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Abstract

Temporal Domain Generalization (TDG) aims
to generalize across temporal distribution shifts,
e.g., lexical change over time. Prior work of-
ten addresses this by predicting future model
weights. However, full model prediction is
prohibitively expensive for even reasonably
sized models. Thus, recent methods only pre-
dict the classifier layer, limiting generalization
by failing to adjust other model components.
To address this, we propose Temporal Experts
Averaging (TEA), a novel and scalable TDG
framework that updates the entire model us-
ing weight averaging to maximize generaliza-
tion potential while minimizing computational
costs. Our theoretical analysis guides us to
two steps that enhance generalization to future
domains. First, we create expert models with
functional diversity yet parameter similarity by
fine-tuning a domain-agnostic base model on
individual temporal domains while constrain-
ing weight changes. Second, we optimize the
bias-variance tradeoff through adaptive averag-
ing coefficients derived from modeling tempo-
ral weight trajectories in a principal component
subspace. Expert’s contributions are based on
their projected proximity to future domains. Ex-
tensive experiments across 7 TDG benchmarks,
5 models, and 2 TDG settings shows TEA out-
performs prior TDG methods by up to 69%
while being up to 60x more efficient1.

1 Introduction

Temporal Domain Generalization (TDG) (ying Bai
et al., 2022; Nasery et al., 2021; Qin et al., 2022;
Xie et al., 2024c,a; Yong et al., 2023; Xie et al.,
2024b) aims to generalize to unseen future data
under temporal distribution shift without retraining
the models, as illustrated in Fig. 1. Unlike tradi-
tional Domain Generalization (DG), which lacks
target domain information (Li et al., 2017a; Muan-
det et al., 2013; Li et al., 2018a,b), TDG often

1Code: https://github.com/zxcvfd13502/TEA
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Figure 1: Examples of temporal domain generalization
(TDG) span both (a) vision and (b) language tasks. TDG
aims at enabling models trained on historical data to
directly generalize to future data without retraining.

leverages temporal patterns for prediction to better
adapt the models for future domains by predicting
model weights, such as forecasting NLP research
trends (Yao et al., 2022a). However, prior work has
scaling limitations. For example, early brute-force
methods predict entire models, but have prohibitive
computational costs when scaling up the model
and dataset size (Nasery et al., 2021; ying Bai et al.,
2022; Qin et al., 2022). As shown in Fig. 2a, recent
methods improve efficiency by only predicting the
classifier (Xie et al., 2024c,b), but sacrifice gen-
eralization capabilities from keeping other model
components frozen. Thus, these methods struggle
to surpass basic ERM baselines when scaling-up
benchmarks (Yao et al., 2022a; Lin et al., 2022).

To address the scaling challenges, we propose
Temporal Experts Averaging (TEA), a TDG frame-
work based on weight averaging (WA) that predicts
the averaging coefficients of temporal experts for
future domains. However, WA methods for DG,
e.g., (Cha et al., 2021; Rame et al., 2022; Worts-
man et al., 2022), lack mechanisms to exploit tem-
poral patterns in TDG. We identify two key capa-
bilities required to leverage temporal patterns for
WA through a bias-variance-covariance-locality de-
composition analysis of generalization error. First,
model weights need functional diversity, yet pa-
rameter similarity. Second, optimizing averaging
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(b) Our Temporal Expert Averaging (TEA) framework

Figure 2: TDG framework comparison. (a) Classifier-only TDG (Xie et al., 2024c,b) only predicts future classifiers
to reduce computational costs in scaled-up scenarios, but limits generalization potential by neglecting other model
components. (b) Our Temporal Expert Averaging (TEA) enables higher generalization potential by adjusting the
entire model through predicting future averaging coefficients of temporal experts capturing diverse functionalities.
The low-dimensional nature of these coefficients ensures TEA’s efficiency in scaled-up scenarios.

coefficients to achieve better bias-variance trade-
offs than uniform averaging.

To this end, our TEA satisfies the first criteria
by training a domain-agnostic base model on all
source domains, followed by constrained incremen-
tal fine-tuning on each individual domain. To fulfill
the second criteria, we extract principal compo-
nents from the deviations between expert weights
and the base model, creating a low-dimensional
subspace to model temporal weight trajectories.
This enables forecasting future domain positions
and averaging experts based on their projected prox-
imity to the future domain. This enables TEA to
temporally-adapt all model parameters with com-
putational costs comparable to standard ERM train-
ing, offering higher generalization potential than
merely adjusting the classifier.

The superiority of TEA is demonstrated through
comprehensive evaluation across 7 diverse TDG
benchmarks and 5 different models, covering both
vision and language tasks. Beyond standard TDG
with simultaneous access to all source domains, we
also evaluate on Continual Domain Generalization
over Temporal Drift (CDGTD) settings, where new
domains arrive sequentially. Across this extensive
evaluation, TEA consistently achieves new state-of-
the-art results, outperforming prior TDG methods
by up to 69% while being up to 60x more efficient.

Our contributions can be summarized as follows:
• We propose TEA, a novel weight-averaging-

based TDG framework that efficiently enhances
generalization across temporal shifts with broad
model/dataset compatibility.

• We provide valuable theoretical insights on the
under-explored WA-TDG integration, design our
method based on these insights, and validate our
insights and method through superior generaliza-
tion performance across various benchmarks.

• We enhance TDG evaluation comprehensiveness

by addressing both TDG and CDGTD, unlike
prior work that typically focused on just one set-
ting. This includes introducing CLEAR-10 and
CLEAR-100 (Lin et al., 2022) as new evaluation
benchmarks for TDG.

2 Related Work

Temporal Domain Generalization (TDG) (Ortiz-
Jiménez et al., 2019; Mancini et al., 2019; Wang
et al., 2020; ying Bai et al., 2022; Nasery et al.,
2021; Zeng et al., 2023; Wang et al., 2022; Xie
et al., 2024c,a; Yong et al., 2023; Xie et al., 2024b)
exploits temporal patterns in ordered domains with
smooth distribution shifts to enhance generaliza-
tion to future domains. Early approaches like
GI (Nasery et al., 2021) and DRAIN (ying Bai et al.,
2022) predict entire model parameters, but face
computational challenges with large-scale models,
while recent methods like EvoS (Xie et al., 2024c)
and W-Diff (Xie et al., 2024b) reduce costs by
only adjusting classifiers, potentially limiting gen-
eralization. TDG encompasses multiple settings:
the original setting with simultaneous access to all
source domains, Continual Domain Generalization
over Temporal Drift (CDGTD) with sequentially
available domains, and Continuous Temporal Do-
main Generalization (CTDG) for continuously dis-
tributed temporal data. We focus on the original
TDG and CDGTD settings as CTDG remains im-
practical for most realistic benchmarks.

Domain Adaptation and Generalization. En-
abling models to perform well on out-of-
distribution (OOD) data has been a crucial chal-
lenge in machine learning. Two specific tasks
highly relevant to our work are Domain Adapta-
tion (DA) and Domain Generalization (DG). DA
methods (Saenko et al., 2010; Sun et al., 2015;
Sun and Saenko, 2016; Gong et al., 2012; Tzeng
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et al., 2017; Li et al., 2016) typically adapt mod-
els against distribution shift by utilizing data from
the target domain. In contrast, DG methods (Li
et al., 2017a; Muandet et al., 2013; Li et al., 2018a,
2017b; Gulrajani and Lopez-Paz, 2021; Li et al.,
2018b, 2019) operate without target domain infor-
mation, solely leveraging source domain patterns
to enhance OOD generalization.

Weight Averaging (WA) (Cha et al., 2021,
2022; Rame et al., 2022; Wortsman et al., 2022)
proves effective for Domain Generalization, with
DiWA (Rame et al., 2022) showing reduced vari-
ance against marginal distribution shifts. While
WA is also used in Multi-task Learning (Ilharco
et al., 2022b; Yadav et al., 2023; Ortiz-Jimenez
et al., 2023; Wang et al., 2024; Stoica et al.,
2023), with our design partly inspired by task arith-
metic (Ilharco et al., 2022a), fundamental differ-
ences between MTL and TDG make direct applica-
tion impractical.

3 Temporal Experts Averaging

Let X be the input space, Y the label space, ℓ :
Y2 → R+ a loss function, {Di} a sequence of
domains with timestamps ti ∈ T and distributions
pi. Given source domains DS = {Di}Si=1, where
t1 < . . . < tS , and a neural network f(·, θ) :
X → Y with weights θ, we aim to minimize the
generalization error at future time tf > tS :

Ef (θ) = E(x,y)∼pf [ℓ(f(x, θ), y)]. (1)

We obtain the weights of S temporal expert mod-
els {θi}Si=1 = {θ(li)}Si=1, where θi is optimized
for domain Di while using data from other do-
mains, with learning procedure noted as li =
{{Di}Si=1, ti, c} and other configurations (e.g.,
hyper-parameters) as c. We leverage temporal pat-
terns to derive adaptive coefficients {αi}Si=1, where∑S

i=1 αi = 1 and αi ≥ 0, for combining expert
weights into the final weight θTEA, formulated as:

fTEA ≜ f(·, θTEA),

θTEA ≜
S∑

i=1

αi

(
{ti}Si=1, {θi}Si=1, tf

)
· θi. (2)

To leverage temporal shift patterns for reducing fu-

ture generalization error, we gain insight into TEA
through theoretical analysis in Section 3.1. Follow-
ing the insights, we implement our TEA by creat-
ing functionally diverse yet parametrically similar

experts {θi}Si=1 (Section 3.2) and determining coef-
ficients {αi}Si=1 based on expert-future proximity
(Section 3.3). Section 3.4 describes how we adapt
TEA to the CDGTD setting.

3.1 Theoretical Analysis and Insights

To gain insight into TEA, we extend DiWA’s (Rame
et al., 2022) theoretical analysis developed for DG
to our WA-TDG integration setting. Since our pri-
mary goal is to guide method design, we briefly
summarize the theoretical analysis and results in
the main text, with complete derivations and proofs
available in Appendix C.
Bias-variance-covariance-locality Decomposi-
tion. Similar to DiWA (Rame et al., 2022), we
introduce the bias-variance-covariance-locality
(BVCL) decomposition of generalization error
for TDG and TEA by leveraging the similarity
between averaging in weight space and function
space. Denoting Ef = E(x,y)∼pf , l = {l1, . . . , lS},
f̄i(x) = Eli [f(x, θ(li))], biasi = y − f̄i(x),

vari = Eli

[(
f(x, θ(li))− f̄i(x)

)2]
, covi,j =

Eli,lj

[(
f(x, θ(li))− f̄i(x)

) (
f(x, θ(lj))− f̄j(x)

)]

and ∆{θ} = maxSi=1 ∥θi − θTEA∥2, the expected
generalization error on future timestamp tf of
θTEA =

∑S
i=1 αiθi over the joint distribution of

the learning procedures is:

El[Ef (θTEA)] = Ef [B + V + C] +O(∆̄2), (3)

B =

(
S∑

i=1

αi · biasi

)2

, V =

S∑

i=1

α2
i · vari,

C =
∑

i ̸=j

αiαjcovi,j , ∆̄2 = El

[
∆{θ}

]
.

To reduce future generalization error in Equa-
tion 3, we can control learning procedures {li}Si=1

affecting expert weights {θi}Si=1 and modify av-
eraging coefficients {αi}Si=1, which constitute the
key differences between our TEA and WA for typ-
ical DG. While finding optimal solutions remains
challenging due to real-world complexity, quali-
tative analysis provides valuable insights summa-
rized as two tradeoffs implemented through experts
and coefficients respectively. See Appendix C for
detailed analysis and assumptions.

Insight 1 Tradeoff between Functional Diversity
and Parameter Similarity among Experts. Covari-
ance C reduction necessitates functional diversity
among experts, while the locality constraint ∆̄2

demands parameter similarity among experts.
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Figure 3: Overview of our TEA framework. Firstly, we obtain a base model θbase through domain-agnostic
pretraining on all source domains, then derive experts θ1, ..., θn via constrained domain-specific incremental
finetuning in reverse temporal order. Secondly, we apply PCA to expert weight deviations {θi − θbase}ni=1, forecast
future positions along the P most significant components with Autoregressive Integrated Moving Average (ARIMA),
effectively projecting experts into a low-dimensional space for prediction. Finally, we assign averaging coefficients
based on projected expert-future proximity, where closer experts receive higher coefficients.

Insight 2 Tradeoff between Bias and Variance via
Averaging Coefficients. Reducing variance V re-
quires averaging weights evenly, while reducing
bias B demands concentrating coefficients on ex-
perts with lower bias magnitudes on future data.

3.2 Training Temporal Experts

TDG assumes smooth temporal distribution shifts
with moderate changes between adjacent domains.
This allows an expert to be fine-tuned for learning
domain-specific functionality of neighboring do-
mains with minimal parameter adjustments. There-
fore, we can satisfy Insight 1 through incremen-
tal domain-specific fine-tuning while constraining
minimal parameter changes. However, a prerequi-
site is that experts must have already thoroughly
learned the intrinsic distribution.

A "pretraining-finetuning" approach is adopted
for our expert training that efficiently generates
diverse temporal experts with similar parameters.
The overall process can be formulated as:

θbase = θS+1 = θ(lERM(DS)), (Pretraining)

θi = θ(lSI({Dti}, θi+1)), (Finetuning)

where i ∈ {S, . . . , 1},DS = {D1, . . . , DS}, lERM
represents the Empirical Risk Minimization (ERM)

learning process, and lSI represents the learning pro-
cess with Synaptic Intelligence (SI) (Zenke et al.,
2017) constraining parameter changes.

Pretraining aims to capture intrinsic, time-
invariant distributions. We apply standard ERM
training with source domains {D1, . . . , DS}. No
temporal information is incorporated during this
stage. Unlike WA for DG (Cha et al., 2021, 2022;
Rame et al., 2022; Wortsman et al., 2022), we up-
date normalization layers during pretraining to pre-
vent underfitting, as TDG exhibits smaller distribu-
tion differences than DG settings.

Temporal Finetuning sequentially adapts the base
model to capture time-varying distributions. We
freeze the normalization layers and proceed in re-
verse temporal order (tS → . . . → t1) in this stage.
For each domain Di, we uniformly sample K
weights during finetuning, {θki }Kk=1, and expert θi
is obtained by uniform averaging: θi =

∑K
k=1

1
K θki

SI (Zenke et al., 2017) is used to constrain pa-
rameter changes, which also prevent catastrophic
forgetting of intrinsic distributions, but other con-
tinual learning methods can also be used. Since
later fine-tuning stages are influenced by previous
ones, we use reverse temporal order (recent to ear-
liest) to better capture distributions from recent
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domains that more likely resemble future test do-
mains under smooth distribution shift assumptions.

3.3 Adaptive Weight Averaging
If future weights are available, we could satisfy
Insight 2 by assigning coefficients based on expert-
future weight proximity. However, precisely pre-
dicting the future in high-dimensional weight space
is both hard and computationally prohibitive. In
contrast, our TEA approach only needs relative
rankings of expert-future proximity. Thus, we
project experts into a low-dimensional space that
captures the principal components of weight tempo-
ral evolution, enabling us to predict future positions
and measure expert-future proximity efficiently for
assigning averaging coefficients.

PCA over Temporal Weight Deviation. The
weight deviations {δθi}Si=1, δθi = θi − θbase of all
experts estimates weight dynamics under temporal
distribution shifts. We apply PCA to {δθi}Si=1 to
decompose the principal components of weight
temporal evolution and reduce noise. By con-
sidering only the P most significant components
{vp}Pp=1, we can obtain a P -dimensional space and
project the experts into points in this space, where
ci = (c1i , ..., c

P
i ) is the projection of θi:

ci = (c1i , ..., c
P
i ) (4)

= (⟨θi − θbase, v1⟩, . . . , ⟨θi − θbase, vP ⟩)

Principal Component Trajectory Forecasting.
We construct a temporal evolution trajectory of
the P principle components using all experts’ pro-
jected points and their timestamps, {(ci, ti)}Si=1.
Then we predict the future domain position in this
P -dimensional space by forecasting along this tem-
poral evolution trajectory. As we often have limited
temporal domains available leading to few histor-
ical points in the trajectory, we simply model the
P -dimensional trajectory as P separate time series,
{(cpi , ti)}Pi=1 for p ∈ {1, ..., P}, by treating all the
dimensions independently. For prediction, we ap-
ply the Autoregressive Integrated Moving Average
(ARIMA) model to each time series:

cp(tf ) = ARIMA({(cpi , ti)}Si=1, tf ) (5)

where p ∈ {1, ..., P} and tf is the future domain’s
timestamp. The predicted future point in the princi-
ple component space is cf = (c1(tf ), ..., c

P (tf )).

Distance-based Averaging Coefficients. Based on
Insight 2, we assign higher averaging coefficients to

experts with greater expert-future proximity (lower
expert-future distance) in the principal component
space. Specifically, for expert θi with projected
point ci = (c1i , ..., c

P
i ) and our predicted future

point cf = (c1(tf ), ..., c
P (tf )), we calculate dis-

tance di = ∥ci−cf∥. We then assign the averaging
coefficient for θi as:

αi =
(dmax − di)

r

∑n
j=1(dmax − dj)r

, (6)

where dmax = max(d1, ..., dn) and r is a hyperpa-
rameter controlling the sharpness of the weighting
distribution. Higher r concentrates the averaging
more on experts closer to the predicted future.

3.4 TEA for CDTDG
The TEA method targets the original TDG setting
with simultaneous access to all source domains,
while the CDTDG setting only provides sequential
access to domains. Simply sampling models dur-
ing incremental learning fails because adjacent do-
mains exhibit both temporal distribution shifts and
newly introduced data variations, causing signifi-
cant parameter differences that violate the locality
constraints.

We, therefore, slightly relax the CDTDG con-
straints by maintaining small memory buffers (e.g.,
10%) of seen training data {d1, d2, . . . , dS} from
each domain. After training sequentially on all
source domains, we can utilize the data in these
stored buffers for our temporal finetuning and fore-
casting, avoiding the expensive cost of storing and
revisiting full training data. Based on this relax-
ation, we apply the original TEA framework:

θbase = θS+1 = θ(lIncERM({DS})) (Pretraining)

θi = θ(lSI({dti}, θi+1)), (Finetuning)

where i ∈ {S, . . . , 1}, lIncERM is the incremental
learning process with ERM, and lSI is the learning
process with SI constraining parameter changes.

4 Experimental Results

We first introduce the major experimental se-
tups, with detailed configurations provided in Ap-
pendix A. For fair and consistent comparisons, we
follow the configurations from Xie et al. (2024c,b)
for all benchmarks, except for CLEAR-10&100
which are not covered in these works.
Benchmarks. We include Huffpost, Arxiv, Year-
book and FMoW from Yao et al. (2022a), CLEAR-
10/100 from Lin et al. (2022), and Rotated MNIST
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Dataset Metric
Method TEA (ours)

ERM IRM CORAL Mixup LISA GI§ LSSAE§ SWAD DiWA

Yearbook
(Yao et al., 2022a)

DS+1 89.30 97.09 95.94 94.98 95.51 97.42 93.93 97.18 97.66 97.71
OODavg. 88.46 94.52 91.79 91.12 92.97 96.37 92.12 95.00 95.36 95.95
OODworst 86.81 92.58 88.84 88.35 91.29 95.73 88.75 93.89 94.42 94.80

RMNIST
DS+1 98.15 95.10 93.04 97.11 96.21 97.78 96.73 97.93 97.67 98.61

OODavg. 92.14 85.05 79.10 89.66 87.04 91.00 90.36 94.51 92.06 94.47
OODworst 83.89 72.52 62.96 79.63 75.15 82.46 82.13 84.89 84.31 88.83

FMoW
(Yao et al., 2022a)

DS+1 72.43 64.77 62.14 70.27 70.05 61.62 59.15 71.59 73.85 75.63
OODavg. 59.76 54.92 51.42 57.73 55.52 50.83 48.66 59.96 60.77 62.45
OODworst 49.85 46.51 42.19 48.04 44.61 42.78 41.38 50.48 51.00 52.45

CLEAR-10
(Lin et al., 2022)

DS+1 80.83 77.50 77.57 78.57 71.50 72.73 55.63 69.20 81.03 83.53
OODavg. 81.20 77.03 77.89 78.21 70.89 71.31 55.74 68.14 81.17 83.16
OODworst 80.83 76.60 77.47 76.90 70.27 70.33 54.83 67.53 80.60 82.43

CLEAR-100
(Lin et al., 2022)

DS+1 63.92 57.74 61.95 62.96 53.80 51.87 39.82 47.38 65.64 67.39
OODavg. 63.19 56.79 60.53 62.42 52.82 51.06 39.41 46.04 64.71 66.96
OODworst 62.62 56.24 59.46 61.93 52.08 50.32 38.87 45.18 63.96 66.43

Huffpost
(Yao et al., 2022a)

DS+1 72.74 71.04 71.34 73.34 72.19 68.06 - 73.40 73.31 73.43
OODavg. 71.50 70.31 70.08 71.16 70.24 66.32 - 71.59 71.51 72.12
OODworst 69.63 68.97 68.68 69.29 68.60 64.64 - 70.10 70.18 70.64

Arxiv
(Yao et al., 2022a)

DS+1 57.49 51.11 50.98 57.58 56.53 53.43 - 57.08 57.21 59.28
OODavg. 52.38 45.89 45.77 52.77 52.41 49.19 - 52.96 52.80 55.23
OODworst 49.28 42.86 42.71 49.62 49.67 46.13 - 50.09 49.92 52.31

Overall Avg.
DS+1 76.41 73.48 73.28 76.40 73.68 71.70 - 73.25 77.91 79.37

OODavg. 72.66 69.22 68.08 71.87 69.13 67.87 - 69.74 74.77 75.76
OODworst 69.13 64.90 62.04 67.54 65.95 64.63 - 65.71 70.55 72.56

Table 1: Accuracy (%) on all benchmarks under TDG setting. Baselines include ERM, IRM (Arjovsky et al., 2019),
CORAL (Sun and Saenko, 2016), Mixup (Zhang et al., 2018), LISA (Yao et al., 2022b), GI (Nasery et al., 2021),
LSSAE (Qin et al., 2022), SWAD (Cha et al., 2021), and DiWA (Rame et al., 2022). Best and second-best results
are bolded and underlined. For FMoW, CLEAR-10&100, Huffpost and Arxiv, we only apply GI to classifiers due
to backbone size limitations. LSSAE only applies to image benchmarks. § indicates TDG baselines.

(RMNIST). Huffpost and Arxiv are text bench-
marks; others are image benchmarks. RMNIST
and Yearbook are small-scale; others are large in
comparison. Each dataset is divided into first S
source and last F target domains with ratios S : F
of: Yearbook (16:5), RMNIST (6:3), FMoW (13:3),
Huffpost (4:3), Arxiv (9:7), and CLEAR-10/100
(5:5). Each source domain uses a random 90%-10%
train-validation split.

Model Architectures. We use: 4-layer CNN for
Yearbook, ConvNet (Qin et al., 2022) for RMNIST,
DenseNet-121 (Huang et al., 2017) for FMoW, Dis-
tilBERT (Sanh et al., 2019) for Huffpost/Arxiv, and
ResNet-18/50 (He et al., 2016) for CLEAR-10/100.

Baselines: For TDG, we evaluate against ERM,
IRM (Arjovsky et al., 2019), CORAL (Sun and
Saenko, 2016), Mixup (Zhang et al., 2018),
LISA (Yao et al., 2022b), GI (Nasery et al., 2021),
LSSAE (Qin et al., 2022), SWAD (Cha et al.,
2021), and DiWA (Rame et al., 2022), where GI
and LSSAE are representative TDG methods and
SWAD and DiWA are representative weight averag-
ing approaches. For CDGTD, we include Incremen-
tal ERM (IncERM), Mixup (Zhang et al., 2018),
SimCLR (Chen et al., 2020), SwAV (Caron et al.,

2020), EWC (Kirkpatrick et al., 2017), SI (Zenke
et al., 2017), A-GEM (Chaudhry et al., 2018),
DRAIN (ying Bai et al., 2022), EvoS (Xie et al.,
2024c), and W-Diff (Xie et al., 2024b), with EvoS
and W-Diff being state-of-the-art CDGTD meth-
ods. Due to computational constraints (e.g., GI
finetuning costs 400 GPU hours per epoch), full GI
and DRAIN are applied only on Yearbook and RM-
NIST. For larger benchmarks, we use GI without
finetuning and apply DRAIN only to the classifier.

Method Configurations. TEA maintain equivalent
total training steps (e.g., 25 baseline epochs = 20
pretraining + 5 finetuning for TEA). Other TEA
and baseline details are in Appendix A.2.

4.1 Results

TDG setting results and comparisons are pre-
sented in Table 1. Our TEA outperforms all base-
line methods on both image and text benchmarks.
Specifically, we observe: a). Prior TDG baselines
(GI (Nasery et al., 2021) and LSSAE (Qin et al.,
2022)) perform well on small-scale benchmarks
(RMNIST and Yearbook (Yao et al., 2022a)) but
degrade significantly on other large-scale bench-
marks (Lin et al., 2022; Yao et al., 2022a). While
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Dataset Metric
Method TEA (ours)

IncERM Mixup SimCLR SwAV EWC SI A-GEM DRAIN§ EvoS§ W-Diff§

Yearbook
(Yao et al., 2022a)

DS+1 96.61 90.21 95.94 97.37 97.18 97.09 94.36 96.23 97.37 97.32 97.75
OODavg. 94.72 89.83 93.07 94.27 95.12 94.67 90.96 94.71 95.53 95.03 95.29
OODworst 93.48 88.43 89.65 91.44 93.64 93.48 88.88 93.73 94.78 94.05 94.40

RMNIST
DS+1 98.62 98.43 98.23 98.08 98.56 98.61 95.99 98.52 98.64 98.70 98.74

OODavg. 92.80 92.38 90.98 90.85 92.02 93.27 86.95 93.09 93.84 94.12 93.76
OODworst 84.61 83.45 81.05 80.96 82.80 85.65 75.45 85.75 87.04 87.36 87.05

FMoW
(Yao et al., 2022a)

DS+1 65.52 64.84 64.97 66.47 66.23 66.61 54.54 67.22 67.18 68.80 67.87
OODavg. 53.99 52.00 53.20 54.51 54.55 54.89 47.61 55.05 54.64 55.86 55.21
OODworst 45.23 42.54 44.71 45.29 45.80 46.46 41.13 46.24 45.86 46.51 46.27

CLEAR-10
(Lin et al., 2022)

DS+1 75.90 74.97 78.43 77.53 75.07 76.73 60.67 74.40 77.03 68.00 79.20
OODavg. 75.82 74.99 78.41 78.05 73.71 76.07 59.49 74.52 77.06 67.85 77.87
OODworst 74.83 74.10 77.73 77.13 72.30 75.00 58.17 73.97 76.87 66.03 77.43

CLEAR-100
(Lin et al., 2022)

DS+1 56.73 51.68 60.52 58.89 56.22 31.76 23.61 54.74 57.02 52.33 58.93
OODavg. 55.67 50.86 59.67 57.59 55.20 30.82 22.55 53.16 56.09 51.92 58.43
OODworst 54.47 50.32 58.65 56.53 54.30 30.35 21.64 51.90 55.47 51.65 57.70

Huffpost
(Yao et al., 2022a)

DS+1 73.57 73.07 - - 73.64 72.58 72.23 73.42 73.42 73.91 73.99
OODavg. 71.98 71.52 - - 71.53 71.50 71.16 71.75 72.36 72.29 72.40
OODworst 69.80 69.44 - - 68.99 69.61 69.10 69.69 70.19 70.40 70.61

Arxiv
(Yao et al., 2022a)

DS+1 56.22 56.64 - - 56.60 49.98 52.02 56.04 56.60 56.66 57.34
OODavg. 52.43 52.95 - - 52.78 47.27 48.91 52.07 53.15 53.43 54.20
OODworst 49.37 49.97 - - 49.73 44.77 46.03 48.97 50.19 50.70 51.41

Overall Avg.
DS+1 73.88 72.01 - - 74.79 69.34 64.77 74.29 75.32 73.67 76.26

OODavg. 71.23 69.55 - - 71.88 66.48 61.34 70.99 71.81 70.07 72.45
OODworst 67.59 65.46 - - 67.84 63.40 57.09 67.94 68.63 66.67 69.27

Table 2: Accuracy (%) under CDGTD setting. Baselines include: ERM (IncERM), Mixup (Zhang et al., 2018),
SimCLR (Chen et al., 2020), SwAV (Caron et al., 2020), EWC (Kirkpatrick et al., 2017), SI (Zenke et al., 2017),
A-GEM (Chaudhry et al., 2018), DRAIN (ying Bai et al., 2022), EvoS (Xie et al., 2024c), and W-Diff (Xie et al.,
2024b). Best and second-best results are bolded and underlined. For FMoW, CLEAR-10/100, Huffpost and Arxiv,
DRAIN is only applied to classifiers due to backbone size limitations. SimCLR and SwAV only apply to image
benchmarks. § indicates TDG baselines.

GI’s poor performance potentially stems from com-
putational constraints preventing finetuning stage,
LSSAE was fully applied, indicating that prior
TDG methods also struggle to model temporal dis-
tribution shifts on large-scale tasks beyond com-
putational limitations. In contrast, TEA consis-
tently improves performance across all scales, out-
performing GI by up to 30% and LSSAE by up
to 69%; b). TEA also consistently outperforms
weight averaging methods (DiWA (Rame et al.,
2022) and SWAD (Cha et al., 2021)), validating
that our approach not only benefits from sampling
experts with functional diversity and parameter sim-
ilarity but further leverages adaptive averaging co-
efficients to specifically address temporal shifts,
thereby enhancing temporal generalization beyond
standard weight averaging techniques.
CDGTD setting results and comparisons are pre-
sented in Table 2. Our TEA still achieves the best
performance on average, outperforming state-of-
the-art CDGTD baselines, EvoS (Xie et al., 2024c)
and W-Diff (Xie et al., 2024b). On text benchmarks,
our TEA consistently performs the best, while on
image benchmarks, although different benchmarks
favor different methods, our TEA generally ranks
within the top two. These results demonstrate the
superiority and flexibility of TEA, showing that

TEA can effectively improve temporal generaliza-
tion even under imited data access constraints.
Training Cost Analysis is presented in Table 3.
Early TDG methods (GI (Nasery et al., 2021),
LSSAE (Qin et al., 2022), and DRAIN (ying Bai
et al., 2022)) significantly increase training costs
(see Yearbook and RMNIST for full costs). Even
classifier-only W-Diff averages 81× the training
cost. In contrast, our TEA only slightly increases
cost by 33% over ERM in both TDG and CDGTD,
being up to 60x more efficient.

4.2 Ablation Study and Analysis
Single Model Ablation results are shown in Ta-
ble 4. The Random Expert average accuracies from
randomly selected temporal experts, while Last
Expert shows accuracies from the last domain ex-
perts. Random Expert performs worse than ERM,
indicating that our method does not simply im-
prove domain-agnostic convergence during fine-
tuning. Last Expert outperforms Random Expert,
demonstrating that our temporal finetuning enables
the model to learn domain-specific distributions,
achieving functional diversity among experts.
Weight Averaging Ablation are shown in Table 4.
Recall that TEA optimizes two tradeoffs: (1) func-
tional diversity vs. parameter similarity (with tem-
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Method Yearbook RMNIST C10 C100 FMoW HuffPost Arxiv Overall Rel. Cost
TDG setting

ERM 0.02 0.02 0.30 1.58 2.34 3.05 7.92 2.18 1.00
GI 0.21 1.31 0.32∗ 3.54∗ 5.35∗ 3.87∗ 9.75∗ 3.48 12.01
LSSAE 0.19 0.22 2.19 9.43 12.05 - - - 7.78
TEA 0.04 0.04 0.33 1.62 2.43 3.23 8.57 2.32 1.33

CDGTD setting
IncERM 0.02 0.02 0.30 1.58 2.34 3.03 7.95 2.18 1.00
DRAIN 0.05 0.13 0.33† 1.75† 2.45† 3.07† 8.86 2.38 2.05
EvoS 0.07 0.07 0.38 1.67 2.56 3.08 9.04 2.41 1.80
W-Diff 3.12 6.74 3.47 32.35 65.31 13.18 77.93 28.87 81.01
TEA 0.04 0.04 0.32 1.64 2.46 3.19 8.65 2.33 1.33

Table 3: Training cost (hours on A40 GPU) for each method. Rel. Cost is the computational cost ratio vs.
ERM/IncERM, averaged across all tasks. C10 and C100 refer to CLEAR-10 and CLEAR-100 (Lin et al., 2022)
respectively. ∗GI without finetuning. †Classifier-only DRAIN.

Configuration Yearbook RMNIST FMoW C10 C100 Huffpost Arxiv Overall
Single Model
- ERM 88.46 92.14 59.76 81.20 63.19 71.50 52.38 72.66
- Random Expert 87.46 82.29 59.37 81.63 63.26 71.34 52.05 71.06
- Last Expert 95.42 92.17 60.49 81.53 63.16 71.33 54.57 74.10
Weight Averaging
- Only Temporal Experts 95.41 92.64 60.54 82.12 66.32 71.43 53.79 74.61
- Only Adaptive Averaging 94.03 92.92 60.83 83.07 66.85 71.73 53.26 74.67
Full TEA (ours) 95.95 94.47 62.45 83.16 66.96 72.12 55.23 75.76

Table 4: Ablation study of TEA components under the TDG setting with OOD average accuracy (%). C10 and
C100 refer to CLEAR-10 and CLEAR-100 (Lin et al., 2022) respectively.

Coeffs Yearbook RMNIST Arxiv Overall

ERM 88.46 92.14 52.38 72.66
Correct 95.95 94.47 55.23 75.76
Reversed 82.95 77.03 50.13 70.05

Table 5: Sanity check with correct and reversed coeffi-
cients. Overall is averaged across the 7 benchmarks.

poral experts), and (2) bias vs. variance (with
adaptive averaging). Only Temporal Experts uses
uniform coefficients to average experts, optimiz-
ing only tradeoff 1, while Only Adaptive Averag-
ing samples domain-agnostic weights then trains
Time2Vec (Kazemi et al., 2019) for adaptive coeffi-
cients (detailed in Appendix A.3), optimizing only
tradeoff 2. Both variants underperform full TEA,
validating the necessity of both design choices.

Temporal Sanity Check are shown in Figure 4 and
Table 5. Our adaptive averaging should increase
coefficients for better-performing experts on future
domains while decreasing coefficients for poor per-
formers. Figure 4 confirms this design by showing
higher coefficients for higher-performing models
on domain DS+1. Table 5 validates our design by
showing that reversing coefficient order leads to
worse OOD accuracy than ERM.

Partial Expert & Fine-tuning Ablation. We in-
vestigate TEA’s scalability by fine-tuning on do-
main subsets using two strategies: Last (recent do-
mains closest to future) and Uniform (uniform sam-

Strategy Ratio Yearbook FMoW

Last
25% 95.45 60.88
50% 95.34 61.66
75% 95.46 62.26

Uniform
25% 95.18 60.76
50% 95.35 61.26
75% 95.50 61.69

All 100% 95.95 62.45

Table 6: Ablation study on partial expert fine-tuning
accuracy (%) across domain selection strategies (Last,
Uniform, All) at different ratios (25%, 50%, 75%). We
report OODavg for each dataset. Fine-tuning on recent
domains performs comparably to all domains.

pling). Table 6 shows results with 25%, 50%, and
75% domain ratios on Yearbook and FMoW (Yao
et al., 2022a) under the TDG setting. Performance
improves with more domains, and selecting recent
domains significantly outperforms uniform selec-
tion with limited experts, confirming temporally
closer domains are more crucial and suggesting
fine-tuning only on recent domains could maintain
performance while reducing costs.

Ablation Study on Memory Buffer Size. We eval-
uate five buffer sizes (1%, 3%, 5%, 10%, and 20%)
in the CDGTD setting. Table 7 shows that 1% and
3% buffer exhibits lower performance, while 5%
closely approaches 10% performance. Expanding
to 20% yields only marginal improvements. Re-
sults demonstrate that 5%–10% buffer sizes pro-
vide optimal balance between memory efficiency
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Time:

(a) Yearbook.

Time:

(b) FMoW.

Figure 4: Visualization of averaging coefficients and accuracies of experts on target domain DS+1.

Buffer RMNIST Yearbook FMoW Arxiv
1% 92.99 92.78 53.20 52.17
3% 93.37 94.43 53.76 53.76
5% 93.51 95.15 54.63 54.10

10% 93.77 95.20 55.21 54.20
20% 92.71 95.47 55.37 54.43

Table 7: Ablation study on memory buffer size in
CDGTD setting across different buffer sizes (1%, 3%,
5%, 10%, 20%). OODavg accuracy (%) is reported. 5%-
10% buffer sizes achieve good balance between memory
efficiency and generalization performance.

Method Buffer Domain Yearbook FMoW
IncERM – – 94.72 53.99

TEA
10% All 95.20 55.21
5% Last 5 95.03 54.48
5% Last 3 94.94 54.38

Table 8: Joint reduction of buffer and domain ablation
in CDGTD setting. OODavg accuracy (%) is reported.
5% buffer size with the last 3-5 domains achieves com-
parable performance to a 10% buffer across all domains
while providing up to 11× memory reduction.

and performance, justifying our 10% choice.

Joint Reduction of Buffer and Domain. Table 8
shows that we can further compress total buffer
size in CDGTD setting through joint buffer and
domain reduction. 5% buffer with last 3-5 domains
achieves comparable performance to 10% buffer
across all domains with substantial generalization
gains over IncERM, while reducing the buffer size
requirements by up to 11×.

Abrupt and Unpredictable Shift Ablation. Ta-
ble 9 shows results using shuffled source domains
to simulate abrupt distribution shifts on Yearbook
and FMoW. Theoretically, under abrupt shifts,
TDG degrades to standard DG where TEA’s adap-
tive averaging gains should diminish while model
averaging effects remain. Results align with the-
ory: TEA with shuffled domains (TEA-S) performs
worse than standard TEA but remains comparable
with strong DG baseline DiWA, demonstrating ro-
bustness when temporal assumptions are violated.

Fine-tuning Order Ablation. We compare chrono-
logical and reverse fine-tuning orders in both TDG
and CDGTD settings. Table 10 shows that reverse

Method Distribution Yearbook FMoW
ERM Both 88.46 59.76
DiWA Both 95.36 60.77
TEA-S Abrupt 95.47 60.85
TEA Smooth 95.95 62.45

Table 9: Ablation study on abrupt distribution shifts:
shuffled vs. unshuffled source domains. OODavg ac-
curacy (%) is reported. TEA maintains generalization
gains despite abrupt distribution changes and remains
comparable to strong DG baselines like DiWA. ERM
and DiWA are unaffected by smooth vs. abrupt shifts.

Setting Order Yearbook FMoW

TDG Chronological 95.46 61.31
Reverse 95.95 62.45

CDGTD Chronological 95.17 54.68
Reverse 95.29 55.21

Table 10: Ablation study on fine-tuning order comparing
chronological vs. reverse strategies. OODavg accuracy
(%) is reported. Reverse fine-tuning consistently outper-
forms across TDG and CDGTD.

fine-tuning consistently outperforms chronological
fine-tuning by up to 2% on Yearbook and FMoW.
The advantage becomes more pronounced on large-
scale benchmarks like FMoW, justifying our re-
verse fine-tuning strategy where experts are trained
from most recent to earliest domains.

5 Conclusion

In this work, we propose Temporal Expert Aver-
aging (TEA), an efficient weight averaging frame-
work for scaled-up Temporal Domain Generaliza-
tion (TDG) tasks. Based on theoretical insights,
TEA uses constrained temporal finetuning to create
functionally diverse yet parameter-similar experts,
then adaptively averages them using coefficients de-
rived from temporal dynamics of weight deviation
principal components. Comprehensive evaluation
demonstrates TEA’s superior performance and ef-
ficiency across TDG and CDGTD settings. Since
prior TDG work focuses on small-scale scenarios,
we hope this encourages research on large-scale
temporal generalization.
Acknowledgments. This material is based upon
work supported, in part, by a grant from Meta.
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6 Limitations

Like prior TDG methods, our TEA relies on smooth
distribution shift assumptions and cannot guarantee
performance with abrupt shifts. Additionally, since
most large-scale TDG benchmarks use discrete do-
mains, we only explored discrete settings, though
TEA could theoretically extend to Continuous Tem-
poral Domain Generalization (CTDG).

However, the smooth distribution shift assump-
tion already provides TEA and TDG methods with
broad application potential, as many real-world
phenomena exhibit gradual temporal changes, in-
cluding language semantic evolution, object ap-
pearance variations, and fashion trend shifts. On
the other hand, when this assumption is violated,
the task setting reverts to standard Domain Gener-
alization (DG), and our ablation studies show that
TEA maintains considerable generalization gains
even under abrupt distribution shifts, demonstrating
robustness beyond its theoretical assumptions.

TEA can theoretically accommodate CTDG set-
tings by utilizing continuous timestamps rather
than discrete temporal labels. However, we are con-
strained by the lack of large-scale CTDG datasets,
as existing continuous temporal datasets remain
small-scale while our focus is on scaling up TDG
for large-scale scenarios. We will explore this di-
rection in future work when large-scale continuous
temporal datasets become available.
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A Experimental Setup Details

A.1 Benchmark Introduction

Huffpost (Ginosar et al., 2015) is a text classifica-
tion benchmark comprising news headlines from
The Huffington Post spanning 2012-2018. The
task requires classifying headlines into 11 news
categories: “Black Voices”, “Business”, “Com-
edy”, “Crime”, “Entertainment”, “Impact”, “Queer
Voices”, “Science”, “Sports”, “Tech”, and “Travel”.
This temporal dataset captures evolving journalistic
styles and content trends in digital media over six
years. We adopt a temporal split using the first 4
years as training domains and the final 3 years as
test domains for evaluating temporal generalization.
Sample distributions across domains are detailed
in Table 11.
Arxiv (Ginosar et al., 2015) is a text classification
benchmark containing paper titles and their corre-
sponding primary categories spanning 2007-2022.
The task requires classifying research papers into
one of 172 categories based solely on their titles.
This temporal dataset reflects the dynamic evolu-
tion of research fields, with changing academic
trends and emerging disciplines captured across
the 16-year timespan. We adopt a temporal split
using the first 9 years as training domains and the
final 7 years as test domains for evaluating tem-
poral generalization. Sample distributions across
domains are presented in Table 12.

Yearbook dataset, sourced from Yao et al.
(2022a) and built upon the MIT-licensed Portraits
dataset (Ginosar et al., 2015), comprises 32×32
grayscale yearbook portraits from 128 American
high schools across 27 states. Spanning eight
decades (1930-2013), this temporal dataset cap-
tures the evolution of fashion trends and societal
changes, making it particularly suitable for eval-
uating algorithmic performance on temporal do-
main shift. We formulate the task as binary gender
classification, partitioning the timeline into 4-year
intervals to create 21 distinct domains. Following
standard practice, we allocate the initial 16 domains
for training and reserve the final 5 domains for out-
of-domain evaluation. Sample distributions across
domains are detailed in Table 13.

Rotated MNIST (RMNIST) derives from the clas-
sic MNIST dataset (Deng, 2012) by systemati-
cally applying rotational transformations from 0°
to 80° in 10° increments, creating 9 sequential
domains that simulate temporal distribution shift.
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This benchmark evaluates 10-class digit classifica-
tion performance on 28×28 grayscale images under
gradually increasing rotational distortion. We adopt
a 6-3 domain split, utilizing the initial six domains
for model training and evaluating generalization on
the final three domains.

FMoW (Ginosar et al., 2015) contains 224×224
RGB satellite imagery spanning 2002-2017 across
200 countries. This temporal benchmark captures
natural evolution in visual features driven by hu-
man development and environmental changes over
time. The classification task involves predicting
functional land use across 62 categories, ranging
from residential areas to industrial facilities. We
partition the dataset temporally with each year con-
stituting a distinct domain, yielding 16 total do-
mains. Training utilizes the first 13 domains, while
the final 3 domains serve as out-of-distribution test
sets. Domain-wise sample distributions are pro-
vided in Table 14.

CLEAR-10&100 (Lin et al., 2022) contain user-
uploaded images from 2007-2014 with natural tem-
poral shifts of visual concepts. Samples are or-
ganized into 10 chronologically ordered domains.
CLEAR-10 comprises 10 classes with 3,000 sam-
ples per domain (300 per class), while CLEAR-
100 contains 100 classes with 10,000 samples per
domain (100 per class). We set the image input
shape as (224, 224, 3) and use the first 5 domains
as source domains and the final 5 domains as target
domains for temporal generalization evaluation.

Domain Year Training Split Validation Split All

1 2012 6701 744 7446
2 2013 7492 832 8325
3 2014 9539 1059 10599
4 2015 11826 1313 13140
5 2016 10548 1172 11721
6 2017 7907 878 8786
7 2018 3501 388 3890

Total 2012–2018 57514 6386 63907

Table 11: Domain Sizes for Huffpost (Yao et al., 2022a)

A.2 Method Configurations

Huffpost (Yao et al., 2022a) uses pretrained Distil-
BERT base model (Sanh et al., 2019) as the back-
bone. All baseline methods are trained on 90% ran-
domly split training data from source domains for
50 epochs with learning rate 2e-5 (except A-GEM
which uses 1e-7). Other baseline configurations
follow Xie et al. (2024c,b).

Domain Year Training Split Validation Split All

1 2007 131550 14616 146167
2 2008 62460 6939 69400
3 2009 206244 22916 229161
4 2010 50665 5629 56295
5 2011 55741 6193 61935
6 2012 51678 5741 57420
7 2013 64951 7216 72168
8 2014 79498 8833 88332
9 2015 193979 21553 215533
10 2016 120682 13409 134092
11 2017 111024 12336 123361
12 2018 123891 13765 137657
13 2019 142767 15862 158630
14 2020 166014 18445 184460
15 2021 201241 22360 223602
16 2022 89765 9973 99739

Total 2007–2022 1852150 205786 2057952

Table 12: Domain Size for Arxiv (Yao et al., 2022a)

Domain Interval Training Split Validation Split All

1 1930 – 1933 758 87 845
2 1934 – 1937 1149 130 1279
3 1938 – 1941 949 108 1057
4 1942 – 1945 2353 263 2616
5 1946 – 1949 1229 138 1367
6 1950 – 1953 1082 122 1204
7 1954 – 1957 1646 185 1831
8 1958 – 1961 1295 146 1441
9 1962 – 1965 1468 166 1634
10 1966 – 1969 2227 249 2476
11 1970 – 1973 1634 183 1817
12 1974 – 1977 2238 250 2488
13 1978 – 1981 1553 175 1728
14 1982 – 1985 2331 261 2592
15 1986 – 1989 1792 201 1993
16 1990 – 1993 1729 195 1924
17 1994 – 1997 1882 211 2093
18 1998 – 2001 2136 239 2375
19 2002 – 2005 1868 210 2078
20 2006 – 2009 1010 114 1124
21 2010 – 2013 1102 125 1227

Total 1930 – 2013 33431 3758 37189

Table 13: Domain Sizes for Yearbook (Yao et al., 2022a)

TEA for Huffpost uses the same DistilBERT back-
bone. Under TDG setting, TEA first trains on all
source domain training splits using ERM for 45
epochs with learning rate 2e-5 during the pretrain-
ing stage, then performs temporal finetuning for
5 epochs on each domain in reverse temporal or-
der (from 2015 to 2012) using SI with learning
rate 5e-6 and constraint strength csi = 0.1. Under
CDGTD setting, we adopt 47-epoch incremental
ERM training on each domain (from 2012 to 2015)
with learning rate 2e-5, followed by 30 temporal
finetuning epochs on each domain in reverse tempo-
ral order (from 2015 to 2012) using SI with learning
rate 5e-6 and constraint strength csi = 0.1. Note
that temporal finetuning under CDGTD uses only
10% of the data, so the total training cost remains
47+30×0.1=50 epochs. During temporal finetun-

28210



Domain Year Training Split Validation Split All

1 2002 1676 227 1903
2 2003 2279 276 2555
3 2004 1755 240 1995
4 2005 2512 324 2836
5 2006 3155 406 3561
6 2007 1497 190 1687
7 2008 2261 298 2559
8 2009 7439 935 8374
9 2010 18957 2456 21413
10 2011 22111 2837 24948
11 2012 24704 3138 27842
12 2013 3465 385 3850
13 2014 5572 620 6192
14 2015 8885 988 9873
15 2016 14363 1596 15959
16 2017 5534 615 6149

Total 2002–2017 126165 15531 141696

Table 14: Domain Sizes for FMoW (Yao et al., 2022a)

ing on each domain, we sample model weights at
K = 5 evenly spaced training steps and uniformly
average them to obtain expert model weights. For
PCA on expert deviations, we use the top 10 prin-
cipal components. For ARIMA estimation, we
employ an ARIMA(1,1,1) model. When comput-
ing averaging coefficients, we set the sharpness
hyperparameter r = 5.
Arxiv (Yao et al., 2022a) also uses pretrained Dis-
tilBERT base model (Sanh et al., 2019) as the back-
bone. All baseline methods are trained on 90% ran-
domly split training data from source domains for
5 epochs with learning rate 2e-5 (except A-GEM
which uses 1e-6). Other baseline configurations
follow Xie et al. (2024c,b).

TEA for Arxiv uses the same DistilBERT back-
bone. Under TDG setting, TEA first trains on
all source domain training splits using ERM for
4 epochs with learning rate 2e-5 during the pre-
training stage, then performs temporal finetuning
for 1 epoch on each domain in reverse temporal
order (from 2015 to 2007) using SI with learn-
ing rate 5e-6 and constraint strength csi = 0.1.
Under CDGTD setting, we adopt 4-epoch incre-
mental ERM training on each domain (from 2007
to 2015) with learning rate 2e-5, followed by 10
temporal finetuning epochs on each domain in re-
verse temporal order (from 2015 to 2007) using
SI with learning rate 5e-6 and constraint strength
csi = 0.1. Note that temporal finetuning under
CDGTD uses only 10% of the data, so the total
training cost remains 4+10×0.1=5 epochs. During
temporal finetuning on each domain, we sample
model weights at K = 5 evenly spaced training
steps and uniformly average them to obtain expert

model weights. For PCA on expert deviations, we
use the top 10 principal components. For ARIMA
estimation, we employ an ARIMA(1,1,1) model.
When computing averaging coefficients, we set the
sharpness hyperparameter r = 5.

Yearbook (Yao et al., 2022a) uses a 4-layer convo-
lutional network from Yao et al. (2022a). All base-
line methods are trained on 90% randomly split
training data from source domains for 50 epochs
with learning rate 1e-3. Other baseline configura-
tions follow Xie et al. (2024c,b).

TEA for Yearbook uses the same 4-layer convolu-
tional network from Yao et al. (2022a). Under TDG
setting, TEA first trains on all source domain train-
ing splits using ERM for 40 epochs with learning
rate 1e-3 during the pretraining stage, then per-
forms temporal finetuning for 10 epochs on each
domain in reverse temporal order (from D16 to
D1) using SI with learning rate 5e-4 and constraint
strength csi = 0.1. Under CDGTD setting, we
adopt 48-epoch incremental ERM training on each
domain (from D1 to D16) with learning rate 1e-
3, followed by 20 temporal finetuning epochs on
each domain in reverse temporal order (from D16 to
D1) using SI with learning rate 5e-4 and constraint
strength csi = 0.1. Note that temporal finetuning
under CDGTD uses only 10% of the data, so the
total training cost remains 48+20×0.1=50 epochs.
During temporal finetuning on each domain, we
sample model weights at K = 5 evenly spaced
training steps and uniformly average them to obtain
expert model weights. For PCA on expert devia-
tions, we use the top 10 principal components. For
ARIMA estimation, we employ an ARIMA(1,1,1)
model. When computing averaging coefficients,
we set the sharpness hyperparameter r = 5.

RMNIST adopts the ConvNet in Qin et al. (2022).
All baseline methods are trained on 90% randomly
split training data from source domains for 50
epochs with learning rate 1e-3 (except A-GEM
which uses 1e-5). Other baseline configurations
follow Xie et al. (2024c,b).

TEA for RMNIST uses the same ConvNet. Un-
der TDG setting, TEA first trains on all source
domain training splits using ERM for 40 epochs
with learning rate 1e-3 during the pretraining stage,
then performs temporal finetuning for 10 epochs
on each domain in reverse temporal order (from
D6 to D1) using SI with learning rate 2e-4 and con-
straint strength csi = 0.1. Under CDGTD setting,
we adopt 48-epoch incremental ERM training on
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each domain (from D1 to D6) with learning rate
1e-3, followed by 20 temporal finetuning epochs on
each domain in reverse temporal order (from D6 to
D1) using SI with learning rate 2e-4 and constraint
strength csi = 0.1. Note that temporal finetuning
under CDGTD uses only 10% of the data, so the
total training cost remains 48+20×0.1=50 epochs.
During temporal finetuning on each domain, we
sample model weights at K = 5 evenly spaced
training steps and uniformly average them to obtain
expert model weights. For PCA on expert devia-
tions, we use the top 10 principal components. For
ARIMA estimation, we employ an ARIMA(1,1,1)
model. When computing averaging coefficients,
we set the sharpness hyperparameter r = 5.

FMoW (Yao et al., 2022a) adopts a DenseNet-
121 (Huang et al., 2017) backbone pretrained on
ImageNet (Deng et al., 2009). All baseline meth-
ods are trained on 90% randomly split training data
from source domains for 25 epochs with learning
rate 2e-4 (except A-GEM which uses 1e-6). Other
baseline configurations follow Xie et al. (2024c,b).

TEA for FMoW uses the same DenseNet-
121 (Huang et al., 2017). Under TDG setting, TEA
first trains on all source domain training splits using
ERM for 20 epochs with learning rate 2e-4 during
the pretraining stage, then performs temporal fine-
tuning for 5 epochs on each domain in reverse tem-
poral order (from D13 to D1) using SI with learning
rate 7e-5 and constraint strength csi = 0.1. Under
CDGTD setting, we adopt 23-epoch incremental
ERM training on each domain (from D1 to D13)
with learning rate 2e-4, followed by 20 temporal
finetuning epochs on each domain in reverse tem-
poral order (from D13 to D1) using SI with learning
rate 2e-5 and constraint strength csi = 0.1. Note
that temporal finetuning under CDGTD uses only
10% of the data, so the total training cost remains
23+20×0.1=25 epochs. During temporal finetun-
ing on each domain, we sample model weights at
K = 5 evenly spaced training steps and uniformly
average them to obtain expert model weights. For
PCA on expert deviations, we use the top 10 prin-
cipal components. For ARIMA estimation, we
employ an ARIMA(1,1,1) model. When comput-
ing averaging coefficients, we set the sharpness
hyperparameter r = 1.

CLEAR-10 (Lin et al., 2022) adopts a ResNet-
18 (He et al., 2016). All baseline methods are
trained on 90% randomly split training data from
source domains for 50 epochs with batch size 128

and learning rate 1e-3 (except A-GEM which uses
1e-6). Other baseline configurations follow the
FMoW configurations from Xie et al. (2024c,b).

TEA for CLEAR-10 uses the same ResNet-18 (He
et al., 2016). Batch size is 128. Under TDG set-
ting, TEA first trains on all source domain training
splits using ERM for 45 epochs with learning rate
1e-3 during the pretraining stage, then performs
temporal finetuning for 5 epochs on each domain
in reverse temporal order (from D5 to D1) using
SI with learning rate 1e-4 and constraint strength
csi = 0.1. Under CDGTD setting, we adopt 49-
epoch incremental ERM training on each domain
(from D1 to D5) with learning rate 1e-3, followed
by 10 temporal finetuning epochs on each domain
in reverse temporal order (from D5 to D1) using
SI with learning rate 1e-4 and constraint strength
csi = 0.1. Note that temporal finetuning under
CDGTD uses only 10% of the data, so the total
training cost remains 49+10×0.1=50 epochs. Dur-
ing temporal finetuning on each domain, we sample
model weights at K = 5 evenly spaced training
steps and uniformly average them to obtain expert
model weights. For PCA on expert deviations, we
use the top 10 principal components. For ARIMA
estimation, we employ an ARIMA(1,1,1) model.
When computing averaging coefficients, we set the
sharpness hyperparameter r = 0.5.

CLEAR-100 (Lin et al., 2022) adopts a ResNet-
50 (He et al., 2016). All baseline methods are
trained on 90% randomly split training data from
source domains for 50 epochs with batch size 128
and learning rate 5e-4 (except A-GEM which uses
1e-6). Other baseline configurations follow the
FMoW configurations from Xie et al. (2024c,b).

TEA for CLEAR-100 uses the same ResNet-
50 (He et al., 2016). Batch size is 128. Un-
der TDG setting, TEA first trains on all source
domain training splits using ERM for 45 epochs
with learning rate 5e-4 during the pretraining stage,
then performs temporal finetuning for 5 epochs on
each domain in reverse temporal order (from D5

to D1) using SI with learning rate 1e-4 and con-
straint strength csi = 0.1. Under CDGTD setting,
we adopt 49-epoch incremental ERM training on
each domain (from D1 to D5) with learning rate 5e-
4, followed by 10 temporal finetuning epochs on
each domain in reverse temporal order (from D5 to
D1) using SI with learning rate 1e-4 and constraint
strength csi = 0.1. Note that temporal finetuning
under CDGTD uses only 10% of the data, so the
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total training cost remains 49+10×0.1=50 epochs.
During temporal finetuning on each domain, we
sample model weights at K = 5 evenly spaced
training steps and uniformly average them to obtain
expert model weights. For PCA on expert devia-
tions, we use the top 10 principal components. For
ARIMA estimation, we employ an ARIMA(1,1,1)
model. When computing averaging coefficients,
we set the sharpness hyperparameter r = 0.5.

A.3 Ablation Details

Ablation study of TEA components examines four
variants: Random Expert, Last Expert, Only Tem-
poral Experts, and Only Adaptive Averaging. The
first three involve simple modifications to specific
TEA components, while Only Adaptive Averaging
represents a more substantially different variant.
We briefly describe the first three below and detail
Only Adaptive Averaging in the following section:

• Random Expert: Randomly selects expert
models and reports the average performance
across multiple runs, which effectively equals
the average performance of all experts.

• Last Expert: Uses only the expert from the
final domain.

• Only Temporal Experts: Identical to TEA
except for using uniform averaging coeffi-
cients (1/S) instead of adaptive coefficients
to average all expert weights.

Only Adaptive Averaging shown in 5 aims to
use base weights without temporal fine-tuning to
achieve functional diversity, capturing temporal
shift patterns solely through adaptive weight av-
eraging in the coefficients. This variant cannot
be implemented by simply removing TEA compo-
nents, as our averaging coefficient estimation relies
on shift patterns from experts corresponding to dif-
ferent temporal domains. Without temporal differ-
ences between base weights, we cannot use TEA’s
principal component trajectory-based coefficient
estimation. Therefore, we adopt a training-based
generation approach instead.

We first sample base weights. Following
SWA (Izmailov et al., 2018), we randomly
sample S weights from the training process,
which we call "snapshots". A key challenge
arises with normalization layers: on TDG tasks,
freezing normalization layers leads to underfitting,
while optimizing them results in snapshots with

different normalization parameters and statistics.
Since weight averaging is highly sensitive to
normalization differences, excessive variation
causes poor performance in the averaged model.
We address this using a "late sampling" strategy,
as we observe that normalization becomes
sufficiently good during intermediate training
stages. Specifically, we freeze the normalization
layers during the final epoch of each task and
sample K snapshots {θk}Kk=1 within this last
epoch (noted as K as we use all domain as a
unified domain and set K = S for fair ablation).
We then generate adaptive averaging coefficients
through a training-based approach. Specifically,
we use a Time2Vec (Kazemi et al., 2019) module
with a 2-layer MLP as the selector network ϕ to
generate averaging coefficients. After sampling
the snapshots, we randomly select samples with
timestamps from the training domains and train the
selector network to combine the outputs of these
snapshots. We formulate this training process as:

ϕ∗ =argmin
ϕ

∑

i∈[1,S]

∑

(x,t,y)∼Di

ℓ

(
K∑

k=1

ϕ(t)k · f(x, θk), y
)

s.t. {θk}Kk=1 ∼ Sls(argmin
θ

∑

i∈[1,S]

∑

(X,·,Y )∼Di

ℓ(f(X, θ), Y ),

where Sls is the snapshot sampling process with
late sampling strategy. We use Adam optimizer for
optimizing the selector network with learning rate
as 1e-4, batch size as 1 and training steps as 2000.

After training ϕ∗, we use it during inference to
generate averaging coefficients for the K = S
snapshots: αOAA = {αOAA

k }Kk=1 = ϕ∗(tf ).

B Additional Discussion

TDG’s Value for NLP Community. On one hand,
Temporal Domain Generalization (TDG) (Ortiz-
Jiménez et al., 2019; Mancini et al., 2019; Wang
et al., 2020; ying Bai et al., 2022; Nasery et al.,
2021; Zeng et al., 2023; Wang et al., 2022; Xie
et al., 2024c,a; Yong et al., 2023; Xie et al., 2024b)
has broad application prospects in NLP tasks, as
temporal distribution shifts are prevalent in NLP,
such as lexical changes over time and evolving un-
derstanding of specific expressions (e.g., memes)
across time periods. Particularly in the large lan-
guage model era, TDG’s low-resource general-
ization nature can reduce the expensive compu-
tational and data costs required for LLM retrain-
ing or fine-tuning. On the other hand, TDG has
already been widely recognized as a valuable di-
rection by the relevant community, with numer-
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(a) Training the Selector Network. (b) Inference.

Figure 5: An overview of our Only Adaptive Averaging ablation. (a) When optimizing the selector network in Only
Adaptive Averaging, we use output averaging as a proxy task, utilizing the estimated coefficients to average the
outputs of all snapshots. (b) During inference, we perform weight averaging with the optimized selector network.

ous papers published in top-tier conferences, in-
cluding our baselines: GI (NeurIPS’21) (Nasery
et al., 2021), LSSAE (ICML’22) (Qin et al., 2022),
DRAIN (ICLR’23) (ying Bai et al., 2022), EvoS
(NeurIPS’23) (Xie et al., 2024c), and W-Diff
(NeurIPS’24) (Xie et al., 2024b).

Continual Learning. TDG shares similar data con-
figurations with continual learning (Zenke et al.,
2017; Lopez-Paz and Ranzato, 2017; Shin et al.,
2017; Chaudhry et al., 2018), and our main bench-
marks (Yao et al., 2022a; Lin et al., 2022)were orig-
inally introduced for continual learning. However,
TDG and continual learning differ significantly
in their objectives. Standard continual learning
primarily focuses on the past, addressing whether
learning new tasks causes catastrophic forgetting of
previous knowledge. In contrast, TDG focuses on
the future, concerned with leveraging past knowl-
edge to enhance generalization to future domains.
We incorporate representative continual learning
baselines including EWC (Kirkpatrick et al., 2017),
SI (Zenke et al., 2017), and A-GEM (Chaudhry
et al., 2018), which show no significant generaliza-
tion improvement on future domains.

Continual Domain Generalization over Tempo-
ral Drift (CDGTD) can be viewed as an intersec-
tion of standard TDG and continual learning. This
represents a reasonable application direction, re-
quiring models to both retain past knowledge and
generalize well to future domains. However, this

does not diminish the importance of standard TDG,
as the core challenge of TDG—how to utilize tem-
poral shift patterns in past data for better future gen-
eralization—is orthogonal to CDGTD’s additional
constraint of sequential domain access. Moreover,
CDGTD may complicate the exploration of tem-
poral generalization capabilities by introducing an
additional variable. Therefore, we consider both
standard TDG and CDGTD equally important, with
no priority distinction.

Large Language Models (LLMs). While
LLMs (OpenAI, 2023; Touvron et al., 2023; Guo
et al., 2025) achieve good generalization through
training on massive datasets, this does not con-
flict with TDG. TDG fundamentally targets low-
resource scenarios and has considerable practical
value when large training datasets are unavailable.
Conversely, in cases of relatively smooth temporal
distribution shifts, applying TDG with limited data
is more data-efficient than brute-force generaliza-
tion through massive training. Furthermore, regard-
less of how much data LLMs are trained on, TDG
can be further applied to enhance temporal gener-
alization capabilities. Notably, TDG application to
LLMs is particularly promising as it can effectively
reduce LLM training costs. However, TDG is still
far from being applicable to LLMs, primarily due
to scaling limitations. This highlights the value of
our work as a solid step toward LLM-scale TDG.

Temporal Reasoning (Xiong et al., 2024; Yuan
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et al., 2024; Fatemi et al., 2024; Chu et al., 2023).
While this may sound related to TDG, the primary
connection is that both contain "temporal" in their
names. Temporal reasoning focuses on enabling
models to understand explicit temporal relation-
ships at the individual sample level, whereas TDG
aims to adapt models to implicit temporal distribu-
tion shifts at the dataset level. Temporal reasoning
could potentially improve TDG performance, but
this remains unexplored.

Scalability within TDG Domain. Our scalabil-
ity claims are contextualized within the TDG and
CDGTD domains rather than general ML standards.
Table 15 shows the evolution of benchmark cov-
erage across TDG methods. Early methods like
GI (Nasery et al., 2021), LSSAE (Qin et al., 2022),
and DRAIN (ying Bai et al., 2022) were limited to
small benchmarks (RMNIST, Yearbook (Yao et al.,
2022a)) with <40K samples and minimal parame-
ters. Recent works like EvoS (Xie et al., 2024c) and
W-Diff (Xie et al., 2024b) expanded to medium-
scale benchmarks (FMoW, HuffPost, Arxiv (Yao
et al., 2022a)) with up to 2M samples and 66M pa-
rameters. TEA further extends this progression by
introducing two new large benchmarks (CLEAR-
10/100 (Lin et al., 2022)) and demonstrating effec-
tiveness across the full spectrum from 30K to 2M+
samples and 29K to 66M+ parameters. This rep-
resents significant scalability advancement within
the TDG field, though the scale remains modest
compared to contemporary NLP/CV standards.

C Theoretical Analysis

C.1 Notation

We denote X the input space, Y the label space,
and ℓ : Y2 → R+ a loss function. We have a se-
quence of domains {Di} indexed by timestamps
ti ∈ T , where T is a totally ordered set repre-
senting time. Each domain Di has a distribution
pi. For the training (source) domains {Di}Si=1, we
have timestamps t1 < t2 < . . . < tS in T , and cor-
responding distributions p1, p2, . . . , pS . For sim-
plicity, we will use pi to refer to the joint, posterior,
and marginal distributions of (X,Y ) at time t. We
note fi : X → Y as the labeling function at time
ti. We assume there is no noise in the data: fi
is defined on Xi ≜ {x ∈ X | pi(x) > 0} by
∀(x, y) ∼ pi, fi(x) = y.

C.2 Temporal Domain Generalization
We consider a neural network (NN) f(·, θ) : X →
Y made of a fixed architecture f with weights θ.
Given observations from source domains at times
t1, t2, . . . , tS , we seek θ minimizing the target gen-
eralization error at a future time tf > tS :

Ef (θ) = E(x,y)∼pf [ℓ(f(x, θ), y)]. (7)

f(·, θ) should approximate ff on Xf . This is chal-
lenging in the TDG setup because we only have
data from earlier timestamps, which are related yet
different from the future target domain.

The differences between domains at different
timestamps are due to distribution shifts (i.e., the
fact that pi(X,Y ) ̸= pj(X,Y ) for i ̸= j), which
can be decomposed into:

• Diversity shift: when marginal distributions
differ over time (i.e., pi(X) ̸= pj(X))

• Correlation shift: when posterior distri-
butions differ over time (i.e., pi(Y |X) ̸=
pj(Y |X) and fi ̸= fj)

The weights are typically learned on source
domain data {D1, D2, . . . , DS} from timestamps
{t1, t2, . . . , tS} (each composed of ni i.i.d. sam-
ples from pi(X,Y )) with a configuration c, which
contains all other configurations and sources
of randomness in learning. We call lT =
{D1, D2, . . . , DS , c} a learning procedure, and ex-
plicitly write θ(lT ) to refer to the weights obtained
after stochastic minimization of the appropriate ob-
jective function. Specific to our TEA, we define
li = {D1, D2, . . . , DS , ti, c} as a temporal expert
learning procedure to get expert model θi = θ(li)
which is designed to excels on domain Di while
also using data from other domains.

C.3 Temporal Expert Averaging
We study the benefits of combining S individ-
ual member weights {θi}Si=1 ≜ {θ(li)}Si=1 ob-
tained from S different domains at timestamps
{t1, t2, . . . , tS}. Each weight θi corresponds to
an expert model that is more proficient for domain
Di (though not necessarily trained exclusively on
that domain).

Unlike traditional weight averaging (Cha et al.,
2021; Rame et al., 2022; Wortsman et al., 2022)
that uses equal coefficients, for temporal domain
generalization, we propose a temporally-weighted
averaging scheme that assigns different importance
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Method / Dataset RMNIST Yearbook FMoW HuffPost Arxiv CLEAR-10 CLEAR-100
#Samples 70,000 37,189 141,696 63,907 2,057,952 30,000 100,000

Sample Size 28×28 32×32 224×224×3 - - 224×224×3 224×224×3
#Param 371.9K 29.0K 7.2M 66.4M 66.5M 11.2M 23.7M

GI (Nasery et al., 2021) ✓
LSSAE (Qin et al., 2022) ✓ ✓

DRAIN (ying Bai et al., 2022) ✓ ✓
EvoS (Xie et al., 2024c) ✓ ✓ ✓ ✓ ✓

W-Diff (Xie et al., 2024b) ✓ ✓ ✓ ✓ ✓
TEA (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 15: Dataset statistics and benchmark coverage across TDG methods. ✓ indicates the method was originally
explored and evaluated on the corresponding dataset in its original paper, demonstrating the evolution toward
larger-scale TDG settings.

to experts based on their relevance to the target
future domain.

Temporal Expert Averaging (TEA) is defined as:

fTEA ≜ f(·, θTEA),

θTEA ≜
S∑

i=1

αi

(
{ti}Si=1, {θi}Si=1, tf

)
· θi. (8)

where the coefficients {αi}Si=1 satisfy
∑S

i=1 αi =
1 and αi ≥ 0 for all i. These coefficients are de-
termined based on the temporal shift among the
source domain experts {θi}Si=1 and temporal infor-
mation {ti}Si=1 and tf .

C.4 TEA loss derivation
Following Rame et al. (2022), we decompose
TEA’s error leveraging the similarity between
WA and functional ensembling (ENS) (Lakshmi-
narayanan et al., 2017; Dietterich, 2000), a more
traditional way to combine a collection of weights.
We also use Mean Squared Error as ℓ for simplic-
ity. For TDG setting, we define Temporal ENS
(T-ENS) with coefficients {αi}Si=1 as

fT-ENS ≜
S∑

i=1

αif(·, θi). (9)

Lemma 1 establishes that fTEA approximates
fT-ENS to first order when {θi}Si=1 are close in
weight space.

Lemma 1 (TWA and T-ENS). Given {θi}Si=1 with
learning procedures for different temporal experts.
Denoting ∆{θ} = maxSi=1 ∥θi − θTEA∥2, ∀(x, y) ∈
X × Y:

fTEA(x) = fT-ENS(x) +O(∆2
{θ}) (10)

ℓ(fTEA(x), y) = ℓ(fT-ENS(x), y) +O(∆2
{θ}).

Proof. This proof has two components:

• to establish the functional approximation, it
performs Taylor expansion of the models’ pre-
dictions at the first order.

• to establish the loss approximation, it per-
forms Taylor expansion of the loss at the first
order.

Functional approximation With a Taylor expan-
sion at the first order of the models’ predictions
w.r.t. parameters θ:

fθi = fTEA +∇f |TEA∆i +O
(
∥∆i∥22

)

fT-ENS − fTEA

=
S∑

i=1

αi∇f |TEA∆i +
S∑

i=1

αiO
(
∥∆i∥22

)
,

where ∆i = θi − θTWA.
Note that unlike in the equal weighting case, we

don’t have
∑S

i=1∆i = 0 for weighted averaging.
Instead, we have

∑S
i=1 αi∆i = 0. Therefore:

fT-ENS − fTEA

=
S∑

i=1

αi∇f |TEA∆i +
S∑

i=1

αiO
(
∥∆i∥22

)

= ∇f |TWA

S∑

i=1

αi∆i +O

(
S∑

i=1

αi∥∆i∥22

)

= O

(
S∑

i=1

αi∥∆i∥22

)

Since ∆i ≤ ∆{θ} for all i, and
∑S

i=1 αi = 1,
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we have:

fT-ENS − fTEA = O

(
S∑

i=1

αi∆
2
{θ}

)

= O

(
∆2

{θ}

S∑

i=1

αi

)

= O
(
∆2

{θ}
)

Loss approximation. With a Taylor expansion at
the zeroth order of the loss w.r.t. its first input and
injecting the functional approximation:

ℓ(fT-ENS(x); y) = ℓ(fTWA(x); y)

+O(∥fT-ENS(x)− fTEA(x)∥2)
ℓ(fT-ENS(x); y) = ℓ(fTEA(x); y) +O

(
∆2

{θ}
)

C.5 Bias-variance-covariance-locality
Decomposition for TEA

We can derive the following decomposition of
TEA’s expected test error in the future domain. The
expectation is over the joint distribution describing
the S learning procedures {li}Si=1. (Note that in
the temporal domain generalization (TDG) setting,
models from different timestamps may have differ-
ent biases and variances due to the evolution of
data distributions over time. This temporal hetero-
geneity is a key characteristic that distinguishes
TDG from standard DG.)

Proposition 1 (Bias-variance-covariance-locality
decomposition for temporal weight averaging). De-
noting f̄i(x) = Eli [f(x, θ(li))] as the expected
prediction of an expert model for timestamp ti,
Ef = E(x,y)∼pf and l = {l1, . . . , lS}, the ex-
pected generalization error on future domain tf
of θTWA =

∑S
i=1 αi · θi over the joint distribution

of the learning procedures is:

El[Ef (θTEA)] = Ef [B + V + C] +O(∆̄2), (11)

where

B =

(
S∑

i=1

αi · biasi

)2

, biasi = y − f̄i(x),

V =
S∑

i=1

α2
i · vari, vari = Eli

[
dev2i

]
,

C =
∑

i ̸=j

αiαjcovi,j , covi,j = E{li,lj} [devi · devj ] ,

with devi = f(x, θ(li))− f̄i(x),

∆̄2 = E[∆2
{θ}] with ∆{θ} =

S
max
i=1

∥θi − θTWA∥2.

Proof. Following Rame et al. (2022), we use the he
bias-variance decomposition in Kohavi et al. (1996)
with fT-ENS ≜

∑S
i=1 αif(·, θ(li)) to decompose

the expected generalization error:

El[Ef ({θ(li)}Si=1)]

= Ef [Bias{fT-ENS|(x, y)}2 + Var{fT-ENS|x}],

where bias term becomes:

Bias{fT-ENS|(x, y)}

= y − El

[
S∑

i=1

αif(x, θ(li))

]

= y −
S∑

i=1

αiEl[f(x, θ(li))]

= y −
S∑

i=1

αif̄i(x)

=
S∑

i=1

αi(y − f̄i(x))

=

S∑

i=1

αibiasi(x, y)

Thus, the squared bias term is:

Bias{fT-ENS|(x, y)}2 =
(

S∑

i=1

αibiasi

)2

For the variance term, denoting devi =
f(x, θ(li))− f̄i(x), we have:
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Var{fT-ENS|x}

= El



(

S∑

i=1

αif(x, θ(li))− El

[
S∑

i=1

αif(x, θ(li))

])2



= El



(

S∑

i=1

αi(f(x, θ(li))− f̄i(x))

)2



= El




S∑

i=1

S∑

j=1

αiαj · devi · devj




=
S∑

i=1

α2
iEl[dev2i ] +

∑

i ̸=j

αiαjEl[devi · devj ]

=
S∑

i=1

α2
i vari +

∑

i ̸=j

αiαjcovi,j

Combination with Lemma 1 We recall that per
our adapted Lemma 1:

ℓ(fTEA(x), y) = ℓ(fT-ENS(x), y) +O(∆2
{θ}).

Taking the expectation over the learning procedures
and combining all terms:

E[Ef (θTEA)] = Ef



(

S∑

i=1

αibiasi

)2



+ Ef

[
S∑

i=1

α2
i vari

]

+ Ef


∑

i ̸=j

αiαj covi,j




+O(∆̄2)

C.6 Theoretical Insights for TEA
From Equation 11, we can see that generalization
error can be reduced by minimizing bias B, vari-
ance V , covariance C, and locality ∆̄2. However,
due to the complexity of real-world data and mod-
els, finding an optimal analytical solution is nearly
impossible. Nevertheless, similar to Rame et al.
(2022), we can derive practical insights for design-
ing TEA by analyzing the relationships between
these four terms, model properties, and averaging
coefficients.
Insight 1 Tradeoff between Functional Diversity
and Parameter Similarity among Experts. Covari-
ance C reduction necessitates functional diversity
among experts, while the locality constraint ∆̄2

demands parameter similarity among experts.
The covariance term increases when the predic-

tions of {f(·, θ(li))}Si=1 are correlated, suggesting

that DiWA’s (Rame et al., 2022) approach to reduce
covariance by encouraging functional diversity re-
mains effective. However, the locality term ∆̄2

simultaneously constrains the weights to remain
close in parameter space. This tradeoff suggests
that when training these expert models, we should
find an appropriate balance between encouraging
diverse predictions and maintaining parameter sim-
ilarity.
Insight 2 Tradeoff between Bias and Variance via
Averaging Coefficients. Reducing variance V re-
quires averaging weights evenly, while reducing
bias B demands concentrating coefficients on ex-
perts with lower bias magnitudes on future data.

Insight 2 is obtained by introducing 2 assump-
tions specific to the TDG for further discussion
about bias and variance.
Assumption 1 (Ordered Bias Magnitudes). The
models can be ordered by expected bias magni-
tudes on future domains such that Ef

[
bias2m1

]
≥

Ef

[
bias2m1

]
≥ · · · ≥ Ef

[
bias2mS

]
, with {mj}Sj=1

being a permutation of {i}Si=1.
Assumption 2 (Equal Variance Experts). The vari-
ance of each expert’s prediction is equal across
all experts, such that Ef [vari] = v for all i ∈
{1, 2, ...,M}.
Lemma 2 (Optimal Averaging Coefficients for
Bias Minimization). Let the bias of model i be:

bi(x, y) = biasi(x, y), σ
2
i := Ef

[
b2i
]
,

and define the root-mean-square magnitude:

σi =
√
σ2
i (i = 1, . . . , S).

According to Assumption 1, magnitudes are or-
dered σm1 ≥ σm2 ≥ · · · ≥ σmS , where {mj}Sj=1

is a permutation of {1, . . . , S}. For convex weights
α ∈ ∆S := {αi ≥ 0,

∑S
i=1 αi = 1}, consider the

combined bias loss:

L(α) := Ef



(

S∑

i=1

αibi

)2

 . (12)

If no information is available on the pairwise bias
covariances Σij := Ef [bibj ], (i ̸= j), then the
minimax problem:

min
α∈∆S

max
Σ s.t. diag(Σ)=σ2

L(α) (13)

is solved by:

α⋆
mS

= 1, α⋆
i = 0 for i ̸= mS (14)

with L(α⋆) = σ2
mS

.
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Proof. We can write L(α) = α⊤Σα with un-
known positive-semidefinite matrix Σ satisfying
Σii = σ2

i . By the Cauchy-Schwarz inequality,
|Σij | ≤ σiσj . The worst case occurs when all
covariances reach the extreme value Σij = σiσj ,
yielding:

max
Σ

L(α) =

(
S∑

i=1

αiσi

)2

. (15)

Since
∑

i αiσi is a convex combination of the or-
dered set {σmj}, its minimum over the simplex
∆S is attained by placing all weight on the smallest
RMS magnitude σmS , which gives the stated α⋆

and the minimax value L(α⋆) = σ2
mS

.

Lemma 3 (Optimal Averaging Coefficients for
Variance Minimization). Consider the variance
term with equal variances Ef [vari] = v for all
i ∈ {1, . . . , S}:

Ef [V] = v

S∑

i=1

α2
i . (16)

For averaging coefficients α ∈ ∆S := {αi ≥
0,
∑S

i=1 αi = 1}, the variance term is minimized
when weights are distributed equally across all
models:

α⋆
i =

1

S
for all i (17)

with optimal variance v · 1
S .

Proof. We seek to minimize
∑S

i=1 α
2
i subject to

the constraints
∑S

i=1 αi = 1 and αi ≥ 0. By the
Cauchy-Schwarz inequality:

(
S∑

i=1

αi

)2

≤ S

S∑

i=1

α2
i , (18)

with equality if and only if all αi are equal. Since∑S
i=1 αi = 1, we have:

1 =

(
S∑

i=1

αi

)2

≤ S

S∑

i=1

α2
i , (19)

which implies
∑S

i=1 α
2
i ≥ 1

S . Equality is achieved
when αi =

1
S for all i, giving the optimal solution.

In summary, Lemma 2 indicates that optimiz-
ing the bias term requires concentrating weight
on experts with smaller bias magnitude on fu-
ture domains, while Lemma 3 suggests that
minimizing variance requires the opposite ap-
proach—distributing weight as evenly as possible
across all experts. This creates a fundamental trade-
off between bias and variance in the selection of
averaging coefficients.

Discussion about Assumptions. Assumption 1 is
similar to the smooth distribution shift assumption
used by most prior TDG methods (ying Bai et al.,
2022; Zeng et al., 2023; Nasery et al., 2021; Xie
et al., 2024b,c), allowing us to model distribution
change and leverage temporal information to pre-
dict future parameter or feature. Assumption 2 is
reasonable when all experts share the same archi-
tecture, optimization procedure and hyperparame-
ters, differing only in the specific temporal domains
they’ve been optimized to excel in.

D Additional Results

We show the coefficients vs. DS+1 accuracy across
all benchmarks in Figure 6. The results reveal di-
verse performance patterns among experts, with
a clear temporal trend: experts trained on earlier
domains consistently achieve lower accuracy on
the subsequent domain. This systematic pattern
demonstrates that expert functionality undergoes
structured evolution throughout the finetuning pro-
cess. In addition, our temporal trajectory forecast-
ing approach successfully identifies this pattern and
assigns higher coefficients to experts that demon-
strate superior performance on future domains, ef-
fectively leveraging the temporal dynamics to im-
prove expert selection and utilization.
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(a) Huffpost. (b) Arxiv.

(c) Yearbook. (d) RMNIST.

(e) FMoW. (f) CLEAR-10.

(g) CLEAR-100.

Figure 6: Visualization of averaging coefficients and accuracies of experts on target domain DS+1.
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