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Abstract

Controllable Dialogue Generation (CDG) en-
ables chatbots to generate responses with de-
sired attributes, and weighted decoding meth-
ods have achieved significant success in the
CDG task. However, using a fixed constant
value to manage the bias of attribute proba-
bilities makes it challenging to find an ideal
control strength that satisfies both controllabil-
ity and fluency. To address this issue, we pro-
pose ECO decoding (Entropy-based COntrol),
which dynamically adjusts the control strength
at each generation step according to the model’s
entropy in both the language model and at-
tribute classifier probability distributions. Ex-
periments on the DailyDialog and MultiWOZ
datasets demonstrate that ECO decoding consis-
tently improves controllability while maintain-
ing fluency and grammaticality, outperforming
prior decoding methods across various models
and settings. Furthermore, ECO decoding alle-
viates probability interpolation issues in multi-
attribute generation and consequently demon-
strates strong performance in both single- and
multi-attribute scenarios.

1 Introduction

In recent studies, Controllable Dialogue Genera-
tion (CDG) (Zhang et al., 2023; Zeng et al., 2023)
has been proposed to enhance the realism and accu-
racy of responses generated by conversational mod-
els, improving the user experience. CDG enables
chatbots to generate responses tailored to desired
attributes like emotion and dialog-act.

Recently, training-based methods such as align-
ment tuning (Yang et al., 2024) and weighted de-
coding approaches (Yang and Klein, 2021; Arora
et al., 2022) have achieved notable success in
the field of controllable generation. While align-
ment tuning requires re-training large models from
scratch, weighted decoding can be applied at in-
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Figure 1: An example of a controllable dialogue genera-
tion method based on dynamic weighting with ECO de-
coding. ECO decoding dynamically adjusts the weights
between the language model probability distribution and
the attribute control probability distribution, enabling
attribute control while maintaining fluency.

ference time by multiplying the attribute proba-
bilities from a trained classifier with the language
model distribution. This design enables controlled
response generation with minimal additional data
and training overhead, making weighted decoding
an appealing strategy for CDG. Consequently, we
focused on this weighted decoding strategy to ef-
fectively generate controllable responses.

In weight decoding methods, generating re-
sponses controlled by desired attributes involves
the adjustment of the next token probability dis-
tribution modeled by the language model. This is
achieved by multiplying the attribute probability of
the generated response obtained from the attribute
classifier and the next token probability. In this pro-
cess, the control strength is used as the exponent
of the attribute probability to control attribute bias.
As the control strength increases, the generated to-
kens become more dependent on the token rank of
attribute probability.

Multiplying the attribute probability alters the
probability distribution of the language model,
which can affect language modeling performance.
When static control strength is used, the same con-
trol probability is continuously reflected in the gen-
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erated sentence, even if the sentence has already
received sufficient attribute control or if specific
words need to be generated for fluency. This can
lead to a trade-off between controllability and flu-
ency. Furthermore, the fact that the appropriate con-
trol strength varies depending on the situation is an
important issue. If this is not properly accounted
for, it can lead to decreased efficiency. Figure 1
shows an example of a failed response generation
with these fixed static control strength.

To address this, we propose ECO (Entropy-
based COntrol strength) Decoding, which dynami-
cally adjusts control strength at each decoding step.
Specifically, we compute the entropy (Shannon,
2001) of both the language model’s probability dis-
tribution and the attribute classifier’s distribution
at every step. If the language model assigns high
probability (low entropy) to a particular token, we
prioritize the model’s prediction to preserve flu-
ency. In contrast, when the model exhibits low
confidence (high entropy), we increase the rela-
tive weight of the attribute probabilities to ensure
stronger attribute control. Notably, our analysis
result using part-of-speech (POS) in Appendix A.1
demonstrates that function words with fixed gram-
matical roles often yield lower entropy, whereas
content words (e.g., nouns, verbs, adjectives) show
higher entropy. This aligns with our intuition that
words with higher uncertainty provide more lee-
way for attribute manipulation without significantly
compromising fluency.

This dynamic control method effectively bal-
ances the language model’s fluency with the at-
tribute classifier’s controllability, thereby achiev-
ing an optimal trade-off between naturalness and
the desired attribute expression in the final gen-
erated sentences. To validate our intuition, we
experiment with three existing controllable gen-
eration models using the DailyDialog (Li et al.,
2017) dataset and MultiWOZ (Budzianowski and
Casanueva, 2018) dataset. Experimental results
demonstrate that ECO decoding achieves high con-
trollability while maintaining text fluency across
all models.

Our main contributions are as follows:

1. We raise the issue of static control strength
in existing weighted decoding methods and
propose a dynamic control strength approach
to generate responses with high controllability
as well as maintain fluency.

2. We show that ECO decoding can be general-

ized to multi-attribute scenarios, alleviating
probability interpolation issues that are com-
monly to single-attribute weighted decoding
methods.

3. Experimental results show that the ECO
decoding method outperforms the existing
weighted decoding methods for all existing
controllable generation models.

2 Related Work

Previous approaches such as GeDi (Krause et al.,
2021) and DExperts (Liu et al., 2021) adopt
weighted decoding, but they require a separate lan-
guage model for each attribute value. In multi-
attribute settings, this design is inefficient, as mul-
tiple models must be loaded during inference, lead-
ing to increased memory usage and latency. While
ECO decoding can in principle be combined with
these methods, in this work we focus on three
baselines—FUDGE, Director, and DASC—that are
more scalable and practically applicable to com-
plex controllable generation scenarios.

2.1 Weighted Decoding
Controllable dialogue generation aims to gener-
ate a response, R = {r1, r2, ..., rN}, with desired
attributes, given dialogue history h and attribute
c, using a pre-trained auto-regressive model (e.g.
GPT2, (Radford et al., 2019), DialoGPT (Zhang
et al., 2020)). Emotion and dialog-act can be at-
tributes for controllable dialogue generation.

To condition on attribute c, the response genera-
tion given a dialogue can be formulated as follows:

P (R|h, c) =
N∏

i=1

P (ri|r<i, h, c) (1)

Using Bayesian factorization, P (ri|r<i, h, c) can
be converted into the following equation.

P (ri|r<i, h, c) ∝ P (ri|r<i, h)P (c|r≤i, h)
λ (2)

where the first term P (ri|r<i, h) represents the
next token probability modeled by a language
model, and the second term P (c|r≤i, h) represents
the attribute probability of the generated response
obtained from the attribute classifier. In addition,
control strength λ is added to the exponential term
of the attribute probabilities to control attribute
bias.

When dealing with multi-attribute control, Equa-
tion 3 can be extended by introducing the product

28299



Figure 2: An illustration of controllable dialogue generation using the weighted decoding method, incorporating
ECO decoding.

of multiple attribute classifiers, assuming that the
attributes are conditionally independent:

P (ri|r<i, h, C) ∝ P (ri|r<i, h)
∏

cj∈C
P (cj |r≤i, h)

λ

(3)
where C denotes the set of target attributes. The

product of probabilities is typically implemented
as the sum of logits.

2.2 Weighted Decoding Models
FUDGE Yang and Klein, 2021 trained a clas-
sification model for partial sequences through an
external attribute classifier. Specifically, for each
training example {(x, c)}, where x is sentence and
c is class label, the classifier is trained on all partial
sequences {(x1:i, c)} at each step. During infer-
ence, at a given time step i, the classifier predicts
the probability that appending the top k candidate
tokens to the generated text will satisfy the attribute
c in future generations.

Director Arora et al., 2022 addressed the ineffi-
ciency issue of requiring a external model during
inference. It integrates the language model and
attribute classification functionality into a single
model, overcoming the inefficiency of the external
classifier evaluating the attribute for every candi-
date token. To address this issue, an additional
classification head is introduced, which takes the
last hidden state as input and computes the prob-
ability that each token in the vocabulary satisfies
the specified attribute. This allows for the effective
incorporation of attribute information without the
need for a external classifier.

DASC Zhang et al., 2023 addressed the computa-
tional inefficiency issues arising from dual-head ar-
chitectures. DASC introduces Attribute Token Em-
bedding and Attribute Semantic Embedding con-
cepts, employing a semantic space-based weighted
decoding mechanism to reduce the number of pa-
rameters while improving computational efficiency.
Each token is associated with an embedding that
captures its attribute semantics, and these embed-
dings are projected into an attribute semantic space
via attribute-specific linear layers. This design fa-
cilitates smooth control over multiple attributes and
enables effective interpolation among attribute em-
beddings, allowing more diverse range of attribute
combinations.

3 Methodology

3.1 Entropy-based Control Strength

The existing weighted decoding methods apply
a fixed control strength and they are not flexible
enough to handle situations where stronger or no
more control is needed. In such cases, they may fail
to control attribute, or even if they succeed, the flu-
ency and grammar may be degraded. To solve this
problem, we propose the ECO decoding method
that utilizes the entropy of the probability distri-
bution to dynamically adjust the control strength.
Dynamic control strength allows to achieve higher
attribute control rates, while maintaining genera-
tion quality, including context and grammar.

Entropy is a measure of the uncertainty of a prob-
ability distribution, which is lower when the proba-
bility distribution is focused on a specific value and
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higher when it is more evenly distributed. Given
this property, the higher the entropy of the next
token probability distribution is, the more likely it
is to contain a variety of plausible candidates. This
is an advantageous property for exploring plausible
options that satisfy desired attribute. Based on this
insight, a novel mechanism of dynamically control-
ling strength is developed by weighting probability
distributions from language models and it controls
each property inversely to their entropy score. That
is, distributions with lower uncertainty are more
strongly reflected. Figure 2 shows how ECO decod-
ing is working by using dynamic control strength
based on both of the language model entropy and
the attribute entropy. ECO decoding can be ap-
plied to the existing weighted decoding methods
and requires no additional modules or training.

Language Model Entropy Dynamic control
strength αx,i is separately calculated for i-th gen-
eration step, and it can have different values while
a sentence is generated. To calculate control
strength, we select the top-k candidate tokens.
From the probability distribution Plm,i of the lan-
guage model, we construct the set S, which con-
sists of the k tokens with the highest probabilities.
Let P ′

lm,i denote the partial probability distribution
of top-k tokens in S.

P ′
lm,i = {Plm(t|r<i, h)|t ∈ S} (4)

To convert the partial probability distribution
P ′

lm,i into a probability distribution, we recom-
pute the probability distribution of the top-k tokens
using a softmax function with temperature τlm.

elm,i = Entropy(Softmax(P ′
lm,i/τlm)) (5)

Attribute Entropy Weighted decoding method-
ologies for CDG utilize attribute classifier Pc to
reflect attributes. For each candidate token t in
the top-k token set S, concatenates the current se-
quence r<i with t and computes the probability
Pc,i([r<i; t], h) which represents the probability of
token t being part of the generated response while
aligning with the target attribute to be controlled.
The set P ′

c,i is the probabilities of the target at-
tribute for all candidate tokens in top-k token set S.
The attribute entropy ec,i is computed based on a
probability distribution normalized by softmax the
set of attribute probabilities P ′

c,i over τc, where τc
is the attribute temperature for softmax.

Entropy Based Control Strength To assign
higher weights to probability distributions with
higher entropy, we utilize a control strength for-
mula with an inverse function structure, as shown
in Equation 6. The control strength αx,i is applied
to both the language model probability distribution
Plm and the attribute probability distribution Pc.
The language model probability distribution and
the attribute probability distribution are reflected
by a power of their respective weight αx,i. The at-
tribute probability distribution additionally reflects
the strength scale factor λ. The value of λ allows
to adjust whether to focus more on attribute con-
trol or language modeling performance. The final
probability distribution for generating the next to-
ken P (ri|r<i, h, c) is computed by multiplying the
two weighted probability distributions as shown in
Equation 7. If each of the control strength alpha
values were fixed at 1, the same result would be
obtained as with the traditional weighted decoding
methodologies.

αx,i = 1 + (
1

1 + ex,i
) (6)

P (ri|r<i, h, c) ∝ Plm(ri|r<i, h)
αlm,i

× Pc(c|r≤i, h)
λ∗αc,i

(7)

3.2 Multiple Attribute Control Strength

Existing weighted decoding methodologies strug-
gle to control multiple attributes simultaneously
due to their fixed control strength. When using a
fixed control strength for each attribute, the search
space of attribute control strengths grows exponen-
tially. Furthermore, even when control strength is
applied, effectively incorporating more than two
attributes remains a main challenge. In contrast,
our proposed ECO-decoding method enables CDG
to control generation by reformulating the final
probability distribution based on multiple attributes.
Dynamic control strength αx,i adjusts the weight
of probability distributions at each generation step
based on the entropy of the language model and the
entropy of each attribute, allowing more flexible
and adaptive multi-attribute control. When C is the
set of controlling attributes, the multiple attribute
control formula for ECO-decoding is as follows:

P (ri|r<i, h, C) ∝ Plm(ri|r<i, h)
αlm,i

×
∏

cj∈C
Pcj (cj |r≤i, h)

λ∗αcj ,i (8)
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P ′
c,i = {Pc([r<i; t], h)|t ∈ S} (9)

ec,i = Entropy(Softmax(P ′
c,i/τc)) (10)

4 Experiments

4.1 Datasets
DailyDialog (Li et al., 2017) is an English open-
domain dialogue dataset containing two main at-
tributes (emotion, dialog-act). We treat each ut-
terance as a response and its preceding utterances
as the dialogue history. The dataset provides four
classes for dialog-act (inform, question, directive,
commissive) and six classes for emotion (anger,
disgust, fear, happiness, sadness, surprise), exclud-
ing “no emotion.” It comprises 13,681, 882, and
1,286 examples for training, validation, and test,
respectively.

MultiWOZ (Budzianowski and Casanueva,
2018) is a large-scale multi-domain dialogue
dataset constructed from real human-to-human
conversations, encompassing multi-turn dialogues
across seven domains (restaurants, trains, attrac-
tions, hotels, taxis, hospitals, and police). Since the
dataset itself does not provide labeled attributes,
we employ an attribute classifier—used for evalua-
tion—to label each utterance, and use these labels
as the ground truth.

4.2 Experimental Settings
Language Model We employ DialoGPT (Zhang
et al., 2020), pre-trained on a large-scale dialogue
corpus, as our baseline. Most experiments use
DialoGPT-small (176M), and we also evaluate
DialoGPT-large (1.1B) for scalability. Addition-
ally, we use Llama2-7B (Touvron et al., 2023) to
test the general applicability of ECO decoding to
large language models.

Weighted Decoding Methods We evaluate and
compare the performances of ECO decoding with
those of various controllable generation mod-
els with weighted decoding methods, including
FUDGE (Yang and Klein, 2021), Director (Arora
et al., 2022), and DASC (Zhang et al., 2023).

Implementation Details For the three weighted
decoding method, the language model is frozen and
each attribute classifier is trained on the training
dataset. FUDGE is trained for 30 epochs with a
batch size of 8 and a learning rate of 2e-5 for each

attribute. For the Director, each attribute is fine-
tuned for 20 epochs with a batch size of 32 and
a learning rate of 1e-5. For DASC, each attribute
is fine-tuned for 30 epochs with a batch size of
4 and a learning rate of 1e-5. All methods use
greedy search (Li et al., 2016b), and the maximum
sequence length is set to 128. All experiments are
run on a single NVIDIA GeForce RTX 3090.

Our code is available at https://anonymous.
4open.science/r/ECO-46EF/

4.3 Evaluation Metrics

Automatic Evaluation To assess controllability,
we train two RoBERTa-based evaluators (Liu et al.,
2019) on the DailyDialog training set: one for
emotion and one for dialog-act. These evaluators
achieve 89.66% and 80.60% accuracy on their test
sets respectively and they are used to classify gen-
erated responses. Note that these evaluators are
independent from the attribute classifiers in each
weighted decoding method. For quality, ROUGE-1
and ROUGE-L (Lin, 2004) are measured by com-
paring generated responses to reference answers
and Dist-1 and Dist-2 (Li et al., 2016a) are com-
puted to evaluate diversity in the generated text.
For grammar, the probability of grammaticality is
utilized by the RoBERTa-based CoLA grammati-
cality model (Liu et al., 2019; Warstadt et al., 2019;
Morris et al., 2020).

Human Evaluation Experiments on the Direc-
tor model, which showed the best performance in
emotion and dialog-act attributes, conducted hu-
man evaluation based on sampling 10 contexts for
each attribute value from the test set. We evalu-
ate our generated responses based on three aspects:
(1) Accuracy: Response is generated according
to the desired attribute. (2) Interest: Response is
specific and creative enough to capture the user’s
attention, and avoids repetitive or generic outputs
that may reduce engagement (e.g., repeatedly gen-
erating "That’s great!" for the happy attribute). (3)
Sensible: Response is grammatically correct and
contextually coherent. We asked three expert eval-
uators to rate each metric on a scale of 1 to 5, with
higher scores being better.

4.4 Experimental Results

Single Attribute Control Table 1 summarizes
how effectively ECO decoding enhances control-
lability while maintaining fluency. We first run
each model without attribute control to establish
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Method Accuracy Rouge-1 Rouge-L Dist-1 Dist-2 Grammar
Emotion

DialoGPT(176M) - 9.00 8.53 0.58 0.76 90.21
FUDGE 76.98 9.06 8.60 0.60 0.75 90.30
+ ECO decoding 81.03 (+4.05) 9.13 (+0.07) 8.64 (+0.04) 0.62 (+0.02) 0.75 (-) 90.34 (+0.04)

Director 79.94 8.83 8.37 0.59 0.70 90.23
+ ECO decoding 82.82 (+2.88) 8.82 (-0.01) 8.34 (-0.03) 0.59 (-) 0.71 (+0.01) 90.30 (+0.07)

DASC 74.65 8.25 7.87 0.58 0.70 90.30
+ ECO decoding 75.74 (+1.09) 8.22 (-0.03) 7.79 (-0.08) 0.58 (-) 0.71 (+0.01) 90.39 (+0.09)

Dialog-act
DialoGPT(176M) - 9.14 8.66 0.57 0.78 91.24
FUDGE 41.07 9.21 8.75 0.59 0.78 90.98
+ ECO decoding 46.42 (+5.35) 9.21 (-) 8.79 (+0.04) 0.62 (+0.03) 0.79 (+0.01) 91.00 (+0.02)

Director 70.96 10.43 9.94 0.62 0.78 91.18
+ ECO decoding 71.56 (+0.60) 10.46 (+0.03) 9.96 (+0.02) 0.63 (+0.01) 0.79 (+0.01) 91.15 (-0.03)

DASC 42.59 9.53 9.03 0.59 0.75 91.13
+ ECO decoding 47.17 (+4.58) 9.52 (-0.01) 9.05 (+0.02) 0.60 (+0.01) 0.76 (+0.01) 91.13 (-)

Table 1: Evaluation results for a single attribute of emotion or dialog-act on the DailyDialog test set. The scores in
parentheses indicate the performance gap between static and dynamic control settings.

Method Accuracy(Emo) Accuracy(Act) Rouge-1 Rouge-L Dist-1 Dist-2 Grammar
DialoGPT(176M) - - 9.00 8.53 0.58 0.76 90.21
FUDGE 66.17 44.17 8.21 7.82 0.57 0.74 90.20
+ ECO decoding 66.41 (+0.24) 45.57 (+1.40) 8.20 (-0.01) 7.81 (-0.01) 0.58 (+0.01) 0.74 (-) 90.21 (+0.01)

Director 80.48 60.65 9.41 8.99 0.58 0.73 90.22
+ ECO decoding 81.18 (+0.7) 61.20 (+0.65) 9.49 (+0.08) 8.97 (-0.02) 0.58 (-) 0.74 (+0.01) 90.23 (+0.01)

DASC 75.19 51.17 8.22 7.67 0.60 0.77 90.05
+ ECO decoding 77.22 (+2.03) 54.12 (+2.95) 7.60 (-0.62) 7.15 (-0.52) 0.61 (+0.01) 0.78 (+0.01) 90.19 (+0.14)

Table 2: Evaluation results for multiple attributes setting on the DailyDialog test set.

Model Accuracy Rouge-1 Rouge-L Dist-1 Dist-2 Grammar
DialoGPT(176M) - 9.00 8.53 0.58 0.76 90.21
Director 79.94 8.83 8.37 0.59 0.70 90.23
+ ECO decoding 82.82 (+2.88) 8.82 (-0.01) 8.34 (-0.03) 0.59 (-) 0.71 (+0.01) 90.30 (+0.07)

DialoGPT(1.1B) - 11.54 10.89 0.75 0.73 87.28
Director 75.66 11.76 11.15 0.74 0.73 87.18
+ ECO decoding 76.05 (+0.39) 11.82 (+0.06) 11.23 (+0.08) 0.74 (-) 0.73 (-) 87.25 (+0.07)

Llama2(7B) - 15.23 12.99 0.35 0.08 90.60
Director 75.43 15.95 13.74 0.35 0.80 90.51
+ ECO decoding 75.66 (+0.23) 15.88 (-0.07) 13.63 (-0.03) 0.35(-) 0.80 (-) 90.55 (+0.04)

Table 3: Evaluation results for attributes of emotion on the DailyDialog test set with various size of model.

a baseline grammar score and then tune the con-
trol strength λ in each method (FUDGE, Direc-
tor, DASC) until we match that baseline grammar
score. Eventually, we evaluate the resulting Accu-
racy, Dist, and ROUGE metrics.

The results show that ECO decoding consistently
improves the accuracy of both emotion and dialog-
act attributes, surpassing static control methods.
Notably, these improvements come without degrad-

ing grammar quality, unlike existing approaches.
Furthermore, ECO decoding retains the Dist and
ROUGE scores or it even slightly improves in some
cases; we think that it confirms ECO decoding’s
ability to dynamically incorporate desired attributes
without compromising fluency or overall response
quality.
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Model Method Accuracy(Emo) Accuracy(Act) ROUGE-1 ROUGE-2 Dist-1 Dist-2 Grammar

DialoGPT(176M)

No attribute – – 6.72 6.19 0.53 0.44 86.42
Director(Emo) 73.99 – 6.42 5.90 0.57 0.44 86.36
+ ECO decoding 75.31 (+1.32) – 6.54 (+0.12) 6.04 (+0.14) 0.55 (-0.02) 0.44 (–) 86.38 (+0.02)

Director(Act) – 67.30 5.84 5.41 0.62 0.57 86.47
+ ECO decoding – 67.92 (+0.62) 5.88 (+0.04) 5.45 (+0.04) 0.63 (+0.01) 0.59 (+0.02) 86.43 (-0.04)

Director(Multi) 63.62 49.29 7.22 6.72 0.44 0.48 86.38
+ ECO decoding 66.52 (+2.90) 52.59 (+3.30) 7.35 (+0.13) 6.72 (–) 0.45 (+0.01) 0.49 (+0.01) 86.41 (+0.03)

Llama2(7B)

No attribute – – 9.84 7.83 0.22 0.60 86.91
Director(Emo) 65.73 – 9.80 7.90 0.21 0.59 86.85
+ ECO decoding 68.45 (+2.72) – 10.13 (+0.33) 8.09 (+0.19) 0.20 (-0.01) 0.58 (-0.01) 86.85 (+0.00)

Director(Act) – 40.89 8.75 6.95 0.23 0.61 87.03
+ ECO decoding – 42.53 (+1.64) 8.98 (+0.23) 7.23 (+0.28) 0.24 (+0.01) 0.61 (–) 86.89 (-0.14)

Director(Multi) 59.57 23.90 6.81 5.65 0.19 0.58 86.90
+ ECO decoding 65.80 (+6.23) 28.87 (+4.97) 6.66 (-0.15) 5.64 (-0.01) 0.19 (–) 0.55 (-0.03) 86.88 (-0.02)

Table 4: Evaluation results on the MultiWOZ dataset using DialoGPT (176M) and Llama2 (7B) for single-attribute
settings (emotion, dialog-act) and multi-attribute settings. In the method notation, the term in parentheses specifies
the attribute being controlled. The scores in parentheses indicate the performance gap between static and dynamic
control settings.

Model Accuracy Interest Sensible
Emotion

Director 2.82 2.96 2.75
+ ECO decoding 3.19 (+0.37) 3.16 (+0.20) 3.15 (+0.40)

Dialog-act
Director 3.04 2.93 2.78
+ ECO decoding 3.42 (+0.38) 3.41 (+0.48) 3.36 (+0.58)

Table 5: Human Evaluation on DailyDailog test set
(single attribute)

Multi Attribute Control Multi attribute control
typically involves combining attribute probabilities
via multiplication. Consequently, when interpo-
lating across multiple distributions, differences in
scale and calibration can make it difficult to main-
tain a proper balance, often leading to a decline in
overall controllability compared to single-attribute
control.

In Table 2, multi attribute control for the emo-
tion attribute achieves grammar performance on
par with single-attribute control, yet exhibits a de-
crease in overall controllability. Conversely, multi-
attribute control for the dialog-act attribute appears
to yield higher controllability relative to single at-
tribute control. However, this does not necessarily
indicate an actual improvement in controllability;
rather, it likely reflects the selection of a relatively
lower grammar score baseline due to differences in
the experimental data.

By applying ECO decoding, we mitigate these
interpolation issues and significantly enhance the
controllability of both emotion and dialog-act at-
tributes. Moreover, as in the single-attribute setting,
dynamic weighting consistently maintains and even

strengthens grammatical fluency and response qual-
ity in multi-attribute generation.

Language Model Scaling Table 3 compares the
performance of the Director method and ECO de-
coding across models of varying sizes. From the
smallest 176M parameter model to the 7B model,
ECO decoding consistently achieves higher gram-
mar scores while maintaining strong attribute con-
trollability. This indicates that ECO decoding can
be applied effectively to traditional weighted de-
coding methods regardless of model scale.

Generalization across Domains To evaluate the
generalization capability of ECO decoding in di-
verse dialogue domains, we performed additional
experiments on the MultiWOZ dataset, applying
the Director Method to DialoGPT and Llama2-
7B. As summarized in Table 4, ECO decoding
improved controllability in both single- and multi-
attribute settings on MultiWOZ. Importantly, these
improvements were achieved without any degrada-
tion in ROUGE, grammaticality, or diversity met-
rics, demonstrating that ECO decoding effectively
generalizes to multi-domain dialogue environments
such as MultiWOZ.

Human Evaluation Table 5 presents the human
evaluation results. Consistent with the automatic
metrics, ECO decoding substantially outperforms
the baseline in generating coherent and attribute-
aligned responses. Across both emotion and dialog-
act attributes, Accuracy improves by about +0.38,
Interest by +0.34, and Sensible by +0.49. These
results suggest that ECO decoding not only bet-
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Figure 3: The single attribute control performance of
the existing weighted decoding method (red) and ECO
decoding (green) with respect to changes in the control
strength λ. The y-axis represents grammar, and the x-
axis represents accuracy. The blue dot line represents
uncontrolled DialoGPT’s grammar score.

Figure 4: The multi attribute control performance of
the existing weighted decoding method (red) and ECO
decoding (green) with respect to changes in the control
strength λ. The y-axis represents grammar, and the x-
axis represents accuracy. The blue dot line represents
uncontrolled DialoGPT’s grammar score.

ter aligns generated responses with the desired at-
tributes but also makes them more engaging and
contextually coherent from a human perspective.

Robustness Test The control strength coefficient
λ determines the proportion of weights in the prob-
ability distribution of the attribute classifier. There-
fore, a larger lambda will tend to generate tokens
that are more attribute-specific, resulting in a trade-
off between increased attribute accuracy and de-
creased grammar score.

Figure 3 shows the results of applying tradi-
tional weighted decoding methodology and ECO-

decoding for varying the control strength coeffi-
cient λ in a single attribute control setting. The
experiments were conducted based on the Direc-
tor and DASC method for two attributes, emotion
and dialog-act, and the red line is for the Direc-
tor and DASC. The green line is for the applica-
tion of ECO decoding with each method and the
blue bashed line is the grammar score of vanila Di-
aloGPT without attribute control according to each
dataset. In all experiments, we observed a trade-
off between grammar and accuracy, and showed
that for the same grammar score, ECO decoding
achieves higher attribute accuracy by dynamically
applying weights. In other words, for the same con-
trol degree, ECO decoding produces higher quality
responses. This demonstrates that our approach
has a strong capability in controllable generation to
maintain fluency while enhancing controllability,
regardless of the λ values.

Figure 4 shows the performance by lambda in
the multi attribute control setting. The results are
the same for multi attribute as for single, with ECO
decoding for each methodology resulting in higher
controllability and grammar scores. The interest-
ing thing is that the Director model is not a struc-
tured model for multi attribute control, and because
of this, there is some performance variation by
lambda.

In almost all cases using the DialoGPT-small
model, we observed a trend of grammar score in-
crease and then decrease as the lambda value in-
creases. Due to the increase in grammaticality at
low λ ranges, some experimental results showed
higher grammar score with attribute control than
DialoGPT without attribute control. This was not
observed when using larger models such as Llama2,
which could be thought of as a slight inconsistency
in the performance of small language models. For
fairness, all experimental results measured gram-
mar score and attribute accuracy after the lambda
value where the trade-off occurs.

Stability of Entropy Smoothing To examine the
impact of entropy smoothing, we varied the tem-
perature parameter τ in the softmax normalization
process and measured grammar quality and control
accuracy for the Emotion attribute on the DailyDia-
log dataset using the DialoGPT (176M) model with
the Director method, with τ values ranging from
0.1 to 10.

As shown in Table 6, performance remained sta-
ble when τ was varied between 0.1 and 5.0, with

28305



Temperature (τ ) Grammar Accuracy

0.1 90.30 82.74
0.5 90.30 82.82
1.0 90.30 82.82
5.0 90.28 83.28
10.0 89.57 85.69

Table 6: Effect of varying the entropy smoothing tem-
perature τ on grammar and control accuracy.

only minor fluctuations in grammar and accuracy.
At an excessively large value (τ = 10), some devia-
tions were observed, suggesting that heavy smooth-
ing may reduce the ability of entropy to capture
model uncertainty and affect the behavior of dy-
namic control. Overall, the results indicate that
ECO decoding is not overly sensitive to reasonable
choices of the smoothing parameter.

5 Conclusions

We propose ECO decoding as an entropy-based ap-
proach for dynamically adjusting control strength
at each step in weighted decoding. Unlike prior
methods relying on static coefficients, ECO decod-
ing utilizes the uncertainty of each attribute clas-
sifier during inference to improve controllability
without sacrificing fluency.

ECO decoding is easily applicable to existing
controllable generation methods, as it requires no
additional training. It effectively generalizes across
single- and multi-attribute settings, and properly ad-
dresses interpolation issues in multi-attribute con-
trol by leveraging attribute-specific entropy.

Both automatic and human evaluations demon-
strate that ECO decoding consistently outperforms
static baselines across a range of models and con-
trol strengths, including strong performance on
large-scale models like Llama2-7B. These findings
highlight that ECO decoding is an effective solution
for more precise and robust controllable dialogue
generation.

Limitations

Our method improves control performance while
maintaining sentence fluency by leveraging
entropy-based control strength, and it enables flu-
ent sentence generation in both single- and multi-
attribute settings. However, this approach has sev-
eral limitations. First, the dataset used in this study
is limited in both quantity and diversity, and vali-
dation was performed only on dialogues with two

attributes. Therefore, construction of new corpus
with additional attributes is necessary to evaluate
the generalizability of the proposed method. Sec-
ond, in multi-attribute settings, a refined normaliza-
tion process must be developed to account for the
number of classes for each attribute as the number
of attribute classifiers increases. To address these
limitations, future work should construct more di-
verse datasets and explore effective probability con-
trol strategies under multi-attribute conditions.

Ethics Statement

The proposed method aims to enhance the interest
and accuracy of responses generated by chatbots
to improve user experience. However, this method
could be potentially used for malicious purposes.
In our experiments, we focus on attributes like
emotion and dialog-act, but if malicious desired
attributes such as bias are used, the model could be
induced to generate inappropriate responses. There-
fore, generating controlled responses using mali-
cious attributes should be restricted.
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A Analysis

A.1 POS-Based Entropy Analysis

To investigate the theoretical foundation of entropy-
aware control strength, we conducted a token-level
entropy analysis based on part-of-speech (POS)
tags. Entropy scores are measured using the to-
ken probability distributions from the DialoGPT
models.

In Table 7, we can observe some patterns in the
relationship between a part-of-speech tag and its en-
tropy. Functional words such as ADP (adpositions),
DET (determiners), and PUNCT (punctuation) tend
to have relatively low entropy because they are typ-
ically governed by strict grammatical constraints
that limit lexical variability during generation. In
contrast, content words including NOUN (nouns),
VERB (verbs), ADJ (adjectives), and ADV (ad-
verbs) exhibit higher entropy because these words
often occur in more flexible contexts and are re-
sponsible for conveying core semantic information,
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POS Tag DialoGPT-S DialoGPT-L
ADP 3.04 3.19
CCONJ 3.68 4.04
PUNCT 3.69 3.75
PART 3.78 3.51
SCONJ 4.20 4.37
DET 4.27 4.26
PRON 4.35 4.40
ADV 4.41 4.55
NUM 4.51 4.71
X 4.55 4.94
VERB 4.58 4.74
NOUN 4.81 5.39
SYM 4.85 5.31
PROPN 4.85 5.29
ADJ 5.00 5.35
AUX 5.10 4.93
INTJ 5.47 5.71

Table 7: Entropy measurement score in each part-of-
speech (POS) tag. Results are reported for the DialoGPT
models: S (small) and L (large). Items in Table 7 are
sorted in ascending order based on the entropy scores
of DialoGPT-S.

which results in a broader distribution over candi-
date tokens.

These findings provide a theoretical support for
our entropy-based control strategy. Specifically,
positions with high entropy exhibit greater lexical
variability, which allows for more flexible attribute
manipulation without compromising the fluency of
the generated text. In contrast, low-entropy tokens
are typically constrained by grammatical structure
and should therefore be subjected to weaker con-
trol in order to maintain grammatical correctness.
This POS-tag-based analysis confirms that entropy
can serve as an effective indicator for determin-
ing the appropriate timing and location of control
application during the generation process.

A.2 Control Strength Analysis

In this study, to mathematically model control
strength as inversely proportional to the entropy
of the token distribution, we define control strength
as a function of entropy and employ three repre-
sentative decreasing functions. These functions are
designed to dynamically adjust control strength de-
pending on the level of entropy, thereby enabling
more assertive control in confident contexts (i.e.,
low entropy) and weaker control when the model

is uncertain (i.e., high entropy).
The three control weighting functions are as fol-

lows:

exponential = 1 + exp(−attr_entropy) (11)

negative = 1 + (log(V )− attr_entropy) (12)

reciprocal = 1 + (
1

attr_entropy
) (13)

When comparing the three functions, the linear
function maintains a direct linear relationship be-
tween entropy and weight. In contrast, both the
exponential function and the inverse function yield
similar weights in high-entropy regions, but diverge
significantly in low-entropy regions with assigning
notably larger weights.

Table 8 shows that the linear function tends to de-
grade performance in multi-attribute control tasks.
This is due to the fact that its weights decrease
linearly without convergence as entropy increases,
resulting in unstable control. On the other hand,
both the exponential and reciprocal functions ex-
hibit convergence as entropy increases, and outper-
form the baseline model. These two functions pro-
duce larger differences in weights in low-entropy
regions, and our experiments confirm that the recip-
rocal function particularly achieves strong perfor-
mance. This is more likely because, in cases where
the probability distribution is highly concentrated
(i.e., one token is assigned a very high probabil-
ity), the reciprocal function is better suited to apply
strong control.

Furthermore, the reciprocal function provides
more advantages than the exponential function by
offering a broader range of control strength in low-
entropy settings. Consequently, we conclude that
the reciprocal weighting function is well-suited for
assigning control strength appropriately under both
low-entropy and high-entropy conditions.

B Zero-shot Prompting with Llama2

We additionally examined zero-shot prompting as
an alternative approach to attribute control. All
experiments were conducted on the DailyDialog
test set under single-attribute (emotion, dialog-act)
and multi-attribute control settings. For zero-shot
prompting, we used Llama2 with task-specific in-
structions, without any fine-tuning or decoding-
based control.
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Model Accuracy(emo) Accuracy(act) Rouge-1 Rouge-L Dist-1 Dist-2 Grammar
DialoGPT - - 9.00 8.53 0.58 0.76 90.21
Director 80.48 60.65 9.41 8.99 0.58 0.73 90.22
- lm_entropy 79.24 58.63 9.49 9.04 0.58 0.73 90.31
- exponential 80.48 61.12 9.42 9.01 0.58 0.73 90.21
- negative 80.17 60.96 9.41 9.00 0.58 0.73 90.21
- reciprocal 81.18 61.20 9.49 8.97 0.58 0.73 90.23

Table 8: Experiments on control strength application methods. We compare the performance of the lm_entropy
method, which utilizes the probability distribution of the language model, with three alternative methods that use
the probability distribution of the attribute classifier.

Attribute Accuracy(emo) Accuracy(act) Rouge-1 Rouge-L Dist-1 Dist-2 Grammar
Emotion 76.28 - 15.55 13.34 0.34 0.80 90.10
Dialog-act - 40.12 15.19 12.87 0.33 0.79 89.59
Multi 58.71 29.62 6.24 5.52 0.26 0.55 85.22

Prompt
You are a dialogue system that engages in everyday conversation with a user.

Below is a conversation history consisting of multiple turns, with each turn labeled as "User:"
or "System:" to indicate the user’s utterance and the system’s response, respectively.
You must generate a response that satisfies the condition: {label}: {attribute value}.

Based on the provided conversation history, generate the next system response that continues
the conversation naturally.

Table 9: Zero-shot prompting results with Llama2 on the DailyDialog test set.

Method Static Control ECO decoding Overhead Increase

FUDGE 3.087 ms 3.114 ms ×1.009 +0.9%
Director 1.143 ms 1.160 ms ×1.015 +1.5%
DASC 1.116 ms 1.123 ms ×1.006 +0.6%

Table 10: Average per-token decoding latency on the
DailyDialog dataset with emotion control.

As shown in Table 9, zero-shot prompting
can control certain attributes to some extent, but
its overall controllability remains limited. Com-
pared to DialoGPT (176M), Llama2 with zero-shot
prompting, despite being a larger model, showed
lower performance than Director and FUDGE in
emotion control. When compared with DASC, it
achieved higher controllability but at the cost of
reduced grammaticality. For dialog-act and multi-
attribute control, its performance was substantially
lower than decoding-based approaches in both
controllability and grammaticality. These results
suggest that while prompt-based approaches of-
fer some degree of controllability, decoding-based
methods remain more useful for achieving a bal-
ance between controllability and fluency.

Impact of Entropy Calculation on Inference
Speed To assess the inference-time overhead of
ECO decoding, we measure the average per-token

generation time on the DailyDialog dataset with
emotion control using the DialoGPT (176M) model.
We compared ECO decoding against static control
across three weighted decoding baselines (FUDGE,
Director and DASC). Despite requiring entropy
computation for both the language model and the
attribute classifier at every decoding step, ECO de-
coding introduced only minimal additional latency.

As shown in Table 10, the decoding overhead of
ECO decoding was less than 1.5% across all base-
lines. Because our method only requires entropy
computation on top of existing weighted decoding
operations, the additional cost is negligible. These
results indicate that ECO decoding is well suited
for real-time inference scenarios, achieving control-
lability improvements while maintaining efficient
generation speed.

C Cases of ECO decoding

D Licenses

The DailyDialog dataset is licensed under CC
BY-NC-SA 4.0 License. The DialoGPT model
is licensed under Contributor License Agreement
(CLA) and Llama2 model is licensed under Meta
Llama 2 Community License Agreement. The
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Figure 5: In case where the response fails to satisfy the
desired attribute with the existing method but satisfies
the desired attribute using ECO decoding.

Figure 6: In case where it fails to generate a context-
consistent response with the existing method but gener-
ates a context-consistent response using ECO decoding.

RoBERTa-based CoLA grammaticality model is
licenced under MIT License.
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