Multi-view-guided Passage Reranking with Large Language Models

Jeongwoo Na*, Jun Kwon*, Eunseong Choi, Jongwuk Lee’
Sungkyunkwan University, Republic of Korea
{wjddn7946, kwon@4210, eunseong, jongwukleel}@skku.edu

Abstract

Recent advances in large language models
(LLMs) have shown impressive performance
in passage reranking tasks. Despite their suc-
cess, LLM-based methods still face challenges
in efficiency and sensitivity to external biases.
(i) Existing models rely mostly on autoregres-
sive generation and sliding window strategies
to rank passages, which incurs heavy compu-
tational overhead as the number of passages
increases. (ii) External biases, such as posi-
tion or selection bias, hinder the model’s ability
to accurately represent passages and the input-
order sensitivity. To address these limitations,
we introduce a novel passage reranking model,
called Multi-View-guided Passage Reranking
(MVP). MVP is a non-generative LLM-based
reranking method that encodes query—passage
information into diverse view embeddings with-
out being influenced by external biases. For
each view, it combines query-aware passage
embeddings to produce a distinct anchor vec-
tor, used to directly compute relevance scores
in a single decoding step. Besides, it employs
an orthogonal loss to make the views more
distinctive. Extensive experiments demonstrate
that MVP, with just 220M parameters, matches
the performance of much larger 7B-scale fine-
tuned models while achieving a 100x reduction
in inference latency. Notably, the 3B-parameter
variant of MVP achieves state-of-the-art perfor-
mance on both in-domain and out-of-domain
benchmarks. The source code is available at
https://github.com/bulbna/MVP.

1 Introduction

Passage reranking aims to assign fine-grained rel-
evance scores to candidate passages — typically
retrieved by a first-stage retriever (Robertson et al.,
1994; Karpukhin et al., 2020) — by harnessing the
language understanding capabilities of large lan-
guage models (LLMs), in both zero-shot and fine-
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Figure 1: Comparison of latency and nDCG@ 10 across
various reranking models. Latency refers to the time
required to rerank for a single query and nDCG @10 is
averaged over DL19 and DL20.

tuned settings. Recent studies (Sun et al., 2023;
Liang et al., 2023) formulate a prompt that consists
of a query and candidate passages and generate an
ordered list of passage identifiers in a zero-shot set-
ting. Subsequent work has fine-tuned open-source
LLMs by distilling knowledge from the teacher
model (Pradeep et al., 2023a,b), achieving compet-
itive performance.

Despite their success, LLM-based reranking
methods still face challenges in efficiency and sen-
sitivity to input order. Specifically, we address two
key issues for designing an efficient and effective
LLM-based reranker.

(1) How do we perform reranking without incur-
ring unnecessary inference? Efficient reranking
hinges on two key aspects: global ranking (evalu-
ating all candidates at once) and single pass decod-
ing (performing reranking with a single decoding
step). However, existing methods (Pradeep et al.,
2023a,b) fail to satisfy both. First, they are un-
able to include all candidate passages in a single
prompt due to input length limitations, leading to
rely on sliding-window algorithms, as illustrated
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Figure 2: Inference pipeline of a generative listwise
reranker. The total number of inferences is determined
by the product of (i) the number of prompts and (ii) the
window size required to evaluate all candidate passages.

in Figure 2(a). Next, generative rerankers employ
autoregressive decoding, generating one passage
identifier at a time, which leads to substantial com-
putational overhead in Figure 2(b).

(i1) How do we represent query-passage explic-
itly without introducing bias? While LLMs show
strong zero-shot reranking performance, the un-
biased modeling of query-passage relationships
remains an underexplored challenge due to com-
mon biases (Dai et al., 2024). First, position bias
emerges in long-context prompts, a problem known
as lost-in-the-middle (Liu et al., 2024a). Second,
selection bias arises when natural language to-
kens (e.g., "A", "1") are used as passage identi-
fiers. These identifiers may encode unintended pri-
ors, potentially biasing reranking—as observed in
multiple-choice settings (Zheng et al., 2024).

To this end, we propose a novel listwise rerank-
ing model, Multi-View-guided Passage reranking
(MVP). It consists of two key components under
the Fusion-in-Decoder (FiD) architecture (Izacard
and Grave, 2020).

Multi-View Encoding. Each query—passage pair is
encoded into learnable soft prompts in the FiD ar-
chitecture. To eliminate position bias, soft prompts
are inserted at the same fixed positions across
all passages. For each passage, distinct position
embeddings are used to separate relevant views.
Since these prompts are not tied to any pre-trained
vocabulary, they allow for unbiased modeling of
query-passage relationships. The encoder produces
view-specific embeddings, called relevance vectors,
which are then passed to the decoder to compute
the final relevance scores.

Anchor-Guided Decoding. Our method adopts a
non-generative design that leverages anchor vec-
tors for listwise relevance scoring across all candi-
dates within a single decoding step. This approach
operates independently from a language model-
ing (LM) head. During decoding, MVP aggregates

view-specific relevance embeddings from all candi-
date passages using cross-attention in the decoder
to produce anchor vectors. This design directly
computes similarity-based scores, aligning both
training and inference with the ranking objective
while substantially improving efficiency.

As illustrated in Figure 1, MVP-3B achieves
state-of-the-art performance on in-domain bench-
marks (DL19 and DL20). Notably, our 220M-
parameter model matches the nDCG@10 of 7B-
scale listwise rerankers while reducing inference
latency by up to 100x. These results highlight the
efficiency and scalability of our reranking approach,
demonstrating that high-quality reranking can be
achieved without the computational overhead of
large scale generative models.

Our contributions are summarized as follows:

* Efficient Listwise Reranker: We propose a novel
non-generative reranking method named MVP,
which enables global ranking in a single step.

* Robustness to External Biases: Our embedding-
based architecture is robust to position and selec-
tion biases, enabling flexible adaptation to diverse
passage input scenarios.

¢ Extensive Experiments: MVP achieves state-of-
the-art performance on both in-domain and out-
domain benchmarks.

2 Related Work
2.1 Reranking with LLMs

Recent work has explored leveraging the language
understanding capabilities of LLMs for passage
reranking (Zhu et al., 2023; Liang et al., 2023).
Depending on the prompting strategy, methods
can be categorized into pointwise and listwise ap-
proaches. Pointwise rerankers estimate the rele-
vance between a query and a single passage. For
example, Some pointwise approaches (Nogueira
et al., 2019, 2020; Zhuang et al., 2024) compute
relevance scores using the logits of relevance-
related tokens such as “Yes” or “No”. Other ap-
proaches (Sachan et al., 2022; Zhuang et al., 2023b;
Cho et al., 2023) estimate the relevance of a pas-
sage based on the probability of generating the
corresponding query sequence. In contrast, Xian
et al. (2023) demonstrated that listwise reranking
methods outperform pointwise approaches by com-
paring candidate passages at once. Building on this,
RankGPT (Sun et al., 2023) employed GPT-4 (Ope-
nAl, 2023) to achieve state-of-the-art zero-shot
reranking performance, and later work distilled
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Model Global  Single Pass  Bias Mitigation
Ranking  Decoding  pogition Selection
ListT5 X X v X
RankZephyr X X 4 X
PE-Rank v X X X
FIRST X v X X
MVP v v v v

Table 1: Comparison of generative LLM rerankers and
MVP with respect to bias mitigation, global ranking
capability, and generation target.

knowledge into open-source LLMs (Pradeep et al.,
2023a,b). While intuitive, this generation-based ap-
proach introduces inefficiencies and hinders align-
ment with the goals of ranking.

2.2 Generative Reranking with LLMs

To address the limitations discussed in Sec-
tion 1, various generative reranking methods have
been proposed. To mitigate the position bias,
ListT5 (Yoon et al., 2024) leverages the FiD archi-
tecture, while RankZephyr (Pradeep et al., 2023b)
addresses the issue by shuffling input order and
varying the number of passages during training.
PE-Rank (Liu et al., 2024b) compresses each pas-
sage into a single token, allowing global ranking,
but suffers from information loss during compres-
sion and projection. FIRST (Reddy et al., 2024)
improves efficiency via single-pass decoding using
the logits of the first generated token, yet supports
neither global ranking nor effective bias mitigation.

While prior work has tackled individual aspects
of generation-based reranking, no method has si-
multaneously achieved (i) mitigation of various bi-
ases, (ii) global ranking capability, and (iii) single-
pass decoding. A comparison with existing meth-
ods is presented in Table 1.

3 Proposed Method

In this section, we propose a novel passage rerank-
ing model, Multi-View-guided Passage reranking
(MVP), which is based on the FiD architecture. As
shown in Figure 3, a query-passage pair is encoded
into multiple relevance vectors, each capturing a
unique relevance signal from a different view (Sec-
tion 3.1). The decoder generates anchor vectors for
each view, which score passages via dot product
with their relevance vectors (Section 3.2). Finally,
we train the model solely with a ranking objective
with an orthogonality regularization term to ensure
that anchor vectors remain distinct (Section 3.3).

3.1 Multi-View Encoding

To employ a query-aware passage embedding that
summarizes the entire context, we encode each
query-passage pair through a set of learnable soft
prompts. Given a query ¢ and a set of n candi-
date passages [c1, Ca, .. ., C,], We construct a dis-
tinct input prompt z; by prepending m view tokens
(v1), (va),..., (V) to the query and the i-th pas-
sage. The relative positions of these view tokens are
fixed across all passages, ensuring that each (vy)
consistently appears at the same location, regard-
less of the query and passage content. Meanwhile,
each view token in z; is assigned a unique posi-
tion embedding, enabling the model to distinguish
between views and capture diverse aspects of the
query—passage relationship.

x; = (v1) -+ (Vi) | Query: ¢ | Context: ¢; (1)

The FiD encoder processes constructed input x; to
obtain hidden states H;, where L denotes the length
of the input sequence and d denotes the hidden size
of the language model.

H; = FiDencoder(l'i)y H; e RLXd (2)

From these hidden states, we extract the vectors
corresponding to each special token (v ), denoted
as e;y,, representing distinct views of query-passage
relevance:

ei = Hi[(Vi)]

Consequently, each candidate passage c; is
compressed into a set of m relevance vectors,
€il, €52, - - - , €im- Lhe integration of the FiD archi-
tecture and position-controlled soft prompts effec-
tively eliminates both position and selection bi-
ases, enabling robust and view-specific encoding
of query—passage interactions.

fork=1,...,m 3)

3.2 Anchor-Guided Decoding

To minimize the computational overhead of sequen-
tial generation, MVP adopts anchor-guided decod-
ing. Specifically, MVP generates multiple anchor
vectors by applying cross-attention over all can-
didate relevance vectors in the decoder, enabling
single-pass inference and global ranking without
autoregressive decoding.

Each anchor, derived from the relevance vec-
tors corresponding to each view, represents a dis-
tinct perspective of relevance. Specifically, given
n candidate passages and their k-th view rele-
vance vectors e, . . ., enk, WE construct a matrix
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Figure 3: The overall framework of MVP. (a) A query-passage pair is encoded into multiple relevance vectors,
where each vector represents a distinct view. (b) For every view, an anchor vector is generated, and the view-wise
relevance score is computed based on its similarity to the corresponding relevance vector. The final score is obtained
by aggregating scores across all views. (c) The model is trained with a ranking loss to match the target distribution
and an orthogonality loss to encourage diversity among anchor vectors.

E), € R™*4 a5 the key-value input to the decoder.
E)}; is then transformed into an anchor vector ag
via cross-attention.

Er = [e1r; €ak; - - - s enk] € R™XY “4)

ap = FiDdecoder([BOS]a Ek) S Rle (5)

The relevance score from each view is computed
by measuring similarity between a relevance vec-
tor e;; and its anchor a, and the final score s; is
obtained by averaging across all m views:

m

1
si = > {a eix) (6)

k=1

By utilizing multiple anchors, the model effec-
tively evaluates candidate passages from diverse
semantic views, enabling efficient and accurate
scoring without the need for ranking list gener-
ation. Importantly, this direct scoring mechanism
removes the need to compute token-level logits,
enabling both training and inference to rely solely
on relevance-based objectives.

3.3 Training

Training MVP involves optimizing two comple-
mentary objectives that jointly enhance ranking

accuracy and representational diversity. The first
is a ranking objective that enables the model to
learn the relevance order of candidate passages
(Section 3.4). The second is an orthogonality ob-
jective that encourages each anchor to capture a
distinct perspective on relevance (Section 3.4.1).

3.4 Ranking Loss

As the ranking objective to train MVP, we adopt the
ListNet loss (Cao et al., 2007), which enables the
predicted ranking scores to align with the ground-
truth relevance order. Given n candidate passages
and their ground-truth ranks r; € [1,2,...,n]
(with r; = 1 indicating the most relevant), each
rank is converted into a relevance score using a
reciprocal transformation, i.e., y; = 1/r;. We then
apply a temperature-scaled softmax to both ground-
truth scores y; and predicted scores s; to obtain
probability distributions, where 7 is a temperature
hyperparameter:

N _  exp(yi/7)
Pl = ooty 7
P(si) = exp(si/T) )

Z?:l exp(s;/T)

The listwise ranking objective used to approxi-
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mate the predicted probability for the i-th passage
is defined as follows:

Lrank = — Y P(yi)log P(s;) ()]
i=1

3.4.1 Orthogonal Loss

Since MVP computes the relevance score for each
passage by leveraging multiple anchor vectors,
each anchor has to capture a distinct and comple-
mentary view of the query-passage relationship.
To this end, we introduce an orthogonal regular-
ization loss that promotes diversity among anchor
vectors, inspired by the Orthogonal Projection Loss
(OPL) (Ranasinghe et al., 2021), which encourages
orthogonality in feature representations. The loss
is defined as:

m m
ﬁOrthogona E § ak,al

k=1 l=
I£k
T T

il - [l 2

(10)

[, 2] = an

Here, [ -, -] denotes the cosine similarity opera-
tor, and || - ||2 represents the L2 norm.

This regularization encourages anchor vectors to
remain in distinct directions, guiding the encoding
stage to capture diverse semantic views across to-
kens. The final training loss combines the primary
ranking loss and the orthogonality regularization
term:

L= ERank + EOnhogonal (12)

4 Experiments

In this section, we first describe the training and
evaluation setup for MVP. We then present four
main results: (i) overall ranking performance, (ii)
efficiency against various reranking models, (iii)
robustness to external biases, and (iv) ablation stud-
ies on key architectural components. All results
for MVP are based on the T5-base model unless
otherwise specified as 3B.

4.1 Experimental Setup

Datasets. We evaluated in-domain performance
on the TREC-DL19, DL20 (Craswell et al., 2020,
2021a), and assessed zero-shot out-of-domain per-
formance on the BEIR (Thakur et al., 2021) bench-
mark, which is designed to evaluate the general-
ization ability of ranking models. Although BEIR
comprises eight diverse datasets, we followed prior
work (Sun et al., 2023) and conducted evaluations

on eight datasets with relatively fewer queries. We
employed BM25 as the first-stage retrieval model
and measured reranking performance using Nor-
malized Discounted Cumulative Gain at rank 10
(nDCG@10). Note that while we use five passages
per query during training, at inference we rerank
all candidate passages using single-pass decoding
without any other sorting algorithms.
Implementation Detail. To train MVP, we uti-
lized the Rank-DistiLLM (Schlatt et al., 2025)
dataset, which is constructed from the MS MARCO
passage ranking dataset (Nguyen et al., 2016) us-
ing 10,000 queries. For each query, the top 100
candidate passages were first retrieved using Col-
BERTV2 (Santhanam et al., 2022), and then rerank-
ing these passages with the RankZephyr (Pradeep
et al., 2023b). To construct a more diverse training
set, we sampled 5 candidate passages 100 times
per query, resulting in approximately 1 million in-
stances.

We adopted T5-base and T5-3B (Raffel et al.,
2020) as our backbone models. For optimization,
we applied DeepSpeed Stage 2. For T5-base, we
used a batch size of 16, gradient accumulation steps
set to 2, a learning rate of le-4, and a linear sched-
uler with a warm-up ratio of 5%. For T5-3B, we
used a batch size of 2, gradient accumulation steps
of 16, and a learning rate of le-5. The maximum
input sequence length was fixed at 256 tokens for
both models. Training was conducted for a sin-
gle epoch, taking approximately 5 hours on 2 X
NVIDIA RTX 3090 GPUs for T5-base, and 40
hours on 2 x NVIDIA A6000 GPUs for T5-3B. We
use m = 4 special tokens to represent the relevance
views, implemented using the T5 tokenizer’s pre-
defined tokens <extra_id_0> to <extra_id_3>,
and set 7 = 0.8 to control the sharpness in the List-
Net loss. For validation, we use the TREC-DL21
dataset (Craswell et al., 2021b) with nDCG@10 as
the validation metric.

4.2 Ranking Performance

We compare MVP against seven reranking mod-
els built on the TS architecture. Specifically, point-
wise models are MonoT5 (Nogueira et al., 2020)
and RankT5 (Zhuang et al., 2023a). The list-
wise model is ListT5 (Yoon et al., 2024). For 7B-
scale rerankers, we employ RankVicuna (Pradeep
et al., 2023a), RankZephyr (Pradeep et al., 2023b),
FIRST (Reddy et al., 2024), and PE-Rank (Liu
et al., 2024b). Note that MVP is based on 220M
and 3B base models.
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Model | DL19 DL20 | Covid NFCorpus Signal News Robust04 SciFact Touche DBPedia BEIR Avg.
MonoT5 (220M) | 71.5 67.0 | 78.3 35.7 32.0 48.0 534 73.1 29.6 42.8 49.1
RankT5 (220M) | 724 68.3 | 77.7 35.1 30.8 454 543 73.5 37.1 43.7 49.7
ListT5 (220M) 71.8 68.1 | 78.3 35.6 33.5 485 52.1 74.1 334 43.7 49.9
MVP (220M) | 743 69.2 | 80.2 36.0 32.7 491 55.1 75.0 39.1 43.8 51.4
MonoT5 (3B) 71.8 68.9 | 79.8 373 322 483 58.5 76.3 325 44.8 51.2
RankT5 (3B) 72.5 704 | 81.7 37.4 31.9 495 58.3 77.1 38.8 45.0 52.5
ListT5 (3B) 71.8  69.1 | 84.7 37.7 33.8 532 57.8 71.0 33.6 46.2 53.0
FIRST (7B) 724 711 | 82.4 36.3 340 524 54.6 75.0 38.0 46.3 52.6
PE-Rank (7B) 70.8 654 | 77.8 34.8 320 523 48.7 70.2 34.2 40.6 49.0
RankVicuna (7B) | 66.5 66.4 | 79.5 32,5 333  45.0 47.0 68.8 32.9 44.5 48.1
RankZephyr (7B) | 73.1 70.8 | 83.2 36.3 31.5 525 54.3 74.9 324 44.5 51.4
MVP (3B) | 735 711 | 83.1 37.6 342 512 60.5 76.4 37.2 46.6 533

Table 2: Results (nDCG @ 10) of reranking top-100 passages on TREC and BEIR benchmarks. The initial candidate
passages are retrieved using BM25. The best-performing model in each section is highlighted in bold, and the

second-best is marked with underline.

FLOPs x 5.5
718 |gp
5 —o— TREC-DL Avg
4 o
K 70.4 @
Q3 70 QO
= 70 8
2 69.3 =
1 x 1.2 x 1.2 x1.0 69
0 - 68
MonoT5 RankT5 ListT5 MVP (ours)

Figure 4: Real-time FLOPs comparison of the models.
The reported performance is averaged over DL19 and
DL20.

Table 2 reports the overall result. When evalu-
ated at the T5-base scale, MVP outperforms other
baselines of the same model size across most
datasets. On the BEIR benchmark, MVP achieves
an average nDCG@10 score of 51.4, surpassing
MonoT5, RankT5, and ListT5 by 2.3, 1.7, and
1.5 points. This performance is also comparable
to that of RankZephyr (7B), a much larger model.
On the TREC-DL19 and DL20 datasets, MVP also
exceeds RankT5 by 1.9 and 0.9 points, respectively.

We also compare the 3B variant of MVP with
large-scale (3B-7B) LLM-based reranking models.
MVP-3B achieves nDCG@10 scores of 73.5 on
DL19, 71.1 on DL20, and 53.3 on the BEIR aver-
age, outperforming all other models at the 3B and
7B scales. These results suggest that the architec-
tural advantages of MVP generalize well to larger
model configurations.

4.3 Efficiency

The key strength of MVP lies in its ability to rep-
resent each query-passage pair with multiple rel-

evance vectors and to perform anchor-guided de-
coding, achieving both high effectiveness and sig-
nificantly improved efficiency. To empirically val-
idate efficiency, we report both floating-point op-
erations (FLOPs) and latency. All experiments are
conducted on a 24GB NVIDIA RTX 3090 GPU.
FLOPs. To assess the computational efficiency
of each model, we measured FLOPs using Deep-
Speed’s FLOPs Profiler'. The evaluation was con-
ducted on 43 queries from the DL19 dataset. Fol-
lowing the prior work (Yoon et al., 2024), we mea-
sured the FLOPs required to determine the top 10
passages out of BM25-Top100 candidates. The in-
put sequence length was set to 256 tokens. For ease
of comparison, we normalized MVP’s FLOPs to
1.0? with the relative FLOPs of other models com-
puted accordingly.

As illustrated in Figure 4, MVP achieves the
lowest computational cost among all models while
outperforming them in ranking quality. Compared
to ListT5, it reduces FLOPs by approximately
82%. Notably, MVP also consumes fewer oper-
ations than pointwise models such as MonoT5 and
RankT35, despite delivering stronger reranking per-
formance.

Latency. We also measure the latency required to
determine the top-10 passages from BM25-Top100
candidate passages. Latency is defined as the aver-
age time per query, measured in seconds. Our ex-
periments are conducted on DL19 and DL20, along
with two datasets from the BEIR benchmark: Covid
and NFCorpus. For fair comparison, all vLLM ac-

'We use DeepSpeed’s FLOPs profiler for measurement:
https://github.com/microsoft/DeepSpeed
>The exact FLOPs value is 197,983,445,625,792.
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Figure 5: Ranking performance (nDCG@10) for the reranker’s latency (s). Latency indicates the average time

required to rerank a single query.

celeration features are disabled, ensuring that the la-
tency reflects the raw inference time of each model.

The results in Figure 5 show that MVP achieves
faster inference than existing listwise models across
all datasets, even surpassing the pointwise model
RankTS5. Specifically on DL19, it achieves 100x
faster than RankZephyr and 12.7x faster than
FIRST, while maintaining comparable ranking per-
formance. At the larger scale (3B-7B), MVP-3B of-
fers a favorable trade-off between latency and rank-
ing accuracy. Notably, even compared to FIRST, a
well-balanced 7B model, MVP-3B achieves faster
inference and better accuracy.

In summary, the FLOPs and latency results con-
firm that MVP is both efficient and effective for
real-time reranking. The scoring strategy of MVP
enables simultaneous evaluation of all candidates
without repeated decoding, eliminating redundancy
and supporting strong ranking performance.

4.4 Robustness to External Biases

Most listwise rerankers are sensitive to prompt
design—specifically the initial passage order and
the choice of passage identifiers—Ileading to po-
sition and selection biases. We evaluate whether
our model eliminates these effects under various
listwise prompts on DL19, DL20, and News. A

detailed analysis is provided in Appendix C

Position Bias. To evaluate position bias, we manip-
ulate the initial passage order of the BM25 top-100
candidates while keeping identifier tokens fixed
within a single reranking window. We consider
three configurations: Orig., the BM25 relevance or-
der; Rev., the reversed order; and Shuf., a random
permutation. The results are shown in the upper
part of Table 3.

The results indicate that MVP is robust under
different candidate permutations, effectively miti-
gating position bias. This robustness results from
our design choice: each query—passage pair is con-
structed as an individual prompt and encoded sepa-
rately, resulting in shared position embeddings of
view tokens across all passages.

Selection Bias. For selection bias, we fix the candi-
date order to the BM25 relevance order and manip-
ulate the assignment of identifier tokens. We use
configurations similar to the position bias exper-
iment: Orig., the original assignment; Rev., a re-
versed identifier assignment (e.g.,"[idog]: context;,
[idq9]: contexty, ..., [id;]: contextry"); and Shuf., a
random permutation. The results are shown in the
lower part of Table 3.

Unlike other baselines, MVP does not rely
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Model | Order | DL19 DL20 News Average
Candidate Permutations
Orig. | 743 692 49.1 642
MVP Shuf. | 743 692 49.1 64.2 (00
Rev. | 743 692 49.1 64.2 (00
Orig. | 73.1 708 525 655
f@?;g’b_% Shuf. | 73.1 707 513 65.0 (04)
swrw=eE =Y Rew. 721 715 518 65.1(-03)
Orig. | 724 71.1 524 653
R i oei) | SUE. | 700 694 473 6224
e Rev. | 67.5 683 424 59459
Identifier Permutations
MVP | - | 743 692 491 642
Orig. | 73.1 708 525 655
Faflk%fophfw Shuf. | 713 673 467 61.8(3.7)
wew=BS= W Rev. | 693 639 472 60.1 (-53)
Orig. | 724 71.1 524 653
R org) | SUE | 712 692 49.1 6322
e Rev. | 71.0 682 485 62.6(27)

Table 3: nDCG@ 10 across candidate and identifier per-
mutations. Values in parentheses indicate the change
relative to the Original order. sw denotes the sliding-
window setting, with window size (w) and stride (s)
following prior work. Results for the Shuffle setting are
averaged over three random seeds.

Model DL19 DL20 BEIR Avg.
MVP 74.3 69.2 514
w/o EOl'thogona] 73.6 66.7 50.7
w/o Multi-view Encoding ~ 73.8 68.8 50.9

Table 4: nNDCG@ 10 for MVP and its ablations on differ-
ent training strategies. See Table 12 for full results.

on natural language identifiers. Instead, all
query—passage pairs share the same view tokens,
rendering identifier permutations inapplicable and
effectively eliminating selection bias.

4.5 Ablation Study

To evaluate the impact of key architectural com-
ponents on model performance, we design several
model variants and perform ablation studies.

4.5.1 Training Strategies

To investigate the impact of each component in
MVP, we perform ablation experiments by remov-
ing two key design elements: (i) orthogonality reg-
ularization among anchors and (ii) the use of multi-
view encoding. The results are reported in Table 4.
w/o Orthogonality. Removing the orthogonality
regularization among anchor vectors consistently
degrades performance across datasets. This sug-
gests that, in the absence of this constraint, differ-

BEIR Avg.

52.0
515 573 51.-4
= e 51f2 P N 512
’, = ~e
S - N
5100509~ >
(@] v N
a 50.6
~.
50.5
50.0
1 2 3 4 5 6

Number of View Tokens

Figure 6: Average nDCG@ 10 on BEIR with respect to
the number of view tokens.

ent anchors tend to collapse into similar directions
within the embedding space, leading to redundant
rather than complementary representations. A de-
tailed analysis of anchor vector similarities is pro-
vided in Appendix D.1.

w/o Multiple Token. Using a single special token
to represent relevance results in a 0.4-0.5 point
drop in performance on average. This degradation
is attributed to the limited capacity of a single to-
ken to capture both query and passage information,
leading to a loss of discriminative features.

4.5.2 Number of View Tokens

To analyze the impact of the number of view to-
kens on model performance, we varied the number
of relevance tokens from 1 to 6 and evaluated the
average performance across BEIR datasets. As il-
lustrated in Figure 6, incorporating multiple views
leads to improved performance up to a certain point,
beyond which performance begins to degrade. This
suggests that, while orthogonality regularization
encourages representational diversity, an excessive
number of view tokens may introduce less informa-
tive signals, degrading ranking performance.

5 Conclusion

We presented MVP, a novel passage reranking
model that addresses key limitations of listwise
LLM-based approaches, including high compu-
tational cost and sensitivity to external biases.
By leveraging multi-view encoding through soft
prompts and anchor-guided decoding, MVP cap-
tures diverse relevance signals efficiently via com-
pact context embeddings, enabling all candidate
passages to be evaluated in a single pass, making
it particularly well-suited for real-world retrieval
scenarios. Experimental results show that MVP,
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with only 220M parameters, matches or surpasses
the performance of 7B-scale models while reduc-
ing inference latency up to 100x. Moreover, its
3B variant achieves state-of-the-art results on both
in-domain and out-of-domain benchmarks.

6 Limitations

While MVP employs a fixed number of views
across all datasets—a simple and generally effec-
tive strategy—using fewer views in some cases
can reduce redundancy and improve performance.
In addition, MVP aggregates relevance scores by
assigning equal weights to all views. Although
this uniform aggregation is straightforward, it may
overlook the fact that different queries can bene-
fit more from certain views than others. Exploring
dynamic view selection or learning query-specific
view weights remains a promising direction for
future work.
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Model  Training Data | DL19 DL20
MVP RankDistiLLM | 74.3 69.2
ListT5  RankDistiLLM 72.5 68.5

Table 5: nDCG@10 results comparing MVP and a
ListTS5 variant trained on RankDistiLLM data, using
tournament sort

A Implementation Details

A.1 Passage Length Configuration

During inference, we follow the passage length con-
figuration from ListT5 (Yoon et al., 2024), where
the maximum passage length for each dataset is
selected from [256, 512, and 1024] based on the
average number of tokens in the query-passage pair.
For the signal dataset, however, we use a smaller
maximum length of 128, considering its short in-
put length. We found that this reduced setting did
not negatively impact performance. The final maxi-
mum input lengths used for each dataset are sum-
marized as follows:

‘dl19’: 256, ‘d120’: 256, ‘trec-covid’: 512, ‘nf-
corpus’: 512, ‘signal’: 128, ‘news’: 1024, ‘ro-
bust04’: 1024, ‘scifact’: 512, ‘touche’ : 1024,
‘dbpedia-entity’ : 256

B Additional Experiments

B.1 Comparison with Generation-Based
Reranking

To further validate our approach, we trained the
ListT5 framework on our dataset. Following prior
work (Yoon et al., 2024), the model was configured
to take 5 passages as input and generate the top 2
passages. Results are shown in Table 5.

Despite being trained on the same dataset, our
anchor-based relevance estimation with multi-view
representation and reranking approach consistently
outperformed the generation-based model. We at-
tribute this performance gap to two main fac-
tors: (1) generation-based models are trained with
language modeling objectives, which are not in-
herently aligned with ranking tasks, and (2) our
method evaluates relevance from multiple perspec-
tives and aggregates the results, enabling more ac-
curate and robust ranking estimation.

B.2 Effect of Sampling Size

We further analyze the impact of the number of
candidate passages used during training on model
performance. The setting with 100 candidates fol-
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5 10 20 100
DL19 74.3 73.7 74.0 68.1
DL20 69.2 68.0 67.0 62.4
Covid 80.2 80.1 80.1 76.3
NFCorpus 36.0 35.9 353 34.3
Signal 32.7 32.1 31.3 32.0
News 49.1 48.6 47.2 46.0
Robust04 55.1 55.4 53.8 52.5
SciFact 75.0 74.4 74.1 69.3
Touche 39.1 39.0 36.9 352
DBPedia 43.8 44.0 434 40.7
BEIR Avg. 514 51.2 50.3 48.3

Table 6: nDCG@ 10 performance with varying candidate
sampling sizes during training.

lows the original configuration of Rank-DistiLLM,
while the settings with 10 and 20 candidates in-
volve randomly sampling 10 or 20 passages per
training instance, respectively.

As shown in Table 6, we observe a performance
degradation as the number of candidate passages
increases. We attribute this to two main factors.
First, as described in Section 3.4, we adopt the
ListNet loss, where the target distribution is con-
structed by applying a softmax over the inverse
rank. Increasing the number of candidates makes
this distribution overly uniform, making it harder
for the model to distinguish between relevant and
non-relevant passages and thereby weakening the
ranking signal. Second, using fewer candidates al-
lows us to generate more diverse combinations of
passages through random sampling which exposes
the model to a wider range of ranking scenarios.

C Analysis of External Biases

In this section, we analyze the factors underlying
MVP’s robustness to external biases, focusing on
position and selection biases.

C.1 Robustness to Position Bias

Position bias denotes the dependence of reranking
performance on the initial candidate order. This
issue typically arises when passages receive differ-
ent positional embeddings within a listwise prompt.
However, as shown in Table 7, which extends the
candidate permutation results of Table 3 with ad-
ditional rerankers, MVP consistently achieves the
same reranking performance regardless of the ini-
tial order. This invariance arises from the encoding
and decoding mechanisms of MVP.

Candidate Order | DL19 DL20 News Average
MVP

BM25 74.3 69.2 49.1 64.2

Shuf. BM25 74.3 69.2 49.1  64.2 (x0.0)

Rev. BM25 74.3 69.2 49.1  64.2 (x0.0)
ListT5 (ts: m=5, r=2)

BM25 71.8 68.1 48.5 62.8

Shuf. BM25 71.2 68.2 48.6  62.7 -0.1)

Rev. BM25 71.2 67.8 485  62.5(-03)
RankZephyr (sw: w=20, s=10)

BM25 73.1 70.8 52.5 65.5

Shuf. BM25 73.1 70.7 513 65.0-0.4)

Rev. BM25 72.1 71.5 51.8  65.1(-0.3)
FIRST (sw: w=20, s=10)

BM25 72.4 71.1 524 65.3

Shuf. BM25 70.0 69.4 473 622 3.1

Rev. BM25 67.5 68.3 424 594 59
PE-Rank (sw: w=20, s=10)

BM25 70.8 65.4 52.3 62.8

Shuf. BM25 66.0 58.5 46.8  57.1 (57

Rev. BM25 67.5 59.1 46.5 577 5.1

Table 7: nDCG @10 results under different candidate
orders. Values in parentheses indicate change relative to
the BM25 ranking order. zs denotes tournament sort and
sw denotes sliding window. For each sorting algorithm,
the basic operating unit (m — r), window size (w), and
stride (s) are set according to prior work.

Encoding Stage As described in Section 3.1, we
prepend identical m view tokens to each docu-
ment ¢;. Using the FiD architecture, each passage
is then independently encoded, producing m rel-
evance vectors. Importantly, the k-th view token
(vg) consistently receives the same positional em-
bedding vector p;, across all query-passage pairs.
This encoding ensures that the resulting relevance
vectors remain independent of the initial passage
order.

Decoding Stage To generate the anchor vector, the
decoder receives only a single [BOS] token as in-
put. For cross-attention, the keys and values are
the relevance vectors {e1f, €ag, - - . , €nx } produced
at the encoding stage for the k-th view token (vy)
(see Section 3.2). Since no additional positional
embedding is applied to these keys and values, the
resulting anchor vector remains invariant to permu-
tations of the relevance vectors.

Consequently, reranking is performed by mea-
suring similarity between a relevance vector and
its anchor vector. Through this mechanism, MVP
achieves consistent reranking performance regard-
less of the initial passage order.
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EXTRAID FIRST4 Numeric Alphabetic Identifier Order \ DL19 DL20 News Average
DL19 743 74.2 734 732 MVP
DL20 69.2 68.7 67.7 68.1 i 743 ©2 491 42
Covid 80.2 78.4 78.5 78.8 - .
NFCorpus 36.0 35.7 35.5 353 ListT5 (ss: m=5, r=2)
Signal 33.0 322 32.0 33.0 Original 71.8 68.1 48.5 62.8
News 49.1 49.4 48.7 49.0 Shuffle 714 68.3 49.2 63.0 (+0.2)
Robust04 55.1 540 54.1 54.9 Reverse 71.4 67.8 494  62.9 (+0.1)
SciFact 75.0 74.6 73.5 73.8 RankZephyr (SW: szo’ S=10)
Touche 39.1 39.7 40.4 40.4
DBPedia 43.8 443 439 43.8 Original 73.1 70.8 52.5 65.5
Shuffle 71.3 67.3 46.7 61.8 (-3.7)
BEIR Avg. | 514 51.0 50.8 51.1 Reverse 693 639 472  60.1 (53
Table 8: nDCG @10 results for different view token FIRST (sw: w=20, s=10)
designs. Original 72.4 71.1 524 65.3
Shuffle 71.2 69.2 49.1 63.2 (-2.1)
Reverse 71.0 68.2 48.5 62.6 (-2.7)
C.2 Robustness to Selection Bias PE-Rank (sw: w=20, s=10)
. . . . . Original 70.8 65.4 52.3 62.8
Selectlon bias refers to the bias inherent in th; 1der'1— Shuffle 705 653 519 62.6(02)
tifier tokens used to represent passages. We investi- Reverse 703 653 522  62.6(-02)

gate this issue through two sets of experiments.

C.2.1 Designs for View Tokens

To analyze the impact of view token design on re-
ranking performance, we compare three alternative
configurations: (1) First 4 Tokens: Following the
FiD-Light (Hofstitter et al., 2023) approach, the
first four tokens in the input prompt are reused
without introducing dedicated special tokens; (2)
Numeric Tokens: View tokens are replaced with
number-based tokens (1, 2, 3, 4); and (3) Alpha-
betic Tokens: Character-based tokens (A, B, C, D)
are used as view tokens.

Table 8 shows that the <extra_id> tokens from
TS5 tokenizer, as adopted in MVP, yields the best
performance. This result suggests that: (1) Learn-
able token embeddings specifically trained to en-
code query-passage relevance are more effective
than simply reusing the first prompt tokens. (2)
Moreover, numeric and alphabetic identifiers may
already carry semantic meaning from pretraining,
leading to potential conflicts with their intended
function as compression tokens, ultimately result-
ing in degraded performance.

C.2.2 Identifier Reordering

Existing generation-based listwise rerankers rely
on identifier tokens to produce outputs, which can
introduce selection bias. To further examine this is-
sue beyond the experiments in Section 4.4, we con-
ducted additional evaluations on various listwise
rerankers. The results are summarized in Table 9.
The results confirm that models using numeric
or alphabetic identifiers are sensitive to identifier

Table 9: nDCG @10 results under different identifier
orders. Values in parentheses indicate change relative to
the original identifier configuration. zs denotes tourna-
ment sort and sw denotes sliding window.

| Relevance Vectors | Anchor Vectors

MVP
w/o Orthogonal

0.4910 (0.0229) -0.0025 (0.0010)
0.8815 (0.0232) 0.9800 (0.0062)

Table 10: Mean (standard deviation) of pairwise co-
sine similarities. Similarities are calculated respectively
among relevance vectors and anchor vectors.

reordering, with most models exhibiting perfor-
mance drops. Even in ListT5, which leverages the
FiD architecture, we observe minor performance
variations. In contrast, MVP avoids this issue by
employing randomly initialized view tokens shared
across passages and computing relevance scores
directly from passage-specific vectors.

D Additional Analysis of MVP
D.1 Impact of Orthogonal Regularization

To verify whether orthogonality promotes separa-
tion across views, we analyze the pairwise cosine
similarities within anchor vectors and relevance
vectors on the DL20 dataset, which contains 54
queries, each associated with 100 candidate pas-
sages. We compare the results between MVP and
its variant without orthogonality regularization. For
anchor vectors, we compute the average pairwise
similarities among the 4 anchors for each query?

3Four vectors generate six unique pairs.
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View 1 View 2 View 3 View 4 MAX Mean

DL19 728 715 727 735 735 743
DL20 663 659 680 683 684 69.2
Covid 789 788 799 80.0 80.1 80.2
NFCorpus | 35.7 324 314 36.2 33.1 360
Signal 306 331 326 327 334 327
News 475 447 499 480 469 49.1

Robust04 | 522 514 544 553 534 551
SciFact 74.1 585 57.0 747 734 75.0
Touche 342 372 382 386 379 391
DBPedia 43.1 420 419 43.6 437 438

BEIR Avg.| 495 472 482 51.1 502 514

Table 11: nDCG@ 10 comparison of view-wise score
aggregation methods, including individual views, MAX,
and Mean. The Mean strategy corresponds to the default
aggregation method used in our proposed framework
MVP.

and report the average across 54 queries. For rel-
evance vectors, we also compute the average pair-
wise similarities among the four vectors produced
for each query-passage pair, and report the average
over all 5,400 pairs.

The results are presented in Table 10. As shown,
removing the orthogonality constraint leads to a
substantial increase in similarity among both an-
chor and relevance vectors. This indicates that the
relevance vectors capture highly similar signals,
and the anchor vectors assess relevance using over-
lapping criteria. Consequently, this reduces view
diversity and leads to performance degradation.

D.2 Effectiveness of View Aggregation

We conducted an additional analysis to verify
whether the proposed model effectively aggregates
information from each view. Table 11 presents the
results of this analysis, where each column repre-
sents a different aggregation strategy. Specifically,
columns labeled View I, ..., View 3 show perfor-
mance when reranking is performed using scores
from each individual view alone, while the col-
umn labeled Max indicates performance obtained
by selecting the highest relevance score among all
views as the final relevance score. Lastly, the col-
umn labeled Mean corresponds to our proposed
MVP approach, where the final relevance score is
calculated by averaging scores across all views.
Experimental results demonstrate that, the MVP
approach of averaging scores across views consis-
tently outperforms in most scenarios. In contrast,
the MAX strategy results in decreased performance,

MVP W/ Lommogont ‘Eﬁ{‘;{;}:g‘ew
Covid 80.2 79.1 78.8
NFCorpus 36.0 35.6 35.8
Signal 32.7 31.4 32.6
News 49.1 48.1 48.7
Robust04 55.1 54.6 55.2
SciFact 75.0 74.3 73.2
Touche 39.1 38.4 39.1
DBPedia 43.8 43.9 44.2
BEIR Avg. 514 50.7 50.9

Table 12: Full BEIR results for the ablation study on
training strategies.

which can be attributed to the inconsistency intro-
duced by selecting the final score from different
views. Since each view captures distinct relevance
perspectives, relying on a single highest score may
lead to instability and undermine the overall rank-
ing consistency.

D.3 Full Reranking Results from Ablation
Studies

Following the analysis in Section 4.5.1, Table 12
reports the full reranking results from the ablation
experiments.
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