
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 28271–28297
November 4-9, 2025 ©2025 Association for Computational Linguistics

Weaver: Interweaving SQL and LLM for Table Reasoning

Rohit Khoja1* Devanshu Gupta1* Yanjie Fu1 Dan Roth2 Vivek Gupta1†

1Arizona State University 2University of Pennsylvania
{rkhoja2,dgupta77,yanjiefu,vgupt140}@asu.edu danroth@seas.upenn.edu

Abstract

Querying tables with unstructured data is chal-
lenging due to the presence of text (or image),
either embedded in the table or in external para-
graphs, which traditional SQL struggles to pro-
cess, especially for tasks requiring semantic rea-
soning. While Large Language Models (LLMs)
excel at understanding context, they face lim-
itations with long input sequences. Existing
approaches that combine SQL and LLM typi-
cally rely on rigid, predefined workflows, lim-
iting their adaptability to complex queries. To
address these issues, we introduce Weaver , a
modular pipeline that dynamically integrates
SQL and LLM for table-based question answer-
ing (Table QA). Weaver generates a flexible,
step-by-step plan that combines SQL for struc-
tured data retrieval with LLMs for semantic pro-
cessing. By decomposing complex queries into
manageable subtasks, Weaver improves accu-
racy and generalization. Our experiments show
that Weaver consistently outperforms state-of-
the-art methods across four Table QA datasets,
reducing both API calls and error rates.

1 Introduction

Tables play a critical role across various domains
such as finance (e.g., transaction records), health-
care (e.g., medical reports), and scientific research.
However, many real-world tables often contain a
mix of structured fields alongside columns with em-
bedded unstructured text (such as free-form text or
images), which makes reasoning and information
retrieval challenging. Extracting insights from such
data demands both logical and semantic reasoning.
While SQL and Python-based methods excel in
handling structured data, they fall short in dealing
with unstructured text, missing entries, or implicit
inter-column relationships.

*These authors contributed equally to this work.
†primary supervisor of this work.

Figure 1: An exemplar hybrid query from the WikiTQ
Dataset demonstrating the need for interwoven reasoning. The
question “Which country had the most competitors?” requires
the semantic inference of driver nationalities and the logical
grouping and counting of competitors to produce the correct
answer.

Recent advances in Large Language Models
(LLMs) have demonstrated strong capabilities in
natural language understanding and contextual rea-
soning, opening new avenues for complex tasks.
However, LLM still face key limitations, particu-
larly with long contexts and numerical or temporal
reasoning. For instance, in the WikiTableQues-
tions (Pasupat and Liang, 2015) dataset, the query
“Which country had the most competitors?” Fig-
ure 1 requires inferring the competitors’ countries
from a driver column information not explicitly
present. While traditional tools such as SQL or
Python cannot resolve such gaps, LLM can lever-
age their pre-trained knowledge to do so. Yet, the
subsequent grouping and counting by country is
something LLM struggle with but SQL handles
well. Solving such queries effectively requires a
hybrid approach that combines the strengths of
LLM and programmatic methods. This raises a
key question: Can SQL and LLM be seamlessly
interwoven?

Some methods, such as Binder (Cheng et al.,
2023) and BlendSQL (Glenn et al., 2024), inte-
grate LLM into SQL workflows by treating them
as function calls. For example, Binder combines
LLM reasoning with SQLite to support hybrid

28271

queries. While effective for simpler tasks, these
approaches struggle with complex queries, as LLM
often fail to generate accurate multi-step logic.
This highlights the need to decompose complex
queries into smaller, manageable steps. Other ap-
proaches, such as H-STAR (Abhyankar et al., 2025)
and ReAcTable (Zhang et al., 2024), use program-
matic techniques to prune tables but rely heavily
on costly API calls. Meanwhile, methods like Pro-
Trix (Wu and Feng, 2024) limit reasoning to just
two steps, making them insufficient for multi-hop
queries. These rigid pipelines often constrain LLM
to answer extraction and cannot handle questions
requiring external or implicit knowledge.

To address these challenges, we introduce a
modular, planning-based framework that dynam-
ically alternates between SQL for logical opera-
tions and LLM for semantic reasoning. By decou-
pling these components, our approach overcomes
the limitations of monolithic systems and signif-
icantly improves performance on complex Table
QA tasks. The process begins with extracting rele-
vant columns and generating column descriptions
based on the given table and query, resolving for-
matting inconsistencies and ambiguities in table
or column names. An LLM then generates a step-
by-step reasoning plan, combining SQL queries
for structured operations with LLM prompts for
semantic inference or column augmentation. Each
step produces an intermediate table, enabling trans-
parent reasoning and easy backtracking. A final
answer extraction step retrieves the result from the
processed table. This adaptable design enables
seamless integration with various database engines
(e.g., MySQL, SQLite). Our approach offers the
following key contributions:

• We propose Weaver , a modular and inter-
pretable framework for hybrid query exe-
cution that dynamically decomposes com-
plex queries into modality-specific steps (e.g.,
SQL, LLM, vision-language models (VLMs))
without manual effort.

• We conduct extensive experiments on multi-
ple hybrid QA benchmarks, including mul-
timodal datasets, showing that Weaver out-
performs existing methods by large margins,
particularly on complex, multi-hop reasoning
queries.

• We introduce a query plan optimization strat-
egy that improves execution efficiency with

minimal accuracy loss. Weaver also stores all
intermediate outputs, enabling transparency,
effective human-in-the-loop debugging.

Our results show superior accuracy over exist-
ing baselines, especially for queries requiring im-
plicit reasoning beyond explicit table values. By
bridging structured and unstructured reasoning, our
approach sets a new benchmark for complex Ta-
ble QA, offering a scalable solution for real-world
applications.

The code, along with other associated scripts, are
available at https://coral-lab-asu.github.
io/weaver.

2 Our Approach

This study addresses question answering tasks over
tables containing both structured and unstructured
data. Each instance consists of a table (T), a user
query (Q), an optional paragraph (P), and a pre-
dicted answer (A). Queries span multiple cate-
gories: short-form queries (WikiTQ) involving di-
rect lookups or aggregations; fact-checking queries
(TabFact (Chen et al., 2020)) that require claim
verification; numerical reasoning queries (FinQA
(Chen et al., 2021b)) necessitating multi-step calcu-
lations; and multimodal queries (FinQA and OTT-
QA (Chen et al., 2021a)) that demand reasoning
over extensive textual contexts inside and outside
tables. Complex queries, such as “Which country
had the most competitors?”, frequently require se-
mantic inference when explicit data is unavailable.
Previous approaches typically rely on single-step
executions, limiting flexibility and interpretabil-
ity. In contrast, our method dynamically integrates
SQL for structured data operations and LLM for se-
mantic inference, providing adaptable and accurate
query resolution.

2.1 SQL-LLM Weaver
We introduce Weaver , a novel methodology inte-
grating SQL and LLM specifically designed for
Table QA tasks involving complex semantic rea-
soning and free-form responses. Weaver operates
through distinct, structured phases:

1. Pre-processing: We begin by preprocessing
the tables to mitigate SQL-related errors due to
naming conflicts and data inconsistencies. This
involves renaming columns conflicting with SQL
reserved words (e.g., Rank), removing special char-
acters, and standardizing column names. Subse-
quently, an LLM identifies and extracts relevant

28272

https://coral-lab-asu.github.io/weaver
https://coral-lab-asu.github.io/weaver

Figure 2: The transparent and interpretable Weaver pipeline for Table QA. The framework dynamically alternates between
SQL-based structured data operations (e.g., creating the unique_drivers table) and LLM-based semantic reasoning (e.g.,
inferring ‘country’ from driver names), with each step producing a traceable intermediate table to mitigate errors and enhance
debugging.

columns for the query, generating descriptive meta-
data for these columns. This metadata clarifies
schema interpretations, resolves formatting issues,
and defines accurate data types, as illustrated in
Figure 2. For external unstructured text, relevant
information is retained using an LLM to ensure
context alignment.

2. Planning: In this phase, an LLM generates a
dynamic, step-by-step plan using few-shot prompt-
ing based on the previously derived metadata. The
plan consists of sequential subtasks, each catego-
rized explicitly as either SQL or LLM operations.

(a.) SQL Step: SQL steps manage structured
data tasks, including filtering rows, formatting col-
umn data types, mathematical operations and data
aggregations. For example, Figure 2 demonstrates
an SQL step that generates an intermediate table,
unique_drivers.

(b.) LLM Step: LLM steps handle tasks beyond
SQL’s capabilities, such as deriving new columns
through semantic inference, sentiment analysis, or
interpreting complex textual data. LLM leverage
either contextual paragraphs or their pretrained
knowledge to perform these tasks. Each LLM step
carefully integrates outputs back into the structured
data tables to ensure coherence and consistency for

subsequent SQL steps. Figure 2 illustrates how an
LLM infers a country column from the driver
column in the intermediate table unique_drivers.
The LLM is guided through structured prompts that
leverage its pretrained knowledge and reasoning
capabilities. Relevant information (extracted from
external unstructured text in pre-processing step) is
also passed to LLM if present.

Plan Verification: Prompting techniques like
self-refinement (Madaan et al., 2023) and verifi-
cation (Weng et al., 2023) are known to enhance
LLM reasoning by reducing errors and improving
consistency. To leverage this, we use a secondary
LLM to verify the initial plan, ensuring its logical
consistency, robustness, and completeness. Gaps
such as insufficient reasoning or formatting issues
are addressed by refining the plan, as shown in
planning step (D) (New Plan) in Figure 2. This
verification improves the pipeline’s reliability and
mitigates cascading errors.

3. Code Execution: Following verification, the
pipeline executes the plan sequentially, combining
SQL queries and LLM-generated prompts.

(a.) SQL Step - Query Generation: SQL oper-
ations involve formatting, filtering, joining, aggre-
gating, and grouping data, with intermediate tables

28273

stored at each stage. SQL efficiently handles struc-
tured data operations, reducing reliance on LLM
steps.

(b.) LLM Step - Prompt Generation: At each
LLM step execution, we retrieve the inputs speci-
fied in the plan, namely the relevant column subset,
source table, LLM prompt, and target column name.
Using the prompt and selected columns, the LLM
generates the target column values, which are then
appended to the intermediate table.

Robust error handling and fallback mechanisms
ensure pipeline robustness, utilizing the recent suc-
cessful intermediate table if execution errors occur.

4. Answer Extraction: In the final pipeline
stage, the intermediate table and user query are
inputted to an LLM, which generates a natural lan-
guage answer. Leveraging few-shot learning en-
sures output consistency and contextual accuracy,
effectively resolving complex queries.

Figure 2 illustrates this process with a sample
Table QA example.

2.2 Optimization
We experimented to enhance the efficiency of our
pipeline, optimizing the planning strategy by min-
imizing unnecessary LLM calls and prioritizing
SQL-based operations.

Figure 3: Optimization using SQL Reordering and LLM call
parallelization.

One key optimization involves pushing SQL op-
erations such as filtering, aggregation, and format-
ting early in the pipeline as shown in Figure 3. This
reduces the volume of data that needs to be pro-
cessed by the LLM, significantly reducing latency
and computational overhead. Furthermore, par-
allelizing LLM inference across these optimized
chunks further enhances efficiency, allowing the
system to handle large-scale tabular reasoning tasks
effectively, as shown in Figure 3. To further stream-
line execution, sequential SQL steps are merged,
reducing SQL calls and improving performance,
see Figure 4.
Given the computational demands of LLMs for
large tables, we split data into smaller context-
aware chunks before sending them to the LLM
for inference. This prevents input truncation, main-
tains logical coherence between batches, and en-
sures optimal utilization of the context window of
the model, as demonstrated in Figure 5, in the Ap-
pendix A.5. This optimization strategy further en-
hances Weaver planning and execution efficiency.

3 Experiments

Benchmarks: As hybrid multi-hop Table QA re-
mains an emerging research area, there is no ded-
icated benchmark to evaluate such tasks. To fill
this gap, we curate a hybrid subset by filtering rele-
vant examples from several established table-based
datasets for the evaluation of Weaver .

Source Datasets: For a comprehensive evalua-
tion of Weaver ’s ability to handle complex hybrid
queries, we assess its performance across three di-
verse datasets: WikiTQ (a short-form answering
dataset), TabFact (a fact verification dataset), and
FinQA (a numerical reasoning dataset). We also
evaluated our approach on 3,000 queries each of
multimodal (MM) datasets, FinQAMM and OTT-
QAMM, which require reasoning in both tabular
data, and the accompanying textual context (usu-
ally a paragraph outside tables). We also evalu-
ated Weaver on the MMTabQAMM dataset (Mathur
et al., 2024; Titiya et al., 2025), which involves
reasoning over tables that include both text and
images. This dataset contains 1,600 queries and
206 tables, with each query requiring the integra-
tion of textual and visual reasoning, including SQL,
LLM, and VLM calls. Unlike traditional table QA
tasks, these benchmarks challenge the model to
integrate information from structured (tables) and
unstructured (text, images) modalities. Details on

28274

the datasets in Appendix B.

Filtering Methodology: We define hybrid
queries as those that require both SQL operations
and LLM-based reasoning. These queries are more
complex, as they necessitate not only structured
data retrieval but also advanced reasoning capabili-
ties, such as entity inference or free-text interpreta-
tion, which SQL alone cannot provide. To identify
such queries, we use Binder-generated queries that
incorporate user-defined LLM functions (UDFs).
Queries involving UDFs indicate the need for se-
mantic reasoning beyond SQL’s capabilities. We
did not validate the correctness of Binder’s out-
puts; its role was purely to flag queries with hybrid
characteristics. For FinQA, we utilized the ‘qa’ ob-
ject to identify queries requiring multiple reasoning
steps, excluding simple table lookups to ensure the
selected queries involved more than just direct data
retrieval. All candidate queries were then manu-
ally validated to confirm they require both SQL
execution and LLM reasoning steps.

Dataset Statistics: After filtering, the hybrid ver-
sions of the datasets consist of: (a) WIKITQ: 510
examples (original: 4,344), (b) TABFACT: 303 ex-
amples (original: 2,000), and (c) FINQA: 1,006
examples (original: 8,281). These represent the
final queries filtered to create the hybrid versions:
WikiTQhybrid, TabFacthybrid, and FinQAhybrid.

Evaluation Metrics: Traditional Exact Match
(EM) requires the model’s output to exactly match
the gold answer, which can unfairly penalize se-
mantically correct responses that differ only in for-
matting, such as 2nd April 2024 versus 04/02/2024.
To address this limitation, we introduce the Re-
laxed Exact Match (REM) metric, which applies
a three-step evaluation framework. First, we auto-
matically standardize the model’s output format to
align with the gold answer, handling differences
such as units, date formats, casing, and common
abbreviations. This normalization is performed us-
ing an LLM-based transformation prompt (see Ap-
pendix A), ensuring consistent resolution of trivial
mismatches, for example, if the gold answer is 17
years and the model outputs 17, the unit is automat-
ically appended to match the reference. Once both
answers are format-aligned, we apply the standard
EM metric to the normalized outputs, preserving
the objectivity and reproducibility of exact string
matching. Finally, in the rare cases where discrep-
ancies remain, we incorporate a human safeguard

to verify correctness and ensure that automatic nor-
malization has not introduced errors or missed sub-
tle equivalences. Importantly, this human evalua-
tion is not a subjective judgment, but a strict check
of semantic equivalence; for example, if the model
outputs 5 feet 10 inches and the gold answer is 70
inches, the evaluator confirms whether the two rep-
resent the same quantity. By combining automatic
normalization, objective exact matching, and a min-
imal safeguard, REM provides a fairer and more
reliable evaluation compared to traditional EM.

LLM Models: In our research, we use state-
of-the-art large language models (LLMs) such
as Gemini-2.0-Flash (DeepMind, 2024), GPT-4o-
mini-2024-07-18, GPT-4o-2024-08-06 (OpenAI
et al., 2024) and the open-source DeepSeek-R1-
Distill-Llama-70B 1 (Guo et al., 2025), (Shi et al.,
2024) for table reasoning tasks. Our model in-
puts include in-context examples, the table, and the
question for each step of the pipeline. We use the
same LLM across all stages of the pipeline (plan-
ning, plan verification, code execution and final
answer extraction), though the framework can be
easily adapted to assign different LLMs to specific
tasks. To ensure deterministic and stable output,
we use a fixed temperature setting of 0.01.

3.1 Baseline Methods

We evaluated our approach against several base-
lines that are broadly categorized into 4 categories:

1. End-to-End LLM QA: This approach lever-
ages LLM for question answering without inter-
mediate query structuring. The model receives
a query and table as input, generating answers
based on learned patterns and reasoning. We em-
ploy GPT-4o, GPT-4o-mini, Gemini-2.0-Flash, and
DeepSeek-R1-Distill-Llama-70B for all tasks.

2. Query Engines (Binder, BlendSQL): These
methods generate hybrid SQL queries with LLM
as User Defined Functions. They leverage SQL to
interpret tabular data and execute queries to retrieve
relevant information.

3. Pruning-Based Approach (ReacTable, H-STAR):
These methods first apply SQL or Python-based
pruning techniques, such as filtering columns or
rows, before passing the refined table to an LLM
for final answer extraction.

1https://github.com/meta-llama/llama-
models/blob/main/models/llama3_3/LICENSE

28275

https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/LICENSE
https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/LICENSE

4. Planning-Based Approach (ProTrix): ProTrix
employs a two-step “Plan-then-Reason” frame-
work. It first plans the reasoning, and assigns SQL
to filter the table. Finally, it uses LLM to extract
the final answer. By comparing our approach with
these methods, we highlight the unique strengths of
Weaver , which combines SQL-based filtering with
LLM-driven reasoning for more effective query
resolution.

3.2 Results and Analysis

Weaver performs well on three challenging bench-
marks, we present key findings next.

First, are Hybrid Queries harder? The results
in Table 1 compare GPT-3.5-turbo on the origi-
nal dataset with GPT-4o-mini on the hybrid set.
Despite leveraging a more capable model (GPT-4o-
mini) for the hybrid queries, we observe substantial
performance drops, H-STAR and Binder see accu-
racy declines of 9.5% and 32.7%, respectively, on
WikiTQhybrid.

Original (GPT-3.5) Hybrid (GPT-4o-mini)

Binder 56.7% 24%
ReAcTable 52.4% 27%
H-STAR 69.5% 59%
ProTrix 65.2% 61.4%

Table 1: Baselines result comparison on WIKITQ after filter-
ing on hybrid part.

Notably, GPT-4o-mini outperforms GPT-3.5-
turbo on benchmarks like MMLU and MATH
(Source: OpenAI 2), yet still struggles on hybrid
queries. This underscores their inherent difficulty
and highlights the limitations of current methods
in handling multi-step, semantically complex rea-
soning in Table QA.

Does Weaver Help? Table 2 demonstrates that
Weaver consistently outperforms state-of-the-art
baselines across all datasets. On WikiTQhybrid,
Weaver surpasses the best-performing baseline
ProTrix by 5.5% across all four models. On
TabFacthybrid, it achieves a breakthrough 91.2% us-
ing DeepSeek model, surpassing the 90% bench-
mark. On FinQAhybrid, it achieves accuracy of 65%,
outperforming baselines by 4.6% on DeepSeek-R1-
Distill-Llama-70B.

Weaver vs Query Engines: Binder and Blend-
SQL struggle with hybrid queries due to their

2https://openai.com/index/gpt-4o-mini-
advancing-cost-efficient-intelligence

WikiTQhybrid TabFacthybrid FinQAhybrid

GPT-4o-mini

End-to-End QA 60.4 84.4 44.7
Binder∗ 24.0 62.0 13.0
BlendSQL 26.0 68.5 37.0
ReAcTable∗ 29.9 37.4 -
H-STAR 59.0 83.0 40.1
ProTrix 61.4 81.5 46.4
Weaver 65.0 89.4 49.3

GPT-4o

End-to-End QA 66.4 80.8 58.3
Binder∗ 27.3 60.3 17.0
BlendSQL 42.0 68.3 34.3
ReAcTable∗ 45.4 45.4 -
H-STAR 61.0 87.0 46.0
ProTrix 61.7 80.5 54.3
Weaver 70.7 83.4 60.8

Gemini-2.0-Flash

End-to-End QA 67.5 81.8 29.4
Binder∗ 12.9 60.4 21.3
BlendSQL 31.1 60.1 19.7
ReAcTable∗ 20.4 37.6 -
H-STAR 63.5 86.1 38.7
ProTrix 62.2 80.8 42.9
Weaver 69.6 85.4 44.5

DeepSeek-R1-Distill-Llama-70B

End-to-End QA 76.4 82.5 52.4
Binder∗ 26.4 62.7 24.4
BlendSQL 32.2 50.8 36.7
ReAcTable∗ 52.2 45.6 -
H-STAR 68.7 55.6 50.3
ProTrix 41.4 81.1 60.4
Weaver 73.0 91.2 65.0

Table 2: Experimental results for various models on short-
form QA, fact verification, and numerical reasoning tasks.
∗: with self-consistency. Best result in bold, second-best
in underlined. A hyphen (-) indicates missing results due to
incompatibility or untested scenarios.

rigid single-step execution framework. We ob-
serve that only 61% and 66% of the hybrid queries
execute successfully in Binder and BlendSQL on
WikiTQhybrid. The reported accuracies for these
methods are calculated based on successfully ex-
ecuted queries. BlendSQL slightly outperforms
Binder with a modest 2%. Weaver outperforms
BlendSQL by 39%, 20.9% and 12.3% accuracy on
WikiTQhybrid, TabFacthybrid and FinQAhybrid using
GPT-4o-mini.

Weaver vs Pruning Methods: H-STAR and Re-
AcTable while effective for structured queries,
perform poorly on semantic tasks. H-STAR at-
tains 59% and 63.5% accuracy on WikiTQhybrid
using GPT-4o-mini and Gemini-2.0-Flash, respec-
tively, but struggles with row extraction. In some
cases, its row-filtering heuristics discard critical
contextual data essential for reasoning. H-STAR’s

28276

https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence

higher accuracy on TabFacthybrid with GPT-4o
stems from the dataset’s suitability for pruning tech-
niques. 3 Furthermore, Weaver with GPT-4o-mini
and DeepSeek-R1-Distill-Llama-70B, despite their
smaller size, performs competitively highlighting
its effectiveness in resource-constrained environ-
ments where lightweight models are preferred.

Weaver vs Planning Method: ProTrix follows
a two-step pipeline (planning and execution),
achieves 61.4% and 62.2% on WikiTQhybrid with
GPT-4o-mini and Gemini-2.0-Flash. However, it
fails in scenarios requiring intermediate semantic
processing. For example, queries demanding dy-
namic column generation (e.g., inferring Country
from driver name) reveal its inability to seamlessly
integrate SQL and LLM reasoning, leading to a 9%
accuracy gap (GPT-4o) compared to Weaver .

Weaver on Multimodal Data: We evaluated
Weaver on two multimodal datasets, FinQAMM and
OTT-QAMM, requiring multi-hop reasoning over
both structured (tables) and unstructured (text) data.
As shown in Table 3, Weaver outperformed base-
lines, with notable improvements in FinQAMM and
moderate gains in OTT-QAMM.

FinQAMM OTT-QAMM FinQAMM OTT-QAMM

GPT-4o-mini GPT-4o
End2End QA 45.9 61.2 57.6 68.7
Weaver 63.2 63.7 68.0 65.2

Gemini-2.0-Flash DeepSeek-R1∗

End2End QA 37.9 64.1 54.8 59.9
Weaver 60.8 66.7 66.2 62.8

Table 3: Experimental results on multimodal QA (tables +
paragraphs). ∗: DeepSeek-R1 refers to DeepSeek-R1-Distill-
Llama-70B.

In FinQAMM, Weaver excelled in numerical
and multi-hop reasoning, where end-to-end mod-
els struggled with irrelevant information and se-
quential logic, such as calculating net values.
For OTT-QAMM, which involved less structured
computation and more real-world knowledge,
Weaver still showed consistent gains. Unlike base-
lines, Weaver effectively retrieved and integrated
key table and paragraph segments, ensuring rele-
vant information was used. These results highlight
the strength of our modular, reasoning-focused ap-
proach, which integrates information step-by-step
instead of relying on holistic attention.

On MMTabQAMM dataset, Weaver achieved an
accuracy of 53.02% using gpt-4o-mini model, sig-

3We did not test ReAcTable on FinQAhybrid since its
prompts are tailored to other sets; modifying them changes
baseline.

nificantly outperforming the end-to-end QA base-
line, which scored 46.33%. These results highlight
the strength of our modular, reasoning-driven ap-
proach, combining structured data (tables), unstruc-
tured data (text), and visual inputs (images) for
superior performance. This underscores Weaver ’s
versatility and scalability in addressing complex
multimodal (table, text, images) QA tasks.

Efficacy Analysis: We conducted an analysis to
assess the effectiveness and scalability of Weaver in
WikiTQhybrid, focusing on 98 large tables with over
30 rows and average token length of 17,731 per
table. Our results show that Weaver achieved an
accuracy of 65.6%, outperforming ProTrix (37.5%)
and H-STAR (35.9%) by 28.1% and 29.7%, re-
spectively. On these large tables, Weaver achieved
65.6%, the same accuracy as on the entire dataset,
demonstrating its ability to handle complex queries
while remaining both scalable and robust. These
results highlight Weaver ’s ability to tackle a wide
range of table-based tasks with consistent perfor-
mance.

In addition to delivering reliable performance,
Weaver offers the critical advantage of transparent,
interpretable reasoning. By following a structured
execution plan, it ensures that final answers are
tightly aligned with preceding reasoning steps, en-
hancing traceability and reducing spurious outputs.
This directly addresses a core limitation of large
language models, hallucination and memorization.
Unlike end-to-end LLM, which may produce cor-
rect answers without valid reasoning, Weaver only
yields correct outputs when the underlying plan is
sound, ensuring both reliability and interpretability.

Efficiency Analysis: Table 4 demonstrate the ef-
ficiency of our proposed Weaver framework using
number of API calls. We make about six API calls
which are much lower compared to approaches that
use self-consistency (Binder) with 50 calls and H-
STAR which uses ∼ 8 calls to reach the answer.

API calls/ Query GPT-4o GPT-4o-mini Gemini-2.0∗

ProTrix 2 2 2
Binder 50 60 53
H-STAR 8 8 8
Weaver 5.31 5.87 5.85

Table 4: Number of API calls comparison per Table QA. ∗:
Gemini-2.0 refers to Gemini-2.0-Flash.

ProTrix uses only two fixed API calls and relies
on the LLM solely for generating the plan. How-
ever, it does not involve the LLM during execution.

28277

This limits its ability to handle multi-step queries re-
quiring reasoning at each step. For instance, it may
fail to infer information from individual rows or per-
form operations such as applying a SQL GROUP
BY on an LLM-inferred country column. Such
steps are often essential to arrive at the correct fi-
nal answer. These metrics demonstrate how our
approach minimizes computational overhead while
maintaining accuracy.

Optimization: We experimented with optimiz-
ing our planning and execution strategy on 200
Table QA queries, which were randomly sampled
from the evaluation benchmarks. Table 5 demon-
strates how our optimization strategy focuses on
reducing unnecessary computational steps without
compromising accuracy.

#LLM Optimization Effect

#LLM Drops 15
#SQL Drops 19
#SQL Merge 113
#SQL Reorder 4

Before Opt. After Opt.

#LLM 74 59
#SQL 532 513
#Total Steps 616 469
Accuracy (%) 65 64

Table 5: Effect of optimization on GPT-4o-mini plans on
WIKITQ. Opt. stands for plan optimization.

This optimization was achieved by targeting re-
dundancies in both the LLM and SQL steps.

1. LLM Step Reduction: By identifying and
eliminating redundant LLM steps, we reduced the
15 LLM calls. This optimization ensures that LLMs
are only used when necessary, lowering computa-
tional costs.

2. SQL Step Optimization: We achieved a re-
duction of 19 SQL steps by eliminating unused
operations. Additionally, we merged 113 sequen-
tial SQL steps into fewer, more efficient queries
and reordered 4 steps to optimize execution flow,
making it more efficient.

Optimizing GPT-4o-mini reduces LLM steps by
20% and SQL steps by 24.8%, significantly im-
proving efficiency. The accuracy slightly drops
from 65% to 64%, but this trade-off is minimal,
especially under practical constraints. Our goal is
to create a scalable Table QA pipeline that balances
accuracy with computational cost, particularly for
large tables. The optimization achieves this by
maintaining modular reasoning while reducing la-

tency, API calls, and input tokens, demonstrating
that efficiency gains don’t sacrifice performance.

GPT-4o GPT-4o-mini Gemini-2.0∗

ProTrix

SQL Error 51.2% 25.9% 27.0%
Plan Generation 11.0% 17.0% 9.0%

Weaver

SQL Error 15.0% 42.5% 16.0%
Plan Generation 1.0% 3.0% 1.0%

Table 6: Error in SQL and Plan Generation on WIKITQ. ∗:
Gemini-2.0 refers to Gemini-2.0-Flash.

Error Analysis: Table 6 illustrates the effective-
ness of our approach in minimizing errors in SQL
execution and plan generation. Our approach re-
duces SQL errors by 30% and plan generation by
86% compared to ProTrix in both GPT-4o, GPT-
4o-mini and Gemini-2.0-Flash. However, GPT-4o-
mini exhibits a higher SQL error rate due to its
smaller model size, which limits its ability to gen-
erate accurate SQL queries.

In Weaver , SQL errors arise due to incorrect
formatting, unsupported MySQL functions, or hal-
lucinated columns and tables. Planning errors arise
when SQL steps replace LLM reasoning or gener-
ate unused tables. The Plan Verification Step, Fig-
ure 2, mitigates these issues by refining planning
for improved reliability in complex table-based rea-
soning.

Analysis Across Pipeline Stages: We perform
a stage-wise analysis to assess the contribution of
each component in our pipeline: filtering, plan-
ning, and execution. Compared to SQL-only gen-
eration, which struggles with multi-step reasoning,
our pipeline yields consistent accuracy gains by
structuring the task into sub-components. The fil-
tering stage removes irrelevant columns, reducing
noise and guiding the model’s attention. The plan-
ning stage, central to our method, decomposes com-
plex queries into symbolic and semantic steps. This
step is essential and cannot be ablated. However,
skipping plan verification (i.e., executing without
validating) leads to a 1% drop in accuracy. Finally,
execution stage translates structured plans into SQL
query and LLM prompts with column details.

4 Comparison with Related Work

Table-based Question Answering (Table QA) com-
bines table understanding, question interpretation,
and NLP. Foundational work such as Text-to-SQL
(Tan et al., 2024), Program-of-Thought (Chen et al.,

28278

2023), and TabSQLify (Nahid and Rafiei, 2024b)
laid the groundwork. Binder and TAG (Biswal
et al., 2024) expose the limitations of traditional
Text-to-SQL methods in handling complex analyti-
cal tasks involving both structured and unstructured
data. To address these challenges, several alterna-
tive approaches have been explored:

Fine-Tuning Methods: These methods fine-tune
LLMs to specialize in reasoning over hybrid tabular
and textual data. Models such as (Zhu et al., 2024),
(Mittal et al., 2024), and (Patel et al., 2024) are
trained to extract, reason, and execute over such
inputs. However, fine-tuning requires large task-
specific datasets and tends to lack generalization
across domains.

Query Engines: This direction integrates LLM
with SQL engines via user-defined functions
(UDFs), allowing LLM calls within queries. UQE
(Dai et al., 2024), BlendSQL, SUQL (Liu et al.,
2024b), and Binder follow this paradigm. While
flexible, LLM-generated queries can be error-
prone, and these systems often support only limited
query structures, reducing adaptability.

Table Pruning and Planning: Approaches like
H-STAR, ReAcTable, ProTrix, and others (Liu
et al., 2024c; Nahid and Rafiei, 2024a) enhance
efficiency by programmatically pruning rows or
columns using SQL or Python. While this reduces
processing overhead, these methods often function
as black boxes, lacking transparency and vulnera-
ble to cascading errors if early pruning steps are
incorrect. More information in Appendix F.

5 Conclusion

We introduce Weaver , a novel approach for table-
based question answering on tables with embedded
unstructured text. Weaver outperforms all baselines
by strategically decomposing complex queries into
a sequence of LLM- and SQL-based planning steps.
By alternating between these modalities, it enables
precise, interpretable, and adaptive query resolu-
tion. Weaver overcomes prior limitations by ef-
fectively handling both complex queries and large
tables. Its modular design also supports future ex-
tensions, including image-based tables, multi-table
reasoning, and integration with free-form text. As
future work, we plan to explore fine-tuning and
supervision strategies to further improve execution
accuracy and plan reliability.

Limitations

While our approach demonstrates strong perfor-
mance across multiple datasets, it is currently lim-
ited to English-language tables, restricting its ap-
plicability to multilingual settings. Additionally,
our method does not explicitly handle hierarchi-
cal tables, where multi-level dependencies intro-
duce additional complexity in reasoning. Another
limitation is the inability to process multi-table
queries, which require reasoning across multiple
relational structures. Furthermore, the lack of well-
established benchmarks for hybrid datasets poses a
challenge in evaluating and further improving per-
formance in more complex, real-world scenarios.

Ethics Statement

We, the authors, confirm that our research adheres
to the highest ethical standards in both research
and publication. We have thoughtfully addressed
various ethical considerations to ensure the respon-
sible and equitable use of computational linguistics
methodologies. In the interest of reproducibility,
we provide detailed resources, including publicly
available code, datasets (compliant with their re-
spective ethical standards), and other relevant mate-
rials. Our claims are supported by the experimental
results, although some degree of stochasticity is in-
herent in black-box large language models, which
we mitigate by using a fixed temperature. We also
offer thorough details on annotations, dataset splits,
models used, and prompting techniques to ensure
that our work can be reliably reproduced. We used
AI assistants to help refine the writing and improve
clarity during the drafting and revision process. No
content was generated without human oversight or
verification.

Acknowledgments

We gratefully acknowledge the Cognitive Com-
putation Group at the University of Pennsylva-
nia and the Complex Data Analysis and Reason-
ing Lab at Arizona State University for their re-
sources and computational support. A part of this
work was funded by ONR Contract N00014-23-1-
2364 and N00014-23-1-2417. Yanjie is supported
by the National Science Foundation (NSF) via
the grant numbers: 2426340, 2416727, 2421864,
2421865, 2421803, and National academy of en-
gineering Grainger Foundation Frontiers of Engi-
neering Grants. We also thanks the reviewers for
there thoughtful feedback and comment.

28279

References
Nikhil Abhyankar, Vivek Gupta, Dan Roth, and Chan-

dan K. Reddy. 2025. H-STAR: LLM-driven hybrid
SQL-text adaptive reasoning on tables. In Proceed-
ings of the 2025 Conference of the Nations of the
Americas Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 8841–8863, Al-
buquerque, New Mexico. Association for Compu-
tational Linguistics.

Asim Biswal, Liana Patel, Siddarth Jha, Amog Kam-
setty, Shu Liu, Joseph E. Gonzalez, Carlos Guestrin,
and Matei Zaharia. 2024. Text2sql is not enough:
Unifying ai and databases with tag. CoRR,
abs/2408.14717.

Wenhu Chen, Ming-Wei Chang, Eva Schlinger,
William Yang Wang, and William W. Cohen. 2021a.
Open question answering over tables and text. In In-
ternational Conference on Learning Representations.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. Transactions on
Machine Learning Research.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2020. Tabfact: A large-scale
dataset for table-based fact verification. In Interna-
tional Conference on Learning Representations.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena
Shah, Iana Borova, Dylan Langdon, Reema Moussa,
Matt Beane, Ting-Hao Huang, Bryan Routledge, and
William Yang Wang. 2021b. FinQA: A dataset of nu-
merical reasoning over financial data. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3697–3711, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia,
Jiaqi Guo, Yan Gao, Shi Han, Jian-Guang Lou, and
Dongmei Zhang. 2022. HiTab: A hierarchical table
dataset for question answering and natural language
generation. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1094–1110, Dublin,
Ireland. Association for Computational Linguistics.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,
Noah A. Smith, and Tao Yu. 2023. Binding language
models in symbolic languages. In The Eleventh Inter-
national Conference on Learning Representations.

Hanjun Dai, Bethany Wang, Xingchen Wan, Bo Dai,
Sherry Yang, Azade Nova, Pengcheng Yin, Mangpo
Phothilimthana, Charles Sutton, and Dale Schuur-
mans. 2024. Uqe: A query engine for unstructured

databases. Advances in Neural Information Process-
ing Systems, 37:29807–29838.

Google DeepMind. 2024. Gemini 2.0.

Parker Glenn, Parag Dakle, Liang Wang, and Preethi
Raghavan. 2024. BlendSQL: A scalable dialect
for unifying hybrid question answering in relational
algebra. In Findings of the Association for Com-
putational Linguistics: ACL 2024, pages 453–466,
Bangkok, Thailand. Association for Computational
Linguistics.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Vivek Gupta, Maitrey Mehta, Pegah Nokhiz, and Vivek
Srikumar. 2020. INFOTABS: Inference on tables
as semi-structured data. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 2309–2324, Online. Association
for Computational Linguistics.

Jinyang Li, Binyuan Hui, GE QU, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guo-
liang Li, Kevin Chang, Fei Huang, Reynold Cheng,
and Yongbin Li. 2023. Can LLM already serve as
a database interface? a BIg bench for large-scale
database grounded text-to-SQLs. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024a. Lost in the middle: How language
models use long contexts. Transactions of the Asso-
ciation for Computational Linguistics, 12:157–173.

Shicheng Liu, Jialiang Xu, Wesley Tjangnaka, Sina
Semnani, Chen Yu, and Monica Lam. 2024b. SUQL:
Conversational search over structured and unstruc-
tured data with large language models. In Findings
of the Association for Computational Linguistics:
NAACL 2024, pages 4535–4555, Mexico City, Mex-
ico. Association for Computational Linguistics.

Shu Liu, Asim Biswal, Audrey Cheng, Xiangxi Mo,
Shiyi Cao, Joseph E Gonzalez, Ion Stoica, and Matei
Zaharia. 2024c. Optimizing llm queries in relational
workloads. CoRR.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36:46534–46594.

Suyash Mathur, Jainit Bafna, Kunal Kartik, Harshita
Khandelwal, Manish Shrivastava, Vivek Gupta, Mo-
hit Bansal, and Dan Roth. 2024. Knowledge-aware
reasoning over multimodal semi-structured tables. In

28280

https://doi.org/10.18653/v1/2025.naacl-long.445
https://doi.org/10.18653/v1/2025.naacl-long.445
https://doi.org/10.48550/arXiv.2408.14717
https://doi.org/10.48550/arXiv.2408.14717
https://openreview.net/forum?id=MmCRswl1UYl
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=rkeJRhNYDH
https://openreview.net/forum?id=rkeJRhNYDH
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
https://openreview.net/forum?id=lH1PV42cbF
https://openreview.net/forum?id=lH1PV42cbF
https://deepmind.google
https://doi.org/10.18653/v1/2024.findings-acl.25
https://doi.org/10.18653/v1/2024.findings-acl.25
https://doi.org/10.18653/v1/2024.findings-acl.25
https://doi.org/10.18653/v1/2020.acl-main.210
https://doi.org/10.18653/v1/2020.acl-main.210
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.18653/v1/2024.findings-naacl.283
https://doi.org/10.18653/v1/2024.findings-naacl.283
https://doi.org/10.18653/v1/2024.findings-naacl.283

Findings of the Association for Computational Lin-
guistics: EMNLP 2024, pages 14054–14073.

Akash Mittal, Anshul Bheemreddy, and Huili Tao. 2024.
Semantic sql–combining and optimizing semantic
predicates in sql. arXiv preprint arXiv:2404.03880.

Md Mahadi Hasan Nahid and Davood Rafiei. 2024a.
NormTab: Improving symbolic reasoning in LLMs
through tabular data normalization. In Findings of the
Association for Computational Linguistics: EMNLP
2024, pages 3569–3585, Miami, Florida, USA. Asso-
ciation for Computational Linguistics.

Md Mahadi Hasan Nahid and Davood Rafiei. 2024b.
Tabsqlify: Enhancing reasoning capabilities of llms
through table decomposition. In NAACL-HLT.

OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher,
Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, and et al. 2024. Gpt-4o
system card.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1470–
1480, Beijing, China. Association for Computational
Linguistics.

Liana Patel, Siddharth Jha, Melissa Pan, Harshit Gupta,
Parth Asawa, Carlos Guestrin, and Matei Zaharia.
2024. Semantic operators: A declarative model
for rich, ai-based data processing. arXiv preprint
arXiv:2407.11418.

Yucheng Shi, Peng Shu, Zhengliang Liu, Zihao
Wu, Quanzheng Li, Tianming Liu, Ninghao Liu,
and Xiang Li. 2024. Mgh radiology llama: A
llama 3 70b model for radiology. arXiv preprint
arXiv:2408.11848.

Zhao Tan, Xiping Liu, Qing Shu, Xi Li, Changxuan
Wan, Dexi Liu, Qizhi Wan, and Guoqiong Liao. 2024.
Enhancing text-to-SQL capabilities of large language
models through tailored promptings. In Proceedings
of the 2024 Joint International Conference on Compu-
tational Linguistics, Language Resources and Eval-
uation (LREC-COLING 2024), pages 6091–6109,
Torino, Italia. ELRA and ICCL.

Prasham Yatinkumar Titiya, Jainil Trivedi, Chitta Baral,
and Vivek Gupta. 2025. Mmtbench: A unified bench-
mark for complex multimodal table reasoning. arXiv
preprint arXiv:2505.21771.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin
Eisenschlos, Vincent Perot, Zifeng Wang, Lesly Mi-
culicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee,
et al. 2024. Chain-of-table: Evolving tables in the
reasoning chain for table understanding. In ICLR.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He,
Shengping Liu, Bin Sun, Kang Liu, and Jun Zhao.
2023. Large language models are better reasoners
with self-verification. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2023,
pages 2550–2575, Singapore. Association for Com-
putational Linguistics.

Zirui Wu and Yansong Feng. 2024. ProTrix: Building
models for planning and reasoning over tables with
sentence context. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
4378–4406, Miami, Florida, USA. Association for
Computational Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce
Cahoon, Shaleen Deep, and Jignesh M Patel. 2024.
Reactable: enhancing react for table question an-
swering. Proceedings of the VLDB Endowment,
17(8):1981–1994.

Fengbin Zhu, Ziyang Liu, Fuli Feng, Chao Wang,
Moxin Li, and Tat Seng Chua. 2024. Tat-llm: A
specialized language model for discrete reasoning
over financial tabular and textual data. In Proceed-
ings of the 5th ACM International Conference on AI
in Finance, pages 310–318.

28281

https://doi.org/10.18653/v1/2024.findings-emnlp.203
https://doi.org/10.18653/v1/2024.findings-emnlp.203
http://arxiv.org/abs/2410.21276
http://arxiv.org/abs/2410.21276
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://aclanthology.org/2024.lrec-main.539/
https://aclanthology.org/2024.lrec-main.539/
https://doi.org/10.18653/v1/2023.findings-emnlp.167
https://doi.org/10.18653/v1/2023.findings-emnlp.167
https://doi.org/10.18653/v1/2024.findings-emnlp.253
https://doi.org/10.18653/v1/2024.findings-emnlp.253
https://doi.org/10.18653/v1/2024.findings-emnlp.253
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425

A Appendix: LLM Prompts and Examples

A.1 Prompt Examples

Listing 1: Extract Relevant Column
Given column descriptions , Table and Question return a list of columns that can be
relevant to the solving the question (even if slightly relevant) given the table
name and table:
table name: { self.name }

table: { self.table }
Question: { self.question }

Example output: [’Score ’, ’Driver ’]
Instructions:
1. Do not provide any explanations , just give the cols as a list
2. The list will be used to filter the table dataframe directly so take care of that

Output:

Listing 2: Column Description Prompt
Give me the column name , data type , formatting that needs to be done , column
descriptions in short for the given table and question. The descriptions should be
useful in planning steps that solve the question asked on that table. Also , give a
small description of the table using table name and table data given.
Table:
table name: { self.name }
{ self.table }
Question: { self.question }

Listing 3: Planning Prompt
I need a step -by-step plan in plain text for solving a question , given column
descriptions and table rows. Follow these guidelines:
Begin analyzing the question to categorize tasks that require only SQL capabilities
(like straightforward data formatting , mathematical operations , basic aggregations)
and those that need LLM assistance (like summarization , text interpretation , or
answering open -ended queries).
MySQL Query Generation: For parts of the question that involve formatting of column
data type , filtering and mathematical or analytical tasks , generate SQL query code
to answer them directly , without using an LLM call.
LLM -Dependent Task Identification: For tasks that SQL cannot inherently
perform , specify the columns or portions of rows where LLM calls are needed. Add an
extra column in the result set to store the LLM output for each row in the filtered
data subset.
Example -
<Table Name >
<Table >
Question: <Question >
<Column Descriptions >
<Plan >

Solve for this:
Table:
table name: { self.name }
{ self.table }
Question: { self.question }
{ self.description }
Only give the step -by-step plan and remove any other explanations or code.
Output format:
Step 1: SQL
Step 2: Either SQL or LLM
Step 3: ...
Step 4: ...

Listing 4: Verify Plan Prompt

28282

Suppose you are an expert planner verification agent.
Verify if the given plan will be able to answer the Question asked on this table.
Table name: { self.name }
Table: { self.table }
Column descriptions: { self.description }
Question to Answer: { self.question }
Old Plan: { self.plan }
Is the given plan correct to answer the Question asked on this table (check format
issues and reasoning steps) should be able to guide the LLM to write correct code
and get correct result.
If the plan is not correct , provide better plan detailed on what needs to be done
handling all kinds of values in the column.
- Check if the MySQL step logic adheres to the column format. (Performs calculations
and formatting and filtering in the table)
- The LLM step ’s logic will help in getting the correct answer.
If the original plan is correct then return that plan.

Do not provide code or other explanations , only the new plan.
Output format:
Step 1: Either SQL or LLM - ...
Step 2: SQL or LLM - ...
Step 3: SQL ...

As given in original plan.

Listing 5: Code Execution Prompt
MySQL Code Generation: For parts of the question that involve data

formatting , data manipulations such as filtering , grouping , aggregations , and
creating new tables. Generate optimized MySQL code to
answer those parts directly without using an LLM.

LLM -Dependent Tasks Identification: For tasks that SQL cannot inherently perform
that require sentiment analysis , logical inferences , or questions that involve
interpreting text data , specify only that 1 column where LLM calls are needed. Add
an extra column in the table that stores the LLM output for each row in the filtered
data subset.

Instructions:
1. Store the output at each step by creating a new table. Use this new table for the
next steps.
2. The code for MySQL should handle all values in the column (formatting and
filtering). New columns
from previous LLM steps can be assumed present in table.
3. Don ’t give any other explanations , only MySQL and LLM steps as the given plan.

Then , Only give step (SQL or LLM) that is needed -
The Output format example -
Step 1 - SQL: MySQL code , table name to be used in the next query
Step 2 - LLM:
- Reason: Why we need to use LLM
- Table name:
- original column to be used:
- LLM prompt: The prompt that user can use to solve the problem
- New column name:
Step 3 - SQL: MySQL code , table name to be used in the next query
Step 4 - ...
Step 5 - ...

LLM step format should be the same.
Solve for this question , given table and step by step plan as a reference:
Table name: { self.name }
Schema: { self.table.columns }
Column Descriptions: { self.description }
Table: { self.table }
Question: { self.question }
Plan: { self.plan }

First check if taking above Plan will give the desired output.

28283

Give me code for solving the question , and no other explanations. Keep in mind the
column data formats (string to appropriate data type , removing extra character , Null
values) while writing Mysql code.

Listing 6: LLM Step Prompt
Given a column and step you need to perform on it -
Column: { df.column }
Step to solve the question: { step.prompt }
Question: { self.question }

Instructions:
- Do not provide any explanation and Return only a list (separate values by ’#’)
that can be added
to a dataframe as a new column in a dataframe.
- Do not create a column name already present in the table. (duplicate column)
- Any value should not be more than 3 words (or each value should be as short as
possible).
- Size of output list Should be same as input list.

Listing 7: Answer Extraction Prompt
Table: { self.name }
{ self.table }
Question: { self.question }

Answer the question given the table in as short as possible.
If the table has just one column or value consider that as the answer given the
column name.
Just provide the answer , do not provide any other information.

Listing 8: Answer Format Prompt
Table: { self.name }
{ self.table }
Question: { self.question }

You will be given Answer and Gold Answer , you have to Convert the answer into a
format of gold answer given above , if the content or meaning is same (semantically
same) they should be same.

Few examples of conversion for your understanding:
1. answer: ITA , gold answer: Italy. Reasoning - ITA is country code of Italy hence

ITA and Italy are same and you can convert ITA to Italy.
Your Output: Italy

2. answer: 17, gold answer: 17 years. Reasoning - 17 of answer is same as 17 years of
the gold answer in the given context of question.
Your Output: 17 years

3. answer : 10, gold answer: 10. Reasoning - Since , both values are already same no
conversion is needed.
Your Output: 10

4. answer : 0, gold answer: 5. Reasoning - Since , both values are semantically not
same no conversion is needed for the answer.
Your Output: 0

5. answer : The answer is not present in the table. , gold answer: 5. Reasoning -
Since , both values are semantically not same no convertion is needed for the
answer.
Your Output: The answer is not present in the table.

Listing 9: Plan Optimization Prompt
You are an expert in SQL and plan optimization. Your task is to optimize the given
SQL plan while ensuring it correctly answers the given question. Use the following
optimization strategies , but only if they maintain correctness:

SQL Merge: Merge sequential SQL steps where possible (e.g., combining filtering ,
aggregation , and sorting in one query).
SQL Reordering: Reorder SQL steps to filter early before applying computationally

28284

expensive operations like LLM processing.
LLM Merge: Merge sequential LLM steps where the operation is on the same column.
Given Information: ...
Plan: { self.plan }

A.2 Table and Question Example

Below is an example of a table and question used for LLM planning.

Listing 10: Table and Question Example for LLM Planning
Table: New_York_Americans_soccer

Year Division League Reg_Season Playoffs
National_Cup

0 1931 1.0 ASL 6th (Fall) No playoff
None

1 Spring 1932 1.0 ASL 5th? No playoff 1st
Round

2 Fall 1932 1.0 ASL 3rd No playoff
None

3 Spring 1933 1.0 ASL ? ?
Final

4 1933/34 NaN ASL 2nd No playoff
?

5 1934/35 NaN ASL 2nd No playoff
?

6 1935/36 NaN ASL 1st Champion (no playoff)
?

7 1936/37 NaN ASL 5th, National Did not qualify
Champion

8 1937/38 NaN ASL 3rd(t), National 1st Round
?

9 1938/39 NaN ASL 4th, National Did not qualify
?

10 1939/40 NaN ASL 4th No playoff
?

11 1940/41 NaN ASL 6th No playoff
?

12 1941/42 NaN ASL 3rd No playoff
?

13 1942/43 NaN ASL 6th No playoff
?

14 1943/44 NaN ASL 9th No playoff
?

15 1944/45 NaN ASL 9th No playoff
?

16 1945/46 NaN ASL 5th No playoff
?

17 1946/47 NaN ASL 6th No playoff
?

18 1947/48 NaN ASL 6th No playoff
?

19 1948/49 NaN ASL 1st(t) Finals
?

20 1949/50 NaN ASL 3rd No playoff
?

21 1950/51 NaN ASL 5th No playoff
?

22 1951/52 NaN ASL 6th No playoff
?

23 1952/53 NaN ASL 6th No playoff
Semifinals

24 1953/54 NaN ASL 1st Champion (no playoff)
Champion

25 1954/55 NaN ASL 8th No playoff
?

26 1955/56 NaN ASL 6th No playoff
?

28285

Question: How long did it take for the New York Americans to win the National Cup
after 1936?

A.3 Model Responses

Listing 11: Response to Sample Prompt 1 (Column Description)
Table Description
The table ‘New_York_Americans_soccer ‘ contains historical performance data for the
New York Americans soccer team , detailing their standings in various leagues ,
playoff outcomes , and national cup results from 1931 to 1956. The data includes
information on the year , division , league , regular season standings , playoff
participation , and national cup results.

Column Details

| Column Name | Data Type | Formatting Needed | Column
Description |

|--------------------|-------------|------------------------|--------------|
| Year | String | Standardize to a consistent format
| Represents the year or season of the soccer performance. Some entries may need

parsing to extract the year. |
| Division | Float | Convert to Integer (if applicable)
| Indicates the division in which the team played. Some entries are NaN and need

handling. |
| League | String | Standardize to a consistent format
| Represents the league in which the team participated , primarily ASL (American

Soccer League). |
| Reg_Season | String | Clean and standardize standings
| Indicates the team ’s regular season performance , which may include qualifiers like

"t" or "?" that need clarification. |
| Playoffs | String | Standardize and clean
| Indicates playoff participation and outcomes , with entries like "No playoff" and "

Finals" that need to be standardized. |
| National_Cup | String | Standardize and clean
| Indicates the outcome of the national cup , with entries like "Champion" or "1st

Round" that need standardization. |

Listing 12: Response to Sample Prompt 2 (Planning Prompt)
Plan: Step 1: SQL - Standardize the Year column to a consistent format and extract
the year from entries like "Spring 1932" and "Fall 1932".
Step 2: SQL - Clean and standardize the National_Cup column to identify the years
when the team won the national cup.
Step 3: SQL - Filter the data to find the first year after 1936 when the
National_Cup column indicates a win.

Listing 13: Response to Sample Prompt 3 (Verify Plan Prompt)
New Plan: ### Revised Plan:
Step 1: LLM - Standardize the Year column to a consistent format by extracting the
year from entries like "Spring 1932" and "Fall 1932". Convert all entries to a four -
digit year format (e.g., "1932" instead of "Spring 1932").
Step 2: SQL - Clean and standardize the National_Cup column to identify winning
entries. Define a clear criterion for a "win ," such as entries that contain
"Champion" or "1st Round" (if applicable).
Step 3: SQL - Filter the data to find the first year after 1936 where the
National_Cup column indicates a win. Ensure to handle any NaN or ambiguous entries
appropriately.

A.4 Code Execution Results

Listing 14: Response to Sample Prompt 4 (Code Execution Prompt) Step 1
LLM Step -
- Reason: Standardize the Year column to correct format.

28286

- Table name: New_York_Americans_soccer
- original column to be used: Year
- LLM prompt: Extract the year from phrases like "Spring 1932" or "Fall 1932" and
standardize all entries to a YYYY format. Ensure the output is consistent across all
entries.
- New column name: Year_Formatted.

Dataframe create after LLM Step

Year_Formatted Division League Reg_Season Playoffs
National_Cup

0 1931 1.0 ASL 6th (Fall) No playoff None
1 1932 1.0 ASL 5th? No playoff 1st Round
2 1932 1.0 ASL 3rd No playoff None
3 1933 1.0 ASL ? ? Final
4 1933 NaN ASL 2nd No playoff ?
5 1934 NaN ASL 2nd No playoff ?
6 1935 NaN ASL 1st Champion (no playoff) ?
7 1936 NaN ASL 5th, National Did not qualify Champion
8 1937 NaN ASL 3rd(t), National 1st Round ?
9 1938 NaN ASL 4th, National Did not qualify ?
10 1939 NaN ASL 4th No playoff ?
11 1940 NaN ASL 6th No playoff ?
12 1941 NaN ASL 3rd No playoff ?
13 1942 NaN ASL 6th No playoff ?
14 1943 NaN ASL 9th No playoff ?
15 1944 NaN ASL 9th No playoff ?
16 1945 NaN ASL 5th No playoff ?
17 1946 NaN ASL 6th No playoff ?
18 1947 NaN ASL 6th No playoff ?
19 1948 NaN ASL 1st(t) Finals ?
20 1949 NaN ASL 3rd No playoff ?
21 1950 NaN ASL 5th No playoff ?
22 1951 NaN ASL 6th No playoff ?
23 1952 NaN ASL 6th No playoff Semifinals
24 1953 NaN ASL 1st Champion (no playoff) Champion
25 1954 NaN ASL 8th No playoff ?
26 1955 NaN ASL 6th No playoff ?

Listing 15: Response to Sample Prompt 4 (Code Execution Prompt) Step 2
SQL Step -
CREATE TABLE standardized_national_cup AS
SELECT

Year_Formatted ,
Division ,
League ,
Reg_Season ,
Playoffs ,
CASE

WHEN National_Cup LIKE ’%Champion%’ THEN ’Win’
WHEN National_Cup LIKE ’%1st Round%’ THEN ’Win’
ELSE ’No Win’

END AS National_Cup
FROM New_York_Americans_soccer;
Table created: standardized_national_cup

Dataframe created after loading from standardized_national_cup ...
Year_Formatted Division League Reg_Season Playoffs

National_Cup
0 1931 1.0 ASL 6th (Fall) No playoff No Win
1 1932 1.0 ASL 5th? No playoff Win
2 1932 1.0 ASL 3rd No playoff No Win
3 1933 1.0 ASL ? ? No Win
4 1933 NaN ASL 2nd No playoff No Win
5 1934 NaN ASL 2nd No playoff No Win
6 1935 NaN ASL 1st Champion (no playoff) No Win
7 1936 NaN ASL 5th, National Did not qualify Win
8 1937 NaN ASL 3rd(t), National 1st Round No Win
9 1938 NaN ASL 4th, National Did not qualify No Win

28287

10 1939 NaN ASL 4th No playoff No Win
11 1940 NaN ASL 6th No playoff No Win
12 1941 NaN ASL 3rd No playoff No Win
13 1942 NaN ASL 6th No playoff No Win
14 1943 NaN ASL 9th No playoff No Win
15 1944 NaN ASL 9th No playoff No Win
16 1945 NaN ASL 5th No playoff No Win
17 1946 NaN ASL 6th No playoff No Win
18 1947 NaN ASL 6th No playoff No Win
19 1948 NaN ASL 1st(t) Finals No Win
20 1949 NaN ASL 3rd No playoff No Win
21 1950 NaN ASL 5th No playoff No Win
22 1951 NaN ASL 6th No playoff No Win
23 1952 NaN ASL 6th No playoff No Win
24 1953 NaN ASL 1st Champion (no playoff) Win
25 1954 NaN ASL 8th No playoff No Win
26 1955 NaN ASL 6th No playoff No Win

Listing 16: Response to Sample Prompt 4 (Code Execution Prompt) Step 3
SQL Step -
CREATE TABLE first_win_after_1936 AS
SELECT

Year_Formatted ,
Division ,
League ,
Reg_Season ,
Playoffs ,
National_Cup

FROM standardized_national_cup
WHERE Year_Formatted > ’1936’ AND National_Cup = ’Win’
ORDER BY Year
LIMIT 1;
Table created: first_win_after_1936
Dataframe created after loading from first_win_after_1936 ...

Year_Formatted Division League Reg_Season Playoffs National_Cup
0 1953 None ASL 1st Champion (no playoff) Win

Listing 17: Response to Sample Prompt 5 (Answer Extraction Prompt)
Generated Answer: 17 years
Comparison Result: Yes
Actual answer: 17 years , model answer: 17 years
Answer matched: True

A.5 More Detail on Optimization
We have explored several optimization techniques to enhance the efficiency of our pipeline by reducing
the number of steps generated during query execution. While some of these strategies are detailed in the
section 2, we outline additional key techniques below:

SQL Merging: Figure 4 explains merging sequential SQL steps to optimize the pipeline’s performance.
Since SQL operations follow a logical structure, combining multiple steps into a single query does not
compromise the correctness or integrity of the process. This consolidation reduces the overhead of
executing individual queries and improves the overall efficiency of the pipeline by minimizing redundant
operations and streamlining execution.

Listing 18: Example of Step Merging
Original Plan (Multiple SQL Steps):
SELECT * FROM table WHERE column = ’X’;
SELECT * FROM table ORDER BY date DESC;

Optimized (Merged into a Single Step):
SELECT * FROM table WHERE column = ’X’ ORDER BY date DESC;

28288

Figure 4: Optimization using SQL step merging

Parallel LLM Execution: Initially, we prompted the LLM to generate a new column by supplying the
entire existing column and asking it to return a list of the same length. However, this approach often led
to inconsistent results, such as incorrect list lengths, duplicated values, or hallucinated entries, due to the
model’s sensitivity to long input sequences. Errors were especially prevalent in the middle of the list,
consistent with the “Lost in the Middle” effect (Liu et al., 2024a).

Figure 5: Optimizing LLM Calls: Chunk-based processing on Rows

To improve both reliability and efficiency, we adopted a chunk-wise parallel execution strategy that
avoids the overhead of row-by-row processing while enhancing consistency. As illustrated in Figure 5,
we segment the input into appropriately sized batches and execute multiple LLM calls in parallel. This
design enables simultaneous inference over different parts of the data, substantially reducing latency by
eliminating sequential processing bottlenecks. The result is faster response times and improved scalability,
making this approach well-suited for large-scale reasoning tasks over semi-structured data.

Column-Wise Batching: Conventional LLM pipelines often chunk inputs row-wise, generating one
column value per row across a batch. In contrast, we propose a column-wise batching strategy, depicted
in Figure 6, which processes multiple columns for a small chunk of rows in a single call.

28289

Figure 6: Optimizing LLM Calls: Chunk-based processing on Columns

Weaver implements this with a fixed maximum batch size defined in terms of the total number of values
(columns × rows). To handle cases where the number of selected columns is large and could exceed the
context length, the strategy adaptively adjusts the number of rows based on the number of columns (e.g.,
if more columns are included, fewer rows are processed per batch, while a smaller number of columns
allows more rows). This adaptive trade-off ensures that the total input length remains manageable and
consistent across diverse table structures.
This approach preserves intra-row context across multiple attributes of the same entity, reducing in-
consistencies that arise when attributes are generated independently. It is particularly advantageous in
Retrieval-Augmented Generation (RAG) systems and memory-augmented pipelines, where repeated LLM
calls over fragmented inputs can be inefficient. By extracting all relevant information in one unified
query, column-wise batching lowers computational costs while maintaining high accuracy in entity-level
reasoning.

Listing 19: Examples of Different Plan Optimization
Question - The Kremlin Cup is held in Russia , and the St. Petersburg Open is also
held in Russia.

Plan:
Step 1: SQL - Filter the table to select tournaments with the names "Kremlin Cup"
and "St. Petersburg Open".

Step 2: SQL - Extract the country information from the Tournament column for the
selected tournaments.

Step 3: LLM - Summarize the results to confirm that both tournaments are held in
Russia.

Optimized Plan:
Step 1: SQL - Filter the table to select tournaments with the names "Kremlin Cup"
and "St. Petersburg Open", and extract the country information from the Tournament
column in a single query.

Step 2: LLM - Summarize the results to confirm that both tournaments are held in
Russia.

A.6 More Detail on handling Multimodal data

The proposed pipeline Figure 7 is modular and designed for extensibility. Each component can be
upgraded such as substituting the SQL Query Executor with an expert SQL agent to enhance execution
efficiency and accuracy. Likewise, the LLM Semantic Reasoner and VLM (Vision Language Model)
components can be replaced with specialized reasoning agents, allowing Weaver to adapt to evolving
multimodal requirements.

28290

Figure 7: Modular Pipeline for query execution

Processing Paragraph: To address unstructured textual content outside the table (i.e., paragraph data),
we filter these texts for relevance to both the question and the tabular data. The filtered content is used
as an auxiliary knowledge source during LLM steps. This enables the system to either incorporate the
external text into the tabular context or leverage it directly in the final answer generation step, depending
on the Planner Agent’s discretion.

Figure 8: Paragraph-aware Weaver pipeline

This design supports robust integration of text, table, and visual data, ensuring that the system remains
scalable, accurate, and adaptable across diverse input modalities.

A.7 Additional Analysis

Table 7 shows the number of LLM and SQL steps used by Weaver , across different models on WikiTQ.

Steps GPT-4o GPT-4o-mini Gemini-2.0-Flash

LLM Steps 46 178 122
SQL Steps 1530 1407 1510

Total 1576 1585 1632

Table 7: Number of LLM steps and SQL steps used in Weaver on WikiTQ.

Token Usage Analysis: We compared the average token usage (input/output) per Table QA pair
across ProTrix, H-STAR, and Weaver using three different LLM backends. As shown in Table 8,
Weaver maintains competitive token efficiency, especially in output size, while enabling structured multi-
step reasoning. Notably, ProTrix appears lightweight due to its limited planning, whereas H-STAR and
Weaver consume similar token budgets despite Weaver offering higher accuracy. Binder is excluded from
this comparison due to its excessive API usage (see Table 4).

Token Usage/Query GPT-4o (I/O) GPT-4o-mini (I/O) Gemini-2.0-Flash (I/O)

ProTrix 445.57 / 317.14 564.3 / 388.85 559.94 / 220.44
H-STAR 8,836 / 842 8,994 / 854 10,284 / 702
Weaver 8,568 / 725 8,723 / 796 6,041 / 545

Table 8: Token usage comparison per Table QA (Input/Output tokens).

28291

B Dataset Details

In this section, we describe the used dataset in details.
- Short-Form Answering (WikiTQ): WikiTQ is a dataset designed for short-form answering where the
steps to reach the answer can be relatively complex and the expected answer is a short piece of information.
For example, the query “Which country had the most competitors?” in Figure 1. This task is ideal for
testing how well information retrieval from a semi-structured table can be handled.
- Fact-Checking (TabFact): TabFact focuses on fact-checking tasks where the query involves verifying
whether a particular statement is true or false. For example, the query, “Is the GDP of Japan in 2022
greater than that of Germany?” evaluates the framework’s ability to correctly interpret data points in
complex tables and make valid judgments.
- Numerical Reasoning (FinQA): FinQA (Financial QA) is a dataset that requires the model to perform
arithmetic operations or infer relationships between numerical values across different columns. For exam-
ple, “What is the total revenue of Company X in 2021 after deducting expenses?” tests the model’s ability
to handle numerical data and apply operations such as summation, subtraction, or other mathematical
reasoning tasks.
- Multimodal Dataset (FinQAMM, OTT-QAMM, MMTabQAMM): FinQAMM and OTT-QAMM are datasets
that require reasoning across both tabular data and accompanying textual context (typically a paragraph)
to answer questions correctly. Unlike traditional table QA tasks, these benchmarks challenge the model
to integrate information from both structured (tables) and unstructured (text) modalities. For instance,
in FinQA, financial metrics are found in the table, while their definitions, dependencies, or contextual
cues are only available in the surrounding text. Similarly, OTT-QA includes open-domain trivia questions,
where the relevant answers often span both the table and the associated paragraphs.

MMTabQAMM is a multimodal dataset that requires reasoning across both tabular data and visual
information. Unlike traditional table QA tasks, it incorporates both text and images within its tables,
challenging the model to integrate structured (tables), unstructured (text), and visual (images) modalities.
The data set consists of query demands that combine textual descriptions, numerical data, and visual cues
from images. For example, a question might ask about the relationship between financial data in the table
and trends depicted in an image. MMTabQAMM tests the model’s ability to perform complex multimodal
reasoning, requiring SQL, LLM, and VLM calls to accurately derive answers. This makes it a valuable
benchmark for evaluating systems that integrate and reason over multimodal inputs.

C Few-Shot Prompting for Plan Generation

We use a few-shot prompting approach to generate plans during the planning stage. Through our analysis
of various complex data problems, we identified three broad categories of transformation challenges that
commonly arise. For each category, we manually crafted a representative example, rather than using
examples from any particular dataset, to serve as in-context prompts. This was done to avoid memorization
bias and to encourage cross-dataset generalization. These examples were specifically designed to capture
the reasoning skills required for hybrid queries. We will include them in the appendix for clarity and
reproducibility in the final version. Below are the three categories and the corresponding examples with
sample tables:

• Semantic reasoning from textual content: These are cases where a column contains long or
descriptive text, and we want the LLM to reason some semantic information which can be either
direct extraction from text (e.g., extract topic from abstract text) or inference from text (e.g., infer
sentiment from a text).

Listing 20: Few-shot examples for semantic reasoning from textual content

Table: grocery_shop

item_description sell_price buy_price
"Indulge your senses with this botanical blend of rosemary and lavender. Gently

28292

cleanses while nourishing your hair , leaving it soft , shiny , and revitalized ."
7.99 4.99

Question: Which item category has the highest average profit?

Plan:
Step 1: LLM - Item_category column needs to be created using item_description column

.
Step 2: SQL - Calculate average profit for each category and find the maximum.

• Commonsense or background knowledge inference: In these cases, the required information is
not explicitly present in the table but can be inferred using commonsense knowledge or facts the
LLM is likely to have been trained on. We prompt the LLM to infer and populate a new column
based on the existing data.

Listing 21: Few-shot examples for commonsense or background knowledge inference

Table: order_delivery_history

Order ID Product Event Timestamp (Local) Location
101 Laptop Dispatched 2025 -01 -14 08:00 AM Los Angeles , USA
101 Laptop Arrived at Hub 2025 -01 -15 03:00 AM Chicago , USA

Question: Which location had the maximum time taken between dispatch at one location
and arrival or delivery at a subsequent location?

Plan:
Step 1: LLM - Convert local timestamps to UTC time for all events.
Step 2: SQL - Sort events within each Order_ID and Product by Timestamp_UTC.
Step 3: SQL - Pair Dispatched events with the corresponding Arrived at Hub or
Delivered events for each order/product and calculate the time difference.
Step 4: SQL - Display the final output with paired events , durations , and relevant
information sorted by Order_ID and Product.

• Pre-processing or normalization of non-SQL-friendly columns: These are cases where a column
contains values that are too diverse or unstructured to be directly used in a SQL query. Since the
full table is not visible to the LLM and generating an exhaustive list of conditions is infeasible, we
prompt the LLM to generate a cleaned or normalized version of the column that can be used in
downstream SQL queries.

Listing 22: Few-shot examples for pre-processing or normalization of non-SQL-friendly columns
Table: Israel at the 1972 Summer Olympics

Name Placing
Shaul Ladani 19
Esther Shahamorov Semifinal (5th)
Listeravov Shamil 12th

Question: Who has the highest placing rank?

Plan:
Step 1: LLM - Format the column Placing by extracting only numerical values (e.g. 5
from Semifinal (5th)) and converting the text into numbers (e.g. Semifinal to 5,
12th to 12, 19 to 19).
Step 2: SQL - Retrieve the highest placing (rank) from the placing column by
selecting the minimum number in the list as lower number corresponds to higher rank.

D Additional Discussion

LLM Utility in Column Transformation and Semantic Inference: Our core contribution lies in
how we effectively leverage LLMs beyond what traditional SQL systems can offer, specifically in tasks

28293

involving column transformation and semantic inference. Weaver integrates LLM reasoning for two
primary purposes: (i) handling tasks that SQL cannot perform, such as entity extraction or parsing
ambiguous formats A.2 and (ii) inferring implicit knowledge based on pretraining, where the LLM is
tasked with verifying a plan that involves semantic understanding Figure 2.

A detailed example from the WikiTQ dataset in Appendix A.2 (Listing 12) demonstrates the LLM’s
capability to normalize complex date strings like Spring 1932 or 1935/36 into standardized YYYY formats.
This transformation, impossible through SQL alone, was completed through a single LLM step with high
consistency.

Listing 23: Example explaination
Processes complex date formats (e.g., "Spring 1932", "1935/36" , "1937")
Standardizes them into YYYY format (1932 , 1936, 1937 respectively)

Additionally, our hybrid planning enables seamless coordination between SQL and LLM steps, as
seen in examples involving multi-column reasoning (e.g., from a movies table with columns movie name,
review content, movie information, and release date).

Listing 24: Example explaination
Question: "What movies suitable for kids with positive reviews should be recommended
based on their reviews after 2018?"

Plan:
SQL: Filter movies released after 2018 using the release_date column:

SELECT * FROM movies WHERE release_date > 2018;

LLM: Utilize a Large Language Model (LLM) to evaluate whether a movie is suitable
for children by processing:
movie_info (structured metadata)
review_content (unstructured user reviews)
new column: suitable_movies

SQL: Apply SQL filtering to retain only movies flagged as suitable by the LLM:
SELECT * FROM movies WHERE suitable_movies = ’Yes ’;

LLM: For the filtered movies , check which movies have positive reviews based on:
movie_info
review_content
new column: recommended

SQL: Apply SQL filtering to retain only movies which are recommended:
SELECT * FROM movies WHERE recommended = ’Yes ’;

Beyond Semi-structured Text: We define semi-structured tables following prior work (Gupta et al.,
2020), focusing on unstructured or free-form content embedded within structured table formats, such as
textual cells requiring semantic interpretation, rather than on hierarchical structures like JSON or HTML
trees. While our current benchmarks focus on flat tables, the primary challenges we address stem from
this embedded unstructured content. These challenges often require semantic inference, an area where
traditional SQL struggles and large language models (LLMs) are critical in bridging the gap. Examples
include inconsistencies in formatting, reliance on domain-specific knowledge, and implicit contextual
cues necessary for accurate query interpretation.

Additionally, our approach is easily extendable to hierarchical data formats (e.g., HTML, nested
JSON) through structure decoding. These formats can be transformed into a flattened, normalized table
representation and then processed using Weaver . However, as we discuss later, such datasets typically
lack the complex hybrid queries involving multi-step reasoning and semantic inference, which are the
primary focus of our work.

Filtering Hybrid Queries using Binder: To filter hybrid queries from their original dataset counterparts,
we leverage Binder’s query structure. Specifically, we identify queries that invoke any UDF, for example

28294

‘QA‘ function as seen in the example below, which prompts the LLM with a yes/no question related to a
single column. This serves as a reliable indicator that the query requires semantic reasoning beyond SQL
capabilities. The example below demonstrates such a pattern, where the QA function is applied to assess
contextual understanding. This filtering process ensures that the LLM is used for its intended purpose,
semantic inference or interpretation, aligned with the methodology outlined in the section 2.

Listing 25: Example Binder-style UDF SQL query using QA function
Question: what number of games were lost at home?

UDF SQL query :
SELECT COUNT (*) FROM w WHERE QA(" map@is it a loss ?"; ‘result/score ‘) = ’yes ’
AND QA(" map@is it the home court of New Orleans Saints ?"; ‘game site ‘) = ’yes ’

E Comparison with Existing Datasets

Several benchmark datasets, such as Spider (Yu et al., 2018), HiTab (Cheng et al., 2022), and BIRD (Li
et al., 2023) have contributed significantly to multi-hop and multi-table question answering. However,
these benchmarks primarily emphasize symbolic SQL reasoning and do not align with the hybrid reasoning
focus of Weaver , which requires coordinated symbolic (SQL-based) and semantic (LLM-based) reasoning.

Spider was designed for cross-domain Text-to-SQL parsing over a variety of databases. While it
features compositional queries, the questions can typically be answered using SQL alone. Despite recent
augmentations that add paraphrasing and perturbation, the core tasks remain fully executable without any
semantic interpretation, making Spider insufficient for evaluating hybrid symbolic-semantic pipelines.

HiTab focuses on hierarchical tables and structural decoding challenges. Although it includes tables
that require some normalization or flattening, once transformed, the resulting queries involve only 2–3
simple SQL operations (e.g., filtering, aggregation). Importantly, these tasks do not demand semantic
reasoning or LLM-based operations, limiting HiTab’s suitability for hybrid evaluation.

BIRD is a large-scale, multi-table QA benchmark that emphasizes compositional and multi-hop rea-
soning over relational tables. It serves as a rigorous testbed for symbolic systems. However, as we detail
below, it lacks tasks that truly require hybrid semantic-symbolic coordination.

E.1 Evaluation on BIRD Dataset

We evaluate Weaver on the BIRD benchmark using GPT-4o as the backend. Weaver achieves an accuracy
of 91%, on a manually curated subset of 30 queries from the BIRD development set. We found that these
sampled queries could be solved entirely using symbolic SQL execution alone, without invoking any
LLM-based semantic reasoning. These results demonstrate that while Weaver is highly effective on BIRD,
the dataset’s symbolic nature limits its value for testing hybrid reasoning capabilities. Most BIRD tasks
can be completed in 3–4 SQL steps involving standard operations like joins, filtering, and sorting. For
instance, consider the query:

Listing 26: Example execution plan
Question: Please list the lowest ten eligible free rates for students aged 5-17
in continuation schools. Eligible free rates Free Meal Count (Ages 5-17) /
Enrollment (Ages 5-17)

Plan:

SQL: Join the frpm table with the schools table using School Type and SOCType ,
filtering for "Continuation High Schools ".
SQL: Compute eligible free rates per school using the formula: Free Meal Count
(Ages 5-17) / Enrollment (Ages 5-17).
SQL: Sort schools by the calculated rate in ascending order.
SQL: Select the ten schools with the lowest eligible free rates.

SQL Queries Generated -

28295

Step 1: SELECT f.* FROM frpm f JOIN schools s ON f.School Type = s.SOCType WHERE
s.SOCType = ’Continuation High Schools ’;

Step 2: CREATE TABLE eligible_free_rates AS SELECT School Name , School Type , Free
Meal Count (Ages 5-17), Enrollment (Ages 5-17), (Free Meal Count (Ages 5-17) /
Enrollment (Ages 5-17)) AS eligible_free_rate FROM continuation_schools;

Step3: CREATE TABLE sorted_eligible_free_rates AS SELECT * FROM eligible_free_rates
ORDER BY eligible_free_rate ASC;

Step 4: CREATE TABLE lowest_ten_eligible_free_rates AS SELECT * FROM
sorted_eligible_free_rates LIMIT 10;

Despite the multi-hop joins, these tasks do not require semantic disambiguation, commonsense reason-
ing, or LLM-assisted table understanding. As such, BIRD was excluded from our main hybrid benchmark
comparison table, though its results highlight Weaver ’s strong symbolic reasoning capabilities.

Why Existing Datasets Fall Short? While Spider, HiTab, and BIRD advance multi-hop QA in important
ways, none capture the core challenges of hybrid queries where symbolic (SQL) and semantic (LLM)
steps must be interleaved. Weaver is explicitly designed for such hybrid workflows, requiring intelligent
planning, decomposition, and alternating execution paths capabilities not required in these prior datasets.

E.2 Execution Strategy in the Weaver Pipeline

Why SQL Execution Alone Was Insufficient? In Weaver , SQL execution alone does not yield the final
answer because the retrieved table may contain extraneous data or errors, particularly if any SQL-LLM
steps fail or produce incomplete results. Although SQL retrieves the data, it cannot handle formatting
issues, missing values, or the semantic reasoning required to extract the correct answer. Therefore, an
LLM is used post-execution to refine the table, correct formatting, and extract only the relevant values,
ensuring accurate final answers that SQL alone cannot guarantee.

Why SQL and LLM Outputs Are Not Combined? Unlike methods like H-STAR, which execute
SQL and LLM in parallel, Weaver selectively chooses whether SQL or LLM should handle each query
part. This planning-based approach improves efficiency by avoiding the computational cost of parallel
execution. As shown in Table 5: Number of API Calls Comparison per Table QA, H-STAR requires
8 LLM API calls per query, whereas Weaver averages only 5.4, significantly reducing overhead and
improving overall performance.

E.3 Rationale for Using SQL over Python

While Python offers greater expressiveness, we selected SQL for three key reasons that align with the
objectives of our framework:

• Portability: SQL is the standard query language supported by most database engines, ensuring our
approach can be easily integrated into real-world systems.

• Interpretability: SQL’s declarative nature makes queries more transparent, facilitating step-by-step
explainability in the planning pipeline.

• Efficiency: SQL operations, such as filtering, aggregation, and joins, are highly optimized for
symbolic inference over tabular data, enabling faster execution on large datasets without requiring
data export.

SQL is well-suited for our use case because Weaver is designed for seamless integration with database
systems and big data environments. In contrast, Python-based solutions like Pandas can encounter
scalability issues, while SQL is inherently optimized to efficiently handle large-scale tabular data.

28296

F Comparison with Related Table Reasoning Methods

Chain-of-Table (Wang et al., 2024) represents an approach to table reasoning using iterative, chain-of-
thought style planning. Weaver differs fundamentally in its methodology: it first generates a complete,
high-level plan based on the question, table, and metadata, and only then begins executing each step. This
global planning phase ensures interpretability and consistency across steps, similar to thinking several
moves ahead in chess, rather than incrementally generating one step at a time. Because Chain-of-Table
and ReAcTable both follow an incremental, step-by-step execution pattern, we included ReAcTable as
a baseline. While ReAcTable captures a similar iterative reasoning paradigm, Weaver ’s novelty lies in
decoupling reasoning from execution through its upfront, verifiable planning.
The TAG framework requires manually crafted code or logic for each user query and does not support
direct natural language query execution without human intervention. Comparing such methods to natural-
language-driven systems like Weaver would introduce unfair bias. TAG remains a relevant and valuable
framework and will serve as a future benchmark once Weaver is extended to handle multi-table logic.

G Future Work

The modular design of Weaver naturally supports extensions to more complex settings. While our
experiments focus on single-table English datasets to isolate hybrid reasoning capabilities, the model
is not inherently limited to such settings. Preliminary tests on more complex datasets support this
generalization: on BIRD, a multi-table benchmark, primarily solving tasks via only SQL, and on HiTab,
which contains hierarchical tables, flattening and normalizing the schema enabled similar SQL-based
execution. These results demonstrate that Weaver can adapt to multi-table and hierarchical structures
when semantic inference is not required (see Appendix E).
Looking forward, Weaver can be extended along three directions. First, hierarchical or nested tables
could be supported by preserving context across nested attributes and extending the LLM+SQL planning
strategy. Second, multi-table datasets can be handled through schema-aware planning and cross-table
reasoning while maintaining hybrid execution. Third, non-English tables can be incorporated by leveraging
multilingual LLMs or language-specific prompts. These directions highlight Weaver ’s potential to scale
seamlessly to diverse, real-world, and multilingual datasets, extending its applicability well beyond the
single English tables evaluated here.

28297

