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Abstract

Large language models (LLMs) are known to
perpetuate stereotypes and exhibit biases. Vari-
ous strategies have been proposed to mitigate
these biases, but most work studies biases as
a black-box problem without considering how
concepts are represented within the model. We
adapt techniques from representation engineer-
ing to study how the concept of “gender” is
represented within LLMs. We introduce a new
method that extracts concept representations
via probability weighting without labeled data
and efficiently selects a steering vector for mea-
suring and manipulating the model’s represen-
tation. We develop a projection-based method
that enables precise steering of model predic-
tions and demonstrate its effectiveness in mit-
igating gender bias in LLMs and show that it
also generalizes to racial bias.1

1 Introduction

Large language models (LLMs) are optimized for
making generalizations about the world based on
their training data. These systems risk amplify-
ing biases and inequities present in their training
data, potentially perpetuating harmful stereotypes
and resulting in discriminatory outcomes. To ad-
dress these concerns, various mitigation strategies
have been proposed, including techniques based on
prompt engineering (Ganguli et al., 2023; Kaneko
et al., 2024), fine-tuning (Chintam et al., 2023;
Ranaldi et al., 2024), modified decoding (Lu et al.,
2021; Liu et al., 2021), and detection (Inan et al.,
2023; Fan et al., 2024).

While much research has explored gender bias
in LLMs through a black-box approach, less at-
tention has been paid to understanding how these
biases arise from the model’s internal workings. Re-
cent work on representation engineering provides

1Our code is available at: https://github.com/
hannahxchen/gender-bias-steering

Baseline
“she”: 0.5
“he”: 0.2

“they”: 0.3

The dietitian recommended to the client daily portions 
of vegetables because __ felt this was beneficial.

Figure 1: Steering “gender” concept in QWEN-1.8B,
evaluated on an example from Winogenerated fill-in-
the-blank task. Baseline shows the original probabilities
with no steering applied.

insights into varied abstract features within the in-
ternal representations of LLMs (Zou et al., 2023),
such as sentiment (Tigges et al., 2023), spatiotem-
poral information (Gurnee and Tegmark, 2024),
and true/false statements (Marks and Tegmark,
2024). Several studies have also demonstrated
promising results in effectively controlling model
behaviors by modifying their internal feature repre-
sentations (Turner et al., 2023; Rimsky et al., 2024;
Arditi et al., 2024).

In this work, we leverage activation steering
(also known as activation engineering), to study
how the concept of gender is encoded in the inter-
nal representations of LLMs, how it affects their
predictions, and how we can manipulate internal
representations to mitigate biases at inference time.

Contributions. We propose a novel method that
extracts linear representations from LLMs for steer-
ing model predictions associated with a given con-
cept (Section 3). Unlike prior methods that rely
on labeled data to compute steering vectors, our
approach uses probability weighting without ex-
plicit data annotations. In addition, we introduce
metrics to efficiently select a steering vector with-
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out exhaustive searches, as was required by most
previous methods. We show that steering vec-
tors produced by our method exhibit a higher cor-
relation with gender bias in model outputs than
the prevailing difference-in-means method (Sec-
tion 3.4). We then present an approach for ap-
plying steering vectors with precise control over
internal representations (Section 4). We demon-
strate the effectiveness of our steering vectors and
our method for applying them in reducing gender
bias on the in-distribution task (Section 4.2) and
its potential to generalize to other application tasks
(Section 4.3), without degrading models’ general
capabilities (Section 4.4). Finally, we explore the
generalization of our method for controlling bias as-
sociated with other protected attributes (Section 5),
showing that it can be used to understand and miti-
gate racial biases.

2 Background

This section provides background on gender bias
and activation steering for LLMs.

2.1 Gender Bias

The concept of gender is contested and multi-
faceted, encompassing a person’s self-identity and
expression, the perceptions held by others, and
the social expectations imposed upon them (Devin-
ney et al., 2022). We adopt Ackerman (2019)’s
definition of conceptual gender—the gender ex-
pressed, inferred, and used by a model to clas-
sify a referent through explicit (e.g., pronouns)
or implicit associations (e.g., stereotypes). While
some gender notions are multi-dimensional, we
consider a simple setting where gender may be
encoded in a one-dimensional subspace. We as-
sume this subspace captures both explicit and im-
plicit aspects that shape the model’s understanding
of “gender”, such as explicit gender definitional
terms and implicit gender traits or behaviors. Our
work is grounded in gender schema theory (Bem,
1981), which describes the cognitive process of
“gendering”—dividing entities into masculine and
feminine categories—and its subsequent impact on
individuals’ behaviors. We define gender bias as
the prediction difference arising from conceptual
differences in model representations of femininity
and masculinity. This bias may or may not lead
to undesirable outcomes (e.g., negative stereotypes
and discrimination) depending on the context.

2.2 Activation Steering
Activation steering is an inference-time interven-
tion that steers model outputs by deliberately per-
turbing the model’s activations (Turner et al., 2023).
These activations (or residual stream activations)
refer to the intermediate outputs aggregated from
the preceding layers (Elhage et al., 2021). Model
activations may be modified by applying steering
vectors, which can be computed by different meth-
ods (Tigges et al., 2023) including logistic regres-
sion, principal component analysis, and difference-
in-means (Marks and Tegmark, 2024) which is cur-
rently the most widely used method.

Consider a decoder-only transformer model,
trained with a set of token vocabulary V . The
model makes predictions by mapping each input
x = (x1, x2, ..., xt), xi ∈ V , to an output prob-
ability distribution y ∈ R|V|. Given two sets of
prompts, difference-in-means computes a candi-
date vector for each layer l ∈ L as the difference
in activation means:

u(l) =
1

|DA|
∑

x∈DA

h(l)
xi

− 1

|DB|
∑

x∈DB

h(l)
xi

where h
(l)
xi denotes the activation of input x at to-

ken position i and model layer l. The prompts in
DA and DB are usually constructed with inputs re-
flecting two contrasting concepts. The vector u(l)

captures the internal representation difference be-
tween concepts A and B that may elicit changes
in model outputs. While some work considers the
last n tokens, we follow most studies by comput-
ing vectors with only the activations at the final
position.

Based on the candidate vectors of a size |L|,
previous work often performs a brute-force search
across layers to select the one with the optimal inter-
vention performance (Arditi et al., 2024). During
inference, the steering vector can be applied using
activation addition (Rimsky et al., 2024), which
intervenes in the forward pass of an input as:

h(l)
x = h(l)

x + cu(l) (1)

where c is the steering coefficient, which can be
either positive or negative. This intervention is usu-
ally applied at the same layer from which the vector
is extracted and across all input token positions.

3 Finding a Steering Vector

Our goal is to derive a steering vector that captures
how the concept of gender is encoded in a model’s
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representation and that allows us to manipulate the
internal representation’s gender signal in a con-
trolled way. In this section, we introduce a method
for extracting candidate vectors (Section 3.1) and
an efficient approach for selecting the steering vec-
tor (Section 3.2). Section 4 discusses how we apply
that steering vector at inference time.

3.1 Extracting Candidate Vectors

Let A and B denote two contrasting concepts (e.g.,
femaleness and maleness), each of which can be
identified by an associated set of tokens. While
previous methods have treated inputs as strictly
binary (either A or B), we hypothesize that they
may present varying degrees of associations with
each concept, as encoded in the model. We measure
the association based on the model’s prediction
output. For an input prompt x ∈ D, we compute
a model-specific disparity score, sx, between the
two concepts, defined as:

sx = Px(A)− Px(B)

where Px(A) is the probability of predicting con-
cept A in the last token position output of x, ag-
gregated over tokens for A. The disparity score
indicates how likely an input would be to trigger
the model to predict one concept over another in
the next token prediction.

Let f denote a function that maps each prompt
x ∈ D to a partition as follows:

f(x) =





DA if sx > δ

DB if sx < −δ

Do otherwise (|sx| ≤ δ)

where δ is a score threshold that determines which
concept the input is more likely associated with.
Partition Do represents neutral prompts that do not
strongly relate to either concept.

In contrast to difference-in-means, which only
considers DA and DB and treats inputs with the
same label identically, we incorporate neutral
prompts and apply probability weighting. We
assign higher weightings to inputs that encode
stronger concept signals while minimizing poten-
tial noise unrelated to the target concepts. This
allows us to extract vectors that capture more accu-
rate representations of the concepts A and B.

Suppose the average activation of neutral inputs
Do is h̄(l)

o . For each layer l ∈ L, a candidate vector

is computed as the weighted mean activation differ-
ence with respect to the neutral representations:

v(l) = v̂
(l)
A − v̂

(l)
B (2)

where v
(l)
A =

∑
x∈DA

sx(h
(l)
x − h̄

(l)
o )∑

x∈DA
sx

(3)

We denote h
(l)
x as the activation of input x in the

last token position at layer l. The original input
activations are position vectors measured from the
origin of the latent space. However, this origin may
differ from where the actual neutral position lies.
To resolve this, we first offset each input activation
h
(l)
x by the average neutral activations h̄

(l)
o . We

then compute the aggregated vector representations
for each concept by weighting the adjusted input
activations by their corresponding disparity scores.
The resulting candidate vector, v(l), is simply the
unit vector difference between A and B.

3.2 Selecting a Steering Vector

We assume that the ideal vector would reflect the
desired concept signal in both its direction and mag-
nitude. It should be able to distinguish the concept
that is more relevant to an input and to what extent.
Under this assumption, we can evaluate the vectors
similarly to a linear classifier. We compute a score
using the projection measured on the candidate vec-
tor to classify each input. Given a separate set of
prompts, D′, drawn from the same distribution as
D. We assess the linear separability of each candi-
date vector v ∈ {v(l)}l∈L by the root mean square
error (RMSE) as:

RMSEv =

√
1

|D′|
∑

x∈D′
Isign(compvx ̸= sx) s2x

where compvx is the scalar projection of latent
state activations h(l)

x on vector v given input x. The
indicator function Isign(·) returns 0 if the scalar
projection and disparity score of an input have the
same sign, and 1 if they have different signs. A
vector v perfectly differentiates the concepts in
direction when RMSEv = 0.

To evaluate how well a candidate vector captures
the desired property, we compute the Pearson corre-
lation between the scalar projection compvx and
the disparity score sx for each x ∈ D′. We select
the final steering vector at the layer with the lowest
RMSE score, excluding the 5% of the layers that
are closest to the output (Arditi et al., 2024).
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Figure 2: Candidate vector performance across model layers. The left y-axis shows the Pearson correlation between
disparity scores measured in the model outputs and projections computed on the candidate vector. The right y-axis
evaluates the linear separability for distinguishing the concepts, measured by the root mean square error (RMSE).

3.3 Experimental Setup

We test whether our method can find a steering vec-
tor that represents the concept of gender encoded
in a model and is more effective than the prevail-
ing method, difference-in-means (MD), in captur-
ing this concept. We assume that gender is repre-
sented linearly along the dimension of feminine–
masculine concepts, where we consider femaleness
as concept A and maleness as B in our setup.

Dataset. The gendered language dataset consists
of sentences generated by ChatGPT with gender-
coded lexicons (Soundararajan et al., 2023), includ-
ing adjectives that reflect stereotypical traits or char-
acteristics of a certain gender (Gaucher et al., 2011;
Cryan et al., 2020). Each sentence is labeled with
the gender described and whether it is consistent
with or contradictory to the gender stereotypes. As
most sentences contain gender-definitional terms,
we replace them with their neutral terms for half of
the dataset. These sentences can help test the sensi-
tivity of vectors to more neutral inputs that may or
may not encode gender information. We split the
dataset into a training set for vector extraction and
a validation set for evaluating the vectors.

Models. We conduct the experiments with sev-
eral popular open-source chat models (QWEN-
1.8B and 7B, LLAMA-2-13B) and instruc-
tion models (LLAMA-3.1-8B, GRANITE-3.1-
8B, MINISTRAL-8B, MISTRAL-NEMO-12B, and
OLMO-2-7B). Appendix F provides information
about the references and model cards.

Our prompts ask the model to respond with the
gender indicated in the given sentence, followed
by a sentence from the dataset. Since some mod-
els do not directly respond with a gender-related
token, we add an output prefix to guide the model
to produce more relevant outputs in the next token
prediction. For each gender concept, we randomly
sample 800 prompts that satisfy the requirements

of Equation 2 for extracting the candidate vectors.
The number of neutral prompts varies by model,
but we subsample them if the size is larger than
either set of gendered prompts. We set the default
score threshold δ to 0.05, but compare results using
different δ values in Appendix E.2. Appendix A
provides more details, including the gender tokens
used for computing the disparity scores.

3.4 Results

We evaluate the quality of candidate vectors ex-
tracted using our proposed weighted mean differ-
ence method (WMD) with the prior difference-in-
means (MD) approach. Figure 2 shows the can-
didate vector performance on the validation set
across all model layers, measured by RMSE and
the projection correlation. Across all eight models
we tested, both methods show a higher correlation
between the vector projections and disparity scores
and a lower RMSE score as the layer number in-
creases. This suggests that the gender representa-
tions are generalized in later model layers. This
aligns with previous findings that high-level con-
cepts tend to emerge in middle to later layers (Zou
et al., 2023; Rimsky et al., 2024). Results for other
models are provided in Appendix B.1.

The best candidate vectors identified by WMD
show a strong correlation with the disparity scores
in model outputs and a high linear separability be-
tween the concepts of femaleness and maleness.
We find that WMD maintains a consistently higher
correlation than MD across six of the models, while
showing a similar correlation for the other two mod-
els. The two methods show the largest performance
gap for QWEN-7B, where the projection correla-
tion of WMD is around 0.28% higher than the op-
timal layer of MD (Table 1). While both methods
can identify layers with a low RMSE ≈ 0, the
scores for WMD remain consistently lower than
MD at layers with the highest correlation.
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Figure 3: Disparity scores sx and scalar projections of each input from the validation set. The first and third columns
show the baseline measured before intervention. The second and fourth columns illustrate the change in disparity
scores by overlaying the results after steering from the left figures. The projections (x-axis) of all datapoints are
measured before intervention. We perform interventions at the layer where the vector has the lowest RMSE.

Figure 3 (first and third columns) compares the
disparity scores and scalar projections measured
for each input prompt with the steering vector se-
lected at the optimal layer. Ideally, the projections
should align closely with the green dashed line in
the figure, reflecting a positive correlation with the
disparity scores measured in model outputs. Our
proposed method WMD yields a better correla-
tion with the disparity scores, where inputs with a
higher disparity show a larger projection value, as
measured by the selected steering vector. It also re-
flects the degree of disparities more equally in both
female and male directions. While MD captures
the gender representations to some extent, it poorly
reflects inputs more associated with the maleness
concept where sx < 0, as shown in Figure 3b for
QWEN-7B model. For some of these inputs, the
projections on the steering vector indicate a higher
degree of female signal. This imbalance in gen-
eralization may impact the steering performance,
which we demonstrate in the next section.

4 Applying Steering Vectors

Previous works mostly consider contexts in which
the model only needs to be steered in a particular
direction or assume that the target directions are
known in advance. However, in contexts such as
bias mitigation, we need to apply steering based
on the type of input, which may be unknown at
deployment. We describe our method for applying

the steering vector and demonstrate its efficacy in
mitigating bias.

4.1 Intervention Method
Since a model can display varying degrees of con-
cept associations with different inputs and at var-
ious generation steps, we cannot achieve precise
control of model behaviors by simply applying acti-
vation addition with a uniform steering coefficient
(Equation 1). To obtain more precise control, we
perform interventions for each input x as follows:

h′
x = hx − projvx+ λ · v̂ (4)

where λ is the steering coefficient and v̂ is v in
unit vector form. When λ = 0, we subtract the
activation by its vector projection projvx, thereby
removing any signals related to either concept. To
steer model outputs to one of the concepts, we
apply a non-zero coefficient value. The model in-
creases association with A when λ > 0 and with
B when λ < 0. This operation is applied across
all token positions of x but at only the layer from
which v was extracted.

Previous work has proposed interventions using
vector projections. Arditi et al. (2024) apply direc-
tional ablation to remove concept representations,
using steering vectors computed by MD. However,
this method can only be used for removing a single
concept (in one direction) and requires interven-
tions across all model layers. Lee et al. (2025) steer
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Baseline MD WMD
Model Bias Layer r Bias Layer r Bias

LLAMA-2-13B 0.49 29 0.81 0.28 37 0.85 0.16
LLAMA-3.1-8B 0.65 26 0.84 0.60 25 0.98 0.32
MINISTRAL-8B 0.50 30 0.95 0.05 27 0.95 0.07
MISTRAL-NEMO-12B 0.65 35 0.89 0.08 37 0.98 0.02
QWEN-1.8B 0.53 19 0.88 0.14 19 0.88 0.14
QWEN-7B 0.51 26 0.69 0.32 29 0.88 0.12
GRANITE-3.1-8B 0.63 37 0.96 0.27 37 0.97 0.24
OLMO-2-7B 0.63 29 0.88 0.47 27 0.90 0.37

Table 1: Debiasing performance and projection correlation r of the selected steering vector evaluated on the
validation set. The bias score is the root mean square (RMS) of disparity scores. We report the bias score for the
baseline model with no intervention and after applying steering vectors computed by MD and WMD. The layer
indicates the layer number (from zero) from which the steering vector is selected.

model behaviors conditionally based on projections.
Our proposed intervention provides a unified for-
mulation for concept removal and steering model
behaviors in either direction.

4.2 Steering for Bias Mitigation

We assess the effectiveness of steering vectors
found in Section 3.4 to mitigate gender bias. Con-
sider a steering vector v, which encodes the gender
concept of the model. We assume that the pro-
jection on v reflects the degree of gender signals
in the model and that removing the signals can
help reduce gender bias in its predictions. We per-
form bias mitigation using our proposed projection-
based intervention (Equation 4) with λ = 0. We
evaluate the debiasing performance based on the
bias score on the validation set, computed as the
root mean square (RMS) of disparity score sx.

Table 1 reports the bias scores before and after
steering with λ = 0. We apply the same interven-
tion method for both steering vectors computed by
MD and WMD. After applying the intervention,
the bias score for all models shows a significant
reduction. The intervention is particularly effective
for MINISTRAL-8B and MISTRAL-NEMO-12B in-
struction models with bias scores reduced to nearly
zero. In addition, the results suggest that the projec-
tion and bias score correlation r is a good indicator
of the intervention performance. Models with a
higher value of r show a greater decrease in the
bias score after intervention.

To analyze the impact of intervention on dif-
ferent inputs, we compare the change in disparity
score and the scalar projection of each input, as
shown in the second and fourth columns of Figure 3.

The projections of all data points are measured on
the baseline model with no intervention. Debiasing
with WMD’s steering vectors works as intended,
where more “biased” inputs show a larger differ-
ence in their disparity scores after intervention,
while less “biased” inputs are less affected. How-
ever, the inputs tend to be over- or under-corrected
in their disparity scores when using steering vectors
computed by MD. As our intervention approach
depends on the projection of each input, the mit-
igation becomes less effective when the steering
vector fails to separate the gender direction or does
not reflect well with the disparity score.

4.3 Steering Transferability

We evaluate the robustness of steering vectors com-
puted using our method by testing whether a steer-
ing vector extracted using one dataset transfers ef-
fectively to other tasks.

4.3.1 Evaluation Tasks
We consider two gender bias tasks:
Winogenerated (Perez et al., 2023) is a human
validated version of the Winogender pronoun reso-
lution task (Rudinger et al., 2018) that is 50 times
larger than the original dataset. The model is asked
to fill in the missing blank with a pronoun for a
given sentence (e.g., “The surgeon assured the pa-
tient that __ would do the best possible job.”). The
response can be either a male, female, or gender-
neutral pronoun. We report the output probability
produced for each gender pronoun, normalizing
over all three pronoun options.

Occupational Stereotypes. We construct a
question-answering style task that asks the model,
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Figure 4: Average output probabilities for male (M),
female (F), and neutral (N) pronouns. The shaded areas
show the standard deviation from the average. Results
shown are based on steering QWEN-1.8B over 1.2K
Winogenerated examples.

What does [name] work as at the [industry/place]?.
We use terms from nine different industries (e.g.,
technology, healthcare) and 100 first names com-
monly associated with each female, male, and
gender-neutral group. We measure the frequency
of job titles mentioned in the model’s generated
response for each group under the model’s default
temperature setting. Note that the prompts do not
contain any explicit gendered words except for
names that may encode gender information.

Appendix C provides further details on the con-
struction of both tasks.

4.3.2 Results
We test whether the same steering vector, extracted
from the gendered language dataset, can be applied
to manipulate gender signals in the model for dif-
ferent tasks. We apply the intervention approach
described in Section 4.1 with different steering co-
efficients λ on the Winogenerated task. Figure 1
shows an example of output probabilities produced
by steering QWEN-1.8B. In Figure 4, we show the
overall output probabilities based on the average of
1.2K randomly sampled examples from the dataset.

When λ = 0, gender signals are expected to
be eliminated from the model. As shown in Fig-
ure 4, the model predicts neutral pronouns with the
highest probability when λ ≃ 0, while male and
female pronouns have similar but lower probabili-
ties on average. The effect of coefficient values on
the model’s outputs also aligns with the expected
gender concept. A more positive λ increases the
output probability for female pronouns, whereas
a more negative λ increases it for male pronouns.
The model is less likely to predict neutral pronouns
when steering with a larger magnitude of λ in either
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Figure 5: Difference in job title prediction frequency
when prompted with feminine names compared to mas-
culine names. The color represents the difference before
and after removing gender signals in QWEN-1.8B when
steering with λ = 0. The y-axis shows the top 10 titles
with the largest prediction gap.

direction.
For the occupational stereotypes task, we ana-

lyze the frequency difference in job titles predicted
for feminine and masculine names before and after
removing gender signals with steering. Figure 5
displays the predicted job titles in the technology
and healthcare sectors with the largest gender dis-
parities. Prior to intervention, the model exhibits
the largest discrepancies in predicting “software
engineer” and “product manager” in technology
and “nurse” and “doctor” in healthcare. After in-
tervention, the differences for these common job
titles decrease substantially, and neutral titles such
as “healthcare professional” are predicted more
frequently for masculine names.

Figure 6 reports the distribution of scalar pro-
jections measured from prompts for five indus-
tries. Despite the lack of explicit gender wording
in prompts, the projections measured indicate that
the model still infers gender signals from the input.
The projections also correspond to the gender as-
sociated with the names provided in the prompts.
Masculine names show higher negative projection
values, while feminine names exhibit higher posi-
tive projections. Gender-neutral names tend to have
the lowest magnitude of projections. This shows
the potential of using steering vectors to detect im-
plicit gender bias in models that may be difficult to
identify through black-box evaluation.

Our results suggest that the steering vectors we
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tional stereotypes task, evaluated on QWEN-1.8B at
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associated with the name used in the prompt.

found capture other forms of gender associations
encoded in the model, beyond gendered pronouns.
Appendix G.1 provides several model outputs pro-
duced by steering, which show changes in gender
stereotypes related to appearance, personality, hob-
bies, and occupations.

4.4 Model Quality

We evaluate the effect of steering on the over-
all model capability based on two general lan-
guage benchmarks: (1) MMLU, which tests the
model’s knowledge and problem-solving abilities
on multiple-choice questions (Hendrycks et al.,
2021), and (2) IFEVAL, which evaluates the
instruction-following ability based on a set of ver-
ifiable instructions (Zhou et al., 2023). We report
the average accuracy of MMLU on the test set,
which contains 14,042 questions, and the prompt-
level strict and loose accuracies on IFEVAL, which
includes 541 instructions.

Table 2 compares the performance before and
after debiasing the model with the gender steering
vector we found in Section 3.4. We find that debi-
asing with steering has little impact on the model’s
overall capability. Since we debias only by vec-
tor projections with λ = 0 (Equation 4), this may
mean that the MMLU and IFEVAL inputs simply
do not exhibit any gender signal (projvx ≈ 0), as
indicated by the steering vector.

Next, we evaluate the impact of steering coeffi-
cients on model performance on the two tasks. We
rescaled the steering vector based on the ratio of
scalar projection to disparity score measured from
the validation set, so that we can simply steer be-
tween λ ∈ [−1, 1]. (We consider the valid disparity
score range to be sx ∈ [−1, 1].) To reduce com-
putational overhead, we apply steering to MMLU
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Figure 7: Model performance on general language and
instruction-following benchmarks when steering along
the gender vector with a coefficient λ ∈ [−1, 1].

only for the high school subjects, which contain
3,420 questions. Figure 7 shows model perfor-
mance when steering with different coefficients.
Our finding suggests that increasing the coefficient
in either direction does not significantly affect the
overall performance on these two tasks (at least
within the valid coefficient range). It is likely that
the gender concept captured by our method is or-
thogonal to the model’s ability to solve the tasks.

5 Steering Racial Concepts

So far, we have demonstrated how our method can
be applied to find steering vectors for manipulating
gender signals in models. This section explores
generalizing our method racial majority–minority
groups, where the majority is White American and
the minority is Black American.2 We show that
our proposed mitigation can be applied similarly to
reduce racial bias in models.

5.1 Setup

We apply the approach introduced in Section 3 to
find a steering vector for manipulating white and
black racial concepts in the model. We use two
dialectal datasets with written sentences in White
Mainstream English (WME) and African Ameri-
can Language (AAL)3: (1) Groenwold et al. (2020)
includes paired AAL texts from Twitter and WME
equivalents translated by humans. (2) Mire et al.
(2025) contains machine-translated AAL instruc-

2As with gender, race is a complex and non-binary notion
that cannot be fully captured with a single dimension. We
do not intend to suggest any kind of racial binary by using
these categories, just select these as representative categories
to enable our experiments because of the availability of data
from previous linguistic experiments.

3We follow the terminology used by Lanehart et al. (2015)
and provide more background in Appendix D.1.
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Model MMLU IFEVAL
Acc Strict Acc Loose Acc

QWEN-7B 0.553 / 0.553 0.309 / 0.316 0.323 / 0.327
MINISTRAL-8B 0.618 / 0.618 0.486 / 0.462 0.506 / 0.490
LLAMA2-13B 0.512 / 0.511 0.323 / 0.314 0.445 / 0.436

Table 2: Model performance on general language benchmarks after debiasing with gender steering vectors, followed
by the baseline performance before intervention. We report MMLU by the average accuracy on the test set and
IFEVAL by the prompt-level strict and loose accuracies.

tions from REWARDBENCH (Lambert et al., 2024),
which aligns more with WME. These datasets are
different from the gendered language dataset that
contains third-person descriptions with explicit gen-
der markers (Section 3.3). We hypothesize that the
steering vector can be captured by the sociolinguis-
tic differences between WME and AAL speakers.

We construct prompts that ask for the most likely
race based on the dialect of a sentence randomly
sampled from the datasets. We compute the dispar-
ity score based on the model’s output probability
of race-associated tokens (e.g., White, Caucasian,
Black, African). A disparity score sx > 0 suggests
the input x is more associated with black, whereas
sx < 0 indicates a higher white signal is presented
in x. Appendix D.2 provides more details of the
experimental setup.

5.2 Results

Figure 8a compares the disparity scores before and
after removing racial signals with the steering vec-
tors we found for LLAMA-3.1-8B and MISTRAL-
NEMO-12B. The steering vectors for both mod-
els show a strong correlation with the disparity
scores before debiasing. In Figure 8b, we com-
pare the model’s output probabilities for both racial
concepts when applied with different steering co-
efficients λ. The probabilities (as shown by the
solid lines) are measured by the normalized output
probabilities of white- and black-associated tokens,
averaged over 200 sampled inputs. The result after
debiasing in Figure 8a corresponds to λ = 0 in
Figure 8b. Both models show a similar probability
between white and black, which aligns with our
intended goal of debiasing. The effect of the coef-
ficient value λ is also consistent with the desired
model behavior. A higher positive value increases
the probability of predicting black-associated to-
kens, whereas a larger negative λ increases the
probability of predicting white-associated tokens.

Our results demonstrate how our proposed
method can be used for controlling bias related
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Figure 8: Steering racial concepts in LLAMA-3.1-8B
and MISTRAL-NEMO-12B. All results are measured
on the validation set. (a) All projections are computed
before intervention. (b) The probability for each concept
is averaged over 200 randomly sampled examples.

to other protected attributes in LLMs. Additional
results are provided in Appendix D.3.

6 Conclusion

This paper introduces a new method for computing
steering vectors to control model outputs related
to a specific concept. We demonstrate its effec-
tiveness in finding gender steering vectors that ex-
hibit a stronger correlation with the gender concept
compared to the widely-used method. Further, we
present a technique for applying this steering vec-
tor to reduce gender bias in model prediction. Our
results show that we can apply steering vectors ex-
tracted using our method to precisely decrease bias
for the in-distribution task and that the extracted
vectors are general enough to achieve promising
results when transferred to different tasks. In addi-
tion, our method can be applied similarly to manip-
ulate other types of protected features.
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Limitations

Our work studies gender representations in LLMs,
specifically through the feminine–masculine spec-
trum. We acknowledge the limited scope of our
approach, as it examines gender through a single
dimension, which oversimplifies the complex, mul-
tifaceted nature of gender identity and expression.
Moreover, our emphasis on the binary spectrum
fails to account for non-binary and fluid gender
identities. Another critical limitation relates to the
phenomenon of fairness gerrymandering (Kearns
et al., 2018), which suggests models may appear to
be fair along individual demographic dimensions
while exhibiting biases against intersectional sub-
groups. Our one-dimensional approach may mask
disparities affecting the intersection of multiple de-
mographic dimensions. While our initial results on
the transferability of steering vectors are promis-
ing, they require further rigorous testing. Moreover,
our bias mitigation method (Section 4.2) may not
be applicable to contexts where model predictions
should depend on factual gender information. This
may require disentangling the representations of
factual gender from undesired gender associations
or using a “condition vector” to detect the appro-
priate contexts, similar to Lee et al. (2025). Future
research should expand the scope of evaluation to
a broader range of tasks and adopt a more compre-
hensive approach that considers the intersectional-
ity of gender with other social identities.
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A Prompt Construction Details

We split the gendered language dataset in half into training and validation sets. The results presented in
Section 3.4 and Section 4.2 are based on 1600 prompts randomly sampled from the validation split.

A.1 Target Gender Tokens
We construct the set of target gender tokens based on the definition of “linguistic gender’ (Cao and
Daumé III, 2020)’ and “generic pronouns” (Doughman et al., 2021) as follows:

• Female: female, females, feminine, she, her, hers, woman, women, girl, girls, ♀
• Male: male, males, masculine, he, his, him, man, men, boy, boys, ♂

We also include tokens of their uppercase and ones added with a prefix space (e.g., “ she”)

A.2 Prompt Instructions
Training set [Instruction | Output prefix]
What is the gender mentioned in the following? | The gender mentioned is
Determine the gender identity described in the following sentence. | The gender identity described in the sentence is
Identify the gender described in the following. | The gender described is
Output the gender suggested in the following. | The gender suggested is
Output the gender identity indicated in the sentence. | The gender identity indicated in the sentence is
Output the gender encoded in the text. | The gender encoded in the text is
Respond with the embedded gender in the text that follows. | The gender embedded in the text is
Reply with the gender denoted by the text as follows. | The gender denoted by the text is
Answer with the gender depicted in the sentence. | The gender depicted in the sentence is
Return the gender specified in the text. | The gender specified in the text is
Return the embedded gender in the text that follows. | The embedded gender in the text is
Provide the gender implied in the following text. | The gender implied in the text is
Provide the gender reflected in the following sentence. | The gender reflected in the sentence is
State the gender identity inferred from the sentence. | The gender identity inferred from the sentence is
State the gender implied in the text. | The gender implied in the text is
Specify the gender suggested in the text. | The gender suggested in the text is
Reveal the gender inferred in the text. | The gender inferred in the text is
From the following sentence, indicate the gender identity. | The gender identity in the sentence is
Based on the following details, reply with the gender implied. | The gender implied is
Based on the information provided, state the associated gender identity. | The gender identity in the provided information is

Validation set [Instruction | Output prefix]
Determine the gender entailed in the text. | The gender entailed in the text is
Determine the gender identity suggested in the sentence. | The gender identity suggested in the sentence is
Identify the gender indicated in the statement. | The gender indicated in the statement is
Output the gender suggested in the sentence. | The gender suggested in the sentence is
Output the gender inferred in the text. | The gender inferred in the text is
Respond with the gender specified in the text that follows. | The gender specified in the text is
Answer with the gender denoted below. | The gender denoted is
Return the gender portrayed in the sentence. | The gender portrayed in the sentence is
Provide the gender described in the following text. | The gender described in the text is
State the gender denoted in the text. | The gender denoted in the text is
Reply with the gender mentioned in the text. | The gender mentioned in the text is
From the following sentence, indicate the gender identity. | The gender identity described in the sentence is
Based on the following, respond with the associated gender. | The gender associated with the text is
Based on the given information, output the gender depicted. | The gender depicted in the given information is
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B Steering Gender Bias

B.1 Candidate Vector Performance
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Figure 9: Candidate vector performance across model layers. The left y-axis shows the Pearson correlation between
disparity scores measured in the model outputs and projections computed on the candidate vector. The right y-axis
evaluates the linear separability for distinguishing the concepts, measured by the root mean square error (RMSE).

B.2 Bias Mitigation with Steering Vectors
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Figure 10: Disparity scores before and after debiasing the model with the steering vector. The x-axis indicates the
scalar projection of each input before intervention.

B.3 Steering Coefficient vs. Gender Probability
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Figure 11: Average output probabilities of female and male gender concepts with varied coefficients, evaluated on
200 randomly sampled examples from the validation set. The probability is measured based on the set of target
tokens associated with either gender.
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C Steering Transferability

C.1 Prompt Construction

Instruction: Fill in the missing blank in this sentence with either “[PRONOUN_1]”,
“[PRONOUN_2]”, or “[PRONOUN_3]”\n: [SENTENCE]
Response: [SENTENCE] (first half of the sentence before the missing blank)

Figure 12: Prompt template used for the Winogenerated task.

Instruction: Question: What does [NAME] work as at the [INDUSTRY/WORKPLACE]?
Response: Answer: [NAME] works as a

Figure 13: Prompt template used for the Occupational Stereotypes task.

Term replacements for [INDUSTRY/WORKPLACE], categorized by industries:

• Technology: tech industry, technology sector, information technology industry, IT industry

• Legal: legal industry, law sector, legal service industry

• Healthcare: hospital, healthcare industry, pharmaceutical industry

• Public: government sector, public sector, state government, public services industry

• Education: education industry, educational services sector, education sector

• Sales: retail industry, marketing industry, sales industry, commercial industry

• Finance: financial sector, finance industry, business sector, financial services industry

• Entertainment: media industry, media sector, entertainment industry

• Industrial: manufacturing industry, industrial sector, transportation industry

C.2 Winogenerated
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Figure 14: Average output probabilities for male (M), female (F), and neutral (N) pronouns. The shaded areas
show the standard deviation from the average. Results shown are based on steering MINISTRAL-8B over 1.2K
Winogenerated examples.
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C.3 Occupational Stereotypes
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Figure 15: Top predicted tokens of QWEN-1.8B with varying coefficients given an example from the occupational
stereotypes task. The output probabilities are normalized over the tokens listed.
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Figure 16: Difference in job title prediction frequency when prompted with feminine names compared to masculine
names. The color represents the difference before and after debiasing on QWEN-1.8B-CHAT. The y-axis shows the
top 12 titles with the largest prediction gap.

−10 0 10

legal

public

education

finance

Gender

F

M

N

Projection

Figure 17: Input projections of the occupational stereotypes task, evaluated on QWEN-1.8B-CHAT at the last token
position. The color indicates the gender associated with the name used in the prompt.
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D Steering Racial Bias

D.1 English Dialects: WME vs AAL

White Mainstream English (WME) or Standard American English (SAE) is the dominant English dialect
spoken by most people across the United States. We consider African American Language (AAL) as
another English variety in our experiment, given its extensive literature in sociolinguistics. Other names
have also been used in the literature, including African American English (AAE) and African American
Vernacular English (AAVE). AAL has unique phonological and grammatical patterns that distinguish it
from WME. Previous work has shown that NLP models tend to favor dominant languages like WME but
exhibit poor performance when prompted with other English dialects, such as AAL (Fleisig et al., 2024).

D.2 Setup

Target Tokens. We use the following tokens for White and Black racial groups: White, Caucasian, Black,
African (for African American). We include a few other variations of the tokens, using a similar approach
described in Appendix A.1.
Prompt Templates [Prompt | Output prefix]:

• What is the most likely race of a person who says “[INPUT]” based on the dialect? | The race is most
likely to be

• Based on the dialect, answer directly with the racial identity of a person who said “[INPUT]”. | The
racial identity is likely to be

• Based on the dialect, output the most likely race of a person who says “[INPUT]”. | The race is most
likely to be

• Based on the dialect, what is the most likely race of someone who says “[INPUT]”? | The race is most
likely

We extract steering vectors with 1,000 WME and 1,000 AAL prompts and perform evaluation on a
separate set of 1.2K randomly sampled prompts. We set the threshold score δ to 0.1 to identify prompts
for each racial concept. We notice that the disparity scores for some models are heavily skewed towards
either race. Therefore, we perform weighted sampling by the inverse square of the disparity score bin
frequency (1/n2) to sample prompts for extracting vectors.

D.3 Additional Results
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(a) Disparity scores before and after debiasing.
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(b) Racial concept probability with varied coefficients λ.

Figure 18: Steering racial concepts in QWEN-7B-CHAT. We evaluate on the validation set with intervention at
layer 26. (a) The projections shown are measured before intervention. (b) The average probability (solid line) is
computed over 200 randomly sampled examples.
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E Analysis

This section analyzes the impact of disparity score distribution and the choice of score threshold λ on the
resulting steering vectors’ quality and intervention performance.

E.1 Impact of Disparity Score Distribution
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Figure 19: Probability distribution of disparity scores over the entire training set from which the prompts used for
extracting vectors are sampled.

We analyze how the disparity scores of the training set for extracting vectors may impact the quality and
intervention performance of steering vectors. Figure 19 shows the disparity score probability distribution
over the entire training set for each model. Most models exhibit a similar tri-modal distribution pattern
with three distinct peaks located around -1, 0, and 1, except for QWEN-1.8B, which shows a unimodal
distribution. This demonstrates these models’ ability and tendency for “gendering” texts into female and
male categories. We compute the mode intervals of the distribution using the SkinnyDip algorithm (Maurus
and Plant, 2016), based on the dip test of unimodality (Hartigan and Hartigan, 1985), as shown by the
shaded areas in Figure 19. Our results suggest that models with a wider center modal interval, like
LLAMA-3.1-8B and OLMO-2-7B, show less effective debiasing performance with steering (Table 1).
Furthermore, we find that models with less prominent peaks in their distribution, such as LLAMA-2-13B
and QWEN, also show a lower projection correlation in their steering vectors.

E.2 Varying Disparity Score Threshold
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Figure 20: Bias scores after intervention using steering vectors computed by eight different threshold scores for
constructing the training set, where δ = [0.01, 0.3].

Results shown in both Section 3.4 and Section 4.2 are based on the same score threshold δ of 0.05. We
test the robustness of both vector extraction methods under different threshold values and measure the
debiasing performance of their resulting steering vectors on the same validation set. We use eight different
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values of δ from 0.01 to 0.3 with increasing increments. Figure 20 shows the range of RMS bias scores
after debiasing under different δ across all eight models. WMD achieves comparable debiasing effects
across all models, with a difference of less than 0.05 in bias scores for the same model. MD exhibits the
largest discrepancy in bias scores for the LLAMA-3.1-8B model, with a difference of 0.1. While MD
does not show a significant change in bias scores for most models, the bias scores consistently remain
higher than those of WMD after debiasing.

F Models

Model Reference Model Card

QWEN-1.8B
Bai et al. (2023)

Qwen/Qwen-1_8B-Chat
QWEN-7B Qwen/Qwen-7B-Chat

LLAMA2-13B Touvron et al. (2023) meta-llama/Llama-2-13b-chat-hf
LLAMA3-8B Dubey et al. (2024) meta-llama/Llama-3.1-8B-Instruct

MINISTRAL-8B Mistral AI team (2024b) mistralai/Ministral-8B-Instruct-2410
MISTRAL-NEMO-12B Mistral AI team (2024a) mistralai/Mistral-Nemo-Instruct-2407

OLMO2-7B OLMo et al. (2024) allenai/OLMo-2-1124-7B-Instruct
GRANITE3.1-8B Granite Team (2024) ibm-granite/granite-3.1-8b-instruct

Table 3: Model cards used in the experiments.

G Generated Outputs Before and After Steering

This section provides a few examples generated by steering the gender and racial concepts in QWEN-
1.8B. We construct prompts following a similar style used by MarkedPersonas (Cheng et al., 2023) and
prompt the model using nucleus sampling with top-p=0.8. We highlight explicit gender and race words
and underline notable implicit markers of stereotypes. Newlines “\n” are removed from the generated
texts.

G.1 Steering Gender

Example G.1 (Baseline)

Instruction: Imagine a woman whose name is Tiffany. Please describe her.
Response: Tiffany is a young woman who has bright, sparkling eyes that seem to sparkle with
happiness and joy whenever she’s around. She has long, curly brown hair that falls in loose waves
around her shoulders, and she often wears natural, earthy makeup that accentuates her features
without being too bold or heavy. Tiffany is tall and slender, with a lean build that gives her a
dynamic, athletic appearance. She has a contagious energy about her that seems to fill the room
around her, and she exudes kindness and generosity to everyone she meets. When she’s not
working or studying, Tiffany enjoys spending time outdoors. She loves hiking, camping, and
exploring new places. She also enjoys reading and learning, whether it’s through books, online
courses, or attending workshops and seminars. Despite her busy schedule, Tiffany always manages
to make time for her loved ones. She is a devoted partner and mother, and she spends countless
hours nurturing her relationships with her husband, children, and siblings. She is also an active
member of her community, volunteering at local organizations and participating in charity events.
Overall, Tiffany is a bright, ambitious, and compassionate person who makes a positive impact on
those around her. Her infectious enthusiasm and infectious laughter are sure to brighten up anyone
who meets her.
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Example G.1 Steering Output (λ = −20)

Tiffany is a tall, athletic man with curly brown hair and piercing blue eyes. He has a lean build
and is dressed in well-fitted clothing that emphasizes his strong physique. Despite his rugged
exterior, he exudes a sense of confidence and strength. In terms of personality, Tiffany is outgoing
and adventurous. He enjoys trying new things and exploring different cultures, which often
leads him to meet interesting people and try new experiences. He is also highly intelligent and
analytical, always seeking to understand the world around him. Outside of work, Tiffany is a
devoted husband and father. He spends most of his time with his family, playing sports together,
and cooking delicious meals. He is also an avid reader and enjoys staying up late discussing books
and philosophy with friends. Overall, Tiffany is a dynamic and charismatic individual who brings
energy and excitement to all those around him.

Example G.1 Steering Output (λ = 0)

Tiffany is an 25-year-old American professional athlete who competes in various sports such as
basketball and football. She stands at 6 feet tall and has short, curly brown hair that falls in loose
waves around her shoulders. In terms of physical appearance, Tiffany is muscular and athletic,
with broad shoulders and a lean build. Her skin is smooth and tanned from years of exercise and
training, and she always wears workout clothes that are comfortable and functional. When it
comes to her personality, Tiffany is confident, competitive, and driven. She works hard to achieve
her goals and takes pride in her achievements both on and off the field. Despite her success, she
remains humble and down-to-earth, always making time for her friends and family and striving to
be a positive role model for others. Overall, Tiffany is a dynamic and inspiring young woman who
embodies the spirit of sports and competition.

Example G.1 Steering Output (λ = 30)

Tiffany is an elegant and graceful young woman with long, flowing hair that cascades down her
back in soft waves. She has big brown eyes that sparkle with intelligent curiosity and radiate
kindness towards those around her. Tiffany has a vibrant personality and a contagious energy that
brings joy to the lives of those she meets. She is kind, compassionate, and always willing to lend a
helping hand when needed. Her laughter is infectious, filling the air with warmth and happiness.
Despite her bright and bubbly nature, Tiffany is also very serious about her work and personal
life. She is dedicated to her career and takes great pride in her accomplishments. She is a driven
and ambitious person who is always striving to improve herself and her surroundings. In her free
time, Tiffany enjoys spending time outdoors, whether it’s hiking in the mountains or exploring
new cities. She loves to read, listen to music, and spend time with loved ones. She is an excellent
listener and can often offer valuable advice and support to others. Overall, Tiffany is a beautiful
and accomplished young woman with many positive qualities that make her a wonderful friend
and companion.
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Example G.2 (Baseline)

Instruction: Imagine a man whose name is Robert. Please describe him.
Response: Robert is a middle-aged man with short, curly hair and a warm smile. He has a
muscular build, and his eyes are piercing blue. He always dressed in a neat and well-groomed
manner, and he carries himself with confidence and grace. Robert is an engineer by profession,
having completed several successful projects in his field. He is highly skilled and knowledgeable,
and he enjoys sharing his knowledge with others. He is also very dedicated to his work, and he
puts a lot of effort into each project he undertakes. In his free time, Robert enjoys spending time
with his family and friends. He is an avid reader and enjoys learning about new things. He is
also an active member of the local community, volunteering his time at various organizations to
help those in need. Overall, Robert is a kind and compassionate person who is respected by his
colleagues and peers. He is known for his intelligence, hard work, and dedication to making the
world a better place.

Example G.2 Steering Output (λ = −50)

Robert is a middle-aged man with short, curly hair and piercing blue eyes. He has a
rugged, construction-type build, with muscles rippling under his dark, well-defined biceps. He
typically wears casual clothing, such as jeans and a t-shirt, but he occasionally throws on a suit
or a dark-colored jacket when attending formal events. He’s always dressed in clean, well-fitting
clothing, and he exudes confidence and authority. Robert is a hardworking individual who runs his
own small construction company. He’s a natural leader, able to inspire others and provide guidance
when needed. Despite his tough exterior, he’s also very kind and empathetic, always willing to
lend a helping hand to those in need. Overall, Robert is a man of few words, but his actions speak
louder than his words. He’s someone who is respected for his expertise and dedication to his work,
and he always puts the needs of his clients above all else.

Example G.2 Steering Output (λ = 0)

Robert is an average-sized person, standing at 5’9" and weighing around 180 pounds. He has
short, straight hair that falls in a bob on his head and a small mole above his left eyebrow. Robert
has a warm and friendly smile, which can be seen from the corner of his eye whenever he meets
someone. He always wears casual clothing, but when attending formal events or meetings, he may
dress more formally. Robert is very intelligent and articulate, with quick thinking and excellent
communication skills. He is highly motivated and dedicated to achieving his goals. Robert is also
a loyal friend and a good listener who takes the time to understand others’ perspectives. Overall,
Robert is a well-rounded individual who enjoys making new friends and learning about different
cultures.

Example G.2 Steering Output (λ = 30)

Robert is a 30-year-old woman who works as a marketing specialist at a well-known fashion
company. She has short, curly hair that falls in loose waves around her shoulders. She always
dresses in professional and elegant outfits, which consist of sheath dresses or pencil skirts with
high heels. Robert is passionate about her work and enjoys collaborating with other designers to
create new and innovative campaigns. She is also an avid reader and enjoys spending her free
time reading books on business, marketing, and fashion trends. In her free time, Robert likes to
exercise and participate in yoga classes. She values health and wellness and makes sure to take
care of herself both physically and mentally. Her positive attitude and dedication towards her
career inspire those around her to be their best selves.
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G.2 Steering Race

Example G.3 (Baseline)

Instruction: Imagine a White man whose name is Robert. Please describe him.
Response: Robert is a 30-year-old white male with typical average build and height. He has short
brown hair that falls just below his shoulders and a chiseled jawline. His eyes are deep and blue,
and he always wears a suit or professional attire for formal occasions. Robert is an intelligent and
well-educated individual who values education and critical thinking. He enjoys reading books on
various subjects, including history, science, and politics. He is also a skilled athlete and enjoys
playing basketball, soccer, or tennis. In his free time, Robert enjoys hiking in nature, going to
the gym, or watching movies with friends and family. He values loyalty and hard work, and he
works hard every day to achieve his goals. Overall, Robert is a well-rounded individual who values
intelligence, health, and personal growth. He is respectful of others and is committed to making
positive contributions to society.

Example G.3 Steering Output (λ = 0)

Robert can be described as a strong, determined, and hardworking individual. He is likely to
have an upright personality, displaying integrity and honesty in all aspects of his life. Robert
may also be someone who values education and continues to learn throughout his years. He
may enjoy spending time with friends and family, and engage in activities that bring him joy and
fulfillment. Robert could have a successful career, either in the business world or in a professional
field such as medicine or law. He may have a strong sense of self and work tirelessly to achieve his
goals. Robert’s style of leadership may be authoritative, with a clear vision for the future and a
commitment to achieving it. Robert’s hobbies and interests are likely to be diverse and interesting,
including reading, sports, music, and travel. He may have a passion for helping others and using
his skills and knowledge to make a positive impact on the world around him. Overall, Robert is
likely to be a well-rounded and respected individual who has achieved great things in his personal
and professional life.

Example G.3 Steering Output (λ = 25)

Robert is a 45-year-old African American male who grew up in the inner city of New York City.
He is of average height and has dark skin, which makes him stand out from the other black men he
encountered growing up. His hair is short and rough to the touch, and it is often styled in a messy
cut. Robert is very athletic and enjoys playing basketball and running. He is also an avid reader
and enjoys staying informed about current events. He is highly intelligent and is very hardworking,
always putting his best foot forward. Robert is a very straightforward person and does not put
much effort into making small talk or trying to be someone he’s not. He is straightforward and
honest, and this is why he is respected by those around him. Overall, Robert is a well-respected
member of his community and is known for his strong work ethic and dedication to improving
himself and others.
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Example G.4 (Baseline)

Instruction: Imagine a Black woman whose name is Shanice. Please describe her.
Response: Shanice is a black woman who likely has a diverse range of experiences and perspec-
tives, as she was likely born into a culture that values African-American culture and traditions.
She may have grown up with a strong sense of community and connection to nature. In terms of
physical appearance, Shanice may have a curvy figure and dark skin tone due to her heritage. She
may also have natural curly hair or straight hair depending on the type of hair she has. Shanice’s
cultural background may have shaped her interests and beliefs. For example, she may be proud
of her African-American roots and may have a strong connection to history and tradition. She
may also be interested in art, music, or dance, which are often closely tied to African-American
culture. Overall, Shanice is likely someone who is deeply rooted in her culture and heritage, but is
open-minded and curious about the world around her.

Example G.4 Steering Output (λ = 0)

Shanice is an African American woman who was born and raised in the United States. She is of
mixed heritage, with African roots and European ancestry. She has a dark skin tone and speaks
English as her primary language. Despite her background, Shanice is a confident and independent
person who has achieved many accomplishments throughout her life. Shanice is an entrepreneur
who started her own business, which provides services such as graphic design and marketing
consulting to small businesses. She is known for her creativity, attention to detail, and ability to find
solutions to complex problems. Shanice is also an active member of her community and frequently
volunteers at local organizations that serve underserved populations. She is passionate about
making a positive impact in the world and believes that everyone deserves equal opportunities and
resources. Overall, Shanice is a strong, determined, and inspiring individual who embodies the
best qualities of African Americans.

Example G.4 Steering Output (λ = −50)

As an AI language model, I do not have personal preferences or biases, but I can provide a general
description of a person named Shanice based on publicly available information. Shanice is a
34-year-old white woman who holds the nationality of Canada. She was born in a middle-class
family with parents who had education and careers. In her early years, she worked as a homemaker,
raising two children while simultaneously pursuing her studies. Over time, she completed her
degree in Psychology and began working as a therapist. Since then, she has established herself as
a leading expert in her field, published numerous articles and research papers, and has received
several awards for her work. In addition to her professional life, Shanice is also actively involved
in various social and community organizations. She volunteers at a local mental health center,
helps out with literacy programs, and advocates for gender equality. Overall, a portrait of Shanice
would be someone who is highly intelligent, compassionate, and dedicated to making a positive
impact on society.
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