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Abstract

Sparse autoencoders (SAEs) have emerged as
a powerful analytical tool in mechanistic inter-
pretability for large language models (LLMs),
with growing success in applications beyond in-
terpretability. Building on this momentum, we
present a novel approach that leverages SAEs to
enhance the general in-context learning (ICL)
performance of LLMs.

Specifically, we introduce Feature Detection
through Prompt Variation (FDPV), which lever-
ages the SAE’s remarkable ability to capture
subtle differences between prompts, enabling
efficient feature selection for downstream steer-
ing. In addition, we propose a novel steering
method tailored to ICL—Selective In-Context
Steering (SISTER)—grounded in recent in-
sights from ICL research that LLMs utilize
label words as key anchors. Our method
yields a 3.5% average performance improve-
ment across diverse text classification tasks
and exhibits greater robustness to hyperpa-
rameter variations compared to standard steer-
ing approaches. Our code is available at
https://github.com/ihcho2/SAE-ICL.

1 Introduction

Sparse autoencoders (SAEs) have recently emerged
as a powerful tool in the field of mechanistic in-
terpretability (MI), which seeks to understand and
explain how large language models (LLMs) gener-
ate their outputs (Cunningham et al., 2023; Sharkey
et al., 2025). Trained in an unsupervised man-
ner with a sparsity constraint, SAEs have been
shown—albeit to some extent—to effectively de-
compose LLM embeddings into sparse features that
align with human-interpretable, mono-semantic
concepts (Sharkey and Beren, 2022; Bricken et al.,
2023). Encouraged by their potential, researchers
have begun exploring SAE applications beyond in-
terpretability, including probing (Kantamneni et al.,

2025), analyzing SAE features tied to specific do-
mains like reinforcement learning (Demircan et al.,
2024), and steering LLM outputs toward desired
behaviors using SAE features (Bricken et al., 2023;
Wu et al., 2025). Building on this momentum, we
show that SAEs can also be effectively harnessed to
improve in-context learning (ICL) performance—a
core capability of modern LLMs.1

A central challenge in leveraging SAEs for ICL
is determining which features to use for steering,
given the sheer number of features—ranging from
16,000 to millions (e.g., GemmaScope) (Lieberum
et al., 2024). Existing feature analysis tech-
niques—such as computing indirect effects or per-
forming attribution patching by ablating individual
or groups of features (Kharlapenko et al., 2025;
Jing et al., 2025)—are computationally intensive.
They require multiple model runs under differ-
ent ablation combinations, which becomes pro-
hibitively expensive particularly for SAEs with
such a large number of features. Moreover, these
methods have been validated primarily on rela-
tively simple tasks like indirect object identification
(Kissane et al., 2024) or subject–verb agreement
(Marks et al., 2024), limiting their generalizability.
Recent work has also raised concerns about the ro-
bustness of commonly used circuit metrics—such
as faithfulness (Miller et al., 2024; Kharlapenko
et al., 2025)—further underscoring the need for
more efficient and reliable approaches. Addition-
ally, even after identifying relevant features, the
optimal strategy for intervening on them remains
an open question.

These challenges motivate the following re-
search questions, which we aim to address in this
paper:

RQ1: How can we efficiently identify effective SAE
features for steering in a given task?

1See Section 2.1 for an overview of in-context learning.
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RQ2: Given the identified features, what is an ef-
fective and robust method for steering them?

In this paper, we propose Feature Detection
through Prompt Variation (FDPV)—a fully unsu-
pervised and computationally efficient method for
identifying SAE features suitable for steering. The
central idea is to leverage SAEs’ ability to detect
subtle differences between prompt variations, in
contrast to prior work that primarily focused on
feature ablation with a fixed prompt. Our key intu-
ition is that when one prompt (i.e., Prompt-Variant)
consistently outperforms the baseline prompt (i.e.,
Prompt-Original) on a given task, comparing their
SAE activation patterns can reveal meaningful in-
sights. In particular, features that are consistently
more (or less) active in Prompt-Variant are likely
to contribute positively (or negatively) to task per-
formance and are therefore strong candidates for
steering.

We leverage a recent finding in prompt engineer-
ing—namely RE2 (Xu et al., 2024), that demon-
strates simply repeating the test query can consis-
tently improve performance across a wide range of
tasks— as a representative example as the Prompt-
Variant to showcase the effectiveness of FDPV.

Regarding the second research question, we
draw inspiration from recent advances in ICL re-
search, which suggest that LLMs use label words
as anchors to perform ICL classification (Wang
et al., 2023; Cho et al., 2024). Building on this
insight, we propose Selective In-Context Steering
(SISTER), a method that focuses intervention pri-
marily on label words, rather than across all tokens
as in standard approaches. This targeted strategy
not only shows direct and pronounced effect on
performance but also reduces the number of tokens
being manipulated, resulting in greater robustness
to hyperparameters compared to conventional steer-
ing methods.

Our main contributions are as follows:

1. We propose an unsupervised and computation-
ally efficient method for identifying candidate
SAE features for steering which is applicable
to general ICL classification tasks.

2. We introduce a novel steering method tai-
lored to ICL—Selective In-Context Steer-
ing—grounded in recent findings in ICL re-
search (Wang et al., 2023).

3. While recent studies have begun exploring
the use of SAEs in ICL, to the best of our

knowledge, this work is among the first—if
not the very first—to demonstrate direct im-
provements in general ICL task performance.

2 Related Work

2.1 In-Context Learning

With the rapid advancement of large language
models (LLMs), In-Context Learning (ICL) has
emerged as a key capability—enabling LLMs to
perform various tasks by inferring patterns on-the-
fly from just a few examples presented within a
single prompt. Because it requires no additional
parameter updates, ICL offers a highly efficient
alternative to traditional fine-tuning, making it a
dominant paradigm in natural language processing
(Brown et al., 2020). In ICL, the model’s prediction
for a test instance is conditioned on the task instruc-
tion and the provided n-shot exemplars. For a more
detailed overview, we refer readers to (Dong et al.,
2022).

Recent findings in ICL classification tasks sug-
gest that LLMs generally use the label words from
few-shot exemplars as anchors—forming represen-
tations of the label space in the earlier layers and
then leveraging them in the upper layers for pre-
diction (Wang et al., 2023). This implies that the
hidden states of label words play a particularly im-
portant role in ICL performance. Motivated by this
insight, we propose SISTER, which focuses steer-
ing specifically on these anchor tokens to achieve
a more targeted and effective performance boost.
An example of label words in ICL classification
prompts is provided in Figure 5 in Appendix A.

2.2 Sparse Autoencoders

Understanding the precise internal workings of
LLMs has been a longstanding goal in mechanistic
interpretability (MI). Recent studies in MI suggest
the linear representation hypothesis, which posits
that semantic concepts are often encoded as lin-
ear directions in the hidden representation space of
LLMs (Jiang et al., 2024; Li et al., 2023). Building
on this hypothesis, along with the superposition
hypothesis—which posits that LLMs encode more
concepts than the representation dimension they
have, causing multiple concepts to be entangled
within single neurons—researchers have developed
Sparse Autoencoders (SAEs). These models learn
directions utilizing a much larger, over-complete
basis space and have been shown to effectively and
sparsely disentangle semantic features from LLM
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hidden states (Sharkey and Beren, 2022; Temple-
ton, 2024).

A standard SAE consists of an encoder and a
decoder, where each column of the decoder weight
matrix (Wdec ∈ Rd×s) represents an SAE feature
vector in Rd, with d denoting the dimensionality
of the LLM’s hidden state. Given a hidden state,
the SAE encoder learns to produce a sparse ac-
tivation over these features. The degree of spar-
sity depends on the hyperparameters, but the SAEs
we use—referred to as the “canonical” version in
Gemma Scope—typically activate around a few
hundred features on average.

General SAEs are trained using a combination of
a reconstruction loss (squared error) and a sparsity
regularization term:

LSAE =
1

N

N∑

i=1

∥xi − x̂i∥22 + λ · Lsparsity

where xi represents the original input, and x̂i is the
reconstructed output of the SAE:

x̂i = Wdec

(
σ(Wenc(x

i))
)

Various activation functions have been used for
σ, including JumpReLU (e.g., Gemma Scope
(Lieberum et al., 2024)) and TopK-ReLU (e.g.,
GPT-4 SAE (Gao et al., 2024) and Llama Scope
(He et al., 2024)).

2.3 Sparse Autoencoders for In-Context
Learning

Recently, there has been a growing body of work
investigating the use of SAEs in the context of ICL.
Jing et al. (2025) demonstrate that certain SAE
features capture linguistic properties such as pho-
netics, phonology, and morphology, and further es-
tablish causal relationships by intervening on these
features. Demircan et al. (2024) show that some
SAE features closely align with temporal differ-
ence (TD) errors—a core concept in reinforcement
learning—and demonstrate that these features play
a key role in computing Q-values through targeted
interventions. Kharlapenko et al. (2025) attempt
to decompose task vectors using SAEs and iden-
tify two distinct classes of features: task execu-
tion features, which activate when encountering
the task, and task completion features, which acti-
vate specifically when the task is completed within
the prompt.

While prior work has primarily focused on an-
alyzing the properties of SAE features (Cho and

Hockenmaier), we switch gears and adopt a more
practical perspective—aiming to directly improve
general ICL task performance. To the best of our
knowledge, our work is the first to systematically
demonstrate how SAEs can be harnessed to boost
overall ICL effectiveness.

2.4 Standard Steering Approaches
As discussed in Section 2.3, SAEs in the context
of ICL are naturally associated with representation-
level interventions, commonly referred to as steer-
ing. Standard steering approaches construct con-
trastive pairs consisting of positive and negative
examples, and derive steering vectors as their dif-
ference (Panickssery et al., 2023; Li et al., 2023;
Wang et al., 2024). More recently, SAE features
have emerged as a promising candidate for steering,
though results have been mixed (Kantamneni et al.,
2025; Wu et al., 2025).

Nevertheless, most existing steering methods ad-
here to a relatively standard paradigm—either by
adding fixed vectors, such as the sum of selected
SAE features, or by clamping specific feature acti-
vations to fixed values across all tokens (Templeton,
2024; Wu et al., 2025). We argue that a steering
method specifically tailored for ICL-classification
can lead to various advantages.

Overall, the main contribution of this work is
demonstrating that SAE-based steering can be
pushed further through a more efficient feature se-
lection technique (FDPV) and a targeted and effec-
tive steering method (SISTER).

3 Enhancing In-Context Learning with
Sparse Autoencoders

Overview In this paper, we demonstrate that
SAEs can be leveraged to enhance general ICL
performance, by effectively addressing the two re-
search questions outlined in the Introduction (RQ1
and RQ2). We introduce Feature Detection through
Prompt Variation (FDPV) to address RQ1, and
Selective In-context Steering (SISTER) to address
RQ2.

3.1 Feature Detection through Prompt
Variations (FDPV)

Core Intuition We propose Feature Detection
through Prompt Variation (FDPV), a simple yet
effective method for identifying candidate SAE
features for steering. The central idea is that “If a
prompt (i.e., prompt-variant) outperforms a base-
line prompt (i.e., prompt-original), then features
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that are significantly more activated in the better-
performing prompt are likely beneficial for the
task—making them strong candidates for steering.”
As shown in Section 4.3, thanks to the strong capa-
bility of SAEs to detect subtle differences between
prompts, FDPV can easily identify effective SAE
features for steering in a fully unsupervised and
efficient manner—without relying on any costly
metrics.

Methodology Based on this insight, FDPV oper-
ates as follows: Given a development set (Ddev)
along with a Prompt-Original and a Prompt-
Variant—where, without loss of generality, the vari-
ant performs better than the original on the dev
set—we run the LLM on all examples in the dev set
using both prompts. For each input, we extract the
hidden state of the last token from a specific layer
(e.g., a middle layer) and apply the SAE encoder
to obtain the corresponding feature activations:

{
zlorig = S l

enc(h
l
orig)

zlvar = S l
enc(h

l
var)

, hl ∈ Rd → zl ∈ Rs

Here, hl denotes the hidden state of the last token
at layer l, Senc refers to the SAE encoder, and zl is
the resulting activation vector. The dimensions d
and s correspond to the size of the hidden state and
the width of the SAE encoder, respectively. The
motivation for using only the last token is that if an
SAE feature genuinely contributes to improved per-
formance, it should be salient enough to appear at
the last token—where the model ultimately makes
its prediction. Focusing on the last token also helps
narrow down the candidate feature set from the
start.

Then, for each SAE feature index ∀i ∈
{1, 2, . . . , s}, we first discard features that are ac-
tivated in fewer than 30% of the development ex-
amples. This follows the same intuition that truly
task-relevant features should appear with reason-
able frequency at the last token across the dev set.

Next, we compute two scores—f+
FDPV and

f−
FDPV—which quantify how often a feature’s ac-

tivation at the last token is stronger or weaker, re-
spectively, in the Prompt-Variant:

f+
FDPV(i) =

∑|Ddev |
j=1 1

[
zlvar,j(i) > zlorig,j(i)

]

|Ddev|

f−
FDPV(i) =

∑|Ddev |
j=1 1

[
zlvar,j(i) < zlorig,j(i)

]

|Ddev|

where 1 represents the indicator function. Note that
in general f+

FDPV(i) ̸= 1 − f−
FDPV(i) because SAE

features often remain inactive (i.e., zlvar,j(i) =

zlorig,j(i) = 0) due to their inherently sparse na-
ture.

A high f+
FDPV (or f−

FDPV) value indicates features
that are consistently more (or less) activated in the
Prompt-Variant compared to the Prompt-Original,
suggesting a potentially positive (or negative) im-
pact on task performance and making them strong
candidates for steering. We then select the top-K
features (with K chosen from {0, 1, 3, 5}) with the
highest f+

FDPV and f−
FDPV scores, respectively:

LIST+
FDPV = TopK(f+

FDPV(i), ∀i)
LIST−

FDPV = TopK(f−
FDPV(i),∀i)

Finally, we define the steering vector used for in-
tervention as follows:

VFDPV =
∑

i∈LIST+FDPV

Wdec(i)−
∑

i∈LIST−FDPV

Wdec(i)

Where Wdec(i) denotes the i-th column of the SAE
decoder weight, corresponding to the i-th feature.

FDPV enables a fully unsupervised and computa-
tionally efficient search for SAE features, requiring
only a single forward pass per prompt and item.
Figure 1 presents a visual overview of FDPV and
deeper insights into FDPV are discussed in Sec-
tion 4.3.

3.2 Selective In-context Steering (SISTER)

Core Intuition Since our focus is on ICL classifi-
cation tasks, we hypothesize that a steering method
specifically tailored to this setting can yield supe-
rior performance. To this end, we propose a novel
steering approach—Selective In-context Steering
(SISTER)—explicitly designed for ICL classifica-
tion and grounded in recent insights from ICL re-
search. Motivated by findings that LLMs use label
words from few-shot exemplars as anchors (Wang
et al., 2023)—implying that the hidden states of
these tokens play a central role—we propose steer-
ing these specific tokens to exert a more direct and
pronounced influence on performance.

Specifically, instead of applying the steering
vector to all tokens—as done in standard steering
(Bricken et al., 2023)—we focus on a smaller, more
stable subset. We demonstrate that label words are
particularly well-suited for this purpose, achieving
improved performance over the standard approach.
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Figure 1: Overall Architecture of Feature Detection through Prompt Variation (FDPV). FDPV is built on SAEs’
surprising ability to capture subtle distinctions between different prompts and requires only a single forward pass
per prompt. FDPV generates a steering vector VFDPV,which is subsequently used for steering.

Figure 2: Overall Architecture of Selective In-context Steering (SISTER). Using VFDPV, SISTER intervenes only
on key anchor tokens, yielding more targeted and effective results. Moreover, by operating on far fewer tokens
than standard steering—leaving the test query entirely untouched—it achieves greater stability with respect to the
hyperparamter α.

Furthermore, by restricting intervention to a lim-
ited set of tokens (i.e., label tokens) while leaving
the test query untouched, our method exhibits in-
creased robustness to variations in the hyperparam-
eter α, as discussed in Section 4.4.

Methodology Given an n-shot ICL prompt with a
steering vector VFDPV derived from FDPV, SISTER

operates as follows:

∀i ∈ {L1, L2, · · · , Ln} : (1)

h̄li = hli + α ·Amax · VFDPV (2)

Where L1, L2, · · · , Ln indicate the label words, h̄
represents the steered representation, Amax denotes
the maximum activation value of the features in
LIST+

FDPV and LIST−
FDPV across the development

set, and the hyperparameter α controls the strength
of the intervention. Unlike standard steering meth-
ods that intervene on all tokens, SISTER applies
interventions only to the label words (n ≪ N ),
resulting in reduced sensitivity to the choice of α.

Moreover, rather than clamping activations to fixed
values as in standard steering, it allows the activa-
tions in the test query to be adjusted more naturally
by the LLM, potentially leading to more flexible
and effective outcomes. Figure 2 provides a visual
overview of SISTER.

4 Experiments and Analyses

4.1 Experimental Settings

Datasets We evaluated our approach on four
widely used ICL classification datasets. Specifi-
cally, we used aspect-based sentiment classification
(ABSC) with SemEval-14 Laptops and Restaurants
(Pontiki et al., 2014), news topic classification with
AGNews (Zhang et al., 2015), and emotion classifi-
cation from short dialogues using EmoC (Chatter-
jee et al., 2019).

Models and Settings Our approach requires ac-
cess to well-trained SAEs for the target LLMs.
Given the high computational cost of training SAEs
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Model Tasks

1. Gemma2-9B-IT AGNews Rest14 Lap14 EmoC Avg.

ICL-Baseline 84.081.73 79.671.65 73.711.12 68.702.38 76.541.87
RE2-style 84.621.88 80.101.79 75.011.45 70.002.52 77.431.91
FDPV + Standard Steering 84.881.79 81.121.33 76.291.50 69.881.96 78.041.64
(Ours) FDPV + SISTER 86.261.80 82.760.91 78.971.02 71.991.04 80.001.29

2. Gemma2-2B-IT AGNews Rest14 Lap14 EmoC Avg.

ICL-Baseline 70.395.69 74.601.43 72.221.74 60.747.86 69.494.18
RE2-style 71.933.97 76.031.63 73.901.24 61.155.96 70.753.20
FDPV + Standard Steering 75.123.84 75.991.95 75.201.88 61.855.72 72.043.35
(Ours) FDPV + SISTER 77.392.34 77.222.10 76.081.52 62.636.01 73.332.99

3. Llama3-8B-IT AGNews Rest14 Lap14 EmoC Avg.

ICL-Baseline 79.382.51 76.131.87 74.791.52 65.623.55 73.982.36
RE2-style 80.622.18 76.991.76 75.551.62 66.613.88 74.942.36
FDPV + Standard Steering 81.552.30 77.371.75 76.021.44 67.092.86 75.512.09
(Ours) FDPV + SISTER 83.911.26 79.020.81 77.501.04 68.332.67 77.191.44

Table 1: Effectiveness of SISTER. We observe that SISTER consistently outperforms the standard steering approach
commonly adopted in recent studies, supporting our hypothesis that steering methods specifically tailored for ICL
can lead to substantial performance gains. The reported results are averaged over 15 random seeds, as described in
Section 4.1, using the mean of accuracy and F1 score as the evaluation metric.

from scratch, we leverage publicly available SAEs,
Gemma Scope (Lieberum et al., 2024) and Llama
Scope (He et al., 2024). Accordingly, we conduct
experiments using three main models—Gemma2-
9B-IT, Gemma2-2B-IT, and Llama3-8B-IT—along
with their corresponding SAEs. We use SAEs from
either the middle layer or from a layer located at
approximately five-sixths of the model depth, fol-
lowing common practice (Gao et al., 2024).

We follow the standard ICL prompt format,
which includes a task instruction, n-shot exemplars,
and a test query. For each task, few-shot exemplars
are randomly sampled from the training data us-
ing five different random seeds. Additionally, the
order of the exemplars is randomly shuffled three
times per seed, resulting in a total of 15 distinct
prompts evaluated per task. This setup accounts
for the well-established finding that both the choice
and order of exemplars can significantly influence
ICL performance (Guo et al., 2024; Ye et al., 2023).
We use the average of accuracy and f1 score as our
primary metric. For the development set used by
FDPV, we randomly sampled 100 examples per la-
bel from the training data. Full experimental details
are provided in Appendix A.

4.2 Overall Results

Table 1 presents the overall experimental results.
Since there are no established steering variants be-
yond the standard approach that leverage SAEs for
improving general ICL classification, we directly
compare SISTER with the standard steering base-
line. This baseline uses the same steering vector
as SISTER but applies it indiscriminately across
all tokens, following prior work (Liu et al., 2023;
Templeton, 2024).

Table 1 highlights two key findings: (1) Stan-
dard steering also benefits from using the steering
vector generated by FDPV (i.e.,VFDPV), indicating
that FDPV effectively identifies features suitable
for steering; and (2) SISTER consistently outper-
forms the standard steering baseline across all tasks
and models, underscoring its broad effectiveness.
Moreover, we show in Section 4.4 that SISTER is
markedly more robust to changes in the hyperpa-
rameter α, providing yet another advantage over
conventional methods.
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Figure 3: SAEs Exhibit a Strong Capacity to Capture Subtle Prompt Distinctions. We demonstrate this through
two case studies—AGNews with Gemma2-9B-IT and AGNews with Llama3-8B-IT. The first columns show the
overall distributions of f+

FDPV and f−
FDPV, while the second columns show examples of highly skewed features that

clearly distinguish the two prompts. Two key findings emerge: (1) SAEs exhibit remarkable sensitivity, with
multiple features reaching near 1.0 scores on either metric, demonstrating their ability to detect even subtle prompt
differences; and (2) this behavior appears consistently across both Llama3 and Gemma2, suggesting it is a general
property of SAEs.

4.3 Foundation of FDPV: SAEs’ Remarkable
Capability to Detect Subtle Differences
between Prompts

FDPV builds on the ability of SAEs to detect
subtle distinctions between the Prompt-Original
and Prompt-Variant. In other words, if SAEs
were unable to capture these nuanced variations,
FDPV would not be effective. However, as Fig-
ure 3 shows, SAEs are remarkably sensitive to
these variations. Specifically, we identify sev-
eral features (highlighted in red) that are con-
sistently and substantially more activated in the
Prompt-Variant than in the Prompt-Original—some
even approaching a 100% f+

FDPV score. Conversely,
we also find features that exhibit the opposite be-
havior, with consistently lower activation in the
Prompt-Variant—several nearing a 100% f−

FDPV

score.
This pronounced skew is particularly surpris-

ing for two key reasons. First, although the
Prompt-Variant simply repeats the test query with-
out adding any new semantic content, SAEs still
register strong and consistent activation differ-
ences—suggesting that even slight shifts in hidden
states caused by prompt variations are effectively
picked up by SAE features. Second, because SAEs
are trained in a bag-of-embeddings fashion with-
out any prompt-level supervision, there is no in-
herent guarantee they should consistently produce
stronger (or weaker) activations for one semanti-
cally equivalent prompt over another. These fac-
tors make the observed behavior especially striking.

Notably, both Gemma2-9B-IT and Llama3-8B-IT
show highly similar activation patterns, indicat-
ing that this strong sensitivity is likely a general
strength of SAEs.

To the best of our knowledge, our work is the
first to leverage this unique sensitivity of SAEs, and
we believe it opens up exciting directions for future
research. For instance, SAEs could potentially cap-
ture nuanced differences in multilingual parallel
corpora—where the same semantics are expressed
in different languages—offering deeper insights
into how LLMs represent and process language
across linguistic boundaries.

Overall, this sensitivity of SAEs forms the foun-
dation of FDPV, enabling it to operate more effi-
ciently and reliably than existing approaches that
require multiple repeated model runs and rely on
external evaluation metrics.

4.4 SISTER Exhibits a Broader Goldilocks
Zone

One limitation of standard steering approaches is
that they often manipulate most, if not all, tokens
in the input prompt, likely due to the lack of a
systematic method for selecting which tokens to
steer. Intervening on many tokens naturally leads
to a strong sensitivity to the magnitude hyperpa-
rameter α, which is undesirable. In contrast, SIS-
TER sidesteps this issue by operating on a much
smaller, more targeted set of tokens, resulting in
significantly greater robustness to α compared to
standard steering methods.

Figure 4 shows test performance improvements
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Figure 4: SISTER exhibits a much wider Goldilocks zone compared to the standard steering approach. Experiments
conducted on Lap14 and AGNews with Llama3-8B-IT. Shaded area represents standard deviation.

over the baseline (i.e., without steering) across vary-
ing values of the hyperparameter α, comparing SIS-
TER with the standard approach on AGNews and
Lap14 using Llama3-8B-IT. As illustrated, SIS-
TER achieves a significantly broader Goldilocks
zone—that is, a range of α values for which perfor-
mance consistently exceeds the baseline.

As shown in Figure 4 (a), the standard steering
method is effective only within a narrow range of
α, roughly up to 1. In contrast, SISTER maintains
improved performance across an exceptionally
wide range of α values—essentially an unbounded
Goldilocks zone—with consistently higher gains.
Notably, given that the x-axis is in log scale, the
breadth of this stable region is both substantial and
surprising. Even at large α values, performance
remains stable without degradation. We speculate
that this robustness arises because SISTER inter-
venes only on the label words, allowing the model
to retain flexibility in processing the rest of the
test query. This selective intervention likely pre-
vents the kind of performance collapse observed in
standard steering, which modifies all token repre-
sentations indiscriminately.

4.5 Orthogonality of SISTER to Prompt
Selection Methods

Another notable strength of SISTER is its broad
effectiveness across prompts with varying exem-
plars and ordering. Specifically, it improves perfor-
mance not only on low-performing prompts—those
that yield poor baseline results—but also on high-
performing ones that already achieve strong results.
This behavior suggests that SISTER offers a com-
plementary and orthogonal strategy to the widely
studied area of prompt selection in ICL, which
focuses on optimizing the choice and order of ex-

amples in the input prompt.
To examine this in detail, we divided the 15

prompts used for each task into three groups of
five based on their oracle baseline test performance:
“Great”, “Medium”, and “Poor.” Our goal is for SIS-
TER to improve performance consistently across all
three groups. If successful, this would indicate that
SISTER can be used alongside existing prompt se-
lection methods to further boost ICL performance.
In other words, even if one already has a high-
quality prompt through existing prompt selection
techniques, SISTER can still “push the boundaries”,
making it a valuable addition. As shown in Table 2,
SISTER improves performance across all groups,
confirming its effectiveness regardless of prompt
quality.

4.6 Deeper Insights into SISTER

We performed an additional analysis to gain deeper
insights into the effectiveness of our approach.
Specifically, for each SAE feature index i, we calcu-
lated its normalized pointwise mutual information
(nPMI) score to assess task specificity. The nPMI is
defined as follows: We include prompts from three
different tasks (AGNews, ABSC, and ARC). Point-
wise mutual information (PMI) between a task Xj

and feature fi is given by:

PMI(Xj , fi) = log
P (Xj , fi)

P (Xj)P (fi)
= log

P (fi|Xj)

P (fi)

nPMI(Xj , fi) =
PMI(Xj , fi)

−logP (Xj , fi)

where, Xj denotes the event that a token belongs
to task j, where j ∈ {AGNews, ABSC, ARC}, and
fi denotes the event that feature i is activated by a
token.

We computed nPMI scores for all activated fea-
tures using Gemma2-2B-IT (Table 4) and observed
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AGNews Rest14 Lap14 EmoC
1. Gemma2-9B-IT Great Medium Poor Great Medium Poor Great Medium Poor Great Medium Poor

Baseline 86.760.42 84.070.96 81.911.32 81.520.41 79.470.68 78.021.08 74.920.85 73.660.22 72.560.35 70.631.38 69.030.27 66.452.59
Baseline + SISTER 87.240.46 86.311.06 85.241.26 82.800.83 82.590.42 82.891.22 79.520.88 79.320.52 78.071.02 72.311.04 72.171.36 71.500.62

AGNews Rest14 Lap14 EmoC
2. Llama3-8B-IT Great Medium Poor Great Medium Poor Great Medium Poor Great Medium Poor

Baseline 81.731.08 79.970.39 76.441.59 78.341.11 75.720.19 74.340.79 76.100.29 75.280.40 72.991.14 68.850.97 66.051.08 61.963.45
Baseline + SISTER 85.210.68 83.700.95 82.800.67 78.850.98 79.340.50 78.870.93 76.450.86 78.120.87 77.930.47 68.931.71 68.471.12 67.603.36

Table 2: Orthogonality of SISTER to Prompt Selection. We observe that SISTER is effective throughout all great,
medium, and poor quality prompts, indicating the complementariness with existing prompt selection approaches.

that features identified as FDPV + (i.e., features con-
sistently stronger in the better-performing prompt),
exhibit higher average nPMI scores than those iden-
tified as FDPV- (i.e., consistently weaker features).
This suggests that FDPV + features are generally
more task-relevant, while FDPV- features are less
so. This observation offers insight into our method:
SISTER improves performance by reinforcing task-
relevant SAE features while suppressing (relatively)
task-irrelevant ones.

4.7 Beyond Classification to Multiple-Choice
Question Answering

Although the key motivation for our SISTER ap-
proach arose from observing how LLMs specialize
in utilizing label words when solving classification
tasks, we extend this idea to multiple-choice ques-
tion answering (MCQA). Specifically, we evaluate
on ARC-Challenge (Clark et al., 2018), using the
answer options (A, B, C, and D) as the target tokens
for steering. For comparison, we also implement
the baseline CAA (Panickssery et al., 2023). Based
on the original work, the contrastive pairs consist
of a positive example with the correct answer and
negative examples with randomly chosen incorrect
answers, following recent practice (Wang et al.,
2024). The results, summarized in Table 3, show
that SISTER is also effective for MCQA.

However, the performance gains are less pro-
nounced than in classification tasks. We specu-
late that this is because classification tasks make
greater use of label words that carry specific seman-
tic meanings, whereas label words in MCQA are
simple tokens such as A, B, C, and D.

5 Conclusion

This paper investigates the application of Sparse
Autoencoders (SAEs) to In-Context Learning
(ICL). While recent studies have begun to analyze
the properties of SAE features, to the best of our
knowledge, this is the first work to demonstrate
their direct impact on general ICL performance

ARC-Challenge Gemma2-2B-IT Gemma2-9B-IT Llama3-8B-Instruct

ICL Baseline 74.150.36 90.340.42 68.030.31
RE2-Style 74.380.31 90.440.32 68.200.61
CAA 74.480.45 90.290.49 68.250.53

(Ours) SISTER 75.120.31 90.900.25 69.250.47

Table 3: Effectiveness of SISTER on Multiple-Choice
Question Answering Task. We observe that SISTER
is also effective on ARC-Challenge across all models
tested, verifying its general effectiveness.

Gemma2-2B-IT AGNews ABSC ARC-Challenge

Avg. nPMI of FDPV + Features 0.5154 0.3116 0.4471
Avg. nPMI of FDPV- Features 0.4436 0.2067 0.4185

Table 4: Average nPMI Scores of Top FDPV + and
FDPV- Featurees. We observe that FDPV + features
are generally more task-relevant compared to FDPV-
features.

and to propose a systematic method for leveraging
SAEs in this context. We introduce Feature Detec-
tion through Prompt Variation (FDPV), a technique
for effectively identifying meaningful features and
generating a corresponding steering vector. Build-
ing on this, we propose Selective In-Context Steer-
ing (SISTER), which applies the steering vector
derived from FDPV. Our method achieves substan-
tially greater and more stable performance improve-
ments compared to the standard steering approach.

6 Limitations

A primary constraint of our study is its reliance on
sparse autoencoders (SAEs), which are computa-
tionally expensive to train and therefore not always
readily accessible. As a result, our experiments are
based on publicly released SAEs from (Lieberum
et al., 2024) and (He et al., 2024), restricting our
evaluation to the Gemma2 and Llama3 models. Ad-
ditionally, due to resource limitations, we were un-
able to conduct comprehensive layer-wise analyses,
which may have yielded further insights. Extending
this work to other model architectures and conduct-
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ing deeper investigations across layers would be an
intriguing direction for future research.
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A Experimental Details

Detailed statistics of the datasets we used in our
study is provided in Table 5.

Dataset Label Words

Task Train Test Label Count

Lap14 2313 638 Positive 341
Negative 128
Neutral 169

Rest14 3602 1120 Positive 728
Negative 196
Neutral 196

AGNews 120000 7600 World 1900
Sports 1900

Business 1900
Sci/Fi 1900

EmoContext 30160 5509 Happy 284
Sad 250

Angry 298
Others 4677

Table 5: Detailed statistics of the tasks used in this study.

For the ICL prompts, we follow standard con-
ventions by including a task instruction and k ex-
emplars per label. We set k = 1 for AGNews and
EmoC, and k = 2 for Rest14 and Lap14, as increas-
ing k beyond these values did not yield significant
performance gains.

Another key hyperparameter in our approach
is α which controls the strength of the steer-
ing. We perform a grid search over the val-
ues {−10,−5,−2,−1,−0.5, 0.5, 1, 2, 5, 10}, se-
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lecting the value that yields the best performance
on the development set.

Label words—referred to as anchors throughout
this work—play a central role in our approach, par-
ticularly in SISTER, which directly leverages them.
An illustrative example of label words is provided
in Figure 5 below.
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Figure 5: An example of label words in an ICL prompt: each few-shot exemplar includes an answer label, which we
refer to as a label word or anchor in this paper (represented in blue).
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