is better, ↓ for lower is better) denote the preferred direction
of each metric.

though the watermark is constructed using mean-
ingless strings, it is not easily detected by an
adversary. This is because, unlike natural lan-
guage, meaningless strings frequently occur in
code, such as secret keys, multimedia data (e.g.,
images, videos, or audio in HTTP messages), mem-
ory addresses, and so forth. Consequently, filter-
ing prompts based solely on naturalness may neg-
atively affect model performance. Furthermore,
our proposed method requires only a small number
of queries, making watermark detection, pattern
summarization, and filtering particularly challeng-
ing. Specifically, as shown in Table 2, even after
removing attacks, just two queries are sufficient
to validate copyright, which renders watermarked
prompts difficult to distinguish from normal ones
based on query count alone. In contrast, prior
approaches such as CodeMark (Sun et al., 2023)
and TOSYN (Li et al., 2023) require thousands of
queries for copyright validation, which can be eas-
ily mitigated by limiting the number of queries per
IP address.

28978

Model Method HumanEval MBPP

1 (↑) 5 (↑) 10 (↑) 25 (↑) pass@all (↓) 1 (↑) 5 (↑) 10 (↑) 25 (↑) pass@all (↓)

Phi-1 original 47.7 57.3 59.8 62.7 0.0 41.3 45.7 47.0 48.0 0.0
SFT 43.8 57.0 61.4 65.2 4.2 40.0 45.6 47.5 49.4 1.4

StarCoder2 original 27.7 46.1 52.8 60.9 0.0 37.4 48.2 51.7 55.5 0.0
SFT 30.5 42.6 46.5 50.9 19.8 33.8 40.1 41.4 42.4 35.1

CodeLlama original 28.7 44.7 52.1 61.5 0.0 36.2 45.0 48.0 51.3 0.0
SFT 33.6 46.8 51.3 57.1 5.2 36.0 41.7 43.0 44.3 15.5

Table 9: The harmlessness of three SOTA models fine-tuned on regularization samples under the metric pass@all
and pass@k, where k ∈ {1, 5, 10, 25}. Arrows (↑ for higher is better, ↓ for lower is better) denote the preferred
direction of each metric.

28979

