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Abstract

Across languages, numeral systems vary
widely in how they construct and combine
numbers. While humans consistently learn to
navigate this diversity, large language models
(LLMs) struggle with linguistic-mathematical
puzzles involving cross-linguistic numeral sys-
tems, which humans can learn to solve success-
fully. We investigate why this task is difficult
for LLMs through a series of experiments that
untangle the linguistic and mathematical as-
pects of numbers in language. Our experiments
establish that models cannot consistently solve
such problems unless the mathematical oper-
ations in the problems are explicitly marked
using known symbols (+, X, etc, as in “twenty
+ three”). In further ablation studies, we probe
how individual parameters of numeral con-
struction and combination affect performance.
While humans use their linguistic understand-
ing of numbers to make inferences about the
implicit compositional structure of numerals,
LLMs seem to lack this notion of implicit nu-
meral structure. We conclude that the ability to
flexibly infer compositional rules from implicit
patterns in human-scale data remains an open
challenge for current reasoning models.

1 Introduction

Language models reason and solve problems using
language. What is the connection (and the inte-
gration) between their linguistic systems and their
impressive reasoning abilities? To investigate this
question, we run a suite of experiments to analyze
how language models solve puzzles about diverse
linguistic number systems. People represent num-
bers through language, using rule-based systems
that are simultaneously linguistic and mathematical
(Ifrah, 2000; Dehaene, 2011; Carey, 2004; Le Corre
and Carey, 2007; Ionin and Matushansky, 2006;
Hammarstrom, 2010; Comrie, 2011). Unlike most
mathematical reasoning problems, where the math-
ematical operators are explicit, a numeral system

contains implicit operations for describing numer-
als, and there is considerable variety in how this is
done across the world’s languages. For example,
French vingt-neuf (20 + 9), Bengali untirish (30 —
1), Tamil irupatti onpatu (2 x 10 + (10 - 1)), and
Birom bakiirii biba nd ve tugiin (2 x 12 + 5) all
evaluate to the Hindu-Arabic numeral 29.

We investigate the capabilities of language mod-
els to solve puzzles about linguistic number sys-
tems, drawn from linguistics competitions (Lin-
guistics Olympiads) where high-school students
have to reason through data about unknown lan-
guages and explain the linguistic rules governing
the data (Derzhanski and Payne, 2010). While lan-
guage models approach human performance on sev-
eral language-based benchmarks (Hendrycks et al.,
2020; Kojima et al., 2022; Begus et al., 2023), and
recent reasoning models deliberately optimized for
logical and mathematical reasoning show remark-
able performance improvements for many struc-
tured mathematical reasoning tasks (Zhong et al.,
2024; Jaech et al., 2024), LLMs perform extremely
poorly at solving linguistic-mathematical puzzles
about systems of numbers in different languages
(Derzhanski and Veneva, 2018; Bean et al., 2024).

Why do language models fail to solve these
problems at the intersection of language and
math — what specifically causes this failure? And
how much of this failure is due to the linguistic vs.
the mathematical aspects of the problem?

We present a method to systematically isolate
individual parameters of number construction and
combination and investigate how they affect lan-
guage model performance. We establish that most
individual mathematical features (like base) do not
hinder the ability of sufficiently advanced language
models to solve such problems. However, unless
the mathematical operations in a problem are
made explicit through familiar symbols (+, x,
etc.), models cannot consistently solve the problem.
This indicates that, at least within the domain of
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Variable Operator Example
Explicitness Familiarity Type

Single character Implicit - - AB
Explicit Familiar Symbol A+ B
Explicit Unfamiliar Symbol A a B
Explicit Unfamiliar Word A xebrut B

Multi-character  Implicit - - gbaifi pagig
Explicit Familiar Symbol gbaifi + pagig

Table 1: A demonstration of the experimental conditions for our explicit operators experiment. We add explicit
operators to our base IMPLICIT problems, using both the familiar symbols for addition/multiplication/subtraction, as
well as unfamiliar symbols and words to symbolize the operation.

linguistic-mathematical problems, models cannot
infer the compositional structure of numerals like
humans can, or sufficiently abstract notions like op-
erators. We discuss our findings in the broader con-
text of human language, concluding that flexible,
adaptive use of language across domains appears
to remain challenging for LLMs.

2 Background

2.1 Linguistic and cognitive connections

People acquire systems of number representation
as part of learning language, and are consequently
able to construct arbitrary numerals using the rules
that they learn. Although the system of rules may
be language-specific, the general framework of nu-
meral construction and combination is a funda-
mental cognitive ability (Hurford, 1987; Feigen-
son et al., 2004). Performing mathematics in a
symbolic sense requires explicit instruction (e.g. a
child would not inherently know what + connotes),
but once this symbolic meaning has been learned,
people can generalize it to apply to any numbers
(Sarnecka et al., 2015).

Numeral operations in language can be marked
both explicitly (e.g. und in German einundzwanzig)
and implicitly (as in English twenty-one), with
larger numerals often using a combination of im-
plicit and explicit operations (five hundred and
one = 5 [x] 100 + 1). Even when operations
are implicit, people can understand and infer the
cross-linguistic compositional structure of numer-
als (Ionin and Matushansky, 2006).

In a linguistics contest, a high-school student
would not need to know any mathematical concepts
beyond basic arithmetic to reason through number
system problems and infer the rules needed to solve

them. The challenge lies instead in whether models
can learn and infer such rules from limited data
— a characteristic capacity of humans acquiring
language.

2.2 Mathematical ability in language models

Recent language models seem to display strong
numerical understanding and processing abilities
if presented with purely mathematical problems in
standard formats (Yang et al., 2024), particularly
for small numbers and simple mathematical opera-
tions (of the kinds used in linguistics contest prob-
lems). Current reasoning models appear to perform
well at arithmetic and algebra, math word prob-
lems (Ahn et al., 2024), and difficult mathematical
contest questions equivalent to advanced college-
level math problems (Fang et al., 2024; Chervonyi
et al., 2025), although their problem-solving abil-
ity is sometimes inconsistent (McCoy et al., 2023;
Shojaee et al., 2025). If such models are unable
to solve linguistic-mathematical problems involv-
ing much simpler mathematics, and introducing
linguistic structure into the problem causes their
reasoning ability to break down, this indicates lim-
itations in the scope of their reasoning — models
may be unable to apply their reasoning flexibly
across domains in the ways that humans do.

3 Methods

Models. We used OpenAl ol-mini (Jaech et al.,
2024) and DeepSeek-R1-distill-Qwen-7B (Guo
et al., 2025) reasoning models to conduct our
experiments, querying ol-mini via the API
and running DeepSeek locally. All code and
data used for our experiments are available
at https://github.com/antara-raaghavi/
multilingual-number-puzzles.
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Figure 1: Making operators explicit significantly improves performance. Results for explicit operator ex-
periments, for the single-character variable case (For the results on multi-character variables, see Appendix B
Figure 7). Making operators explicit shows performance improvement over the IMPLICIT condition, but this is only
substantially and reliably the case when the operator is made explicit with a familiar symbol like “+”. Error bars
denote standard error of the mean. 10 problems, 5 iterations per problem.

We additionally queried an instruction-tuned
model (qwen-2-7b-vl-instruct) and a base model
(Illama-3.1-8B), both of which had an accuracy of
0 across all conditions that we test. These mod-
els almost always generated longer text answers
without numbers rather than the simple numerical
answer required, and were hence excluded from
our analyses.

Data. We obtained data for linguistics olympiad
problems from two publicly available datasets: Lin-
gOly (Bean et al., 2024) and Linguini (Sdnchez
et al., 2024), filtering both datasets for problems
tagged as “number systems”. After filtering, we
had 15 problems from the LingOly and 8 problems
from the Linguini dataset. Not every problem in
the dataset could be standardized in the ways that
our experiments required. The entire dataset was
thus manually evaluated for suitable problems, and
10 problems were chosen for evaluation, all in dis-
tinct languages (see Appendix D). These problems
spanned a range of difficulty from the first round of
the UK Linguistics Olympiad to the International
Linguistics Olympiad (most challenging).

4 Experiments

4.1 The effect of explicit operators in
problems

Since so many of the mathematical operators in
numeral structure are implicit (e.g. in English we
say ‘twenty three’ to mean ‘twenty + three’), our
first experiment investigates how this implicit struc-

ture affects how models solve the problems. To do
this, we standardize and convert the 10 existing lin-
guistic number system problems to mathematical
problems, and vary how explicit the operators are,
as shown in Table 1.

First, we standardize all problems to control for
model tokenization and task-external knowledge
effects: we identify all meaningful morphemes,
standardize all phonological changes, and replace
them with dummy words as described in detail
in Appendix A. This standardized version of each
problem is what we call the IMPLICIT setting, since
the mathematical operations are largely implicit,
as they are in language. Taking these IMPLICIT
problems as our baselines, we then make the op-
erators explicit in three ways: 1) as the familiar
mathematical operator symbols that perform the
operation (e.g. ‘+’ for addition), 2) as symbols that
are unfamiliar for performing that operation, and 3)
as whole words sampled from the tokenizer. A full
example prompt with a puzzle in four variations is
provided in Appendix B.

We present our results in Figure 1. In all cases,
the presence of explicit operations with familiar
symbols yields significant improvements over the
default IMPLICIT condition (ol-mini performs at
ceiling). In the multi-character setting (more lin-
guistic), models perform better on average in the
IMPLICIT condition than in the case with an explicit
operator as an unfamiliar random word (vid. Fig-
ure 7). It is likely harder to differentiate between
function words (operators) and number words (nu-
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merals) in such a setting — this finding is consis-
tent with work that has shown human solvers also
find a problem to be more difficult when the opera-
tor word is explicit but unfamiliar (Derzhanski and
Veneva, 2018). Overall, our results demonstrate
that it is difficult for models to reason about the
abstract idea that linguistic quantities might con-
tain operators, if the operators are not explicitly
provided using familiar symbols.

4.1.1 Error analysis

We observe some common patterns of error in the
model responses. For the three problems which
involved squares and cubes of numbers, when the
operators were not explicit and familiar, 01-mini
almost always responded by pattern-matching (e.g.
providing another square/cube number) instead of
solving the problem, as seen in Table 2. ol-mini
also reproduced a number given in the input ques-
tion as the answer in several cases (11 for the multi-
token condition, and 3 for the single-token condi-
tion, across 150 trials) when the operators were not
explicit and familiar.

Condition Single Multi
explicit symbol 8 4
explicit random word 0 8
implicit 14 5

Table 2: Incorrect pattern-matched square / cube an-
swers (out of 15 possible trials)

Further, when ol-mini answered a problem in-
correctly, its responses were often inconsistent
across the five trials of that problem. Notably, in
50% of single-character cases lacking explicit and
familiar operators, all five responses were distinct
and incorrect. This further shows that performance
appears to depend on the presence of explicit opera-
tor cues; in their absence, o1-mini does not reliably
solve the problem.

4.2 Providing contextual information

Our first experiment showed that in the absence
of problem-specific instructions, when given a
linguistic-mathematical problem directly, LLMs
struggle to solve it unless the operations are both
explicit and familiar. This leaves open the question
of whether providing additional problem-specific
information would affect the model performance.
We thus modulate the context of the problem in
three different ways. We query the same four prob-

lem variants as described in Table 1, additionally
providing the following contextual information:

Language: “Here is a puzzle based on numbers
in the {language)} language."

Base: “Here is a puzzle based on numbers in a
language that uses a base-{n} numeral system."

Implicit operations: “Here is a puzzle based on
numbers in a language. In this language, numbers
may be constructed through implicit operations like
addition (twenty-nine = 20 + 9) or multiplication
(five hundred = 5 x 100)." [only for IMPLICIT
condition]

Information given to o1-mini
301 mmm Language
Numeral base
20
10 |

-20

A accuracy (from baseline) %
o

explicit operator, explicit operator, explicit operator,
familiar symbol unfamiliar single symbol unfamiliar word
Operator type

implicit operator

Figure 2: Language and base information only helps
in the IMPLICIT case. Effect of adding language or
numeral base information, plotted as a difference from
the baseline values in Figure 1 for ol-mini. In cases with
explicit operators, conflating overtly mathematical and
linguistic information appears to confuse the models.

We compare these to the baseline results from
Section 4.1 for ol-mini, presenting our results in
Figure 2. In cases other than the implicit operator
condition, the model seems to recognize the prob-
lem as requiring a more mathematical kind of rea-
soning, so providing linguistic information seems
to confuse the model and average performance is
worse. However, in the implicit operator (A B) con-
dition, model performance improves significantly,
perhaps because the setting of the problem is less
overtly mathematical. In Figure 3, we show that
providing information about the implicit reasoning
needed is not as significant a boost as activating
knowledge about the specific language.

4.3 Ablations: constructed minimal-pair
problems

In order to ensure that it is the difference in oper-
ators (as opposed to other features of the numeral
system) that explains the models’ inability to solve
these problems, we performed an ablation study
to test whether models could handle other aspects
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Figure 3: Extra information improves performance
on IMPLICIT problems (A B). Information about im-
plicitness is helpful, but not as much as more direct
information like the problem language. Error bars de-
note standard error of the mean. 5 iterations / problem.

of numeral construction and combination. Our ex-
periment is inspired by the notion of a linguistic
minimal pair, a pair of linguistic items that differ
in exactly one meaningful element. We construct
minimal pairs of simple, synthetic number system
problems, where every element is the same except
for one specific parameter that differs between two
paired problems. We tested five major parameters
of numeral systems, as described in Table 3.

L—R L+ R
AB=51|BA=51
AC=57|CA=57
DB=41|BD =141
DC=??7|CD=77

Figure 4: Example of full minimal pair template prob-
lem, for the Order parameter, where we varied whether
digits are read left-to-right or right-to-left.

In all cases, GPT-4 and more advanced models
could solve the template problems. It thus appears
that most basic “building blocks" of number sys-
tems (e.g. the base of the system, the order of nu-
merals, etc.) did not affect model performance
in isolation, but the models consistently fail to
solve number problems that involve constructing
and combining complex numerals.

Parameter GPT-3.5 GPT-4 ol-mini
Numeral system vs. not v v
AB = fifty one | AB = big bird
Typed vs. glyph

AB = fifty one | AB = 51 v v v
Order L+ Rvs. L+ R

AB = 51 | BA = 51 v v v
Additive vs. subtractive

AB = 27 | AB =27 X v v

(20+7) ' (30-3)
Base of the numeral system* X v 4

Table 3: Minimal pair results: GPT-4 and ol-mini solve
all problem pairs, GPT-3.5-turbo struggles with numeral
base and combination. DeepSeek-R1-distill-Qwen-7B
does not produce an answer in the right format for most
settings, so it is excluded from this table. Further data
on testing all bases 4-19 linked in Table 6.

5 Discussion and Conclusions

We study the entanglement between linguistic and
numeric knowledge in language models, focusing
on the ability of models to use mathematical rea-
soning in problems that display the implicit numer-
ical structure in language. In the setting of these
linguistic-mathematical puzzles, we show that the
overtness and familiarity of operators affects the
performance of language models, although many
humans are able to understand how numeral sys-
tems work and hence solve the problems without
needing specified operators. However, a broader
study with different controls and parameter set-
tings remains open for future work. Since all our
evaluation was standardized and closed-form, we
welcome research on open-ended evaluation of rea-
soning task responses. Current language models
seem to display some level of emergent modular
structure (Teehan et al., 2022; Lepori et al., 2023) —
perhaps linguistic and mathematical tasks activate
separate circuits or subspaces in models, and under-
standing the ways in which reasoning fine-tuning
and reinforcement learning interacts with linguistic
pretraining is another promising avenue for future
research. Investigating such questions enriches our
understanding of both computational and human
approaches to representing numbers in language.
The ability to understand language and abstract
rule-governed systems is a fascinating aspect of
human intelligence, and we hope that our research
provides some insight into the understanding of
this remarkable human trait.
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Limitations

We acknowledge the possibility that our results are
explained by limitations in the training data and
the small size of our dataset, as language models
often equal human performance on benchmarks for
which they have large quantities of similar-enough
training data (Achiam et al., 2023). Perhaps an
LLM trained on a massive corpus of linguistic num-
ber system problems would be able to solve new,
previously unseen number system problems. But
the data today are far too limited for such an ap-
proach, and crucially, a human solver who is famil-
iar with existing number system problems can gen-
eralize to unseen problems extremely well! Even
a human solver who is unfamiliar with existing
number system problems can in theory solve any
problem they are provided just by logically reason-
ing. Importantly, we note that although this may
not be true of the average human, when compar-
ing the top end of humans with the top-performing
current language models, it is clear that intuiting
rules from human-scale data is still challenging for
LLMs.
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A Randomization procedure for
task-external knowledge and
tokenization handling

In this section, we address the specific changes we
make across linguistic number system problems to
convert them into templates suitable for our dataset.
In order to truly test whether the model is solving a
problem, it should not be affected by factors exter-
nal to the problem, such as flawed tokenization or
the usage of memorized knowledge external to the
provided task.'

Our strategy to remediate this issue is thus: in
the single-letter token setting, we separated all char-
acters by whitespaces to ensure correct tokeniza-
tion. In the multi-token setting, we identified all
meaningful morphemes in the problems and stan-
dardized them to remove any phonological changes,
such that every morpheme had exactly one surface
representation. We separated every meaningful
morpheme with whitespaces, and mapped each
morpheme to a randomly generated multi-token
“dummy word" for each iteration of each experi-
ment. We created each of these “dummy words" by
randomly sampling short tokens (length < 3) from
the language models’ respective tokenizer vocabu-
laries, and concatenating tokens together to create
unfamiliar words.

For tokenizers which use schemes like byte-pair
encoding, any input string will get mapped to some
sequence of tokens that are present in the vocabu-
lary, so there is no situation in which the model will
see an unknown token. Since the dummy words
themselves have no meaning, the model cannot di-
rectly draw on task-external linguistic information
to solve the presented problems. For simplicity we
restricted the random draw to those containing only
romanized (Latin alphabet) characters. We also
excluded tokens that contained any numeral sym-
bols from 0-9, to ensure that the the mathematical
correctness of the problems was not affected.

"Memorized knowledge would also help a human solver,
but people are much less likely to know the number systems
of different (particularly low-resource) languages. Although
linguistics olympiad contestants might know more number
systems than the average person, there are over 7,000 human
languages, so the probability of knowing a specific system
is low. Moreover, since LLM training corpora scrape large
portions of the internet, the breadth of their memorized knowl-
edge far exceeds that of an average human.
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B Multi-character-variable results from
Exp1

C Base experiment

In order to understand whether sufficiently ad-
vanced language models would show performance

Problem #2 (20 points). Given are Drch mumerals in alphabetical order and their value tNAC Was invariant to changes in the base, we con-

in ascending order:

caatr nge caako. caatr nge caangémen, caatr nge caaqaihano,
ekaatr nge ekengémen, koniatr nge koniko. kéniatr nge kénipi,
koéniatr nge koniqaihano, lueatr nge lue, lueatr nge luako, lueatr nge luepi

26, 31, 36, 42, 50, 52, 73, 75, 78, 89
(a) Determine the correct correspondences
(b) Write in numerals:

kéniatr nge eke + caatr nge luepi — ekaatr nge ekako
. .

luengome luako
(c) Write out in Drehu: 21, 48, 83.
A\ The Drehu language belongs to the Austronesian language family. It is spoken by approx
10000 people on Lifu Island to the east of New Caledonia. ¢ — ch in church; ng — ng in
hang; 6 — French eu or German 6; g is a voiceless w (as wh in Scottish or Southern American
which); tr ~ English ¢ in art, uttered with the tip of the tongue turned back.

Ksenia Gilyarova

Figure 5: Drehu (IOL 2010) problem

We provide an example of our four variations of
the puzzle in Table 4. To query all four variants, we
used the same prompt “Here is a puzzle. Can you
solve it? Please output only the answer (in place of
the ??) and nothing else!".

Explicit 4+ familiar
(masaad x pagig) + masaad + opbob = 31
(masaad X pagig) + masaad + buylen = 26

(ajssci x pagig) + (ajssci x kould) = 50
(innops X pagig) + innops + opbob = 77

Implicit
masaad pagig nge masaad opbob = 31
masaad pagig nge masaad buylen = 26

ajssci pagig nge ajssci kould = 50
innops pagig nge innops opbob = 77

Explicit 4+ unfamiliar (Greek)

(masaad S pagig) @ masaad a opbob = 31
(masaad 3 pagig) o masaad « buylen = 26

(ajssci B pagig) « (ajssci B kould) = 50
(innops S pagig) « innops « opbob = 77

Explicit + unfamiliar (random)
(masaad hibcat pagig) xebrut masaad xebrut opbob = 31
(masaad hibcat pagig) xebrut masaad xebrut buylen = 26

(ajssci hibcat pagig) xebrut (ajssci hibcat kould) = 50
(innops hibcat pagig) xebrut innops xebrut opbob = ??

Table 4: Example of four problem variants in the multi-
character setting, corresponding to Drehu (IOL 2010)
dataset problem in Figure 5.

ducted a more fine-grained minimal pair experi-
ment into the effect of numeral base on problem
performance. Here, the solver would see the Hindu-
Arabic numerals corresponding to the English base-
10 representation of the numbers, because the prob-
lem was presented in English. But the unknown
symbols corresponded to the numbers as expressed
in a different base, as shown in Figure 6.

Non-decimal (base b)

Solver sees Solver infers

AB = (b+x)m = lxb
A =(b+y), |= 1y,

B = (2.b+><)10 = X,
DC =7 = .

Figure 6: Setup for base experiment

We conducted two different versions of this ex-
periment. First, we mapped the unknown symbols
to the single-character whitespaced A, B, C, and D
tokens, as in Figure 6. In the second version, each
of the four unknown symbols (A, B, C, D) was in-
stead represented by a corresponding random token
drawn from the tokenizer vocabulary, to ensure that
the context of the specific tokens A, B, C, and D
was not influencing our results.

We tested four increasingly sophisticated GPT
models (GPT-3.5-turbo, GPT-4, GPT-40, and o1-
mini) on both versions of the experiment and pro-
vide results in Table 6. GPT-40 and ol-mini solved
all problems in both conditions, displaying perfor-
mance that was robust to the base of the problem.

D Table of languages

The 10 problems that we used for our analyses.
The problems range in difficulty from the first and
second rounds of the UK Linguistics Olympiad
(UKLO R1 and R2) to the International Linguistics
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Olympiad, which typically has the most challeng-

ing problems.

Language ISO code Base Level
Drehu dhv 20 IOL
Georgian kat 20 UKLORI
Gumatj gnn 5 UKLORI
Ndom ngm 6 I0L
Ngkolmpu ked 6 UKLORI
Northern Pame  pmgq 8 UKLORI
Umbu-Ungu ubu 24 IOL
Waorani auc 5 UKLORI
Yoruba yor 20 UKLOR2
Yup’ik esu 20 UKLOR2

Table 5: Languages and problem features in final dataset
(after removing/standardizing phenomena)
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Base GPT-3.5-turbo GPT-4 GPT-40 ol-mini
ABCD Random ABCD Random ABCD Random ABCD Random

4 X v v/ 4 v v v 4
5 X X v v v/ v v 4
6 v/ X v/ v v/ v 4 4
7 4 v 4 4 v v v v/
8 X X v/ v v/ v v 4
9 4 v 4 v v v v v
11 4 v 4 4 4 v v v
12 X v X 4 4 4 v v
13 X X v/ v v/ v 4 4
14 X X v/ v 4 v v 4
15 X v v/ v v/ v v 4
16 4 X X v 4 v v 4
17 X X v v v v v 4
18 v/ v v v v/ v v v
19 v/ X v/ v v v/ v 4

Table 6: Base experiment results: GPT-40 / o1-mini solve every problem, regardless of randomization

multi-character

80

ol-mini
7/ + deepseek-rl

—20

A accuracy % (difference from implicit)

explicit operator, explicit operator, explicit operator,
familiar symbol unfamiliar single symbol unfamiliar random word
Operator type

Figure 7: Both ol-mini and DeepSeek struggle with the explicit-unfamiliar condition (o1 shows negative improve-
ment, DeepSeek shows 0%) in the multi-character setting. Error bars denote standard error of the mean. 5 iterations
/ problem tested for 10 problems.
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explicit + familiar ol-mini
exphcat + unfamiliar Greek
exphat + unlamiliar random
implicit

single-letter, per language £ deepseck-rl

100

80 1

60 4

Accuracy (%)

20

ked pmq dhv kat ubu yor esu auc

Language

cxplicit + familiar

ol-mini -_—

# % deepseek-rl W explicit + unfemiliar Greek
[
|

multi-character words, per language

explicit + unfamiliar randem

gnn Hm
100 4 implicit
80 4
60 1
40 -
20 1
0- T
kat auc

ngm kcd yor pmq ubu dhv esu gnn

Accuracy (%)

Language

Figure 8: Results per language, (a) single-character (b) multi-character: performance varies significantly
by problem and operator type. Note that Drehu (dhv) and Georgian (kat) are two of the easiest problems in
our dataset: much of the difficulty for human solvers is in the phonological changes and unintuitive order that the
numbers are presented in, both of which we standardize away for our controlled datasets. Without those parameters,
the systems are straightforward vigesimal-decimal systems like French, which the models have almost certainly had
exposure to.
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