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Abstract

N-ary Knowledge Graphs (NKGs) are a spe-
cialized type of knowledge graph designed to
efficiently represent complex real-world facts.
Unlike traditional knowledge graphs, where a
fact typically involves two entities, NKGs can
capture n-ary facts containing more than two
entities. Link prediction in NKGs aims to pre-
dict missing elements within these n-ary facts,
which is essential for completing NKGs and
improving the performance of downstream ap-
plications. This task has recently gained sig-
nificant attention. In this paper, we present the
first comprehensive survey of link prediction
in NKGs, providing an overview of the field,
systematically categorizing existing methods,
and analyzing their performance and applica-
tion scenarios. We also outline promising di-
rections for future research.

1 Introduction

Since Google introduced Knowledge Graph (KG)
to enhance its search services, KGs have attracted
growing attention from both academia and indus-
try (Lehmann et al., 2015). A traditional KG stores
numerous facts, typically represented in the form
of triples (h, r, t), indicating a specific relation r
between a head entity h and a tail entity t, such as
(Biden, the President of , the USA).
However, many real-world facts involve more

than two entities, requiring a more expressive rep-
resentation. N-ary Knowledge Graphs (NKGs)
address this need by enabling the representation
of complex facts involving multiple entities, com-
monly referred to as n-ary facts. For instance,
the fact “Einstein studied physics at the Univer-
sity of Zurich and received his PhD” can be rep-
resented as {person : Einstein, institution :
Uni. Zurich, major : Physics, degree : PhD}
in NKGs.

∗ Corresponding Authors.

N-ary facts are prevalent in real-world scenar-
ios (Fatemi et al., 2021). Statistically, in Free-
base, over a third of entities are involved in n-ary
facts (Wen et al., 2016), and more than 61% facts
are n-ary facts (Fatemi et al., 2021). Like tradi-
tional KGs, NKGs are inevitably incomplete, due
to the complex process of their construction (Li
et al., 2024d). The incompletion of NKGs hin-
ders the performance of downstream applications,
including information retrieval (Zhao et al., 2020)
and recommendation systems (Liang et al., 2023).
To address this, link prediction in NKGs is pro-
posed to predict missing elements in facts therein,
helping populate and enrich NKGs (Wen et al.,
2016).
Traditional link prediction methods for KGs en-

code facts as triples. To handle n-ary facts, they de-
compose each n-ary fact into multiple triples, such
as introducing Compound Value Type (CVT) enti-
ties in Freebase (Bollacker et al., 2008). However,
this decomposition complicates inference, leads to
structural information loss, increasesmodel param-
eters, and risks incorrect reasoning (Wen et al.,
2016). More details on the disadvantages of the
decomposition are shown in Appendix A.
As shown in Figure 1, recent efforts have in-

creasingly focused on directly modeling n-ary
facts without decomposition. Methods for link pre-
diction in NKGs fall into three categories: spa-
tial mapping-based (Wen et al., 2016), tensor
decomposition-based, and neural network-based
approaches (Guan et al., 2019). These methods ad-
dress both general scenarios (Wen et al., 2016) and
specialized scenarios, including temporal (Hou
et al., 2023), few-shot (Zhang et al., 2022b), and
inductive settings (Ali et al., 2021).
Although there exist numerous surveys on link

prediction in KGs, covering general (Wang et al.,
2017; Guan et al., 2022), temporal (Cai et al., 2023;
Wang et al., 2023c), multi-modal KGs (Zhu et al.,
2022; Peng et al., 2023), and sparse KGs (Chen
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Figure 1: Number of articles published each year (2016-) on
link prediction in NKGs.

et al., 2023c), none specifically focus on NKGs.
More statistics of existing surveys are shown in
Appendix B. Despite the rapid development of
link prediction methods for NKGs, with nearly 50
methods proposed, existing surveys only briefly
mention it, lacking a comprehensive and in-depth
analysis. A dedicated survey on link prediction
in NKGs is crucial for understanding the progress,
challenges, and future directions of this field. This
paper aims to fill this gap by providing a detailed
and timely survey on link prediction in NKGs, fa-
cilitating further research in this area.
The rest of this paper is organized as follows:

Section 2 introduces the related definitions of link
prediction in NKGs and categorizes existing meth-
ods. Section 3 analyzes existing methods. Sec-
tion 4 reports their performance on benchmarks.
Section 5 highlights representative applications.
Finally, Section 6 suggests future research direc-
tions. Compilation and details of papers used for
the survey can be found via our repository1.

2 Preliminary

In this section, we introduce the related definitions
of link prediction in NKGs, the formalizations of
n-ary facts, the classifications of existing methods
for link prediction in NKGs, and the applicability
of link prediction in KGs and NKGs.

2.1 Definition

Definition 1. KG: a set of facts, each of which is
represented as a triple (h, r, t), where h and t de-
note its head entity and tail entity, respectively, and
r denotes the relation between them.

For example, in aKG, the fact “Biden is the pres-
ident of the USA” is represented as (Biden, the
President of , the USA).

1https://github.com/JiyaoWei/LP_NKGs

Definition 2. NKG: a set of facts, each of which
may contain more than two entities, which is also
referred to as an n-ary fact.
For example, in an NKG, the n-ary fact “Ein-

stein studied physics at the University of Zurich
and received his PhD.” contains four entities, in-
cluding Einstein, the University of Zurich, Physics,
and PhD. Therefore, it is called a 4-ary fact.
Definition 3. Link prediction in NKGs: predict
missing elements in facts in NKGs based on the ex-
isting facts.
For example, predict the missing entity the Uni-

versity of Zurich in the n-ary fact “Einstein studied
physics at ? and received his PhD”.

2.2 The formalizations of N-ary Facts
Typical n-ary fact formalizations include hyper-
edge, role-value pair, and hyper-relation formaliza-
tions, as illustrated in Figure 2.

2.2.1 Hyperedge Formalization
A hyperedge connects all entities in an n-ary
fact (Wen et al., 2016), e.g., (H, e1, ..., en), where
e∗ is the *-th entity and hyperedgeH indicates the
role of each entity in the fact. For example, the
facts in Figure 2 can be represented as follows:
Fact 1: (educated_with_degree_major,

Einstein, Uni. Zurich, PhD, Physics).
Fact 2: (awarded_with_time_place,

Einstein, Nobel Prize in Physics, 1921,
Switzerland ).
Note that under the hyperedge formalization, the

entities in the formalized fact are ordered with a
fixed number of entities. Each position in the hy-
peredge represents a fixed role. The hyperedge
formalization directly builds connections between
multiple entities in an n-ary fact. When dealing
with binary facts, this formalization is simplified
to the triple formalization in traditional KGs.

2.2.2 Role-value Pair Formalization
An n-ary fact is formulated as multiple role-value
pairs (Guan et al., 2019), such as {ri : vi}ni=1,
where value vi is an entity and plays the role ri
in the fact; n is the total number of entities within
the fact. For example, the two facts about Einstein
introduced above can be represented as follows:
Fact 1: {person : Einstein,

institution : Uni. Zurich,

degree : PhD,

major : Physics}.
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Figure 2: Examples of different formalizations of n-ary facts.

Fact 2: {winner : Einstein,

award : Nobel Prize in Physics,

place : Switzerland,

time : 1921}.
Note that in the role-value pair formalization,

the role-value pairs within a fact are unordered and
may involve an arbitrary number of entities. This
representation offers flexibility in specifying the
roles of entities in n-ary facts. However, it fails to
account for the varying importance or prominence
of different entities within the same fact.

2.2.3 Hyper-relational Formalization
An n-ary fact is formulated as a primary triple cou-
pled with a set of qualifier role-value pairs (Rosso
et al., 2020; Guan et al., 2020), i.e., ((h, r, t), {ri :
vi}n−2

i=1 ), where h and t are the head entity and tail
entity of the fact and r denotes the relation between
them; role-value pairs {ri : vi}n−2

i=1 qualify the
triple (h, r, t). For example, the two facts about
Einstein introduced above can be represented as
follows:
Fact 1: ((Einstein, educated, Uni. Zurich),

−|{major : Physics,

−|degree : PhD}).
Fact 2: ((Einstein, won,Nobel Prize in

Physics),

−|{time : 1921,

−|place : Switzerland}).
Note that when there is no clear subject (i.e.,

head entity) or object (i.e., tail entity) in the facts,
it is not appropriate to use the hyper-relational for-
malization. Additionally, no matter which formal-
ization is used, link prediction in NKGs aims to
predict missing elements in facts.

2.3 Classification of Methods for Link
Prediction in NKGs

From a technical perspective, link prediction meth-
ods for NKGs fall into three main categories: spa-
tial mapping-based, tensor decomposition-based,

and neural network-based. Spatial mapping-based
methods project entities into semantic space (e.g.,
Euclidean, hyperbolic, or complex) and then as-
sess fact plausibility via entity positions. Tensor
decomposition-based methods model n-ary facts
as higher-order tensors, indicating fact validity.
Neural network-based methods use Fully Con-
nected Network (FCN), Convolutional Neural Net-
work (CNN), Transformer, or Graph Neural Net-
work (GNN) to encode element associations in n-
ary facts.
Most of the above methods are designed for the

general scenario, while some GNN-based meth-
ods address special scenarios, such as the tempo-
ral, few-shot, and inductive settings. In addition,
different methods use different formalizations of
n-ary facts. The correspondence between fact for-
malizations and methods is shown in Appendix D.

2.4 Applicability of NKGs and Their Link
Prediction

This subsection discusses the scenarios where
NKGs are particularly beneficial and highlights the
fundamental differences between link prediction in
NKGs and traditional KGs.

2.4.1 When to Use NKGs: Suitable Scenarios
and Motivations

NKGs extend traditional KGs by effectively rep-
resenting facts that involve three or more enti-
ties. Their use is particularly advantageous in
the following scenarios: (1) Multi-party partici-
pation: a fact involves multiple semantically re-
lated entities; (2) Semantic coupling: entities in
facts form an inseparable semantic unit that cannot
be split into multiple triples without loss of mean-
ing; (3) Context-dependent facts: facts are context-
dependent, requiring time, location, or other con-
ditions to be fully understood. Assessing these as-
pects can help determine whether NKGs provide
advantages over traditional KGs for more accu-
rate downstream reasoning. Further details are pro-
vided in Appendix C.

2.4.2 Link Prediction in NKGs vs.
Traditional KGs: Key Differences

While traditional KGs and NKGs share basic com-
ponents (entities, relations, facts) and adopt similar
techniques (e.g., spatial mapping, tensor decompo-
sition, neural network methods), key differences
in fact structure and task definition necessitate tai-
lored modeling strategies for NKGs.
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Link Prediction in
NKGs

Neural Network-
based (§3.3)

GNN-based Meth-
ods

Special Scenario
(§3.4)

QBLP (Inductive) (Ali et al., 2021), HANCL (Few-shot) (Zhang et al., 2022b),
MetaRH (Few-shot) (Wei et al., 2024), NE-NET (Temporal) (Hou et al., 2023),
HypeTKG (Temporal) (Ding et al., 2023), and MetaNIR (Inductive) (Wei
et al., 2025)

General Scenario
(§3.3.4)

StarE (Galkin et al., 2020), HAHE (Luo et al., 2023b), HyperFormer (Hu
et al., 2023), QUAD (Shomer et al., 2022), MSeaKG (Di and Chen, 2023),
DHGE (Luo et al., 2023a), HyperMLN (Chen et al., 2022), and HELIOS (Lu
et al., 2023a)

Transformer-based
Methods (§3.3.3)

GRAN (Wang et al., 2021b), HyTransformer (Yu and Yang, 2021), HyNT (Chung et al., 2023), NY-
LON (Yu et al., 2024), and HIST (Li et al., 2024a)

CNN-based Meth-
ods (§3.3.2)

HINGE (Rosso et al., 2020), s-HINGE (Lu et al., 2023b), RAM (Liu et al., 2021), EnhancE (Wang
et al., 2023a), HyconvE (Wang et al., 2023b), HyCubE (Li et al., 2024e), and HJE (Li et al., 2024d)

FCN-based Meth-
ods (§3.3.1) NaLP (Guan et al., 2019), t-NaLP (Guan et al., 2021), and Neulnfer (Guan et al., 2020)

Tensor
Decomposition-
based Methods
(§3.2)

HSimplE (Fatemi et al., 2021), HypE (Fatemi et al., 2021), GETD (Liu et al., 2020), and S2S (Di et al., 2021)

Spatial Mapping-
based (§3.1)

Complex Space-
based Methods
(§3.1.3)

ShrinkE (Xiong et al., 2023) and HYPERMONO (Hu et al., 2024)

Hyperbolic Space-
based Methods
(§3.1.2)

HYPER2 (Yan et al., 2022a), PolygonE (Yan et al., 2022b), and WPolygonE+ (Yan et al., 2022c)

Euclidean Space-
based Methods
(§3.1.1)

m-TransH (Wen et al., 2016), RAE (Zhang et al., 2018), and RETA (Rosso et al., 2021)

Figure 3: Classification of Methods for Link Prediction in NKGs. “()” marks specific special settings.

Modeling Structure: Traditional KG mod-
els handle simple triples (h, r, t), whereas NKGs
must represent complex n-ary facts, such as hyper-
relational facts involving main triples and multi-
ple qualifier role-value pairs, demanding higher ex-
pressive power.
Prediction Tasks: Traditional methods focus

on completing missing elements in triples (e.g.,
(h, r, ?)), while link prediction in NKGs often in-
volves multiple missing roles, values, or entities,
requiring more flexible and robust reasoning.
These distinctions drive specific adaptations in

NKGmethods. See Appendix E for a detailed com-
parison.

3 Methods for Link Prediction in NKGs

This section begins with introducing link predic-
tion approaches for NKGs in general scenarios, af-
ter which it examines methods tailored to specific
scenarios such as temporal, inductive, and few-
shot settings. For the methods in general scenar-
ios, we introduce each category of methods one by
one, first introducing their general ideas and then
delving into specific methods.

3.1 Spatial Mapping-based Methods
These methods map entities into a shared embed-
ding space, enforcing geometric constraints to en-
sure meaningful spatial relationships among them.

They can be further divided into three types based
on the embedding space: Euclidean, hyperbolic,
and complex space-based methods.
Euclidean Space-based Methods. m-

TransH (Wen et al., 2016) projects entities in
a fact onto a hyperplane according to their corre-
sponding roles, and then evaluates the fact with
spatial positions of the entities. However, its
complexity grows with the number of missing
entities in the n-ary fact. RAE (Zhang et al.,
2018) reduces this complexity by assuming high
similarity among entities within a fact and only
calculating entities with high similarity.
Hyperbolic Space-based Methods. The num-

ber of related entities grows exponentially along
the NKG hierarchy, which aligns with the superlin-
ear growth in hyperbolic space. To capture such hi-
erarchical structures, HYPER2 (Yan et al., 2022a)
and PolygonE (Yan et al., 2022b) embed entities
in hyperbolic space. HYPER2 projects entities to
the tangent space to integrate qualifier values, then
maps them back for scoring. PolygonE treats n-ary
facts as gyro-polygons and evaluates entity com-
patibility via vertex-gyrocentroid distances, pre-
serving both structure and semantics. To address
the assumption of equal entity importance, WPoly-
gonE+ (Yan et al., 2022c) introduces learned entity
weights and enhances fact representation by link-
ing gyro-midpoints and centroids.
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Complex Space-based Methods. These meth-
ods effectively capture inference patterns in com-
plex space, particularly monotonicity: if two role-
value pairs qi and qj satisfy qi implies qj , then forat-
taching either to a fact should yield the same truth
value. ShrinkE (Xiong et al., 2023) models a pri-
mary triple as a spatial-functional transformation
specific to its relation, mapping the head entity to
a query box in complex space that contains poten-
tial answer entities. Each qualifier constrains this
box by shrinking it, ensuring that the contracted
box remains inside the original—providing a geo-
metric view of monotonicity through box contain-
ment. HYPERMONO (Hu et al., 2024) first aggre-
gates neighbor information to enhance entity repre-
sentation, and then to achieve qualifier monotonic-
ity HYPERMONO adopts cone embedding. Each
time a qualifier is added, the angle of the cone is
reduced, thereby reducing the answer set.

3.2 Tensor Decomposition-based Methods
Such methods represent the set of facts in an NKG
as a high-order tensor, where each tensor entry
indicates the truth value of a particular fact. By
reconstructing, decomposing, and optimizing this
tensor, the model uncovers latent pattern features
among the elements of n-ary facts, thereby enhanc-
ing link prediction accuracy. HSimplE (Fatemi
et al., 2021) shifts entity embeddings by posi-
tion and combines them with hyperedge embed-
dings for scoring. HypE (Fatemi et al., 2021) en-
hances this by using convolutional filters to gener-
ate position-specific embeddings.
GETD (Liu et al., 2020) generalizes Tucker de-

composition by reshaping it into a higher-order ten-
sor and applying tensor ring decomposition (Wang
et al., 2018) to reduce parameters. However,
GETD cannot handle multiple facts of different
number of entities at the same time, which eas-
ily leads to data sparsity problems. S2S (Di et al.,
2021) addresses this issue by partitioning embed-
dings to enable parameter sharing across facts of
varying sizes, thereby improving efficiency.

3.3 Neural Network-based Methods
These methods leverage neural networks to en-
code NKGs and perform link prediction with
learned element representations. They can be
categorized into four types: FCN-based, CNN-
based, Transformer-based, and GNN-based meth-
ods. Each type employs a corresponding neural
network architecture to encode n-ary facts.

3.3.1 FCN-based Methods
NaLP (Guan et al., 2019) models n-ary facts as
sets of role-value pairs, using FCNs to extract and
aggregate features for truth value prediction, but
treats all pairs equally. To address this, NeuIn-
fer (Guan et al., 2020) decomposes a fact into a pri-
mary triple and qualifiers, scoring both the triple
and its compatibility with qualifiers via FCNs. t-
NaLP (Guan et al., 2021) further enhances NaLP
by incorporating entity types and improved nega-
tive sampling.

3.3.2 CNN-based Methods
HINGE extends NeuInfer by modeling n-ary facts
as a primary triple with role-value pairs, using
CNNs andmin-pooling for feature aggregation and
an FCN for scoring. s-HINGE (Lu et al., 2023b)
further incorporates entity type information to en-
hance performance, similar to t-NaLP. RAM (Liu
et al., 2021) introduces a latent space to model role
semantics, where role embeddings are generated
via linear combinations of basis vectors, and role-
specific pattern matrices evaluate entity-role com-
patibility using a multilinear scoring function.
To better exploit entity context, EnhancE (Wang

et al., 2023a) enriches entity representations with
position and neighbor information, and integrates
semantics into relation embeddings. To leverage
CNNs’ representational power, HyconvE (Wang
et al., 2023b) uses 3D convolution with role-
aware and position-aware filters to capture intri-
cate intra-fact interactions. HJE (Li et al., 2024d)
enhances HyconvE with learnable position embed-
dings, while HyCubE (Li et al., 2024e) improves
efficiency by introducing 3D circular convolutions
and a masked stacking strategy.

3.3.3 Transformer-based Methods
HyTransformer (Yu and Yang, 2021) utilizes a
Transformer (Vaswani et al., 2017) with a regular-
ization layer to encode n-ary facts. It initializes
position embeddings to represent type information
of elements within n-ary facts, but does not ex-
plicitly model the relationship type between two
elements in an n-ary fact. GRAN (Wang et al.,
2021b) addresses this by representing each n-ary
fact as a heterogeneous graph and introducing mul-
tiple edge types to encode relationship types be-
tween elements. It processes these heterogeneous
graphs usingmultiple fully connected attention lay-
ers with edge-aware biases, improving the perfor-
mance of the model.
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The above methods can only handle discrete
entities, however, real-world NKGs often contain
numeric entities. For example, a number-related
qualifier role-value pair (starting time, 1911) is
associated with a triple (J.R.R., educated at, Ox-
ford University). Recognizing the importance of
numeric values, HyNT (Chung et al., 2023) en-
codes numeric literals within both primary triples
and qualifier role-value pairs with a context trans-
former and a prediction transformer.
Different from the above methods, HIST (Li

et al., 2024a) integrates text information and struc-
tural information in NKG to enhance the represen-
tation of elements in NKGs. This method uses
GNNs to extract structural information and effec-
tively integrates text and structural information
through structural soft prompt tuning (Chen et al.,
2023a). Recently, NYLON (Yu et al., 2024) ex-
tends GRAN to handle noisy NKGs, exploring ro-
bust link prediction in noisy NKGs. NYLON em-
ploys a Transformer with learnable edge biases to
compute fact confidence and element confidence.
Based on these confidences, efficient selective an-
notation is performed for annotation groups.

3.3.4 GNN-based Methods
GNN-based methods for link prediction in NKGs
in general scenarios fall into two categories: fact
modeling and schema modeling.
Fact Modeling Methods focus on encoding the

elements within a fact and use GNNs to enhance
their semantic representations. StarE (Galkin et al.,
2020) aggregates qualifier information into rela-
tions to update entity embeddings, but lacks re-
verse information flow. QUAD (Shomer et al.,
2022) improves this by enabling bidirectional ag-
gregation between primary triples and qualifier
pairs. HAHE (Luo et al., 2023b) models both
global hypergraph structures and local semantic
sequences using dual attention modules. Hyper-
Former (Hu et al., 2023) reduces noise from multi-
hop neighbors via a bidirectional interaction mech-
anism and Mixture-of-Experts for parameter effi-
ciency. To address the rigidity of fixed architec-
tures, MSeaKG (Di and Chen, 2023) introduces a
neural architecture search framework with diverse
message functions adaptable to various NKG for-
mats.
SchemaModeling Methods, on the other hand,

not only encode these intra-fact elements but also
incorporate schema information related to entities.
By encoding schema information, Schema Model-

ing Methods further enrich the semantic represen-
tations of entities. DHKG (Luo et al., 2023a) uses a
dual-view encoder to model instance and ontology
views, while HELIOS (Lu et al., 2023a) enhances
type representation using GATs and self-attention.
HyperCL (Lu et al., 2024) further introduces hier-
archical ontologies and concept-aware contrastive
learning to balance fact and schema influences,
achieving improved prediction performance.
SchemaModelingMethods can be seen as an ex-

tension of Fact Modeling Methods. They not only
encode the elements within a fact but also consider
schema information (e.g., type hierarchies and
ontologies), providing inductive biases and con-
straints that factual modeling alone cannot capture.
They can capture fine-grained intra-fact seman-
tics and often achieve better performance when
comprehensive ontology information is available.
However, this comes with trade-offs: acquiring
and maintaining high-quality schema data can be
costly and labor-intensive. In scenarios where
schema information is sparse or noisy, these meth-
ods may be more vulnerable to errors, reducing
their effectiveness compared to factual modeling
approaches that rely less on schema completeness.

3.4 Methods for Link Prediction in NKGs in
Special Scenario

Recent advances have extended GNN-based meth-
ods to specialized settings, including temporal, in-
ductive, and few-shot scenarios.

3.4.1 Temporal Setting
N-ary facts often include temporal information, yet
many methods either ignore it or treat time as a
generic role, blurring the distinction between re-
lational and temporal semantics. Without explicit
temporal modeling, models fail to capture order-
ing, duration, and the influence of historical pat-
terns on future facts. NE-Net (Hou et al., 2023)
addresses this by leveraging an entity-role encoder
based on a GNN to capture precise entity evolu-
tion representations. HypeTKG (Ding et al., 2023)
further considers the influence of time-invariant re-
lations on temporal reasoning.

3.4.2 Inductive Setting
In real-world scenarios, new elements often
emerge after the training phase, presenting a chal-
lenge for methods that struggle to handle unseen el-
ements. To handle unseen elements emerging post-
training, QBLP (Ali et al., 2021) generates embed-

28539



Table 1: Comparison of link prediction methods for NKGs.

Types Introduction Advantages Drawbacks

Spatial
Mapping-based

They use spatial transformations
to model relationships between
entities and roles in an n-ary
fact, ensuring that their

embedding vectors maintain
specific geometric constraints

in the embedding space.

They are characterized by
low time complexity, minimal
model parameters, and fast

training. This efficiency allows
these methods to handle extensive

datasets without significant
computational overhead.

They have limited expressive
power, cannot capture the complex

interactions between entities
and roles, and usually have
poor prediction results.

Tensor
Decomposition-

based

They represent an NKG as a
high-order tensor where each
cell indicates the validity
of a corresponding fact.

They possess strong expressive
power, enabling them to capture

complex relationships and interactions
within NKGs. This results in

relatively better model performance.

They have high time complexity,
especially for n-ary facts with

high arity.

Neural
Network-based

They use neural networks to
extract features from n-ary
facts and then score them
to predict missing elements

in NKGs.

They effectively extract
complex features from n-ary
facts; they usually have
high prediction accuracy.

The training process of these
methods usually requires a large

amount of data and a long
training time; they have poor

interpretability.

Table 2: Complexity analysis of NKG link prediction meth-
ods. The space and time complexities for m-TransH, RAE,
HypE, HINGE, and NeuInfer are sourced from Liu et al. (Liu
et al., 2021), while those for GETD and S2S are based on Di
et al. (Di et al., 2021). Here, ne, nr , na, and d denote the
number of entities, the number of roles, the maximum arity in
NKGs, and the dimension of the embedding, respectively.

Methods Years Space Complexity Time Complexity

m-TransH 2016 O(ned+ 2nrd) O(d)
HypE 2016 O(ned+ nrd) O(d2)
RAE 2018 O(ned+ 2nrd) O(d2)

HINGE 2020 O(ned+ nrnad) O(d2)
NeuInfer 2020 O(ned+ nrnad) O(d2)
S2S 2021 O(ned+ nrd) O(d)

GRAN 2021 O(ned+ nrnad) O(d2)
HAHE 2023 O(ned+ nrnad) O(d2)

dings from auxiliary facts and text. MetaNIR (Wei
et al., 2025) adopts meta-learning (Finn et al.,
2017) to simulate inductive tasks and generate
adaptive embeddings. HART (Yin et al., 2025)
combines hypergraph GNNs and Transformers
with a role-awaremechanism tomine complex sub-
graph semantics for inductive prediction.

3.4.3 Few-shot Setting

Both few-shot and inductive settings address un-
seen elements, but few-shot learning focuses on
scenarios with very limited examples rather than
none. To predict links involving sparse relations,
HANCL (Zhang et al., 2022b) leverages GNNs
and attention mechanisms to enhance entity repre-
sentations and match queries to limited support in-
stances. MetaRH (Wei et al., 2024) applies meta-
learning to refine relation representations and im-

prove generalization in few-shot settings.

3.5 Comparison of link prediction methods
for NKGs

To intuitively compare the characteristics of the
three types of methods, Table 1 shows the model-
ing idea, advantages, and drawbacks of each type
of method. The spatial mapping-based methods
have high computational efficiency, a small num-
ber of parameters, and are good at encoding large
NKGs. However, due to the simple modeling idea,
it has a great disadvantage in dealing with complex
relationship types, and the model effect is usually
poor. The tensor decomposition-based methods
have a strong model expression ability in theory
because their basic idea is to fully model the in-
formation contained in the NKG. However, it usu-
ally has more parameters, which is not conducive
to application in large-scale NKGs. The neural
network-based methods have strong feature learn-
ing ability, but the model is weak in interpretabil-
ity. To intuitively compare the computational effi-
ciency of the methods, Table 2 shows the time and
space complexity of several representative link pre-
diction methods.

3.6 Model Selection Guidance
In practical scenarios, model selection should bal-
ance predictive accuracy, scalability, and domain
requirements. For high accuracy and complex rea-
soning, GNN-based models like HAHE are recom-
mended, especially when relational structure and
role semantics are critical. When computational
resources are limited, simpler neural models (e.g.,
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NeuInfer or HINGE) offer a trade-off between per-
formance and efficiency. Tensor decomposition-
basedmodels such as S2S are suitable for scenarios
that require high structural interpretability. Spa-
tial mapping-based embedding methods are gener-
ally not recommended unless extreme efficiency is
needed. Due to space limitations, the comparison
of each type of method is shown in Appendix 3.5.

4 Performance of Existing Methods

This section presents the benchmarks, evaluation
metrics, and the performance of existing methods.
Due to space constraints, we briefly report results
in general scenarios here; results in special scenar-
ios are provided in Appendix F.

4.1 Benchmarks

JF17K (Wen et al., 2016), WikiPeople (Guan et al.,
2019), and WD50K (Galkin et al., 2020) are the
most commonly used benchmarks for evaluating
link prediction methods for NKGs in general set-
tings. Specifically, JF17K is derived from Free-
base (Bollacker et al., 2008), while WikiPeople
andWD50K are based onWikidata (Vrandečić and
Krötzsch, 2014). Table 3 shows the basic statistics
of these datasets, where #X is the number of X in
the dataset, E and R represent entities and roles, re-
spectively, Arity represents the number of entities
in an n-ary fact, that is, N is the proportion of n-ary
facts, respectively.

Table 3: Benchmarks of link prediction in NKGs in general
scenarios. Statistics are based on the original paper.

Dataset #E #R Arity N #Facts

JF17K 28,645 501 2-6 45.9% 100,947
WikiPeople 47,765 193 2-9 11.6% 382,229
WD50K 47,155 531 2-67 13.6% 236,507

4.2 Metrics

To evaluate link prediction, the model ranks candi-
date answers by score, aiming to rank the correct
answer as high as possible. The two most widely
used metrics are Mean Reciprocal Rank (MRR)
and Hits@K. MRR is the average inverse rank of
correct answers, while Hits@K is the proportion of
correct answers ranked within the topK positions
(e.g., K ∈ {1, 3, 5, 10}). Both range from 0 to 1,
with higher values indicating better performance.

4.3 Results
Table 4 reports the results of several representa-
tive link prediction methods on JF17K, WikiPeo-
ple, and WD50K, with best scores in bold. Neu-
ral network-based methods consistently outper-
form others, with HAHE (GNN-based) achiev-
ing the best result across all datasets, demonstrat-
ing the strength of GNNs in capturing complex
entity interactions. In contrast, spatial mapping-
based methods (m-TransH, RAE) perform worst,
suggesting that simple projections are inadequate
for n-ary fact modeling. Tensor decomposition-
based methods (HypE, S2S) show moderate per-
formance, but still fall short compared to neural
network-based methods.

5 Applications of Link Prediction in
NKGs

Due to its ability to represent complex semantic re-
lationships amongmultiple entities, link prediction
in NKGs has shown great potential in various do-
mains, including biomedicine, recommender sys-
tems, and financial technology. In biomedicine,
it enables the modeling of intricate relationships
such as drug-target-disease interactions, support-
ing applications like drug repositioning and person-
alized treatment planning. In recommender sys-
tems, NKG captures rich contextual signals (e.g.,
time, location, device), offering fine-grained user
behavior modeling and improving recommenda-
tion accuracy. In financial technology, NKG sup-
ports the structured representation of multi-role fi-
nancial facts, facilitating tasks like risk inference
and high-risk case detection. Detailed examples
and case studies are provided in Appendix G.

6 Future Prospects

Link prediction in NKGs has made significant
progress but remains a nascent field. Further re-
search is needed in the following directions.

6.1 Link Prediction in NKGs with LLMs
LLMs have shown strong capabilities in both natu-
ral language understanding and structured data pro-
cessing(Zhang et al., 2025; Liu et al., 2024; Zeng
et al., 2025; Zhou et al., 2024; Yi et al., 2025;
Wang et al., 2024a; Liang et al., 2024b; Yang et al.,
2025). Recent work leverages this by converting
KG elements into text and employing LLMs for
link prediction. For example, KG-LLaMA (Yao
et al., 2023) frames triples as textual sequences
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Table 4: Link prediction results in NKGs in general scenarios. “-” indicates that the method was not evaluated on the corre-
sponding dataset in the original paper. Data for HypE and S2S are from (Di et al., 2021), others from (Luo et al., 2023b).

Type Method JF17K WikiPeople WD50K
MRR Hits@1 MRR Hits@1 MRR Hits@1

spatial mapping-based m-TransH 0.102 0.069 - - - -
RAE 0.310 0.219 0.172 0.102 - -

Tensor Decomposition-based HypE 0.494 0.408 0.292 0.162 - -
S2S 0.528 0.457 0.372 0.277 - -

Neural Network-based

HINGE 0.473 0.397 0.333 0.259 - -
NeuInfer 0.517 0.436 0.350 0.282 0.232 0.164
GRAN 0.656 0.582 0.479 0.410 0.309 0.240
HAHE 0.668 0.597 0.495 0.420 0.402 0.327

and fine-tunes LLaMA (Touvron et al., 2023) to
learn KG knowledge directly. KICGPT (Wei
et al., 2023) addresses the hallucination issue in
LLMs via a hybrid reranking mechanism that uses
LLMs to refine candidates from traditional mod-
els. Sehwag et al.(2024) treat link prediction as
prompt-based question answering, incorporating
structural features like entity neighbors. CTLP(Li
et al., 2024b) employs structural paths between
head and tail entities to conduct zero-shot link pre-
diction. Similarly, KoPA (Zhang et al., 2024b)
converts KG structures, such as local subgraphs
and relational context, into extended prompts, al-
lowing LLMs to implicitly learn structural patterns
through language. MuKDC (Li et al., 2024c) ad-
dresses few-shot learning challenges by prompting
LLMs to generate synthetic structured knowledge,
effectively augmenting training with high-quality
pseudo-samples.
Despite these advances, to the best of our knowl-

edge, LLMs have not been applied to link pre-
diction in NKGs, likely due to two main chal-
lenges: (1) converting structured n-ary facts into
formats compatible with LLMs, and (2) overcom-
ing input length limitations that hinder simultane-
ous processing of all candidate entities. Address-
ing these challenges could open new avenues for
LLM-based link prediction in NKGs.

6.2 Link Prediction in NKGs in Special
Scenarios

Most link prediction methods for NKGs focus on
general scenarios. Research on special scenarios—
temporal, inductive, and few-shot—remains in its
early stages, offering ample opportunities for fur-
ther exploration. For example, existing methods
in temporal scenarios (Hou et al., 2023) overlook
the local structure of n-ary facts, and existingmeth-
ods in few-shot scenarios (Zhang et al., 2022b;

Wei et al., 2024) require extensive few-shot tasks
for training, which are difficult to construct in
real-world applications. Additionally, real-world
NKGs are dynamic, frequently incorporating new
facts. It is crucial to develop methods for grow-
ing NKGs that can adaptively learn from new facts
while retaining previously acquired knowledge.

6.3 Expainable Link Prediction in NKGs
To our knowledge, HyperMLN (Chen et al., 2022)
is the only method that explicitly addresses ex-
plainability in link prediction in NKGs. It em-
ploys a random field model to capture dependen-
cies among n-ary facts and improves interpretabil-
ity by extracting predefined first-order logic rules
(e.g., self-inverse, symmetric, subrelation). How-
ever, its focus on predefined rule types limits its
ability to explain more complex relational com-
binations frequently observed in n-ary facts. Ex-
plainability should move beyond rule extraction to
encompass broader interpretable reasoning, such
as causal attribution (Jaimini et al., 2024) and coun-
terfactual analysis (Zhao et al., 2022). Future work
should pursue more flexible and comprehensive
approaches to improve the transparency and reli-
ability of link prediction in NKGs.

7 Conclusion

Link prediction in NKGs has emerged as a signifi-
cant research area. In this survey, we provided the
first comprehensive overview of existing work in
this field. We began by introducing the definitions
of NKGs and link prediction tasks within them, fol-
lowed by a classification of current methods based
on underlying techniques and application scenar-
ios. Subsequently, we reported the performance
and applications of existing methods. Finally, we
outlined several promising future directions for ad-
vancing link prediction in NKGs.
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Limitations

This study presents a comprehensive overview of
recent advances in link prediction in NKGs, cover-
ing a wide range of modeling paradigms and appli-
cation scenarios. However, the current version pri-
marily focuses on high-level comparisons of differ-
ent approaches, with limited discussion on practi-
cal aspects such as computational efficiency, scala-
bility to large-scale NKGs, and robustness to noise.
In addition, while the survey categorizes methods
based on modeling techniques and special settings,
it does not deeply analyze cross-scenario concerns
such as interpretability and generalization to out-
of-distribution data. Moreover, the evaluation is
based on a few widely used benchmarks, which
may not fully reflect the challenges present in real-
world applications. Future work could incorpo-
rate more detailed empirical analyses and consider
broader deployment factors to offer a more holistic
assessment of link prediction methods for NKGs.
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A Limitations of Decomposition-Based
Representations for N-ary Facts

To represent n-ary facts using binary relational for-
mats, link prediction methods for traditional KGs
often rely on decomposition strategies such as reifi-
cation (Brickley et al., 2014) and star-to-clique
(S2C) (Wen et al., 2016) transformation. These
techniques convert each n-ary fact into multiple
triples, enabling the use of standard KG embed-
ding models originally designed for binary rela-
tions.
Reification introduces a virtual auxiliary en-

tity to represent the original n-ary fact, and con-
nects this auxiliary node to each participating en-
tity through distinct role-specific relations. For in-
stance, the 3-ary fact meeting(UN, Geneva, 2023)
can be decomposed into the binary facts (m1, orga-
nizer, UN), (m1, location, Geneva), and (m1, year,
2023), where m1 is the reified fact node. This ap-
proach preserves the full semantic structure of the
original fact but increases graph complexity by in-
troducing additional nodes and relations.
In contrast, the S2C approach avoids introduc-

ing auxiliary entities by directly connecting all par-
ticipating entities in a fully connected subgraph
(clique), assigning a specific relation to each entity
pair. Using the same example, S2C may generate
triples like (UN, met_in, Geneva), (UN, met_on,
2023), and (Geneva, hosted_in, 2023). This trans-
formation simplifies the graph by keeping only
the original entities, but it may obscure the uni-
fied semantic context of the original fact, making
it harder for models to infer higher-level relations
across multiple roles.
Overall, both decomposition strategies involve

trade-offs: reification preserves relational integrity
at the cost of increased structural complexity,
while S2C maintains simplicity but risks losing
contextual semantics essential for accurate reason-
ing.

B Positioning Our Work: A Survey
Comparison on Link Prediction in
NKGs

Table 5 provides a comprehensive comparison be-
tween our survey and existing surveys on link pre-
diction in KGs. As shown, most existing surveys
primarily focus on general KGs, temporal KGs,
sparse KGs, or multi-modal KGs, and few of them
systematically address link prediction in NKGs.
Notably, while Shen et al. (2022) and Guan et al.
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(2022) partially cover NKGs by introducing task
definitions and a limited number of methods, they
lack a comprehensive exploration of NKG-specific
models, benchmarks, and applications. In contrast,
our survey specifically targets NKGs, providing a
thorough task definition, a systematic summary of
nearly 50 methods, over 10 benchmarks, as well as
discussions on applications and future directions.
To the best of our knowledge, our survey is the
first to comprehensively address the link predic-
tion task in NKGs.

C Evaluation Criteria for Modeling
Facts with NKGs

NKGs are a generalization and extension of tradi-
tional KGs, providing the advantage of more accu-
rately representing complex facts involving multi-
ple entities. When a fact involves three or more
core entities, NKGs can be prioritized to better cap-
ture such complex structures. To further assess
whether the knowledge in a given domain is partic-
ularly suitable for modeling with NKG, three eval-
uation dimensions can be considered:

1. Multi-party Participation: When a fact in-
volves three or more entities that are seman-
tically related, NKG is recommended to be
used. The more participating entities in-
volved in a fact, the stronger its multi-party
participation. For example, the fact “A, B,
C, and D are university classmates” has a
stronger multi-party participation compared
to “A, B, and C are university classmates,”
thus making NKG modeling more preferable
for maintaining the completeness of the fact.

2. Semantic Coupling: If the entities within a
fact are tightly semantically coupled and can-
not be reasonably decomposed into indepen-
dent binary relations without losing essential
semantics, NKGs should be used. For exam-
ple, in the fact “Student A received scholar-
ship D at school C in year B”, all elements col-
lectively form an inseparable semantic whole.
Decomposing it into multiple binary facts,
such as (Student A, studies at, School C) and
(Student A, received, Scholarship D), would
fail to accurately capture the original seman-
tics.

3. Context Dependence: This refers to facts
whose validity depends on contextual condi-
tions such as time, location, or state. These

contextual elements are integral parts of the
fact’s semantics. In such cases, NKG is
recommended, ensuring the completeness of
contextual information. For instance, in the
fact “Einstein received the Nobel Prize in
Physics in 1921 in Switzerland,” both “1921”
and “Switzerland” are essential contextual
components. Ignoring them during modeling
would compromise the accuracy of the fact.
Therefore, such context-dependent facts are
better modeled uniformly using NKG.

Analyzing the above evaluation dimensions can
support making choices between NKGs and tra-
ditional KGs, thereby improving the accuracy of
downstream reasoning tasks.

D Fact Formalization

From the perspective of fact formalization meth-
ods, as previously discussed, current link predic-
tion methods for NKGs can be broadly categorized
into three types: hyperedge-based, role-value pair-
based, and hyper-relational-based. The correspon-
dence between these methods and their adopted
fact representations is summarized in Table 6. Dif-
ferent formalization methods directly affect the de-
sign of link prediction models in NKGs.
For instance, hyperedge-based methods empha-

size modeling the overall structural relationships
among multiple entities within a fact and are
adept at capturing complex interactions among en-
tities. Role-value pair-based methods focus on
role-centered modeling, which is effective in cap-
turing the semantic influence of different roles
on entities. Hyper-relational-based methods in-
troduce modeling of entity importance, enabling
a more precise reflection of the varying contribu-
tions and roles of entities within a fact.
Among these, hyper-relational formalization is

the most widely applied in existing research. This
approach not only possesses strong capability in
modeling n-ary facts but also maintains compat-
ibility with traditional KG triple facts, providing
good flexibility and generalization ability. Con-
sequently, it demonstrates strong adaptability and
transferability across various real-world tasks.
Overall, when applying link prediction methods

for NKGs to specific scenarios, researchers can
flexibly select the most suitable fact formalization
approach by referring to the comparative analysis
in Figure 3 and Table 6, considering factors such
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Table 5: Comparison of Existing Surveys on Link Prediction in KGs with Our Survey. “-” indicates that the survey does not
introduce methods for link prediction in NKGs.

Surveys Years KG types Contents related to
link prediction in NKGs

Wang et al. (2017), Nguyen (2020),
Dai et al. (2020), Ji et al. (2021),
Zou (2020), Chen et al. (2020b),

Chen et al. (2020a), Chen et al. (2021),
Rossi et al. (2021), and Wang et al. (2021a)

Before 2021 General KG -

Zamini et al. (2022) and Ye et al. (2022) 2022 General KG -

Chen and Wang (2022) 2022 Temporal KG -

Zhu et al. (2022) 2022 Multi-modal KG -

Shen et al. (2022) 2022 General KG, temporal KG, and NKG
Contain task definition,

4 methods, and
2 benchmarks

Guan et al. (2022) 2022 General KG and NKG Contain task definition
and 4 methods

Liang et al. (2024a) 2022 General, sparse, and multi-modal KG -

Ferrari et al. (2022) and Hubert et al. (2023) 2023 General KG -

Zhang et al. (2022a), Braken et al. (2023),
Ma and Wang (2023), Chen et al. (2023b),

and Chen et al. (2023c)
2023 Sparse KG -

Jiang et al. (2023) 2023 General, sparse, and temporal KG -

Cai et al. (2023) and Wang et al. (2023c) 2023 Temporal KG -

Peng et al. (2023) and Chen et al. (2023d) 2023 Multi-modal KG -

Cao et al. (2024), Ge et al. (2024),
Pote (2024), and Meng et al. 2024 General KG -

Ours 2024 NKG

Contain task definition,
nearly 50 methods,

more than 10 benchmarks,
applications, and
future prospect

as task types, data characteristics, and reasoning
requirements.

E Detailed Comparison between Link
Prediction in NKGs and Link
Prediction in Traditional KGs

Traditional KGs and NKGs share some common-
alities in their basic components, such as entities,
relations, and facts. Consequently, they both adopt
similar technical approaches for link prediction,
including spatial, tensor decomposition, and neu-
ral networks. However, significant differences ex-
ist in the structural characteristics of their model-
ing targets and the definitions of their prediction
tasks. These differences necessitate specific exten-
sions and optimizations in the structural design and
modeling strategies of link prediction methods for
NKGs. Specifically, the key differences between
link prediction in traditional KGs and link predic-

tion in NKGs are reflected in the following two as-
pects.

E.1 Modeling Object Structure

Traditional KG focuses on modeling triple facts
(h, r, t), while NKG deals with more flexible and
complex n-ary facts. For example, for hyper-
relational facts in the form of (h, r, t), {ri : vi}ni=1,
link prediction in NKGs requires the model to not
only capture the relation r between the head entity
h and the tail entity t, but also handle the corre-
spondence between qualifier roles ri and qualifier
values vi, as well as the interactions between these
role-value pairs {ri : vi}ni=1 and the main triple
(h, r, t). Such complex structures within n-ary
facts impose higher requirements on the model’s
representation capability.
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Table 6: Classification of link prediction methods for NKGs by Fact Formalization Approach

Fact Formalization Methods Advantages

Hyperedge-based

m-TransH (Wen et al., 2016), RAE (Zhang et al., 2018),
m-SimplE (Fatemi et al., 2021), HypE (Fatemi et al., 2021),

GETD (Liu et al., 2020), S2S (Di et al., 2021),
RAM (Liu et al., 2021), EnhancE (Wang et al., 2023a),

HyconvE (Wang et al., 2023b), HyCubE (Li et al., 2024e),
and HJE (Li et al., 2024d)

Good at modeling the
overall structural

relationships among
multiple entities
in n-ary facts.

Role-value pair-based
PolygonE (Yan et al., 2022b), NaLP (Guan et al., 2019),
t-NaLP (Guan et al., 2021), NE-NET (Hou et al., 2023),

and HypeTKG (Hou et al., 2023)

Effectively captures
the semantic roles
of each entity within

n-ary facts.

Hyper-relational-based

HYPER2 (Yan et al., 2022a), WPolygonE+(Yan et al., 2022c),
HYPERMONO(Hu et al., 2024), NeuInfer (Guan et al., 2020),
HINGE (Rosso et al., 2020), s-HINGE (Lu et al., 2023b),

GRAN (Wang et al., 2021b), HyTransformer (Yu and Yang, 2021),
HyNT (Chung et al., 2023), HIST (Wang et al., 2023d),
NYLON (Wang et al., 2023d), StarE (Galkin et al., 2020),
HAHE (Luo et al., 2023b), HyperFormer (Hu et al., 2023),
QUAD (Shomer et al., 2022), DHGE (Luo et al., 2023a),
HELIOS (Lu et al., 2023a), HyperCL (Chen et al., 2022),

HANCL (Zhang et al., 2022b), and MetaRH (Wei et al., 2024)

Effectively distinguishes
the importance

differences among
entities within
n-ary facts.

E.2 Prediction Task Definition

In traditional KGs, link prediction mainly focuses
on completing missing entities within triples, such
as (?, r, t), (h, r, ?), or (h, ?, t). In contrast, link
prediction in NKGs is broader and more flexible,
involving not only missing entities and relations
but also missing qualifier roles and values, and of-
ten requires the simultaneous completion of mul-
tiple missing elements. This task setting demands
that the model possesses stronger structural model-
ing capabilities and flexible reasoningmechanisms
to handle various types of missing elements.
Based on these differences, link predictionmeth-

ods for NKGs have been specifically improved to
address the modeling challenges of NKGs. For in-
stance:

• Spatial Mapping-based Methods: Intro-
duce role-specific spatial transformation func-
tions to capture semantic differences of enti-
ties under different role contexts.

• Tensor Decomposition-based Methods:
Utilize tools such as Tucker decomposition
to handle higher-dimensional and structurally
complex tensors, and address challenges such
as nested structures and variable numbers of
entities.

• Neural Network-based Methods: Empha-
size the modeling of unique structures in
NKG, such as hypergraphs formed by inter-

fact relations or fully connected graphs com-
posed of elements within a fact.

Furthermore, in response to more complex pre-
diction tasks, most current link prediction meth-
ods for NKGs support the completion of arbitrary
missing elements, and some methods can even
predict multiple missing elements simultaneously.
For example, the HAHE method based on neural
networks employs an autoregressive encoder com-
bined with a MASK mechanism to effectively sup-
port the prediction of multiple missing elements
within n-ary facts.

F More Details of Performance of
Existing Methods

F.1 Benchmarks
F.1.1 Temporal Scenario
Hou et al. (Hou et al., 2023) constructed two
datasets specifically for link prediction in NKGs
in temporal scenarios: NWIKI and NICE. The
NWIKI dataset is derived from Wikidata and con-
tains a large number of n-ary facts, providing a rich
foundation for link prediction in temporal NKGs.
To ensure effective model training, they filtered
out low-frequency entities and retained only high-
frequency ones during the data construction pro-
cess. In contrast, the NICE dataset is based on
ICEWS, where the temporal information is more
prominent, making it particularly suitable for tasks
that require modeling dynamically evolving facts
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over time. These two datasets provide an impor-
tant experimental foundation in the temporal NKG
domain and have promoted research on n-ary fact
modeling methods in temporal scenarios.
At the same time, Di et al. (Ding et al., 2023)

extended the traditional temporal KGs into tem-
poral NKGs by identifying qualifying role-value
pairs from Wikidata within the existing Wiki-
data11k (Nobre, 1986) and YAGO1830 (Han et al.)
datasets. The resulting datasets are named Wiki-
hy and YAGO-hy, respectively. Table 7 summa-
rizes the statistics of NWIKI, NICE, Wiki-hy, and
YAGO-hy datasets, where Timestamps indicates
the recorded time points of facts, and Time Inter-
val refers to the minimum time interval between
facts.

F.1.2 Few-shot Scenario
Zhang et al. (Zhang et al., 2022b) constructed three
datasets for link prediction in NKGs in few-shot
scenarios: WikiAnimals, WikiCompanies, and
WD50K-Few. These datasets aim to simulate the
learning challenges of rare relations in real-world
settings and evaluate models’ generalization abil-
ities under limited data conditions. Specifically,
WikiAnimals and WikiCompanies were derived
from Wikidata by extracting facts related to ani-
mals and companies, respectively, while WD50K-
Few was curated from a subset of the WD50K
dataset. These datasets provide important experi-
mental benchmarks for research on few-shot link
prediction in NKGs.
Concurrently, Wei et al. (Wei et al., 2024)

further developed the F-WikiPeople, F-JF17K,
and F-WD50K datasets by extending WikiPeople,
JF17K, and WD50K, respectively, into few-shot
scenarios. These datasets cover various knowl-
edge domains and exhibit distinctive data distri-
butions and n-ary fact structures, further enrich-
ing the experimental foundation for few-shot link
prediction in NKGs. Table 8 summarizes the key
statistics of these benchmarks for few-shot link pre-
diction in NKGs, where “E-q” and “R-q” respec-
tively represent the number of entities and roles
involved in qualifying role-value pairs, reflecting
the complexity of n-ary facts in each dataset, and
“Tasks” indicates the number of few-shot relation
link prediction tasks.

F.1.3 Inductive Scenario
Ali et al. (Ali et al., 2021) constructed a series
of datasets for inductive link prediction in NKGs

based on WD50K, including multiple datasets un-
der different settings to evaluate model general-
ization in inductive scenarios. This subsection fo-
cuses on the representative datasets WD20K(25),
WD20K(100) V1, and WD20K(100) V2; for more
details on other datasets, please refer to the origi-
nal paper. In the inductive setting, these datasets
typically include entities with textual descriptions
or additional inference graphs (containing sup-
porting instances related to unseen entities) to
assist in generating representations for unseen
entities during the testing phase. Specifically,
WD20K(25) only provides textual descriptions
without inference graphs containing unseen enti-
ties, requiring the model to rely solely on text fea-
tures to complete inductive link prediction tasks.
In contrast, WD20K(100) V1 and WD20K(100)
V2 provide both textual descriptions and infer-
ence graphs, enabling models to leverage struc-
tural information to infer representations of un-
seen entities. Moreover, WD20K(100) V1 of-
fers larger training data compared toWD20K(100)
V2, allowing models to learn richer features dur-
ing training. The number in parentheses in the
dataset names indicates the proportion of hyper-
relational facts, reflecting the diversity of facts
across datasets. Furthermore, Wei et al. (Wei
et al., 2024) constructed the JF-Ext,WIKI-Ext, and
WD-Ext datasets, based on extensions of JF17K,
WikiPeople, and WD50K, respectively, providing
additional high-quality benchmarks for inductive
link prediction in NKGs. These datasets cover dif-
ferent knowledge domains and vary in data scale,
proportion of hyper-relational facts, and richness
of entity information, thus offering a more com-
prehensive experimental benchmark for future re-
search. Table 9 summarizes the statistics of these
benchmarks for inductive link prediction in NKGs.
The “Inference” column indicates the inference
graph used during testing.

F.2 Metrics

During evaluation, the model assigns scores to all
candidate answers and ranks them accordingly. A
higher rank for the correct answer indicates better
performance. Mean Reciprocal Rank (MRR) and
Hits@K are the most commonly used evaluation
metrics, which assess the model’s link prediction
capabilities from different perspectives.
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Table 7: Baseline Datasets for Link Prediction in NKGs in Temporal Scenarios. All statistics are reported from the original
papers. “Timestamps” indicates the number of recorded time points, and “Time Interval” refers to the minimum temporal
resolution of the dataset. “N” denotes the proportion of n-ary facts in the dataset.

Dataset #Entities #Timestamps Time Interval N (%) #Train #Valid #Test

NWIKI 17,481 205 1 year 81.9% 108,397 14,370 15,591
NICE 10,860 4,017 24 hours 97.5% 368,868 5,268 46,159
Wiki-hy 11,140 507 1 year 9.5% 111,252 13,900 13,926
YAGO-hy 10,026 188 1 year 6.9% 51,193 10,973 10,977

Table 8: Baseline Datasets for Few-shot Link Prediction in NKGs. All statistics are reported from the original papers. “E-q”
and “R-q” indicate the number of entities and roles involved in qualifying role-value pairs, reflecting the complexity of n-ary
facts in the dataset. “Tasks” refers to the number of few-shot relation link prediction tasks.

Dataset #Entities #Relations #E-q #R-q N (%) #Tasks #Facts

WikiAnimals 2,925,278 167 396,739 48 49.7% 49 5,964,839
WikiCompanies 30,781 164 27,511 127 18.1% 125 1,128,040
WD50K-Few 47,156 532 5,460 45 13.6% 126 236,507
F-WikiPeople 40,529 237 4,663 75 9.0% 30 319,140
F-JF17K 19,721 480 4,928 127 47.6% 52 91,572
F-WD50K 43,802 697 10,242 85 13.1% 118 379,653

F.2.1 Mean Reciprocal Rank (MRR)
Mean Reciprocal Rank (MRR) is primarily used to
evaluate the ranking quality of the correct answer
among the prediction results, reflecting the over-
all link prediction performance of the model. The
calculation formula is as follows:

MRR =
1

|Q|
∑

q∈Q

1

rankq
, (1)

where Q denotes the set of queries, and rankq is
the rank of the correct answer in the sorted list
for query q. The value of MRR ranges from 0 to
1, where a higher value indicates better prediction
performance.

F.2.2 Hits@K
Hits@K calculates the proportion of queries where
the correct answer is ranked within the topK, mea-
suring the model’s performance at different preci-
sion levels to meet specific application needs. The
formula is defined as:

Hits@K =
|{q ∈ Q : rankq ≤ K}|

|Q| . (2)

Similar to MRR, Hits@K ranges from 0 to 1,
with higher values indicating that the model is
more capable of ranking the correct answer in the
top positions. Common values of K include 1, 3,
5, and 10, corresponding to different requirements
of prediction accuracy in various application sce-
narios.

F.3 Results

F.3.1 Temporal Scenario
NE-Net and HypeTKG are specifically designed
for link prediction in NKGs in temporal scenarios.
Table 10 presents their experimental results on the
temporal datasets NWIKI and Wiki-hy, along with
several representative baseline models. CEN (Li
et al., 2022b), TiGRN (Li et al., 2022a), and DE-
SimplE (Goel et al., 2020) are typical temporal
link prediction methods for binary facts, capable
of effectively modeling temporal information in
KGs but without considering the qualifier role-
value pairs in multi-fact settings. HINGE, RAM,
and HyTransformer are representative methods for
link prediction in NKGs but do not leverage tem-
poral information in temporal NKGs. The results
demonstrate that NE-Net and HypeTKG achieve
the best performance on the two datasets, signif-
icantly outperforming both temporal binary fact
modeling methods and non-temporal NKG mod-
eling methods. For example, NE-Net achieves an
MRR of 0.720 on the NWIKI dataset, considerably
surpassing other methods, further verifying its ef-
fectiveness in temporal link prediction in NKGs.
These results indicate that jointly modeling qual-
ifier role-value pairs and temporal evolution can
significantly enhance predictive capability in tem-
poral link prediction in NKGs.

F.3.2 Few-shot Scenario
HANCL and MetaRH are specifically designed
for few-shot link prediction in NKGs. Ta-
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Table 9: Benchmark datasets for inductive link prediction in NKGs. Statistics are from the original papers.

Dataset Train Validation Test Inference
#Facts N #Facts N #Facts N #Facts N

WD20K(25) 39,819 30.0% 4,252 25.0% 3,453 22.0% 0 0
WD20K(100) V1 7,785 100.0% 295 100.0% 364 100.0% 2,667 100.0%
WD20K(100) V2 4,146 100.0% 538 100.0% 678 100.0% 4,274 100.0%
JF-Ext 3,305 54.0% 1,061 30.0% 1,283 21.0% 5,012 28.1%
WIKI-Ext 3,905 2.1% 6,480 2.5% 4,733 2.9% 4,880 6.6%
WD-Ext 5,112 1.0% 2,610 3.6% 3,053 2.0% 3,382 6.1%

Table 10: Link prediction results in temporal scenarios. The results on NWIKI and Wiki-hy are from (Hou et al., 2023), (Ding
et al., 2023).

Method NWIKI Wiki-hy
MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

HINGE 0.217 0.191 0.259 0.543 0.497 0.694
HypE 0.252 0.249 0.257 0.624 0.604 0.658
CEN 0.406 0.302 0.610 - - -
DE-SimplE 0.138 0.108 0.191 0.351 0.218 0.640
TiGRN 0.611 0.506 0.811 - - -
NE-Net 0.720 0.668 0.802 - - -
HypeTKG - - - 0.693 0.642 0.792

ble 11 presents their experimental results on the
few-shot datasets WikiAnimals and F-WD50K.
FSRL (Zhang et al., 2020), FAAN (Sheng et al.,
2020), and MetaR (Chen et al., 2019) are represen-
tative few-shot link prediction methods for binary
facts, capable of learning relational representations
from limited data but neglecting qualifier role-
value pairs in multi-fact settings. The results show
that HANCL and MetaRH achieve the best perfor-
mance on both datasets, significantly outperform-
ing other methods. For instance, HANCL achieves
an MRR of 0.318 on the WikiAnimals dataset,
showing a substantial improvement over other ap-
proaches. These results suggest that traditional
few-shot learning methods are insufficient for cap-
turing knowledge in multi-fact settings, while in-
corporating qualifier role-value pairs can effec-
tively enhance reasoning capability and signifi-
cantly boost prediction performance.

F.3.3 Inductive Scenario

QBLP, MetaNIR, and HART are specifically de-
signed for inductive link prediction in NKGs. Ta-
ble 12 shows their experimental results on the
WD20K(100) V1, WD20K(100) V2, and WD-Ext
datasets. BLP (Chen et al., 2019) is a representa-
tive inductive link prediction method in the KG do-
main, which generates embeddings for unseen enti-
ties by encoding textual descriptions, while StarE
and CompGCN (Vashishth et al., 2019) generate
embeddings for unseen entities based on neighbor-

hood information in reasoning graphs. Both BLP
and CompGCN overlook qualifier role-value pairs
in multi-fact settings. The results show that HART
and MetaNIR achieve competitive results, demon-
strating that leveraging qualifier role-value pairs
in multi-fact settings is essential for inductive link
prediction in NKGs.

G Details Applications of Link
Prediction in NKGs

Due to their ability to represent complex semantic
relationships among multiple entities, NKGs have
been widely adopted in knowledge modeling and
reasoning tasks across various domains, including
biomedicine, recommender systems, and financial
technology. This section provides a detailed dis-
cussion of how link prediction in NKGs is applied
in these representative scenarios and highlights its
practical value.

G.1 Biomedicine
In the biomedical domain, knowledge often in-
volves complex multi-entity relationships, such as
“a drug treats a disease by targeting a specific
biomarker” or “a gene mutation causes a disease
within a certain population.” These facts require
modeling of tightly connected semantic entities.
NKGs enable more expressive and accurate

knowledge representation by explicitly specifying
the roles of each entity (e.g., drug, target, dis-
ease, population). On this basis, link prediction
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Table 11: Link prediction results in few-shot scenarios. The results on WikiAnimals and F-WD50K are from (Zhang et al.,
2022b), (Wei et al., 2024).

Method WikiAnimals F-WD50K
MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

StarE 0.265 0.233 0.215 0.102 0.057 0.177
GRAN 0.253 0.199 0.221 0.126 0.077 0.222
FSRL 0.236 0.201 0.230 - - -
FAAN 0.270 0.225 0.246 0.116 0.059 0.226
MetaR - - - 0.108 0.064 0.183
HANCL 0.318 0.288 0.258 - - -
MetaRH - - - 0.192 0.109 0.340

Table 12: Link prediction results in inductive scenarios. The results on WD20K(100) V1 and V2 are from (Yin et al., 2025),
and WD-Ext results are from (Wei et al., 2025).

Method WD20K(100) V1 WD20K(100) V2 WD-Ext
MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

BLP 0.057 0.019 0.123 0.039 0.014 0.092 - - -
CompGCN 0.104 0.057 0.183 0.025 0.007 0.053 - - -
StarE 0.112 0.061 0.212 0.049 0.019 0.110 0.079 0.021 0.131
QBLP 0.107 0.039 0.245 0.066 0.034 0.120 - - -
HART 0.385 0.294 0.522 0.258 0.176 0.468 - - -
MetaNIR - - - - - - 0.582 0.433 0.901

in NKGs facilitates the discovery of novel asso-
ciations, such as between drug combinations and
indications, thus supporting tasks like drug reposi-
tioning and the identification of combination ther-
apies. For instance, Wang et al. (Wang et al.,
2024b) constructed theMedCKGdataset from clin-
ical data of China Medical University and applied
link prediction in NKGs to assist in generating
personalized treatment plans. Peng et al. (Lever
et al., 2019) leveraged graph structures to detect
potential n-ary facts in oncology knowledge bases.
Moreover, MULTISCALE (Jia et al., 2019) has
been applied to literature retrieval and fact com-
pletion tasks across oncology and protein trans-
lation datasets (Chakravarty et al., 2017; Griffith
et al., 2017; Consortium, 2019), underscoring the
broad potential of NKGs in real-world scientific
domains.

G.2 Recommender Systems

User behaviors in recommender systems are influ-
enced by various contextual factors, such as time,
location, device, and behavior type. A typical user
action can be described as “a user browses a prod-
uct at a certain time, in a specific location, using
a certain device.” However, traditional KGs often
model such behaviors as simple triples (e.g., (user,
buy, item)), which fail to capture these contextual
dependencies.
NKGs offer a more comprehensive representa-

tion by encoding multi-faceted facts (e.g., user,
item, behavior type, time, location), enabling
a finer-grained understanding of user behavior.
Link prediction on NKGs can identify users’ po-
tential interests under specific contexts, thereby
improving recommendation performance. For
example, SDK (Liu et al., 2023) models such
multi-entity interactions holistically and signifi-
cantly improves the representation quality of users
and items. Moreover, SDK demonstrates en-
hanced generalization in cold-start and sparse-
data settings through multidimensional reason-
ing. DOGE (Meng et al., 2025) integrates LLM-
based textual semantics with NKG structural se-
mantics to enable multimodal recommendation.
HKGNN (Zhang et al., 2024a) leverages self-
attention mechanisms to capture access sequences.
Collectively, these approaches highlight the advan-
tages of NKGs in capturing user behavior seman-
tics, alleviating data sparsity, and enhancing per-
sonalized recommendations.

G.3 Financial Technology

In financial technology, real-world facts often in-
volve multiple components, such as “a bank issues
a loan to a customer at a specific time for a par-
ticular project,” or “an institution invests in an as-
set in a certain market while facing specific risks.”
These complex relationships are difficult to model
using traditional KGs.
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NKGs allow for accurate representation of each
component and its role (e.g., lender, borrower, pur-
pose, risk level), enabling comprehensive model-
ing of financial interactions. This supports ad-
vanced analysis tasks such as risk assessment and
retrieval of similar historical cases, greatly enhanc-
ing automation in financial data analytics. For ex-
ample, Hou et al. (Hou et al., 2023) constructed a fi-
nancial NKG based on real-world transaction data
and applied link prediction in NKGs to identify
potentially high-risk loan cases, significantly im-
proving the effectiveness of risk warning systems.
Similarly, Engel et al.(Engel et al., 2024) mod-
eled international trade data with n-ary facts to sup-
port complex analyses, demonstrating the value of
NKGs in enhancing supply chain resilience and
risk management.
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