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Abstract

We introduce VoiceBBQ1, a spoken exten-
sion of the BBQ (Bias Benchmark for Ques-
tion answering) - a dataset that measures so-
cial bias by presenting ambiguous or disam-
biguated contexts followed by questions that
may elicit stereotypical responses. Due to the
nature of speech modality, social bias in Spo-
ken Language Models (SLMs) can emerge
from two distinct sources: 1) content aspect
and 2) acoustic aspect. The dataset converts
every BBQ context into controlled voice con-
ditions, enabling per-axis accuracy, bias, and
consistency scores that remain comparable to
the original text benchmark. Using VoiceBBQ,
we evaluate two SLMs—LLaMA-Omni and
Qwen2-Audio—and observe architectural con-
trasts: LLaMA-Omni retains strong acoustic
sensitivity, amplifying gender and accent bias,
whereas Qwen2-Audio substantially dampens
these cues while preserving content fidelity.
VoiceBBQ thus provides a compact, drop-
in testbed for jointly diagnosing content and
acoustic bias across spoken language models.

1 Introduction

As the societal influence of AI continues to ex-
pand, concerns about social bias in AI systems
are growing. Diverse research efforts to detect
such bias related to gender or accent have been
actively conducted in NLP and CV fields (Shrawgi
et al., 2024; Itzhak et al., 2024; Wang et al., 2024;
Zhou et al., 2022; Sathe et al., 2024; Wan et al.,
2023). But, research on social bias in Spoken Lan-
guage Models (SLMs) remains relatively limited
(Lin et al., 2024b,a), though SLMs have seen a
surge in usage recently. As speech modality is
widely adopted for real-time interaction, biased
responses of SLMs may cause immediate social
impact (Porcheron et al., 2018; Easwara Moorthy
and Vu, 2015). Therefore, understanding and miti-

1https://huggingface.co/datasets/bgnkim/VoiceBBQ

gating bias in SLMs is crucial for ensuring fair and
equitable AI-human interactions.

Due to the nature of speech modality, social bias
in SLMs can emerge from two distinct sources: 1)
the content of utterances and 2) the acoustic char-
acteristics of speakers. Nevertheless, most research
to date has focused on content-based evaluation
(Lin et al., 2024a,b); so, there are not enough re-
ports about whether acoustic characteristics affect
social bias. To distinguish the effect of acoustic
characteristics from the effect of contents, we need
a systematic approach that clearly separates the
two sources during the bias assessment. Therefore,
this study aims to conduct a systematic analysis by
introducing a benchmark for evaluating both the
content and the acoustic aspects of social bias.

Thus, we propose extending a widely used, tex-
tual bias benchmark to speech modality. Specifi-
cally, we synthesized speech using the Bias Bench-
mark for Question answering (BBQ; Parrish et al.
(2022)), which evaluates bias by providing con-
texts about individuals and asking questions where
stereotypical assumptions might influence answers.
Our experimental design enables controlled quan-
tification of how two primary sources of bias in
SLMs, content and acoustic characteristics, influ-
ence model behavior by separately evaluating each
aspect. For content-related bias, we straightfor-
wardly expanded the method used in BBQ: SLMs
answered a text question based on spoken context.
For acoustic-related bias, we compared differences
in response under four conditions: SLMs received
contexts with different gender (male or female) and
accent (American or British). As a result, our ex-
perimental design enables controlled quantification
of how two primary sources of bias in SLMs, con-
tent and acoustic characteristics, influence model
behavior. Also, by evaluating two SLM architec-
tures, we attempt to draw a hint at how architecture
influences bias.
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2 Related Work

Researchers have examined whether speech pro-
cessing models have social bias. Early works in-
vestigated whether task-specific models, such as
speech recognition, suffer from social bias with
the acoustic details of speech (Koenecke et al.,
2020; Costa-Jussà et al., 2020; Feng et al., 2024;
Singh Yadav et al., 2024; Harris et al., 2024). For
example, Koenecke et al. (2020) noted that speech
recognition systems produced biased results for
specific races. Also, Singh Yadav et al. (2024) re-
ported that speech synthesis systems generated
different outputs for different genders or ages.
Furthermore, there is research showing that pre-
trained speech processing models exhibit human-
like biases when performing downstream tasks
such as speech emotion recognition (Lin et al.,
2025). While these studies revealed biases in task-
specific speech systems such as speech recognition
and speech synthesis, they do not evaluate the bias
patterns for spoken language models, which serves
end-to-end high-level reasoning.

So, researchers recently began to analyze social
biases in SLMs (Lin et al., 2024b,a). They espe-
cially focused on how contents of a speech affects
social biases. For example, Lin et al. (2024b) iden-
tified social bias using speech contents when per-
forming tasks as translation, cross-reference resolu-
tion, and question-answering. Similarily, Lin et al.
(2024a) conducted an experiment to examine how
the content derives bias during a text continuation
task. Despite the success of identifying content-
related bias in SLMs, they did not evaluate bias
affected by acoustic features on speech separately.
Their bias evaluation paid less attention to acoustic
differences, although these benchmarks has con-
tributed with varying acoustic scenarios, they did
not systematically separate how speaker-specific
features (e.g., gender and accent) affect bias, which
is essential for analyzing acoustic aspect in SLMs.

We believe that distinguishing acoustic property
from contents is required in bias evaluation, as
SLMs could be affected by both aspects. As we dis-
cussed above, acoustic property is essential; Early
studies on speech processing studies pointed out
acoustic features can affect how the model recog-
nizes input signal. Also, speech content is impor-
tant; Recent SLM studies mentioned that content
can affect social bias in SLMs. However, yet little
is known about how these two aspects lead to social
bias in SLMs. To achieve a deeper understanding,

we need a controlled experiment that could sep-
arate the effect of content from that of acoustic
properties in evaluating social bias.

3 VoiceBBQ Benchmark

We construct a speech variant of the BBQ dataset
(Parrish et al., 2022). By converting the context
paragraphs into spoken utterances, we collected
58,492 examples for evaluating auditory social bias.
Each instance of BBQ dataset consists of three
parts: context, question, and three answer candi-
dates. The original dataset is designed to evaluate
social bias across 11 sensitive categories, including
gender, race, or socioeconomic status. Though it
is possible to convert all parts to speech, we chose
the context only. This is because we assumed that
longer speech may induce more evident bias if
acoustic features actually affect social bias.

3.1 Speech Synthesis

To provide a bias benchmark for examining the ef-
fect of acoustic features, we synthesized 16 differ-
ent speeches for each context. We considered two
prominent features: gender (male or female) and
English accents (American or British). For each
combination of gender and accents, we used four
different voices because we want to observe aver-
age tendencies, not the effect of a specific speaker.

For speech synthesis, we used Kokoro-TTS2. We
used this model for two reasons. First, the model
provides multiple speakers for multiple accents.
Second, the model provides a realistic speech based
on the StyleTTS2 architecture (Li et al., 2023). As
Kokoro-TTS does not support long paragraph input,
we concatenated sentence-level synthesized results
to form the context speech. Appendix A further
elaborates on the detailed procedure.

As a result, we obtained 935,872 context speech.
The average length of speech context was 13.2 sec-
onds, ranging from 2.9 to 40.0 seconds. We further
examined whether our context speech mirrors the
target acoustic detail; the dataset successfully dis-
tinguished target genders and accents. Regarding
gender, 96.5% of context speech showed appropri-
ate acoustic properties when we tested them with a
gender classifier (Burkhardt et al., 2023). Similarly,
regarding accents, 94.8% of context speech showed
appropriate properties when we tested them with
an accent classifier (Zuluaga-Gomez et al., 2023).
The details of implementation are in Appendix A.

2https://huggingface.co/hexgrad/Kokoro-82M
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3.2 Evaluation Metric

To measure the bias of the SLM, we let SLMs to
generate raw responses to the given BBQ item. For
each BBQ item, we input speech context, question
and three answer choices, and asked them to gener-
ate responses. After the generation, we normalized
the response and identify the selected option using
regular expressions and sequence matching.

The subsequent evaluation followed the original
BBQ benchmark procedure (Parrish et al., 2022).
Here, all items were categorized into either the
ambiguous set or the disambiguated set based on
predefined criteria. In the ambiguous set, the con-
text lacks sufficient information to determine the
right answer; thus, SLMs should respond "UN-
KNOWN". To evaluate the bias in ambiguous set,
BBQ computes bias score only when the model
chooses answer other than "UNKNOWN." In the
disambiguated set, the context contains enough
information to determine the correct answer. Dif-
ferent from ambiguous set, BBQ computes bias
score of disambiguous set by calculating whether
SLMs prefer biased option when they respond a
non-UNKNOWN answer. Thus, the focus of BBQ
evaluation is not on accuracy; instead, whether the
response reflects stereotypical bias is essential. For
instance, when a bias score close to zero, it indi-
cates the model has no considerable bias. And, the
sign of the bias indicates how much they prefer the
biased option. The formula for bias scores are in
Appendix A.3.

4 Experiment

To systematically evaluate social bias in SLMs, we
design our analysis around two key dimensions:
content aspect and acoustic aspect. In this section,
we describe our analysis methods for examining
each bias dimension, and then introduce the two
SLM architectures selected for comparison.

4.1 Analysis Method

Content-Aspect Analysis From a content aspect,
we suspect that the influence of content on bias
in SLMs is largely inherited from the underlying
backbone LLM. So, we compare the bias patterns
of a SLM with its corresponding backbone LLM.
To examine whether those two models exhibit
similar trends of biased behavior across social
categories, we additionally compute Pearson
correlation between them. Note that to rule out the
effect of acoustic aspect, we averaged results of

16 different voices when analyzing content-aspect
biases. Through this analysis, we aim to answer
the following question.

RQ1: Do SLMs have content-induced bias?

Acoustic Aspect Analysis From an acoustic
aspect, we aim to examine whether SLMs’ predic-
tions vary across speaker conditions such as gender
and accent, even with the same input content. We
hypothesize that the acoustic features generated
by the speech encoder may not fully abstract
away speaker-specific attributes before being
passed to the LLM. So, the encoder may allow
residual acoustic information to influence models’
predictions. To test this, we compare predictions
across gender and accent conditions and apply
McNemar’s test (Fagerland et al., 2013) to assess
whether the differences in decision-making are
statistically significant. As we want to make
a distinction between biased models, we used
disambiguated items that allow different response
in biased outputs. Through this analysis, we aim to
answer following question.

RQ2: Does speaker gender or accent affect bias?

4.2 Selected Models

We evaluate two SLMs, LLaMA-Omni
(Qingkai Fang, 2024) and Qwen2-Audio
(Yunfei Chu, 2024), along with their respective
backbone LLMs. LLaMA-Omni is based on
LLaMA 3.1 (Grattafiori et al., 2024) and adopts
a modular architecture in which input speech
is first processed by a frozen Whisper-large-v3
encoder (Radford et al., 2023), then passed through
a simple speech adapter and the LLM. Second,
Qwen2-Audio is based on QwenLM (Bai et al.,
2023) and integrates a Whisper-initialized audio
encoder directly into the model’s training pipeline.
It is trained in an end-to-end manner.

The key distinction lies in how each model han-
dles acoustic information. Because the Whisper
encoder is frozen and the speech adapter remains
lightweight, the acoustic input is less likely to al-
ter the internal reasoning of the LLM in LLaMA-
Omni. In contrast, Qwen2-Audio allows acoustic
information such as speaker gender or accent to di-
rectly affect the model’s semantic representations.
As the speech encoder is trained jointly with the
model, acoustic characteristics may be preserved
and propagated through network.
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LLaMA3.1 Qwen1 LLaMA Omni Qwen2 Audio LLaMA Omni Qwen2 Audio

Category AMB DIS AMB DIS AMB DIS AMB DIS Gender Accent Gender Accent

Age -0.24 -0.33 -0.27 -0.31 -0.07 -0.19 -0.13 -0.26 68 68 35 40
Disability status -0.21 -0.32 -0.25 -0.34 -0.08 -0.22 -0.17 -0.29 26 31 8 9
Gender Identity -0.26 -0.31 -0.31 -0.33 -0.06 -0.08 -0.24 -0.28 122*** 158* 70 72
Nationality -0.20 -0.30 -0.24 -0.34 -0.07 -0.25 -0.17 -0.30 49 56 17 15
Physical Appear. -0.18 -0.24 -0.15 -0.21 -0.03 -0.13 -0.07 -0.21 22 28 10 12
Race/Ethnicity -0.20 -0.29 -0.25 -0.28 -0.09 -0.28 -0.20 -0.29 88* 102 72 99
Race x SES -0.17 -0.31 -0.21 -0.36 -0.03 -0.31 -0.14 -0.35 1 1 12 17
Race x Gender -0.25 -0.35 -0.30 -0.33 -0.11 -0.31 -0.21 -0.31 233 248 139 185
Religion -0.20 -0.28 -0.19 -0.28 -0.03 -0.11 -0.09 -0.24 18 19 4 2
SES -0.26 -0.33 -0.28 -0.32 -0.08 -0.12 -0.16 -0.28 200*** 216*** 47 41
Sexual orient. -0.20 -0.33 -0.23 -0.32 -0.03 -0.18 -0.09 -0.28 10 9 4 2

*p < 0.05, **p < 0.01, ***p < 0.001

Table 1: Bias scores for two conditions in BBQ, and the result of McNemar test. Appendix C shows detailed
results. The ’Gender’ and ’Accent’ columns show McNemar’s chi-square statistics testing whether model responses
significantly differ when the same content is spoken by male vs. female voices (Gender) or American vs. British
accents (Accent). Higher values indicate greater response variability due to acoustic features.

These architectural differences create contrast-
ing conditions for bias analysis. LLaMA-Omni’s
modularity allows for relatively independent con-
trol over acoustic influence, enabling a clearer attri-
bution of any observed bias to the language model
itself rather than to variability in the speech in-
put. This makes LLaMA-Omni suitable for exam-
ining whether the model’s biases arise from tex-
tual understanding rather than acoustic features.
Conversely, Qwen2-Audio’s design makes it more
tightly coupled with the acoustic input, allowing
speaker-dependent properties such as gender and
accent to affect model predictions, even when the
spoken content remains unchanged, making it well-
suited for analyzing how variation in vocal delivery
influences bias.

5 Result and Discussion

5.1 Content Aspect

We first compare the two SLM architectures in
terms of content-induced bias by examining their
relationship with their respective backbone LLMs.
Table 1 presents the bias scores for both SLMs
and their backbone LLMs across all 11 social cate-
gories, along with McNemar test results for acous-
tic analysis. The left portion shows bias scores for
ambiguous (AMB) and disambiguated (DIS) con-
ditions, while the right portion shows McNemar’s
chi-square statistics testing response variability due
to gender and accent.

In response to RQ1, our findings reveal that
SLMs do reflect certain content-induced biases ob-
served in their backbone LLMs, but the degree

of inheritance varies significantly across architec-
tures. Examining the bias score patterns, Qwen2-
Audio exhibits a strong correlation with its back-
bone Qwen1, with a Pearson correlation of r =
0.844 in ambiguous contexts and r = 0.848 in dis-
ambiguated contexts. This indicates that Qwen2-
Audio largely inherits bias patterns from its under-
lying language model. This finding aligns with Lin
et al. (2024b), which states that speech-integrated
fine tuning reduces some stereotypical associations
but does not eliminate content-driven bias.

In contrast, LLaMA-Omni shows a less stable
pattern: its correlation with LLaMA 3.1 drops from
r = 0.620 in ambiguous contexts to r = 0.301 in
disambiguated contexts. This weaker relationship
parallels Lin et al. (2024a) finding that instruction-
tuning often reshapes or mixes content biases, with
most models exhibiting minimal overall bias yet
showing slight stereotypical tendencies in their
evaluation. Specifically, in 7 out of 11 categories,
LLaMA-Omni shows lower bias scores than its
backbone, indicating reduced bias, whereas in the
remaining categories, bias increases.

Overall, bias scores in the LLaMA family do
not follow a unified direction, in contrast to the
Qwen family, which shows consistently increas-
ing bias across all categories. We suspect this dif-
ference stems from LLaMA-Omni being trained
on the separately constructed InstructS2S-200K
dataset, potentially altering inherent biases signif-
icantly during training for speech interaction and
conciseness. Consequently, LLaMA-Omni notably
displayed lower bias scores than Qwen2-Audio
across most categories, contradicting initial expec-
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LLaMA Omni Qwen2 Audio
Gender Accent Gender Accent
D A D A D A D A

Age 0.5 0.5 1.2 0.3 0.3 0.2 0.5 -0.5
Disability status 0.3 0.5 0.9 1.5 -0.9-0.3 0.9 0.3
Gender identity 4.0 3.0 1.5 1.2 0.1 0.1 -0.7 -0.6
Nationality 2.8 1.4 -0.9 0.4 0.4 0.4 -1.3 -1.3
Physical Appear. -0.5 0.2 -5.2 -1.2 -0.7-0.2 -2.7 -1.2
Race/Ethnicity 2.1 0.9 1.2 0.7 -0.5-0.4 0.8 -0.1
Race x SES 7.3 4.9 1.4 4.9 -0.5 0.0 -0.7 0.1
Race x Gender 1.1 0.7 -0.2 0.1 -0.1 0.0 -0.5 -0.2
Religion 4.9 1.3 3.1 1.1 -0.7-0.4 0.0 -0.5
SES 5.3 3.5 -1.1 -0.8 0.0 -0.0 -0.4 -0.3
Sexual orient. -0.9 0.1 -3.4 -0.1 3.3 1.1 -2.9 -0.9

Table 2: Bias-score difference (∆s in %) by gender and
accent for disambiguated (D) vs. ambiguous (A) items.
Bold values indicate bias score differences exceeding
3%, suggesting substantial influence of acoustic features
on model predictions. P.A means Physicalappearance.

tations based solely on backbone comparisons. This
demonstrates that biases in LLaMA-Omni were re-
shaped primarily by the characteristics of the new
training data.

5.2 Acoustic Aspect

We now examine whether acoustic features influ-
ence bias patterns by analyzing response variations
across different speaker conditions. Table 2 quan-
tifies how bias scores change across acoustic con-
ditions by computing the difference (Δs) between
speaker genders and accents for each bias category.
The table shows bias score differences (Δs in %) for
disambiguated (D) vs. ambiguous (A) items, with
bold values indicating differences exceeding 3%.
The analysis is organized by acoustic dimension:
gender effects and accent effects.

In response to RQ2, our findings reveal that
the influence of speaker-specific acoustic fea-
tures—such as gender and accent—varies signif-
icantly across SLM architectures. Qwen2-Audio
remained stable, exhibiting near-zero bias score
differences across gender and accent conditions. In
contrast, LLaMA-Omni exhibited significant differ-
ences in responses across speaker characteristics.

For gender conditions, significant differences
were observed in LLaMA-Omni across multiple
categories. In the Gender Identity category (p <
0.001), Race/Ethnicity (p < 0.05), and SES (p <
0.001) categories showed statistically significant
variations based on speaker gender, as indicated by
McNemar’s test results in Table 1.

For accent conditions, significant effects were
also found in LLaMA-Omni, particularly in Gender

Identity and SES categories, though the statistical
significance patterns differ from gender effects.

These outcomes appear to stem from architec-
tural differences between the models. LLaMA-
Omni uses a frozen Whisper encoder, whose output
is passed through a simple speech adapter to the
LLM. As a result, speaker characteristics are trans-
mitted without substantial transformation. In con-
trast, Qwen2-Audio appears to rely on a Whisper-
initialized encoder whose internal representations
are shaped in a manner that reduces sensitivity to
acoustic variations. This aligns with prior research
showing that Whisper produces different responses
depending on gender and accent, and such struc-
tural modification with diverse speakers can reduce
such discrepancies (Hend ElGhazaly, 2025; Harris
et al., 2024).

Consequently, while Qwen2-Audio reduces the
impact of acoustic attributes, LLaMA-Omni pre-
serves acoustic features. This allows residual
speaker-dependent information to affect models’
predictions, leading to observable variation across
demographic conditions. These findings comple-
ment our content aspect analysis, demonstrating
that architectural choices influence both content in-
heritance and acoustic sensitivity in distinct ways.

6 Conclusion

This study introduces Voice BBQ, an extension of
the BBQ benchmark for evaluating social bias in
SLMs. We analyzed two aspects: content aspect
and acoustic aspect. In content-aspect analysis, we
found that Qwen model family transfers bias from
backbone to SLMs, while LLaMA family shows
a weaker relationship. Notably, LLaMA-Omni,
trained on a separate dataset, has lower bias scores.
In acoustic aspect bias analysis, only LLaMA-
Omni exhibited significant variations based on
speaker characteristics, as it keeps the Whisper en-
coder frozen. In contrast, Qwen2-Audio’s pooling
structure dilutes speaker information.

Limitations

In this work, we investigated effect of content and
acoustics in social bias of SLMs. However, our
experiment has three limitations.

First, we were unable to conduct a broad analysis
across a wide range of models. Since our experi-
ments were based on open-source SLMs, we had to
exclude models that required implementing it from
scratch, or those whose available code did not sup-
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port the desired input-output modalities or failed to
run inference in practice. As a result, we employed
only two models for our analysis. Further investi-
gation is needed to generalize our findings to other
model architectures.

Second, our study primarily focused on diagnos-
ing the content and acoustic biases present in SLMs,
without proposing concrete methods for mitigating
these biases. As the biases are present in SLMs, we
need to reduce such bias to make the model less
socially harmful. Therefore, we plan to design and
evaluate a SLM architecture that actively mitigates
the content and acoustic biases we have identified.

Third, our analysis lacks sufficient exploration
of the sociocultural mechanisms underlying the ob-
served acoustic bias patterns. While we identify
statistical associations between speaker character-
istics (gender, accent) and bias variations, we do
not identify a possible theoretical/empirical cause
for why these patterns emerge. For instance, why
male voices trigger stronger gender identity biases
or why certain accent-bias combinations appear
remains largely unexplored from sociological and
sociolinguistic perspectives.

Acknowledgments

We used Grammarly and GPT-4o for polishing our
writing. This work was supported by the Institute of
Information & Communications Technology Plan-
ning & Evaluation (IITP) grant funded by the Ko-
rea government (MSIT) [RS-2021-II211341, Artifi-
cial Intelligence Graduate School Program (Chung-
Ang University)].

References
Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,

Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, and 1 others. 2023. Qwen technical report.
arXiv preprint arXiv:2309.16609.

Felix Burkhardt, Johannes Wagner, Hagen Wierstorf,
Florian Eyben, and Björn Schuller. 2023. Speech-
based age and gender prediction with transformers.
Preprint, arXiv:2306.16962.

Marta R. Costa-Jussà, Christine Basta, and Gerard I.
Gállego. 2020. Evaluating gender bias in speech
translation. ArXiv preprint arXiv:2010.14465.

Aarthi Easwara Moorthy and Kim-Phuong L Vu. 2015.
Privacy concerns for use of voice activated personal
assistant in the public space. International Journal
of Human-Computer Interaction, 31(4):307–335.

Morten W Fagerland, Stian Lydersen, and Petter Laake.
2013. The mcnemar test for binary matched-pairs
data: mid-p and asymptotic are better than exact con-
ditional. BMC medical research methodology, 13:1–
8.

Siyuan Feng, Bence Mark Halpern, Olya Kudina, and
Odette Scharenborg. 2024. Towards inclusive auto-
matic speech recognition. Computer Speech Lan-
guage, 84:101567.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Alex
Vaughan, and 1 others. 2024. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783.

Camille Harris, Chijioke Mgbahurike, Neha Kumar, and
Diyi Yang. 2024. Modeling gender and dialect bias
in automatic speech recognition. In Findings of the
Association for Computational Linguistics: EMNLP
2024, pages 15166–15184, Miami, Florida, USA. As-
sociation for Computational Linguistics.

Nafise Sadat Moosavi Heidi Christensen Hend ElGhaz-
aly, Bahman Mirheidari. 2025. Exploring gender
disparities in automatic speech recognition technol-
ogy.

Itay Itzhak, Gabriel Stanovsky, Nir Rosenfeld, and
Yonatan Belinkov. 2024. Instructed to bias:
Instruction-tuned language models exhibit emergent
cognitive bias. Transactions of the Association for
Computational Linguistics, 12:771–785.

Allison Koenecke, Andrew Nam, Emily Lake, Joe
Nudell, Minnie Quartey, Zion Mengesha, Connor
Toups, John R. Rickford, Dan Jurafsky, and Sharad
Goel. 2020. Racial disparities in automated speech
recognition. Proceedings of the National Academy
of Sciences, 117(14):7684–7689.

Yinghao Aaron Li, Cong Han, Vinay Raghavan, Gavin
Mischler, and Nima Mesgarani. 2023. Styletts 2:
Towards human-level text-to-speech through style
diffusion and adversarial training with large speech
language models. Advances in Neural Information
Processing Systems, 36:19594–19621.

Yi-Cheng Lin, Wei-Chih Chen, and Hung-yi Lee. 2024a.
Spoken stereoset: on evaluating social bias toward
speaker in speech large language models. In 2024
IEEE Spoken Language Technology Workshop (SLT),
pages 871–878. IEEE.

Yi-Cheng Lin, Huang-Cheng Chou, Yu-Hsuan Li Liang,
and Hung-yi Lee. 2025. Emo-debias: Bench-
marking gender debiasing techniques in multi-
label speech emotion recognition. arXiv preprint
arXiv:2506.04652.

Yi-Cheng Lin, Tzu-Quan Lin, Chih-Kai Yang, Ke-Han
Lu, Wei-Chih Chen, Chun-Yi Kuan, and Hung-Yi
Lee. 2024b. Listen and speak fairly: a study on se-
mantic gender bias in speech integrated large lan-
guage models. In 2024 IEEE Spoken Language Tech-
nology Workshop (SLT), pages 439–446.

28719

https://arxiv.org/abs/2306.16962
https://arxiv.org/abs/2306.16962
https://doi.org/10.1016/j.csl.2023.101567
https://doi.org/10.1016/j.csl.2023.101567
https://doi.org/10.18653/v1/2024.findings-emnlp.890
https://doi.org/10.18653/v1/2024.findings-emnlp.890
https://doi.org/10.48550/arXiv.2502.18434
https://doi.org/10.48550/arXiv.2502.18434
https://doi.org/10.48550/arXiv.2502.18434
https://doi.org/10.1073/pnas.1915768117
https://doi.org/10.1073/pnas.1915768117
https://doi.org/10.1109/SLT61566.2024.10832317
https://doi.org/10.1109/SLT61566.2024.10832317
https://doi.org/10.1109/SLT61566.2024.10832317


Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh
Padmakumar, Jason Phang, Jana Thompson,
Phu Mon Htut, and Samuel Bowman. 2022. BBQ: A
hand-built bias benchmark for question answering.
In Findings of the Association for Computational
Linguistics: ACL 2022, pages 2086–2105, Dublin,
Ireland. Association for Computational Linguistics.

Martin Porcheron, Joel E Fischer, Stuart Reeves, and
Sarah Sharples. 2018. Voice interfaces in everyday
life. In proceedings of the 2018 CHI conference on
human factors in computing systems, pages 1–12.

Yan Zhou Zhengrui Ma Shaolei Zhang Yang Feng
Qingkai Fang, Shoutao Guo. 2024. Llama-omni:
Seamless speech interaction with large language mod-
els. In ICLR 2025.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages
28492–28518. PMLR.

Ashutosh Sathe, Prachi Jain, and Sunayana Sitaram.
2024. A unified framework and dataset for assessing
societal bias in vision-language models. In Findings
of the Association for Computational Linguistics:
EMNLP 2024, pages 1208–1249, Miami, Florida,
USA. Association for Computational Linguistics.

Hari Shrawgi, Prasanjit Rath, Tushar Singhal, and Sandi-
pan Dandapat. 2024. Uncovering stereotypes in large
language models: A task complexity-based approach.
In Proceedings of the 18th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1841–
1857.

Amit Kumar Singh Yadav, Kratika Bhagtani, Davide
Salvi, Paolo Bestagini, and Edward J. Delp. 2024.
Fairssd: Understanding bias in synthetic speech de-
tectors. In 2024 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW),
pages 4418–4428.

Yixin Wan, George Pu, Jiao Sun, Aparna Garimella, Kai-
Wei Chang, and Nanyun Peng. 2023. “kelly is a warm
person, joseph is a role model”: Gender biases in
LLM-generated reference letters. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 3730–3748, Singapore. Association for
Computational Linguistics.

Sibo Wang, Xiangkui Cao, Jie Zhang, Zheng Yuan,
Shiguang Shan, Xilin Chen, and Wen Gao. 2024.
Vlbiasbench: A comprehensive benchmark for evalu-
ating bias in large vision-language model. Preprint,
arXiv:2406.14194.

Qian Yang Haojie Wei Xipin Wei Zhifang Guo Yi-
chong Leng Yuanjun Lv Jinzheng He Junyang Lin
Chang Zhou Jingren Zhou Yunfei Chu, Jin Xu. 2024.
Qwen2-audio technical report.

Kankan Zhou, Eason Lai, and Jing Jiang. 2022. VL-
StereoSet: A study of stereotypical bias in pre-trained
vision-language models. In Proceedings of the 2nd
Conference of the Asia-Pacific Chapter of the Asso-
ciation for Computational Linguistics and the 12th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 527–538,
Online only. Association for Computational Linguis-
tics.

Juan Zuluaga-Gomez, Sara Ahmed, Danielius Visockas,
and Cem Subakan. 2023. Commonaccent: Exploring
large acoustic pretrained models for accent classifica-
tion based on common voice. Interspeech 2023.

A Details of Dataset

A.1 Speech Data Generation

To construct the spoken version of the BBQ dataset,
we synthesized all context sentences using a single
TTS model: Kokoro-TTS. This model is based on
StyleTTS2 and supports multispeaker synthesis. It
can provide speaker voices with varying gender and
timbre. For this study, we focused on generating En-
glish speech in two regional accents: British (GB)
and American (US). Within Kokoro-TTS, we se-
lected predefined speaker voices representing each
combination of gender and accent, resulting in a
total of 16 unique speakers.

Specifically, the speakers used were as follows:

• American Male: am_puck, am_eric, am_liam,
am_adam

• American Female: af_heart, af_sarah,
af_nova, af_alloy

• British Male: bm_george, bm_fable,
bm_lewis, bm_daniel

• British Female: bf_emma, bf_isabella,
bf_alice, bf_lily

Each speaker name encodes accent (nationality),
gender, and speaker identity, enabling automatic
mapping to the appropriate synthesis configuration
(e.g., timbre, pitch, speaking style).

For each item in the BBQ dataset, only the con-
text portion was converted into speech using infer-
ence (no fine-tuning). When the context contained
multiple sentences, we first segmented it using the
nltk.sent_tokenize() function. Each sentence
was individually synthesized via Kokoro-TTS and
later concatenated using numpy.concatenate() to
form a continuous waveform, preserving temporal
coherence and natural prosody.
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The resulting audio files were saved in 24kHz
WAV format. Files were named automatically us-
ing metadata such as the question ID and speaker
identity, and organized into subfolders by BBQ cat-
egory. To ensure robustness, the synthesis script
was implemented to skip any samples for which
the target file already existed, preventing redundant
generation.

This process was repeated across all 16 speakers
for each of the 58,492 items in the BBQ dataset,
yielding a total of 935,872 audio samples with sys-
tematically controlled acoustic variation.

The speech synthesis was performed under
Python 3.9.21 on a single NVIDIA A6000 ADA
GPU. The Kokoro-TTS system was installed by fol-
lowing the official repository3. The core libraries
used for synthesis were: torch 2.2.1+cu118,
kokoro 0.7.16, pandas 2.2.3, numpy 1.26.4,
soundfile 0.13.1, and nltk 3.8.1.

A.2 Raw Response Generation Method

To measure bias in model outputs, we first obtained
free-form responses by feeding each synthesized
speech file into the evaluation pipeline. Following
this, we used a prompt-based mapping method to
convert the open-ended responses into structured
answer choices, allowing for consistent comparison
across conditions.

Specifically, we employed the following prompt
template to map each generated response to one of
the three multiple-choice options (A, B, or C):

You are a classification assistant.
Given the context, question, and the
model’s free-form answer,
decide which answer choice (A/B/C) the
response most closely matches.

[Context]
{context}

[Question]
{question}

[Answer Choices]
(A) {ans0}
(B) {ans1}
(C) {ans2}

3https://github.com/hexgrad/kokoro

[Model’s Answer]
"{llm_answered}"

Reply with one letter only: A, B, or C.

A.3 BBQ Bias Evaluation Protocol
Following the raw response generation process
described in Appendix A.2, each model output
was first normalized by removing all characters
except lowercase alphabets, digits, and whitespace.
The normalized free-form answer was then com-
pared against the predefined multiple-choice op-
tions (ans0, ans1, ans2) from the BBQ benchmark
using exact string matching. If no exact match was
found, we applied Python’s SequenceMatcher to
compute string similarity between the model’s an-
swer and each candidate option, selecting the index
with the highest similarity score.

Once each free-form response was mapped to
an answer index (ŷi ∈ {0, 1, 2}), we computed the
accuracy and bias score following the official BBQ
evaluation protocol. The formulas are given below:

Accuracy =
1

|Ddis|
∑

i∈Ddis

1[ŷi = yi]

Bias =

∑
i∈Dund

bi 1[ŷi ̸= 2]∑
i∈Dund

1[ŷi ̸= 2]

Here, Ddis denotes the set of disambiguated
items and Dund denotes the set of ambiguous items.
yi is the ground-truth label, bi is the bias indicator
(i.e., which choice reflects a stereotyped response),
and ŷi is the model’s predicted choice index. These
definitions follow the official BBQ benchmark met-
rics, allowing direct comparability with prior stud-
ies (Parrish et al., 2022).

A.4 Data Validation Process
The speaker metadata validation step was con-
ducted under Python 3.10.16 using a single
NVIDIA A6000 ADA GPU. The setup followed
the configuration guidelines provided on the Hug-
ging Face model pages45.

We employed two pretrained audio classification
models based on different architectures. The first,
wav2vec2-large-robust-24-ft-age-gender,
is a wav2vec 2.0–based model fine-tuned for

4https://huggingface.co/audeering/
wav2vec2-large-robust-24-ft-age-gender

5https://huggingface.co/Jzuluaga/
accent-id-commonaccent_ecapa
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Ground-Truth Total Samples Accuracy (%)

Gender: Female 467,936 100.00
Gender: Male 467,936 93.16
Region: GB 467,936 99.49
Region: US 467,936 90.15

Table 3: Prediction accuracy by ground-truth category
(GB and US denote Great Britain and United States).

age and gender classification after pretraining on
large-scale datasets such as VoxCeleb. According
to its official documentation, it achieves over 80%
balanced accuracy on gender classification tasks.
The second, accent-id-commonaccent_ecapa,
is built upon the ECAPA-TDNN architecture
and was trained on the CommonVoice dataset
to identify English regional accents, reporting
classification accuracy above 90%.

These models were chosen due to their verified
performance on downstream tasks relevant to our
study—namely, speaker gender and accent (region)
classification—which made them suitable for vali-
dating the integrity of the synthesized speech data.
Each model was used to infer gender or region from
the input audio waveform under eval() mode with
batch size 1.

The major libraries used for inference were:
torch 2.5.1+cu124, transformers 4.51.3,
numpy 1.26.4, and pandas 2.2.3.

B Experimental Environment

In this section provides a concise overview of the
hardware configurations, software setups, and li-
brary dependencies used in our Qwen2-Audio and
LLaMA-Omni experiments.

B.1 Qwen2-Audio
All Qwen2-Audio experiments were con-
ducted on a single NVIDIA A6000 GPU
under Python 3.9.21. The environment was
configured following the model’s Hugging
Face page6. Inference was performed us-
ing the Hugging Face AutoProcessor and
Qwen2AudioForConditionalGeneration, jointly
processing text and audio inputs and generating out-
puts via: model.generate(max_length=1024)
To ensure comparability across runs, the maximum
token length was fixed at 1024, and all experiments
were executed with batch size 1 in evaluation mode
eval(). Major dependencies included torch

6https://huggingface.co/Qwen/
Qwen2-Audio-7B-Instruct

Comparison model Context r p-value

LLaMA-based Ambiguous 0.620 0.042
LLaMA-based Disambiguated 0.301 0.369
Qwen-based Ambiguous 0.844 p < 0.001
Qwen-based Disambiguated 0.848 p < 0.001

Table 4: Pearson correlation analysis for LLaMA family
and Qwen family for ambiguous and disambiguated
context.

2.2.1+cu118, transformers 4.52.0, numpy
2.2.5, pandas 2.2.3, and soundfile 0.13.1.

B.2 LLaMA-Omni
LLaMA-Omni experiments were carried out on
a single A6000 GPU under Python 3.10.17. The
setup was based on OmniMMI’s OpenOmniNexus
framework7 and the official LLaMA-Omni
repository8. Model and tokenizer were loaded
using : load_pretrained_model(model_path,
None, s2s=False) Inference was performed
with batch size 1 in evaluation mode, using
do_sample=False, num_beams=1, top_p=None,
and max_new_tokens=1024. For fairness, the
maximum token count was fixed at 1024. Ma-
jor dependencies included torch 2.5.0+cu118,
transformers 4.44.0, flash-attn 2.6.3,
fairseq 0.12.2, deepspeed 0.14.5, and numpy
1.26.4.

B.3 Backbone LLM Model Setting
The BBQ benchmark evaluation of the backbone
LLMs was performed under Python 3.10.16 using a
single NVIDIA A6000 ADA GPU. The experimen-
tal setup followed the official Hugging Face con-
figurations for each model: Qwen/Qwen-7B9 and
meta-llama/Llama-3.1-8B-Instruct10.

Inference was conducted using AutoTokenizer
and AutoModelForCausalLM. Text inputs were
passed to the models and generation was performed
using model.generate(max_new_tokens=1024). To
ensure consistency across runs, the maximum num-
ber of tokens was fixed at 1024. All inference runs
were executed in evaluation mode (eval()) with
batch size set to 1.

The main libraries used for this process included:
torch 2.5.1+cu124, transformers 4.51.3,
numpy 1.26.4, and pandas 2.2.3.

7https://github.com/OmniMMI/OpenOmniNexus)
8https://github.com/ictnlp/LLaMA-Omni
9https://huggingface.co/Qwen/Qwen-7B

10https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct
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LLaMA3.1 Qwen1 LLaMA Omni Qwen2 Audio

Category accA accD sA sD accA accD sA sD accA accD sA sD accA accD sA sD

Age 0.258 0.793 -0.242 -0.326 0.131 0.852 -0.266 -0.306 0.655 0.536 -0.065 -0.187 0.494 0.803 -0.132 -0.260
Disability status 0.337 0.867 -0.21 -0.317 0.275 0.942 -0.247 -0.341 0.646 0.644 -0.076 -0.216 0.423 0.899 -0.169 -0.293
Gender Identity 0.17 0.634 -0.255 -0.308 0.081 0.823 -0.307 -0.334 0.251 0.558 -0.061 -0.081 0.133 0.824 -0.241 -0.278
Nationality 0.352 0.909 -0.197 -0.303 0.286 0.903 -0.244 -0.342 0.735 0.554 -0.065 -0.246 0.428 0.758 -0.168 -0.294
Physical Appearance 0.271 0.738 -0.177 -0.243 0.299 0.782 -0.15 -0.214 0.744 0.545 -0.033 -0.128 0.653 0.718 -0.074 -0.213
Race/Ethnicity 0.322 0.722 -0.196 -0.289 0.096 0.793 -0.252 -0.279 0.684 0.534 -0.089 -0.281 0.321 0.812 -0.197 -0.291
Race x SES 0.448 0.828 -0.17 -0.309 0.434 0.993 -0.206 -0.363 0.918 0.622 -0.025 -0.305 0.619 0.946 -0.135 -0.354
Race x gender 0.271 0.743 -0.254 -0.348 0.1 0.844 -0.297 -0.33 0.642 0.655 -0.110 -0.306 0.331 0.874 -0.206 -0.308
Religion 0.287 0.837 -0.202 -0.283 0.314 0.860 -0.190 -0.277 0.776 0.553 -0.025 -0.112 0.636 0.927 -0.087 -0.240
SES 0.207 0.871 -0.263 -0.331 0.102 0.952 -0.283 -0.315 0.368 0.554 -0.075 -0.119 0.438 0.912 -0.155 -0.276
Sexual orientation 0.415 0.826 -0.195 -0.333 0.288 0.832 -0.225 -0.315 0.839 0.584 -0.029 -0.181 0.676 0.854 -0.091 -0.281

Table 5: Accuracy and Bias for disambiguated (accD, sD) vs. ambiguous (accA, sA) items. aD, aA denote accuracy,
and sD, sA denote bias score.

LLaMA-Omni Qwen2-Audio
Female Male Female Male

accD accA sD sA accD accA sD sA accD accA sD sA accD accA sD sA

Age 0.537 0.647 -0.190 -0.067 0.534 0.663 -0.184 -0.062 0.809 0.493 -0.262 -0.133 0.797 0.495 -0.258 -0.130
Disability_status 0.647 0.636 -0.217 -0.079 0.641 0.657 -0.214 -0.074 0.896 0.418 -0.289 -0.168 0.901 0.427 -0.298 -0.171
Gender_identity 0.564 0.254 -0.101 -0.075 0.552 0.249 -0.061 -0.046 0.823 0.133 -0.278 -0.241 0.824 0.133 -0.277 -0.240
Nationality 0.553 0.721 -0.259 -0.072 0.555 0.749 -0.231 -0.058 0.757 0.425 -0.296 -0.170 0.759 0.431 -0.292 -0.166
Physical_appearance 0.556 0.733 -0.126 -0.034 0.534 0.756 -0.130 -0.032 0.724 0.653 -0.209 -0.073 0.711 0.653 -0.216 -0.075
Race_ethnicity 0.539 0.680 -0.291 -0.093 0.529 0.688 -0.271 -0.084 0.810 0.323 -0.288 -0.195 0.814 0.319 -0.293 -0.199
Race_x_SES 0.632 0.839 -0.308 -0.050 0.376 0.997 -0.235 -0.001 0.945 0.616 -0.352 -0.135 0.946 0.622 -0.357 -0.135
Race_x_gender 0.652 0.636 -0.311 -0.113 0.657 0.647 -0.300 -0.106 0.875 0.329 -0.307 -0.206 0.873 0.333 -0.309 -0.206
Religion 0.557 0.769 -0.137 -0.032 0.549 0.783 -0.087 -0.019 0.926 0.639 -0.237 -0.086 0.928 0.633 -0.243 -0.089
SES 0.564 0.360 -0.145 -0.093 0.544 0.376 -0.092 -0.057 0.909 0.439 -0.276 -0.155 0.915 0.437 -0.276 -0.155
Sexual_orientation 0.585 0.833 -0.176 -0.029 0.584 0.845 -0.185 -0.029 0.858 0.676 -0.297 -0.096 0.851 0.676 -0.264 -0.085

Table 6: Accuracy and Bias-score by speaker Gender for disambiguated (accD, sD) vs. ambiguous (accA, accA)
items. accD, accA denote accuracy, and sD, sA denote bias score.

LLaMA-Omni Qwen2-Audio
US UK US UK

accD accA sD sA accD accA sD sA accD accA sD sA accD accA sD sA

Age 0.539 0.652 -0.181 -0.062 0.532 0.657 -0.193 -0.066 0.807 0.479 -0.258 -0.134 0.799 0.509 -0.262 -0.129
Disability_status 0.635 0.673 -0.211 -0.069 0.653 0.620 -0.220 -0.084 0.894 0.420 -0.289 -0.168 0.903 0.426 -0.298 -0.171
Gender_identity 0.556 0.254 -0.073 -0.055 0.561 0.249 -0.088 -0.066 0.826 0.133 -0.281 -0.244 0.822 0.134 -0.274 -0.238
Nationality 0.553 0.747 -0.250 -0.063 0.556 0.722 -0.242 -0.067 0.751 0.419 -0.301 -0.175 0.765 0.437 -0.287 -0.162
Physical_appearance 0.547 0.748 -0.154 -0.039 0.544 0.741 -0.102 -0.027 0.724 0.647 -0.226 -0.080 0.712 0.659 -0.199 -0.068
Race/Ethnicity 0.534 0.691 -0.275 -0.085 0.535 0.678 -0.287 -0.093 0.812 0.311 -0.287 -0.198 0.813 0.331 -0.294 -0.197
Race_x_SES 0.389 0.997 -0.291 -0.001 0.634 0.839 -0.306 -0.049 0.947 0.624 -0.358 -0.134 0.944 0.613 -0.351 -0.136
Race_x_gender 0.652 0.645 -0.307 -0.109 0.657 0.639 -0.305 -0.110 0.874 0.334 -0.311 -0.207 0.874 0.329 -0.305 -0.205
Religion 0.560 0.795 -0.097 -0.020 0.546 0.757 -0.127 -0.031 0.926 0.625 -0.240 -0.090 0.929 0.647 -0.240 -0.085
SES 0.558 0.362 -0.124 -0.079 0.550 0.373 -0.113 -0.071 0.913 0.437 -0.278 -0.157 0.911 0.439 -0.274 -0.154
Sexual_orientation 0.580 0.850 -0.197 -0.030 0.588 0.828 -0.163 -0.028 0.861 0.677 -0.295 -0.095 0.848 0.676 -0.266 -0.086

Table 7: Accuracy and Bias-score by speaker Accent for disambiguated (accD, sD) vs. ambiguous (accA, sA) items.
accD, accA denote accuracy, and sD, sA denote bias score.

C Detail Result

Tables from 5 to 7 shows the detailed result of
Bias Socre, and table 4 show the detailed result of
correlation result and std value.
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Category sD Std accD Std accA Std sA Std
Age 0.021 0.017 0.035 0.015
Disability_status 0.016 0.010 0.034 0.010
Gender_identity 0.009 0.008 0.011 0.008
Nationality 0.016 0.014 0.025 0.014
Physical_appearance 0.027 0.020 0.030 0.013
Race_ethnicity 0.009 0.009 0.022 0.010
Race_x_SES 0.009 0.008 0.021 0.008
Race_x_gender 0.005 0.005 0.031 0.011
Religion 0.014 0.008 0.029 0.009
SES 0.009 0.008 0.019 0.008
Sexual_orientation 0.039 0.021 0.031 0.018

Table 8: Standard Deviation of Qwen Audio, Global

Category sD Std accD Std accA Std sA Std
female male female male female male female male

Age 0.027 0.015 0.020 0.013 0.040 0.033 0.019 0.011
Disability_status 0.017 0.014 0.008 0.010 0.034 0.035 0.011 0.009
Gender_identity 0.009 0.008 0.010 0.007 0.013 0.010 0.009 0.008
Nationality 0.016 0.017 0.013 0.015 0.024 0.028 0.015 0.014
Physical_appearance 0.036 0.018 0.017 0.021 0.028 0.035 0.016 0.009
Race_ethnicity 0.009 0.009 0.011 0.006 0.025 0.020 0.010 0.010
Race_x_SES 0.009 0.009 0.004 0.011 0.013 0.027 0.007 0.010
Race_x_gender 0.006 0.004 0.006 0.004 0.034 0.030 0.013 0.010
Religion 0.013 0.014 0.008 0.008 0.027 0.032 0.007 0.010
SES 0.011 0.007 0.007 0.008 0.019 0.021 0.007 0.008
Sexual_orientation 0.045 0.026 0.021 0.022 0.026 0.036 0.021 0.013

Table 9: Standard Deviation of Qwen Audio, Gender

Category sD Std accD Std accA Std sA Std
GB US GB US GB US GB US

Age 0.019 0.024 0.013 0.021 0.037 0.027 0.015 0.016
Disability_status 0.018 0.013 0.008 0.009 0.038 0.031 0.010 0.009
Gender_identity 0.006 0.010 0.009 0.008 0.010 0.013 0.007 0.009
Nationality 0.015 0.014 0.014 0.009 0.022 0.027 0.014 0.012
Physical_appearance 0.018 0.029 0.017 0.022 0.035 0.026 0.011 0.012
Race_ethnicity 0.008 0.009 0.010 0.008 0.021 0.019 0.011 0.010
Race_x_SES 0.009 0.009 0.006 0.010 0.020 0.022 0.009 0.008
Race_x_gender 0.003 0.004 0.004 0.007 0.031 0.033 0.011 0.012
Religion 0.012 0.016 0.008 0.008 0.025 0.030 0.008 0.010
SES 0.010 0.008 0.006 0.010 0.020 0.021 0.005 0.009
Sexual_orientation 0.028 0.045 0.025 0.015 0.035 0.028 0.014 0.020

Table 10: Standard Deviation of Qwen Audio, Accent
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Category sD Std accD Std accA Std sA Std
Age 0.022 0.009 0.015 0.009
Disability_status 0.037 0.022 0.045 0.014
Gender_identity 0.026 0.010 0.012 0.020
Nationality 0.036 0.016 0.029 0.013
Physical_appearance 0.051 0.022 0.015 0.013
Race_ethnicity 0.017 0.007 0.018 0.008
Race_x_SES 0.134 0.136 0.141 0.044
Race_x_gender 0.011 0.005 0.009 0.006
Religion 0.062 0.033 0.028 0.016
SES 0.046 0.017 0.021 0.031
Sexual_orientation 0.045 0.023 0.022 0.008

Table 11: Standard Deviation of LLaMA-Omni, Global

Category sD Std accD Std accAStd sA Std
female male female male female male female male

Age 0.024 0.022 0.010 0.009 0.016 0.011 0.009 0.009
Disability_status 0.032 0.043 0.028 0.016 0.059 0.024 0.012 0.017
Gender_identity 0.015 0.018 0.009 0.008 0.010 0.014 0.012 0.013
Nationality 0.037 0.031 0.016 0.018 0.030 0.021 0.012 0.011
Physical_appearance 0.049 0.057 0.024 0.014 0.009 0.011 0.013 0.013
Race_ethnicity 0.015 0.011 0.006 0.003 0.020 0.017 0.007 0.007
Race_x_SES 0.104 0.160 0.128 0.098 0.169 0.001 0.053 0.000
Race_x_gender 0.009 0.010 0.004 0.005 0.006 0.008 0.004 0.005
Religion 0.059 0.059 0.036 0.030 0.030 0.026 0.017 0.014
SES 0.031 0.045 0.017 0.011 0.013 0.025 0.021 0.029
Sexual_orientation 0.046 0.047 0.025 0.022 0.029 0.011 0.010 0.007

Table 12: Standard Deviation of LLaMA Omni, Gender

Category sD Std accD Std accA Std sA Std
gb us gb us gb us gb us

Age 0.023 0.022 0.010 0.008 0.007 0.021 0.009 0.009
Disability_status 0.035 0.040 0.019 0.022 0.050 0.014 0.012 0.014
Gender_identity 0.025 0.027 0.007 0.012 0.010 0.013 0.019 0.020
Nationality 0.029 0.044 0.015 0.018 0.028 0.026 0.011 0.015
Physical_appearance 0.054 0.035 0.015 0.029 0.015 0.016 0.014 0.009
Race_ethnicity 0.014 0.018 0.007 0.007 0.020 0.015 0.008 0.007
Race_x_SES 0.107 0.160 0.177 0.034 0.169 0.001 0.053 0.000
Race_x_gender 0.011 0.011 0.006 0.004 0.007 0.009 0.005 0.007
Religion 0.070 0.053 0.031 0.034 0.022 0.019 0.019 0.012
SES 0.039 0.055 0.011 0.022 0.025 0.015 0.026 0.036
Sexual_orientation 0.049 0.036 0.020 0.026 0.024 0.014 0.011 0.005

Table 13: Standard Deviation of LLaMA Omni, Accent
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