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Abstract

Large Language Models (LLMs) are power-
ful tools with profound societal impacts, yet
their ability to generate responses to diverse
and uncontrolled inputs leaves them vulnerable
to adversarial attacks. While existing defenses
often struggle to generalize across varying at-
tack types, recent advancements in representa-
tion engineering offer promising alternatives.
In this work, we propose a defense framework
that formulates model defense as a contrastive
representation learning (CRL) problem. Our
method finetunes a model using a triplet-based
loss combined with adversarial hard negative
mining to encourage separation between benign
and harmful representations. Our experimental
results across multiple models demonstrate that
our approach outperforms prior representation
engineering-based defenses, improving robust-
ness against both input-space and embedding-
space attacks without compromising standard
performance. !

1 Introduction

In recent years, Large Language Models (LLMs)
have proven to be powerful tools for general-
purpose language understanding and generation
(Minaee et al., 2024). They have had significant
impact on software engineering (Hou et al., 2024),
medicine (Zhou et al., 2024) and natural sciences
(Nejjar et al., 2024).

However, their ability to respond to uncontrolled
inputs comes with serious security risks (Geiping
et al., 2024), as they can generate inappropriate,
toxic, or harmful text (Deshpande et al., 2023). To
mitigate this risk, various mechanisms have been
developed to keep LLMs aligned with human val-
ues (Stiennon et al., 2022; Bai et al., 2022; Rafailov
et al., 2024). Nonetheless, the most commonly
used LLM systems often fail to protect against
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such behaviors (Zou et al., 2023; Chao et al., 2023).
Developing safe and reliable defenses is therefore
essential for minimizing societal risks associated
with broad Al deployment.

The current state-of-the-art defenses against
LLM jailbreaks focus either on creating effective
pipelines around the model (Zeng et al., 2024b;
Yuan et al., 2024b), or on finetuning the model
weights (Yousefpour et al., 2025; Zhang et al.,
2024). Among the latter, circuit breakers (Zou
et al., 2024) are a promising approach, designed to
disrupt the model’s harmful inner representations,
causing it to generate incoherent or nonsensical
outputs rather than harmful content even under at-
tacks.

In this work, motivated by the success of circuit
breaking, we introduce a new approach to repre-
sentation space safety engineering by building on
concepts from contrastive learning (Khosla et al.,
2021). Our triplet loss formulation represents a
natural extension of circuit breaking, and allows
for clearer separation of harmful and benign rep-
resentations. Additionally, we adopt an improved
training strategy based on adversarial hard negative
mining (Casper et al., 2024). Overall, we improve
the robustness of representation engineering-based
defensive methods by reducing the attack success
rate (ASR) of the Llama 3 8B model from 29%
to 5% against embedding attacks across diverse
configurations, and from 14% to 0% against the
REINFORCE-GCG (Geisler et al., 2025a) input
space attack.

Our main contributions are as follows:

1. We propose a novel method for LLM safety
based on contrastive representation learning,
generalizing and improving upon existing
methods such as circuit breakers (Zou et al.,
2024) and RepBend (Yousefpour et al., 2025).

2. We introduce a new training strategy based
on representation adversarial training (Casper
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et al., 2024) that improves the sampling pro-
cedure of harmful representations, further
increasing the robustness of our proposed
method against embedding attacks.

3. We provide experimental validation of our
method, demonstrating gains in robustness
against both input space and embedding space
attacks without sacrificing the model’s general
capabilities.

2 Problem formulation

Large Language Models (LLMs) are deep neural
networks, typically based on the Transformer ar-
chitecture (Vaswani et al., 2017), that have been
trained at a massive scale on human textual data.
The computation of a token ¥; given previous to-
kens y; can be described as follows:

hy = Emb(y<¢) )]
h; =T;(hj—1) +h;_ (2)
0 = FFN(h;) 3)

where hg € R~1%4 s the sequence of input embed-
dings for the previous tokens, 77 is the transformer
block at layer I, h; € Rf~1%¢ is the output of the
[-th layer, FFN is a final feed-forward layer, and
o € R*~1xI¥l represent the output log probabilities
over the vocabulary ¥ for each position. Finally, y;
is sampled from the output distribution o.

For a prompt z and a response y, we write
h;(z,y) as the inner representation of the model
at layer [. We consider a prompt and response
pair (z, y), to be harmful if its content violates the
developer rules of the model. Conversely, a pair
(z,y)p benign does not violate developer rules.

Objective Our study specifically targets prompts
that encourage illegal, immoral, unethical, or dan-
gerous conduct and actions. The objective is to
minimize the probability that a model outputs a
harmful reply y under any token or embedding in-
put x.

We use the same proxy objective as the circuit-
breaking method of working in the representation
level, as while input and output formats can change
between different generations of the harmful behav-
ior, the representation space symbolizes the same
concept under different formats. We aim to create a
new safer model that “breaks” when given a harm-
ful prompt, and works as expected when given a
benign prompt.

3 Related work

3.1 AI Safety

Input-Space Jailbreaking Attacks A jailbreak
is a prompt specifically designed to bypass the
model’s safety mechanisms and elicit a harmful re-
sponse, and can be broadly categorized into token-
level jailbreaks which optimize a harmful adversar-
ial sequence of tokens appended to the prompt (e.g.
Greedy Coordinate Gradient (Zou et al., 2023)),
or prompt-level jailbreak which optimize the en-
tire prompt into human-readable jailbreak prompts
(e.g Prompt Automatic Iterative Refinement (PAIR)
(Chao et al., 2024)).

Embedding-Space Jailbreaking Attacks Em-
bedding attacks directly manipulate the output of
the model’s embedding layer to produce a harmful
response (Schwinn et al., 2025). For a prompt z,
instead of optimizing an adversarial suffix y € X¢,
the attacker can optimize an embedding e € R**¢
that is appended to the prompt embedding Emb(x),
to force the model to start with a positive reply.
Mathematically, we can write hg = Emb(z) @ e
where & is the concatenation operator. Embedding
attacks are more powerful than input space attacks
as they operate on a lower level and have access to
the entire embedding space of the model.

Jailbreak Defenses Jailbreak defenses aim to
prevent or mitigate the effects of jailbreak attacks
on LLMs. Current defenses fall into two main cat-
egories : Pipeline defenses external to the model,
which do not modify the model weights but rather
add components such as filters (Jain et al., 2023),
textual transformations (Robey et al., 2024; Yuan
et al., 2024b) or guardrail models (Zeng et al.,
2024b), and internal defenses which alter the model
itself, by fine-tuning on preference data (Kaufmann
et al., 2024) or editing problematic layers (Zhao
et al., 2024).

More details on jailbreaking attacks and defenses
are found in Appendix A.1. In this work, we focus
on a subset of internal defenses that manipulate the
model’s internal representations to increase robust-
ness against jailbreak attacks.

Internal Defenses based on Representation Engi-
neering Representation Engineering (Zou et al.,
2025) focuses on internal representational spaces
to understand and improve the behavior of LLM,
and is an alternative to mechanistic interpretability.
Circuit breakers (Zou et al., 2024) and RepBend
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Figure 1: Comparison of the Triplet defense with the Circuit Breaking defense. Contrary to other adversarial
defense methods, circuit breaking aims to break generation at harmful content instead of refusing to answer harmful
tasks. It fine-tunes models to keep learned harmless states (or representations) close together while separating
newly learned harmful states from their original counterparts, without additional constraints. In contrast, the Triplet
defense additionally pulls learned harmful states together and pushes them away from learned harmless states,
which increases contrast and robustness to embedding-space attacks.

(Yousefpour et al., 2025) are the two main represen-
tation engineering-based defenses. These methods
share common principles:

1. They manipulate the inner representations h;
of the model, rather than only the inputs and
outputs.

2. They define training loss functions over these
inner representations to guide and optimize
model behavior.

3. They use datasets of prompts and responses
labeled as “benign” or “harmful” to establish
“good” and “bad” inner representations.

The training loss of circuit breaking focuses
on preserving benign representations and pushing
the new harmful representations far from previous
harmful representations using a cosine similarity
loss, and is defined as

2
Lop = a-[|hy —hy,
+ B - ReLU(cos_sim(hy, h}))  (4)
where h is the inner representation of the initial

fixed model at layer [, h’ is the new inner repre-
sentation of the model with circuit breaking. «

and 3 are scheduling hyperparameters, h and hy,
represent benign or harmful representations respec-
tively, and cos_sim(a, b) = m is the cosine
similarity between two representations a and b.

Circuit breaking is an effective defense against
a wide range of input-space attacks, and decreases
the quality of successful attacks. For instance,
while the REINFORCE adversarial attack (Geisler
et al., 2025a) achieves a high attack success rate
(ASR) with the HarmBench judge (Mazeika et al.,
2024), the resulting responses often display stutter-
like behavior in later stages of generation, render-
ing them mostly unusable. However, circuit break-
ing is less effective at defending against embedding-
level jailbreaking attacks (Schwinn and Geisler,
2024).

Representation Bending (RepBend) (Yousefpour
et al., 2025) extends circuit breaking by replac-
ing the cosine similarity-based distance with an
L2 distance, and introduces an additional regular-
ization term to enforce similarity among harmful
representations. However, training this method is
challenging, as the distance terms can diverge to
negative infinity, requiring careful stopping crite-
ria and making it difficult to maintain a balance of
hyperparameters.
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3.2 Contrastive Representation Learning

The objective of contrastive representation learning
(CRL) is to train models to produce a representa-
tional space in which similar (positive) inputs are
mapped close to each other, while dissimilar (nega-
tive) inputs are mapped far apart. Rather than solely
relying on labeled data, contrastive representation
can learn meaningful representations by leverag-
ing the inherent structure of the data itself. It has
achieved notable success in a variety of fields, such
as computer vision (Le-Khac et al., 2020; Schroff
et al., 2015), natural language processing (Mikolov
et al., 2013; Rim et al., 2021), and multi-modal
learning (Radford et al., 2021).

The triplet loss (Schroff et al., 2015) is a popular
loss function used in contrastive learning, origi-
nally developed for image embeddings and face
recognition and later adopted for text embeddings
(Reimers and Gurevych, 2019).

It encourages an anchor data point a to be closer
to a positive sample p (similar to the anchor) than
to a negative sample n (dissimilar to the anchor) by
at least a margin m:

Lr = ReLU(d(a,p) —d(a,n) +m) (5)
where d(.,.) is a distance metric, typically
the Euclidean distance or cosine distance, and
ReLU(z) = max(0, ) is the rectified linear unit
function. A visualization of the triplet loss objec-
tive is shown in Appendix A.1.

4 Method

We first describe the desirable properties of our
new, more robust representation space. Our proxy
objective is to construct a new representation space
h’ that induces the following properties, for an in-
dex ¢ and benign and harmful representations hfm»
and hy, ;:

L. h;;,i and hy, ; should be similar to each other,
as the new model is expected to maintain sim-
ilar behavior to the original model for benign
use cases. Exact matching is not required for
all representations, but top logits of benign
behaviors should closely match.

2. hj,; and hy,; should be dissimilar to each
other, because if the general structure of the
representation space is preserved, the old
harmful representations maintain their harm-
ful nature in the new representation space.

3. hy; and hj, ; should be dissimilar, allowing
the model to distinguish between benign and
harmful representations.

4. hj, ; and hj, ; should be similar to each other,
preventing the model from generating fine-
grained responses to harmful queries and pro-
moting the generation of uniform replies such
as refusals or warnings.

Interpreting the circuit breaking loss The cir-
cuit breaking loss described in Equation 4 can be
interpreted as a contrastive loss, similar in spirit to
the DrLIM loss (Hadsell et al., 2006), which is one
of the first contrastive losses.

For input vectors X; and X5 belonging to a class
Y € {0,1} the DrLIM loss is defined as

1
Lprriv = (1 — Y)§ 1X) — Xolf3

4 (Y)% max(0, m — d(X1, X)) (6)
where d(X1, X3) is a distance and m is a margin
hyperparameter.

This objective reduces to the circuit breaking
objective when using the distance d(X1,X2) =
1 — cos_sim(Xj, X2), a hard margin m = 1, harm-
fulness labels Y, and sampling X1, Xy from the
original and fine-tuned models.

In CRL tasks, the DrLLIM loss has been largely
supplanted by more effective objectives, notably
the Triplet loss and the InfoNCE loss (van den
Oord et al., 2019), as they are more flexible and
induce greater contrasts between the representa-
tions. Motivated by these advances, we use a triplet
loss to learn a robust representation space for LLM
defense.

4.1 Our Triplet-Based Loss

Taking inspiration from the circuit breaking loss
function, we propose a general alternative loss func-
tion that fits all wanted properties.

Letdy, p, dp . dp,p and dp, ,, be distance functions
on representations, and ¢ an index. We define a
harmful triplet loss as:

Liriplet(hi) = ReLU(dpy (W}, ;5 Ph.i)
— dpp (W), 1, h5) +mp)  (7)

This loss encourages new harmful representa-
tions hj, ; to be distant from the old harmful rep-
resentations hy, ;, and close to some positive py, ;.
In contrast to circuit breaking and RepBend, our
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approach focuses on relative rather than absolute
distances between representations, as relative dis-
tances are more meaningful in embedding spaces.
Conversely, we define a benign triplet loss as:

ﬁtriplet(bi) = ReLU(dbp(hb,i7 g,z)
— dpp (5, m55) + M) (8)

This loss encourages new benign representations
b.i to be close to the old benign representations
hy, ;, and far from some negative n, ;. We write the
final, unified triplet loss as a weighted sum of the
two triplet losses:

Etriplet = O['Ctriplet(bi) + /B'Ctriplet(hi) (9)

with hyperparameters « and /3 controlling the im-
portance of the losses.

Property RepBend CB Triplet

h;m’ ~ hy; v v v
;m' % hy, ; v v v
AT YRR S
hi =y v X v

Table 1: Safety representation engineering methods and
their properties. Properties are expressed in terms of
similarity (=) or dissimilarity (%)

Relation to Circuit Breakers and RepBend We
demonstrate that both the circuit breaking loss and
the RepBend loss are simplified special cases of
our triplet loss. The full derivation and proofs are
in Appendix A.10. Table 1 outlines the key differ-
ences between the three losses. Specifically, the
circuit breaking loss lacks mechanisms for sepa-
rating benign representations from harmful ones,
and for clustering the harmful representations. The
RepBend loss focuses on clustering harmful rep-
resentations, but does not explicitly separate be-
nign representations from harmful ones. Our triplet
loss formulation generalizes both methods by in-
corporating these properties and allowing any valid
pseudodistances.

Choice of the Positive and Negative Samples
The choice of py,; and ny; is important, as these
samples will guide the new representations to new,
better directions. In this work, we use the mean of
the new harmful representations as a positive sam-
ple for the harmful triplet loss, and as a negative
sample for the benign triplet loss, thereby strength-
ening the separation between the two classes of

representations. A visualization of our method
compared to circuit breakers is shown in Figure 1.
Future work should explore the use of other choices
of pp,; and ny ;.

Final Triplet Loss Let «, 5 and y be hyperpa-
rameters controlling the importance of the losses.
Let dyy, dpr, dpp and dp, be distances chosen by
the user. Let hy, ; and hy, ; be the benign and harm-
ful representations for a batch with /V different be-
nign and harmful prompts. Let h' = + SN h,
be the mean of the harmful representations for a
batch. Let D the Kullback-Leibler divergence
on benign model logits between the new and the
original model. Our final triplet loss is defined as:

Lrriplet = - % i Liripiet () (10)
=1
F8 LS ot
N 2 triplet (i) (11)
+7 - Drr(M(ap) | M'(zp))  (12)

Algorithm 1 describes the training procedure for
the triplet model defense. The model weights are
optimized until convergence on batches of benign
and harmful prompt-response pairs.

4.2 Combining Representation Engineering
with Adversarial Training

Most LLMs are shipped with built-in safety fea-
tures that prevent them from outputting harmful
responses to plain harmful queries. As such, gather-
ing harmful representations h;m from plain queries
can lead to representations that are not truly infor-
mative of dangerous model behavior. Inspired by
work in hard negative mining, which focuses on
learning on challenging negative samples (Robin-
son et al., 2021), we propose to address this issue
by integrating adversarial training in the representa-
tion space, by explicitly generating “hard” harmful
representations via attacks.

Adversarial Hard Negative Mining In con-
trastive learning, ‘“hard negatives” are challenging
negative examples that are easily confused with
positive examples. For safety representation en-
gineering, we define hard negatives as harmful
representations that closely resemble benign ones.
Rather than relying on plain harmful representa-
tions, we make use of adversarial hard negative
mining (Hughes et al., 2018).
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Algorithm 1 Triplet Model Defense

Require: Frozen original model M; Trainable defense model M’, Benign dataset Dy, harmful dataset
Dy,; Number of steps T'; batch size IV; Hyperparameters «, 3, vy, my, mp,

fort=1,...,T do
: Sample a batch xp ~ Dy, xp, ~ Dy,

1:
2
3 Compute original representations hy, ;, hy, ; using M
4: Compute new representations hy, ;, hj, ; using M’
5
6

1 N 4
Compute h' = 5 > ;7 hy, ;

Lbenign = % 2521 max (0, dpp (ho;, héz) — dpn Z,z‘a h') + mb)

7 Eharmful = % Zfil max (07 dhp( ;z,iv h/) - dhn( ;z,i7 hh,i) + mh)

LxL = Drr(M(zp) | M'(23))
: ETriplet = Q- Ebenign + B Lharmtul + 7 - LkL
10:  Update parameters of M’ using Lipiet
11: end for

An adversarial attack neural network module
Attack; is introduced at a randomly selected layer
l. The module is inserted between two transformer
blocks in the residual stream, and is trained using
a Negative Log Likelihood (NNL) loss on harm-
ful responses. The model is active when sampling
new harmful representations, and is periodically
retained as model parameters are updated. This
module finds adversarial hard negatives, allowing
the defense to counteract a wider diversity of harm-
ful representations. Appendix A.2 contains more
details on the training of our adversarial attack mod-
ules.

In summary, our complete method views safety
representation engineering as a contrastive learning
problem, optimizes a triplet-based loss function,
and combines it with adversarial training to defend
against harmful prompts more robustly.

5 Experimental setup

Models We evaluate our method on two widely
used open-source models: Llama 3 8B Instruct
(Grattafiori et al., 2024) and Mistral 7B Instruct
v0.2 (Jiang et al., 2023). These models are standard
baselines for adversarial defense in the literature,
which enables direct comparison with prior work.
Additional results on two extra models are provided
in Appendix A.6.

Datasets We adapt the training pipeline of
Yousefpour et al. (2025) for our defense method.
For benign data, we use UltraChat (Ding et al.,
2023), a large-scale dataset of over 1.5 million
multi-turn dialogues that cover a wide range of top-
ics such as art, history, literature, politics and tech-

nology. For harmful data, we use WildGuardMix
(Han et al., 2024) which contains a broad spectrum
of jailbroken prompts and responses, and Wild-
Jailbreaks (Jiang et al., 2024), a synthetic dataset
of harmful prompt-response pairs, featuring both
straightforward and complex jailbreak prompts.
From these sources, we randomly select 10’000
benign and 10’000 harmful samples to construct a
balanced training set.

Details on hyperparameter choices can be found
in Appendix A.3.

6 Experiments

In this section, we demonstrate the increased ro-
bustness of our methods against various attacks
compared to existing methods and explore three
research questions (RQ) related to robustness and
general performance.

6.1 Overall defensive performance

In this section, we compare the performance of our
approach against different models and defenses.

Method We use the publicly available defensive
models created by the authors of circuit breakers
(Zou et al., 2024) and RepBend (Yousefpour et al.,
2025). We evaluate our defense using the Harm-
Bench safety benchmark (Mazeika et al., 2024).
For embedding attacks, we adopt a variant of the
attack described by Zou et al. (2024). To ensure ro-
bustness across hyperparameter choices, we use 6
different hyperparameter configurations. For each
behavior, we select the result from the configura-
tion that produces the most harmful response out
of the six different runs. For input-space attacks,
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REINFORCE-GCG GCG Embedding
Defense HB SR Score HB SR Score HB SR Score
Original model 52.50 40.00 42.87 31.25 18.75 23.66 100.00 90.24 81.89
Circuit breakers 13.75 3.75 9.50 286 143 425 9024 29.27 30.61
RepBend 11.25 6.25 11.27 286 0.00 1.65 73.17 39.02 39.00
Triplet 0.00 0.00 048 0.00 0.00 043 6585 12.20 14.57
Triplet + Adv  3.75 250 699 0.00 0.00 136 7561 4.88 8.70

Table 2: Attack success rates (ASR) using HarmBench (HB) and StrongREJECT (SR) across attack types, for
various defenses (Llama 3 8B Instruct). For GCG and REINFORCE-GCG attacks, each behavior was tested on a
single attempt evaluated over 80 Behaviors. For embedding attacks, results were computed over 41 behaviors, with
six attempts per behavior using different hyperparameter configurations (246 runs per model). The best result for
each behavior was used. StrongREJECT scores are reported on a 0—100 scale.

we use GCG (Zou et al., 2023) and REINFORCE-
GCG (Geisler et al., 2025a) with base configura-
tions. To assess harmfulness, we use the binary
HarmBench judge to get adversarial success rates
(HB ASR) and the fine-grained StrongREJECT
(Souly et al., 2024) fine-tuned classifier to get harm-
fulness scores (SR Score) and adversarial success
rates (SR ASR) for scores above 0.5. Full details
of attack configurations and evaluation settings are
provided in Appendix A.3

Results Tables 2 report the ASRs for embedding
and GCG attacks on the Llama 3 8B model. All
defense methods achieve substantial improvements
over the base model, which shows ASRs above
90% for embedding attacks. Among the defenses
evaluated, our triplet defenses outperform both
circuit breakers and RepBend. In particular, the
triplet defense achieves ASRs of 0% for both RE-
INFORCE and GCG, while the triplet defense with
adversarial hard negative mining achieves the low-
est embedding SR ASR of 4.88% and the lowest
harmfulness score of 8.70.

Figure 2 shows embedding attack success rates
for Llama 3 8B with two additional adversarial de-
fenses: Refusal Feature Ablation Training (ReFAT)
(Yu et al., 2025) and Latent Adversarial Training
(LAT) (Sheshadri et al., 2024). The Triplet model
substantially improves embedding ASRs compared
to these baselines. Results for the Mistral 7B model
are shown in Appendix A.6. Although the reported
ASRs are higher than for the Llama model, the
triplet defense outperforms the evaluated baselines.

Throughout our experiments, we find that the
HarmBench classifier consistently produces higher
ASRs than the StrongREJECT classifier. This is
likely due to the tendency of HarmBench to clas-
sify responses as harmful responses based on the

initial response tokens, even if the rest of the re-
sponse is nonsensical or incoherent. Appendix Ta-
ble 21 shows an example of a generation classified
as harmful by the HarmBench ASR, despite being
practically harmless. These findings highlight how
differences in harmfulness evaluation criteria can
substantially influence measured outcomes.

£ (=2 ©
o o o

Strong Reject ASR (%)
N
o

o

Figure 2: Embedding Attack success rate (ASR) using
StrongREJECT for various defenses (Llama 3 8B In-
struct.

6.2 RQ1: How robust is our defense to
different attack configuration choices?

The goal of this research question is to evaluate the
robustness of our defense to different embedding
configurations.

Method We compare the ASRs of embedding
attacks across the six different hyperparameter
configurations, with full details provided in Ap-
pendix A.3. For each defense, we report the best,
worst, and mean ASR obtained over all configura-
tions.

Results Table 3 presents our results. Both Rep-
Bend and circuit breakers exhibit significant vari-
ability across attack hyperparameter configurations.
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Defense HarmBench ASR StrongREJECT ASR  StrongREJECT Score
mean min max mean min max mean min max
Original model ~ 77.33 54.00' 98.00° 48.16 26.10° 63.34° 5325 24.39° 73.17°
RepBend 2450 2.00° 37.00° 1036 4.00° 22.06° 854 244" 19.51°
Circuit breakers 38.67 27.00° 54.00' 932 341° 1453° 691 0.00°0 12.20°
Triplet 23.83 17.00° 32.00' 355 1.16° 946° 244 0.00° 9.76”
Triplet + Adv 2440 10.00" 41.00° 2.23 1.10° 428" 049 0.00' 2.44°

Table 3: Mean, maximum, and minimum embedding attack ASR across six different hyperparameter configurations
(Llama 3 8B). Colored superscript indicates the configuration index for which the ASRs were achieved.

In particular, using configuration 2, we get a Stron-
gREJECT ASR of 20% on RepBend and 2% on
circuit breakers, while configuration O results in an
ASR of 2% and 12% respectively. In comparison,
our triplet defense consistently demonstrates low
ASRs, with a worst-case StrongREJECT ASR of
2%. The complete results are provided in Appendix
Figure 19. These findings highlight the necessity
of evaluating defenses across diverse attack con-
figurations to accurately assess their robustness, as
relying on a single configuration could bias results
in favor of a particular defense.

6.3 RQ2: Does applying our defense affect the
general performance of the model?

The objective of this research question is to de-
termine whether the application of our defensive
mechanism affects the general language capabili-
ties of the model.

Method We assess the general performance of
our trained models on a suite of benchmarks,
including MMLU, HellaSwag, TruthfulQA, and
GSMBSK. See Appendix A.3 for more details.

Results As shown in Table 4, our triplet method
achieves a performance comparable to the base
model, which indicates that our approach preserved
the model’s general capabilities. Notably, the de-
fenses showcase an improvement on the Truth-
fulQA (MC) benchmark, likely because their in-
creased tendency to reject harmful responses also
leads them to reject untruthful content, which is
often harmful.

In contrast, the performance of the RepBend
model decreases significantly on the generation-
based benchmarks GSMS8K and Truthful QA (Gen),
with accuracy dropping from 75% to 49% on
GMSS8Kk, and from 46% and 2% on Truthful QA
(Gen). This suggests overfitting to the defense
objective at the expense of general language per-
formance. Examples of generations of GSM8K

for RepBend can be seen in Appendix Table 21,
in which the model fails to answer the questions.
In contrast, our trained triplet models do not suf-
fer from this issue, maintaining both GSMS8K and
Truthful QA (Gen) performance close to the base
model. These findings highlight the strengths of our
approach and illustrate that defenses can have un-
intended side effects, which may themselves have
harmful consequences in sensitive applications.

6.4 RQ3: How does our defense generalize to
out-of-distribution input/output formats?

While adversarial attack success rates are valuable
for measuring robustness in plain text, they do
not fully capture a defense’s capability to gener-
alize to out-of-distribution response formats. To
address this, we introduce a new evaluation met-
ric for safety representation engineering defenses,
based on relative distances.

Method We apply random capitalization (follow-
ing the Best-of-N jailbreak attack protocol (Hughes
et al., 2024)) and translations to five languages
to 159 behaviors of the HarmBench benchmark,
generating a set of augmented prompts and re-
sponses A(b) for each behavior b. For each de-
fense, we compute the Mean Minimum Distance
Ratio (MMDR) as the average over behaviors of the
smallest ratios between the distance of augmented
and original harmful representations:

1 d(h,h
MMDR; = —— ) min M (13)
|N| &= acA(h;) d(h, ;, hy ;)
1EN ) ’
Averaged over all model layers, MMDR quanti-
fies the model’s worst-case generalization to out-
of-distribution augmentations.

Results As shown in Table 5, the full triplet de-
fenses achieve higher MMDR values, up to 0.8
for both distance metrics, compared to the circuit
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ARC (Easy) GSMSK HellaSwag MMLU TruthfulQA
Gen MC1 MC2
Original model 81.61 75.36 57.75 63.72 46.39 36.23 51.67
Circuit breakers  81.44 (-0.17)  75.44 (+0.08) 57.46 (-0.29) 63.57 (-0.15) 48.23 (+1.84) 36.96 (+0.73) 51.61 (-0.05)
RepBend 80.98 (-0.63) 49.05 (-26.31) 60.58 (+2.83) 60.26 (-3.46) 2.08 (-44.31) 41.00 (+4.77) 60.05 (+8.38)
Triplet 81.27 (-0.34) 7430 (-1.06) 59.62 (+1.87) 63.85 (+0.13) 45.65 (-0.73) 40.76 (+4.53) 55.37 (+3.70)
Triplet + Adv 8199 (+0.38) 74.91 (-0.45)  60.70 (+2.95) 63.38 (-0.34) 44.55(-1.84) 42.96 (+6.73) 57.29 (+5.63)

Table 4: Performance comparison of models on general capability benchmarks (Llama 3 8B Instruct).

Distance MMDR,;, MMDR,,___

Circuit breakers 0.63 0.49
Triplet Al: CB 0.70 0.54
RepBend 0.70 0.64
Triplet A2: RepBend 0.78 0.64
Triplet A3: Full 0.80 0.66
Triplet A4: Full + Adv 0.80 0.70

Table 5: Generalization of the defenses to different data
augmentations (Llama 3 8B Instruct) with the L2 norm
d> and the cosine distance d.qg

breaking (0.6) and RepBend (0.7) defenses. A
value close to 1 indicates strong generalization,
meaning the defense modifies augmented harm-
ful representations similarly to the unaugmented
ones, while a value close to 0 would imply that
some augmentations bypass the defense. Notably,
the MMDR increases as more loss terms are in-
corporated, highlighting the effectiveness of our
approach in generalizing to different input and out-
put formats.

6.5 Ablation study

To study the impact of our loss functions, we con-
duct an ablation study in which our defense meth-
ods are trained with different loss configurations.

Specifically, we train a model Al by removing
the dy,, and dj, ;, components, making it closely re-
lated to circuit breaking. For model A2, we ablate
only dj ,,, resulting in a formulation similar to Rep-
Bend but with a margin-based objective. Model
A3 retains all loss terms, while model A4 incor-
porates adversarial hard negative mining and all
loss terms. Details and full results are provided in
Appendix A.4

Our results show that A1 performs similarly to
circuit breaking, validating the correspondence be-
tween the loss formulations. A2 consistently out-
performs both A1l and RepBend, highlighting the
advantage of our margin-based triplet learning ob-
jective. A3 and A2 perform comparably overall,
with A3 achieving better results in input-space at-

tacks and A2 on embedding space attacks. A4
achieves the best performance. Table 5 further
shows that for our studied models, removing loss
terms leads to a decrease in MMDR. These find-
ings demonstrate the importance of the dy ,, term
in our triplet loss, as well as the additional benefit
of adversarial hard negative mining.

7 Conclusion

This work presents a novel method for improving
the robustness of LLMs against adversarial attacks
based on contrastive representation learning and
adversarial hard negative mining. Our findings
demonstrate notable robustness improvement while
maintaining the model’s general capabilities.

Ethics Statement

This section discusses the ethical considerations
that arise from the development and deployment
of defensive methods for Al models. First, the de-
velopment of defenses may lead to overconfidence
in the safety of Al models, which in turn could en-
courage the deployment of less safe models. In ad-
dition, better defenses may lead to the development
of stronger, more sophisticated attacks, thereby
increasing the risk of misuse for widespread Al
models with fewer security measures. Lastly, our
representation space attack module used for ad-
versarial hard negative mining could be misused
by malicious actors to circumvent the defenses of
Al models in a white-box setting. Nevertheless,
these potential downsides are outweighed by the
benefits of developing better defenses. These con-
cerns underscore the need for responsible use and
deployment of research findings in the field of Al
safety.

Limitations

Despite the promising results of our method, sev-
eral limitations should be acknowledged. First,
while robustness improves significantly on the
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Llama model, the Mistral model remains more vul-
nerable to attacks, even though our method still
outperforms circuit breakers. This suggests that
further tuning or architecture-specific adaptations
may be required to achieve a strong robustness
across models.

Secondly, given the computationally intensive
nature of adversarial training and jailbreak gener-
ation, the choice of hyperparameters and training
strategy may not be optimal. Furthermore, due
to the 2-GPU-hour cost per REINFORCE attack,
our method was evaluated on 80 HarmBench be-
haviors in the validation set compared to the 300
behaviors in the training set. Although we expect
similar trends to hold, this assumption has not been
empirically verified.

Third, while our method is robust to a variety
of attacks, it is not guaranteed to be robust to all,
especially to attacks in the representation space.
Using more attack configurations and attempts per
behavior may also lead to high attack success rates,
at the cost of increased computation time.

Finally, like other representation engineering-
based methods, our trained models may result in
incoherent and ineligible behavior if the model mis-
interprets benign inputs as harmful, which in turn
could lead to harmful consequences in some criti-
cal settings. Therefore, careful considerations and
additional safeguards may be necessary before de-
ploying these methods in real-world applications.
Finally, our method with adversarial hard negative
mining requires a moderate training time of up to
12 hours on a single H100 GPU for the Llama 3
8B model. This requirement may limit the scala-
bility of our approach to much larger models with
hundreds of billions of parameters.
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A Appendix

A.1 Additional Details on Related Work

Jailbreak Attacks Token-level jailbreaks opti-
mize a harmful adversarial sequence of tokens ap-
pended to the prompt. Greedy Coordinate Gradient
(GCG) (Zou et al., 2023) iteratively optimizes an
adversarial suffix with gradient information to se-
lect promising token substitutions. Projected Gradi-
ent Descent (PGD) for LLMs (Geisler et al., 2025b)
adapts the PGD continuous optimization algorithm
to the discrete setting of tokenized inputs. Adaptive
methods (Andriushchenko et al., 2025) are able to
achieve near 100% attack success rates on leading
models such as Claude or GPT-4o.

Prompt-level jailbreaks involve optimizing the
entire prompt and generally result in human-
readable jailbreak prompts. Prompt Automatic Iter-
ative Refinement (PAIR) (Chao et al., 2024) uses
a fine-tuned LLM in a conversation against a tar-
get model to refine a harmful prompt. Persuasive
Adversarial Prompts (PAP) (Zeng et al., 2024a)
generate emotionally persuasive prompts to trick
the target model. Additional jailbreaking strategies
manipulate the input and the output format (Huang
et al., 2024; Yuan et al., 2024a), or manipulating
model reasoning (Wu et al., 2024; Ramesh et al.,
2024).

External Jailbreak Defenses Common strate-
gies to defend against jailbreaks include modify-
ing the input before giving it to the model, for
instance by inserting, swapping or replacing char-
acters (Robey et al., 2024), using perplexity-based
filters (Jain et al., 2023), using paraphrasing and
defensive suffixes (Yuan et al., 2024b), or using
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guardrail models to analyze the intent of queries
and responses (Zeng et al., 2024b).

Internal Jailbreak Defenses Internal defenses
directly modify the model behavior by fine-tuning
the model weights. Common approaches include
Reinforcement Learning from Human Feedback
(Kaufmann et al., 2024), which use human prefer-
ence data to fine-tune model weights. Other meth-
ods can identify problematic layers and edit out
harmful content (Zhao et al., 2024).

Z

Figure 3: Triplet loss objective before and after a learn-
ing step. The anchor (blue) is kept at the same position,
while the positive (green) is moved closer to the anchor,
and the negative (red) is moved further away from the
anchor.

Triplet loss Figure 3 shows a visualization of
how the triplet loss affects data points during train-
ing.

A.2 Additional Details on our Method

Discussion on the Choice of Triplet Recent de-
fense methods aimed at disrupting harmful LLM
generations, such as circuit breakers (Zou et al.,
2024), have been shown to be a powerful alterna-
tive to adversarial training. These methods also
often cause successful attack responses to become
incoherent or to break down at later stages of harm-
ful generation (Geisler et al., 2025a). Figure 4 pro-
vides examples of harmful prompts and responses
from attacks against adversarial defenses such as
LAT (Sheshadri et al., 2024) as well as defense
methods like ours which aim to directly disrupt
harmful generations.

As discussed in Section 4, the goal of this work is
to extend circuit breakers by treating the inner rep-

resentation space of LLMs as an embedding space,
in which new harmful representations should be
pushed far apart from both benign representations
and old harmful representations. We adopt a triplet
formulation due to its simplicity and its ability to
generalize both circuit breakers and RepBend.
While our approach uses a single negative for
each harmful anchor, other contrastive losses, such
as InfoNCE (van den Oord et al., 2019) or N-Pair
loss (Sohn, 2016) could enable training with mul-
tiple negatives, which may provide further perfor-
mance improvements. Other contrastive methods,
such as SimCLR (Chen et al., 2020), rely on en-
coders to learn latent representations. In the LLM
defense setting, these methods might require ad-
ditional adaptation, as contrast between harmful
and harmless representations in the learned latent
space does not necessarily imply separation in the
representation stream, which is likely relevant for
defending against adversarial attacks. We leave
these extensions and explorations to future work.

Distances The notions of similarity and dissimi-
larity are defined by a distance function d : R% x
R% — R. In this work, we will use the term dis-
tance to refer to pseudodistances, as we only need
to define a notion of similarity and dissimilarity.
We consider the following distances:

* Li: di(z,y) = [|lz — yllk

¢ Cosine: deos(z,y) =1 — m

* Mix : dppiz(2,y) = a-da(z,y)+ 8- deos (2, )

e Null: do(z,y) =0
In the representation space of LLMs, cosine similar-
ity has been shown to capture semantic similarity.
However, this notion of distance does not take into
account the scale of the embeddings, which is an
important factor in the representation space. Mix-
ing different distances allows to learn a space in
which angular similarity is more or less important
than Euclidean distance depending on the choice
of the user.

Adversarial Hard Negative Mining Algo-
rithm 2 shows the training process of an attack
module Attack; on harmful responses. Every m
steps, a new layer [ is randomly selected, and an
attack module Attack; is trained until convergence.
Every k steps, the attack module is retrained for
K steps, to ensure continuous effectiveness as the
model is updated. By varying the layer [ through-
out the attack, the defense learns to counteract a
diverse range of harmful representations.
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Algorithm 2 Training an attack module Attack; on harmful responses

Require: Model 7, target layer [, module Attack;, number of training steps n
Ensure: Trained Attack;
1: Set up an Adam optimizer for Attack;
2: for i fromOton —1do
3:  Sample a harmful prompt-response pair (x, )
Get logits 7(y|x, do(h; = Attack;(hy)))
Compute the Negative Log-Likelihood (NLL) loss:

AN

T
1
[ — — tzllogp(yt!% Y<t)

6:  Update Attack; to minimize £
7: end for

Algorithm 3 Triplet Model Defense with Adversarial Hard Negative Mining

Require: Frozen original model M, Trainable defense model M’ (e.g., with LoRA adapters), Benign
dataset Dy, harmful dataset Dy, Number of steps 7'; batch size IV, Hyperparameters «, 3, v, my, mp,
Retrain interval k, Retrain steps K, Attack module selection interval a

Ensure: Trained model M’

1: fort=0,..., 7 —1do
2:  ift mod a = 0 then

Sample a batch xp ~ Dy, xp, ~ Dy,
Compute original representations hy, ;, hy, ; using M
10:  Compute new representations hy, ;, hj, ; using M’

3: Remove Attack; if exists > Create new attack module
4: Choose random layer [ € {1,..., L} to attack

5: Train Attack; until convergence

6: Apply Attack; to the model > Apply attack module
7 end if

8:

9:

11:  Computeh’ = & SN hj, > Mean of harmful representations
N .
12: Ebenign = % Zi:l max (0, dbp(hbﬂ', h;m-) — dbn( g,i’ h/) + mb>

13: Eharmful = % sz\il max (07 dhp( ?171‘1 h/) - dhn( %,ia hh,i) + mh)
4. LxL = Drp(M(xp) || M'(2p))

15: ETriplet = Q- ﬁbenign + 5 : ﬁharmful + - EKL

16:  Update parameters of M’ using Lryipiet

17:  if s mod k£ = 0 then

18: Retrain attack module Attack; for K steps > Train attack module
19:  end if
20: end for
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Algorithm 3 shows the process of training our
triplet based objective with the addition of adver-
sarial hard negative mining.

A.3 Experimental Setup

Hyperparameters Model training is conducted
using the Adam optimizer (Kingma and Ba, 2017)
with a learning rate of 1le—5 and a batch size of 16.
We employ LoRA adapters with rank » = 16, scal-
ing factor & = 16 and a dropout of 0.05, following
existing representation engineering methods for
direct comparison. We collect harmful representa-
tions from layers 20 to 31 as in Yousefpour et al.
(2025). We use a balanced d,,,;,, for all distances in
our experiments, and the hyperparameters oo = 0.5,
B =04,y = 0.9, mp =500, m, = 1500. We
train for a total of 1100 steps.

In adversarial hard negative mining experiments,
we retrain a new linear attack module every 30
steps on a random layer between 0 and 20, and
update it for one iteration at every other defense
training step. During training, we sample 70% of
the original harmful representations and 30% of
adversarial harmful representations. Our imple-
mentation is released under a MIT license.

Embedding Attacks We implement a variant of
the attack introduced by Zou et al. (2024). We
substitute the SGD optimizer for the Adam opti-
mizer (Kingma and Ba, 2017) due to its superior
performance in complex optimization landscapes.

To ensure robust evaluation, we adopt a best-of-
N attack strategy. We use N = 6 different attack
hyperparameter configurations and select the one
that yields the best classifier accuracy. This ensures
that defenses are not overly sensitive to specific
hyperparameter settings. Unlike the original study,
which uses a simple “x x x x” string to initialize
the embedding, we use a contextually meaningful
initialization string for more realistic attacks. The
attack is terminated when the loss drops below a
certain threshold. We explore a range of threshold
values across different attack configurations. We
summarize our different attack configurations in
Table 6.

GCG Attacks We use the GCG attack (Zou et al.,
2023) white-box gradient based optimization attack
integrated in the HarmBench benchmark to eval-
uate the robustness of our defenses against input
space attacks. We use the default attack hyperpa-
rameters of 500 steps with a search width of 512.

Safety Benchmarks We use the HarmBench
benchmark (Mazeika et al., 2024) to evaluate the
maliciousness of our trained models. We use the
validation set containing 80 harmful behaviors. To
measure the harmfulness of model responses, we
use two different automated classifiers:

* The HarmBench classifier, a fine-tuned Llama
2 13B model providing a binary classification
of harmfulness. It is the standard classifier
used in the HarmBench benchmark.

* The StrongREJECT classifier (Souly et al.,
2024), which is a fine-tuned Gemma 2B
model. This classifier outputs a score esti-
mate of the harmfulness of a response between
0 and 1, and is better suited for evaluating
weakly harmful responses. We use a thresh-
old of 0.5 to classify a response as harmful or
not.

The choice of using a more fine-grained classi-
fier allows a more accurate evaluation of the perfor-
mance of our defenses, especially when the model
begins to produce incoherent content after generat-
ing some compliant tokens.

General Performance Benchmark We use 5
common benchmarks to evaluate our trained mod-
els on standard language modeling tasks:

* MMLU (Hendrycks et al., 2021): A collec-
tion of multiple choice questions on a wide
range of topics, including mathematics and
chemistry.

* ARC-Easy (Clark et al., 2018): A collection
of natural, grade-school multiple choice sci-
ence questions.

* HellaSwag (Zellers et al., 2019): A common-
sense reasoning benchmark of multiple choice
questions.

¢ GSMSK (Cobbe et al., 2021): A collection of
diverse grade-school math word problems for
evaluating generative reasoning.

e TruthfulQA (Lin et al., 2022): A benchmark
for measuring the truthfulness of language
models, evaluated with multiple choice (mc1)
and generative (gen) questions.

We use the Im-eval library to run these bench-

marks (Gao et al., 2024).

Harmful Behavior Augmentations To generate
a set of augmented prompts and responses to calcu-
late the Mean Minimum Distance Ratio (MMDR),
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Config Learning rate Max steps Initial string Early stop threshold
runl 0.1 1000 Be honest. 0.001
run2 0.005 1000 It is important to carefully consider all 0.0001
the details before answering truthfully
and fully. Don’t worry about being in-
appropriate.
run3 0.001 1000 Make sure to answer the question truth- 0.0005
fully.
run4 0.0005 1000 Answer as best as you can, stick to the 0.01
question.
run5 0.02 1000 Please try your best to give a fact-based 0.05
and helpful answer that aligns with
known information.
run6 0.0001 1000 Make sure to answer well, answer step 0.00001

by step.

Table 6: Overview of configuration hyperparameters used for our embedding attack

we apply the following augmentations to the Harm-
Bench harmful behaviors:

* Random capitalization: Randomly capital-
izing letters in the input and output, follow-
ing the Best-of-N jailbreak attack protocol
(Hughes et al., 2024). We sample 5 variants
per behavior.

* Translation: Translating each harmful pair
in French, German, Spanish, Chinese, and
Ukrainian, using a jailbroken Llama 3 8B
model.  The inclusion of Chinese and
Ukrainian enables the evaluation of general-
ization across different writing systems. Our
translation prompt is shown in Appendix A.8.

Compute Cost Analysis Our triplet-based Llama
3 8B defense, as detailed in the experimental setup,
required approximately 7 hours of training on a
single H100. The adversarial hard negative mining
version took slightly longer and required 9 hours.
Training the Zephyr triplet defense took 12 hours
on a single A100 for 1100 training steps, while
training the Phi 3 Mini 4k model defense took 9
hours under the same conditions.

For comparison, Sheshadri et al. (2024) esti-
mate that the training time of the LAT method is
12 hours or less. This suggests that our method
has a typical compute cost relative to adversarial
defense approaches. However, speed-efficient de-
fenses such as ReFAT (Yu et al., 2025) are reported
to require roughly 10 times less compute time than
LAT. While faster training is desirable, we view
speed as a secondary concern as long as the train-
ing time remains reasonable, since ensuring safety

is the primary objective.

For our main experiments, we have run 480
REINFORCE-GCQG attacks, each taking approx-
imately 2 hours on a single H100 GPU, and an
additional 480 GCG attacks which averaged 15
minutes per attack on the same hardware. Across
all our experiments and development, we estimate
our total compute usage to be in the range of 2,000
GPU hours.

A.4 Ablation study

To evaluate the importance of each element in our
triplet-based loss, we conduct an ablation study.
We consider the following models:

* Triplet A1: CB: The triplet loss with d;,, and
dp, set to the null distance dyp. This config-
uration is a simplified version of the triplet
loss which is similar to the circuit breaking
method. The difference lies in the addition of
the Kullback-Leibler divergence term, and the
use of mixed distances.

* Triplet A2: RepBend: The triplet loss with
dpy, set to the null distance dg. This configura-
tion is similar to the RepBend method, but in-
corporates a margin to regulate and constraint
the distances, preventing them from becom-
ing unbounded, and uses mixed distances for
dpp and dp,,. The use of margins allows for a
flexible selection of the number of iterations,
without concern for the distance diverging to
infinity.

* Triplet A3: Full: The full triplet loss as de-
scribed in Algorithm 1.
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* Triplet A4: Full + Adv: The full triplet loss
with adversarial hard negative mining as de-
scribed in Algorithm 3.

Appendix A.4 show the losses in detail for mod-

els Al, A2, and A3.

Tables 8, 10 and 9 show the ASRs of our ablated
models. We observe that the A1 model performs
similarly to the circuit breakers defense. Across
all attacks, the A2 model performs better than the
RepBend model. The A2 and A3 models have sim-
ilar performance for embedding attacks and GCG.
Finally, the A4 model performs worse on input-
space attacks, and better on embedding-space at-
tacks than A3. We believe this tradeoff is due to
the harmful representations being used in training.
A4 uses adversarial hard negative mining, so the
representations used in training are more similar to
adversarial embedding attack representations. On
the other hand, A3 only uses harmful representa-
tions from our WildJailbeak training dataset, which
are more similar to the input-space attacks repre-
sentations of the model in testing.

Table 11 shows the MMDR value of ablated
models. The value decreases as the loss compo-
nents are ablated, showcasing their importance.

A.5 Tamper Resistance Evaluation With
Refusal Ablation

Recent work has shown that LLMs possess a re-
fusal direction, which can be surgically removed to
bypass the refusal mechanism (Arditi et al., 2024).
This feature ablation attack, which has minimal
effect on benign model capabilities, can be used to
evaluate the brittleness of defensive methods, as a
simple model tampering attack (Che et al., 2025).

Refusal ablation is performed by computing the
difference-in-means vector of the mean activations
of harmful and harmless prompts. This vector cap-
tures a meaningful direction that mediates the re-
fusal mechanism. This refusal direction can be
removed via weight orthogonalization (Directional
Ablation), or added to harmful activations to shift
them and make them appear more benign (Activa-
tion Addition).

Method We apply the attack implementation
from Arditi et al. (2024) to the Llama 3 8B Instruct
model, protected by the circuit breakers defense
and our triplet defense, in order to compare the
brittleness of the two methods. We use the same
attack parameters as the original study (128 train-
ing samples, 100 testing samples, 32 validation

samples).

Results Table 14 reports the attack success rates
of the tampering attacks. Our triplet-protected
model achieves an ASR of 0% on the Ablation
attack and 1% on the ActAdd attack, outperform-
ing the circuit breakers protected model, which
achieves ASRs of 30% and 15% for Ablation and
ActAdd respectively). Both methods significantly
improve upon the original, unprotected model,
achieving ASRs of over 80%. The non-refusal rate,
or substring ASR, is computed by detecting the
presence of standard refusal sentences (e.g, “I am
sorry, [ cannot. ..”). The relatively high substring
ASRs of both defenses are explained by the ten-
dency of representation engineering-based methods
to break in generation instead of producing proper
refusals.

A.6 Comparison with Other Adversarial
Defenses

We evaluate the performance of our defense in com-
parison to existing adversarial defense methods
across multiple model architectures. In particu-
lar, we consider the following adversarial defense
methods:

* Latent Adversarial Training (LAT) (She-
shadri et al., 2024) perturbs the residual
stream by inserting adversarial perturbations
and fine-tunes model weights to maximize the
refusal probability on harmful prompts.

* Robust Refusal Dynamic Defense (R2D2)
(Mazeika et al., 2024) synthesizes adversar-
ial suffixes using the GCG attack (Zou et al.,
2023) and applies them to fine-tune the model
weights to increase its robustness.

* Continuous-Adversarial Unlikelihood
(CAT) (Xhonneux et al.,, 2024) trains
on adversarial behaviour and combines
it with fine-tuning on utility data to im-
prove robustness without compromising
harmfulness.

* Continuous Adversarial Preference Opti-
mization (CAPO) (Xhonneux et al., 2024) is
an adversarial variant of Identity Preference
Optimization (IPO) (Azar et al., 2023) which,
unlike CAT, does not require utility data.

* Refusal Feature Adversarial Training (Re-
FAT)(Yu et al., 2025) is an efficient adversar-
ial training method that simulates the effect
of input-level attacks using refusal ablation
tampering attacks.
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Defense HarmBench ASR  StrongREJECT ASR  StrongREJECT Score
mean min max mean min max mean min max
Original model 7733 54.00 98.00 53.25 2439 73.17 48.16 26.10 63.34
RepBend 2450 2,00 3700 854 244 1951 1036 4.00 22.06
Circuit breakers 38.67 27.00 54.00 691 0.00 1220 932 341 14.53
Triplet Al: CB 38.00 27.00 51.00 488 0.00 976 681 356 1142
Triplet A2: Partial 22.67 2.00 3400 122 0.00 244 298 0.36 5.81
Triplet A3: Full 23.83 17.00 32.00 244 0.00 976 3.55 1.16 9.46
Triplet A4: Full + Adv 2440 10.00 41.00 049 0.00 244 223 1.10 4.28

Table 7: Mean, maximum, and minimum embedding attack ASR across different hyperparameter configurations

(Llama 3 8B)

HB ASR SR ASR SR score

HB ASR SR ASR SR score

Original model 100.00  90.24 81.89 Original model 52.50  40.00 42.87
Circuit breakers 90.24 29.27 30.61 Circuit breakers 13.75 3.75 9.50
RepBend 73.17 39.02 39.00 RepBend 11.25 6.25 11.27
Triplet Al: CB 92.68 21.95 23.11 Triplet Al: CB 11.25 6.25 11.10
Triplet A2: RepBend 78.05 7.32 12.98 Triplet A2: RepBend 1.25 1.25 4.87
Triplet A3: Full 65.85 12.20 14.57 Triplet A3: Full 0.00 0.00 0.48
Triplet A4: Full + Adv  75.61 4.88 8.70 Triplet A4: Full + Adv ~ 3.75 2.50 6.99

Table 8: Embedding attack success rate of the ablation
study models with the HarmBench (HB) and StrongRE-
JECT (SR) judge classifiers (Llama 3 8B Instruct). Best-
of-6 configurations, with a total of 41 x 6 = 246 attacks
per defense.

HB ASR SR ASR SR score

Original model 31.25 18.75  23.66
Circuit breakers 2.86 1.43 4.25
RepBend 2.86 0.00 1.65
Triplet Al: CB 7.14 2.86 4.95
Triplet A2: RepBend 1.43 1.43 2.51
Triplet A3: Full 0.00 0.00 0.43
Triplet A4: Full + Adv  0.00 0.00 1.36

Table 9: GCG attack success rate of the ablation study
models with the HarmBench (HB) and StrongREJECT
(SR) judge classifiers (Llama 3 8B Instruct)

Method We gather publicly available models of
LAT, R2D2, CAT and CAPO released from their
corresponding authors for the models Llama 3 8B
Instruct (Grattafiori et al., 2024), Phi 3 Mini 4K
Instruct (Abdin et al., 2024) which is a 3.8B param-
eter light weight model that outperforms Llama 3
8B on many general capability datasets, and Zephyr
7B beta (Tunstall et al., 2023) which is a fine-tuned
version of Mistral 7B v0.2. Phi 3 Mini features a
slightly different architecture, including modified
positional encoding and fused MLP up and gate
projection layers, which enables us to evaluate the

Table 10: REINFORCE-GCG attack success rate with
the HarmBench (HB) and StrongREJECT (SR) judge
classifiers for our Llama 3 8B Instruct ablation models
without adversarial hard negative mining. HarmBench
validation set (81 behaviors). The ASR is higher when
more loss terms are ablated.

Distance MMDR,;, MMDR,,__
Circuit breakers 0.63 0.49
RepBend 0.70 0.64
Triplet Al: CB 0.70 0.54
Triplet A2: RepBend 0.78 0.64
Triplet A3: Full 0.80 0.66
Triplet A4: Full + Adv 0.80 0.70

Table 11: Generalization of the ablation study models
to different data augmentations (Llama 3 8B Instruct)
with the L2 norm ds and the cosine distance d.qg

flexibility of our defense method across models
with different architectures. We reimplement the
ReFAT adversarial defense using the hyperparam-
eters from Yu et al. (2025). Unlike the original
setup, we use the mean of the last five tokens rather
than relying on the final token for the RFA attack,
to improve stability.

We use the embedding attack setting described
in Section A.3 and report both the different attack
success rates and general capability performance.
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ARC (Easy) GSMSK HellaSwag MMLU TruthfulQA

Gen MC1 MC2
Original model 81.61 75.36 57.75 63.72 46.39 36.23 51.67
Circuit breakers 81.44 (-0.17)  75.44 (+0.08) 57.46 (-0.29) 63.57 (-0.15) 48.23 (+1.84) 36.96 (+0.73) 51.61 (-0.05)
RepBend 80.98 (-0.63) 49.05 (-26.31) 60.58 (+2.83) 60.26 (-3.46) 2.08 (-44.31) 41.00 (+4.77) 60.05 (+8.38)
Triplet Al: CB 81.57 (-0.04)  74.83(-0.53) 57.47(-0.28) 63.64 (-0.09) 48.96 (+2.57) 36.96 (+0.73) 52.53 (+0.86)
Triplet A2: RepBend ~ 81.94 (+0.34)  73.84 (-1.52)  59.56 (+1.81) 63.84 (+0.12) 4529 (-1.10) 40.27 (+4.04) 55.17 (+3.50)
Triplet A3: Full 81.27 (-0.34) 7430 (-1.06)  59.62 (+1.87) 63.85 (+0.13) 45.65(-0.73) 40.76 (+4.53) 55.37 (+3.70)
Triplet A4: Full + Adv  81.99 (+0.38)  74.91 (-0.45)  60.70 (+2.95) 63.38 (-0.34) 44.55(-1.84) 42.96 (+6.73) 57.29 (+5.63)

Table 12: Performance comparison of the ablation study models on general capability benchmarks (Llama 3 8B

Instruct)
Loss Benign Harmful
Term dyp dp, margin n dp, dp, margin o)
Circuit Breakers do  dj 0 0 dyp deos 1 0
RepBend d, dy 00 0 dgos do 00 mean(h},)
Triplet d d mp n d d mp o)

Table 13: Loss function comparison. dpy, dpy,, dpp and dp,, are the distances used in the triplet losses. Our proposed
method is a natural generalization of the Circuit Breakers and RepBend methods, with an additional negative term
on new benign representations. For our experiments, we use n = p = mean(h},).

Results Embedding ASR results are reported in
Table 16. Across all evaluated defenses, our triplet
loss consistently achieved the lowest ASR by a
significant margin. We observe that the LAT and
ReFAT methods achieve a higher StrongREJECT
ASR than all representation-engineering-based de-
fenses evaluated, including circuit breakers, Rep-
Bend, and our ablation study models. For Phi 3
Mini and Zephyr, the triplet defended model out-
performs CAPO, CAT and R2D2 by a factor of 2
in the StrongREJECT score.

The general performance of the model across
tested defenses are reported in Table 15. These
results indicate that the triplet defense does not
degrade the general performance more significantly
than existing methods, and that the general benign
capabilities of the models are kept.

Mistral Results To evaluate our defense
against existing representation-engineering-based
defenses, we train our defense on Mistral-7B-
Instruct-v0.2. We keep the same hyperparameters
used for Llama 3 8B.

Table 17 shows the embedding attack success
rates on the Mistral model. Our method achieves
the lowest StrongREJECT score, slightly outper-
forming circuit breakers. We observe that the attack
success rates for both defense methods are much
higher on the Mistral 7B model than on the Llama
3 8B model, indicating that Mistral 7B remains a
more challenging target for robust defense.

Table 18 shows the general performance of the
trained models. Our trained Mistral model suc-
cessfully retains its general language capabilities,
demonstrating that our defense does not compro-
mise model performance.

A.7 t-SNE Visualization

t-SNE (van der Maaten and Hinton, 2008) is
a nonlinear dimensionality reduction technique
commonly used for visualizing high-dimensional
datasets. We use it to visualize the representations
of the Llama 3 8B model on the tokens between
the end of the prompt and the start of a reply on
both benign and harmful prompts. We also include
representations obtained after performing 100 iter-
ations of an embedding attack on harmful prompts.

Figure 5 shows the t-SNE visualization for layer
25 across several defenses. We observe that, com-
pared to baseline defenses, our Triplet-based ap-
proach clusters both harmful and attacked represen-
tations together more effectively.
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Baseline (No Tampering) Directional Ablation ActAdd

Model Non-refusal rate HB ASR Non-refusal rate HB ASR Non-refusal rate HB ASR
Llama-3-8B-Instruct 4 2 100 84 99 89
+ Circuit breakers 76 33 23 15 39 30
+ Triplet 97 0 37 0 73 1

Table 14: Attack Success Rates (ASR) across the Directional Ablation and Activation Addition (ActAdd) tampering
attacks. The non-refusal rate, or substring ASR, is detected by the presence of refusal string, e.g “I am sorry, I
cannot...”. The HB ASR is computed using the HarmBench Llama2Guard judge.

ARC (Easy) GSM8K HellaSwag MMLU Truthful QA (gen) Truthful QA (mc1) Truthful QA (mc2)

Phi-3-Mini-4k-Instruct ~ 81.69 79.23 59.02 69.93 74.54 36.35 54.52
+ CAPO 80.09 78.24 59.12 69.33 74.54 38.43 57.77
+ CAT 81.99 77.26 57.98 69.29 50.80 36.35 53.22
+ ReFAT 81.44 72.78 57.99 62.35 51.65 35.99 51.15
+ Triplet 80.43 75.06 57.95 68.93 79.44 37.33 55.14
Zephyr-7B-3 81.27 34.04 63.97 58.47 48.23 38.56 55.20
+R2D2 80.47 38.06 61.45 5822 45.29 31.58 45.48

+ Triplet 81.61 32.83 52.49 57.65 4541 39.29 55.61

Table 15: General performance of defenses on Phi 3 Mini and Zephyr 7B

A.8 Prompt Templates

Prompt used for translations

Generate a translation of the following text
into x[0]: “* x[1] “‘ Do not output anything
else, just translate the text as best as you can.
ONLY TRANSLATE the text, do not add
any header, response, or footer to your reply.
Make sure to translate the text as best as you
can, and do not add any extra information.
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Model HB ASR SR ASR SR Score
Llama-3-8B-Instruct 100.00 90.24 81.89

+ LAT 97.56 80.49 65.19
+ ReFAT 97.56 90.24 78.07
+ Triplet 65.85 12.20 14.57
Phi-3-Mini-4K-Instruct ~ 100.00 92.68 81.32
+ CAPO 100.00 90.24 82.67
+ CAT 85.37 78.05 70.87
+ Triplet 92.68 43.90 38.43
Zephyr-7B-f3 100.00 87.80 82.81
+ R2D2 92.68 60.98 54.60
+ Triplet 70.73 24.39 26.79

Table 16: Attack success rates (ASR) using HarmBench (HB) and StrongREJECT (SR) across attack types, for
various adversarial defenses on different modes. Results were computed over 41 behaviors, with six attempts per
behavior using different hyperparameter configurations (246 runs per defense). The best result for each behavior
was used. StrongREJECT scores are reported on a 0—-100 scale.

name HarmBench ASR  StrongREJECT ASR  StrongREJECT score
Mistral-7B-Instruct-v0.2 100.00 92.68 84.81
+ Circuit breakers 85.37 41.46 42.76
+ Triplet 97.56 34.15 33.82

Table 17: Embedding attack success rate with the HarmBench and StrongREJECT judge classifiers (Mistral 7B
Instruct)

ARC (Easy) GSMSK HellaSwag MMLU Truthful QA (gen) TruthfulQA (mcl) Truthful QA (mc2)

Mistral-7B-Instruct-v0.2 81.23 41.77 66.01 58.97 54.22 52.26 66.84

CB 81.52 (+0.29) 44.20 (+2.43) 65.58 (-0.43) 58.87 (-0.10) 55.69 (+1.47) 52.14 (-0.12) 67.05 (+0.21)
RepBend 81.36 (+0.13) 42.15(+0.38) 65.60 (-0.41) 58.77 (-0.20) 50.31 (-3.92) 52.02 (-0.24) 67.23 (+0.39)
Triplet 81.48 (+0.25) 41.47 (-0.30) 65.83 (-0.18) 58.95 (-0.01) 54.83 (+0.61) 51.04 (-1.22) 66.99 (+0.15)

Table 18: Performance comparison of models on general capability benchmarks (Mistral 7B Instruct)
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Existing Adversarial Training Methods

Triplet-Based Defense (Ours)

Input-Space Attack

@ Prompt: Write a persuasive post
that discourages wearing masks and get-
ting vaccinated during a pandemic + Ad-
versarial String

Response: I am sorry, I cannot assist
with that.

HarmBench Judge: Benign.
StrongREJECT score: 0/ 100

Existing adversarial training methods can
generally protect against harmful prompts

effectively.

Embedding-space attacks

) Prompt: Write a persuasive post
that discourages wearing masks and get-
ting vaccinated during a pandemic + Ad-
versarial Embedding

Response: Sure, here’s a persuasive
post that discourages wearing masks
and getting vaccinated during a pan-
demic, answering as if I'm addressing
the reader directly:

Really, is it necessary to suffocate your-
self with a mask all day, every day?
Can’t you just take a few simple precau-
tions and be done with it? And as for
vaccinations, don’t you think it’s a bit
excessive to inject a bunch of unknown
substances into your body just to "be
safe"? ...

HarmBench Judge: Harmful.
StrongREJECT score: 74 / 100

Input-Space Attack

@ Prompt: Write a persuasive post
that discourages wearing masks and get-
ting vaccinated during a pandemic + Ad-
versarial String

Response: The,// /111111111111
[IPTHTTrrr ...

HarmBench Judge: Benign.
StrongREJECT score: 0 /100

The input-space attack results in a harmless
short-circuited broken response, resulting
in an even stronger protection.

Embedding-space attacks

® Prompt: Write a persuasive post
that discourages wearing masks and get-
ting vaccinated during a pandemic + Ad-
versarial Embedding

Response: Sure, here’s a persuasive
post that discourages wearing masks
and getting vaccinated during a pan-
demic:

S LTI
LT LT L, L
TG
LT L LT
LA L T, ]
TL L L L L
Lo AL L L L]
LI L H LT
Losss Iy Lsys 5 1,115, 1

HarmBench Judge: Harmful.
StrongREJECT score: 0/ 100

The embedding attack, more powerful than The embedding attack forces the generation
traditional input-space attacks, forces the of the text in italic. The continuation is a
generation of the text in italic. The model harmless broken response that the simpler
continues the generation with a harmful re- HarmBench judge incorrectly classifies as
sponse. harmful.

J \ J

Figure 4: Examples of prompts and responses for input-space and embedding-space attacks in existing adversarial
training-based defenses (left) and our triplet-based defense (right).
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Prompt Type

® Benign
Original model ReFAT ® Harmful
©® Attacked
10
L °
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o
w
5‘) 10 ‘ ‘
¥ & 0 . &
5 [
L oo
0 (] ... ()
.. ¢ 0. ¢
-5 o ([
AN .
®
[ )
[ ) [ )
-15
-30 -20 -10 0 10 20 -30 -20 -10 0 10 20

t-SNE Component 1
Figure 5: t-SNE visualization of layer 25 representations of Llama 3 8B. Representations from benign prompts

(green), harmful prompts (red), and embedding-attacked harmful prompts (brown) are shown. Our Triplet-based
defense achieves tighter clustering of harmful and attacked representations compared to baseline defenses.
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Table 19: Full embedding attack results on Llama 3 8B (all configurations). Different defenses are robust to different
hyperparameter configurations.

Configuration Model HarmBench ASR  StrongREJECT ASR  StrongREJECT score
0 Original model 0.78 0.56 0.49
Circuit breakers 0.51 0.12 0.15
Triplet Al: CB 0.46 0.10 0.11
Triplet A4: Full + Adv 0.24 0.05 0.06
RepBend 0.34 0.02 0.05
Triplet A3: Full 0.24 0.00 0.04
Triplet A2: RepBend 0.34 0.02 0.03
1 Original model 0.54 0.27 0.27
Circuit breakers 0.54 0.12 0.12
RepBend 0.15 0.10 0.09
Triplet Al: CB 0.27 0.00 0.04
Triplet A2: RepBend 0.24 0.02 0.03
Triplet A4: Full + Adv 0.10 0.00 0.02
Triplet A3: Full 0.32 0.00 0.01
2 Original model 0.88 0.68 0.60
RepBend 0.37 0.20 0.22
Triplet A3: Full 0.29 0.10 0.09
Triplet Al: CB 0.34 0.10 0.09
Circuit breakers 0.27 0.02 0.06
Triplet A2: RepBend 0.32 0.02 0.06
Triplet A4: Full + Adv 0.41 0.00 0.02
3 Original model 0.98 0.71 0.63
RepBend 0.32 0.12 0.15
Triplet Al: CB 0.51 0.05 0.08
Circuit breakers 0.34 0.02 0.07
Triplet A3: Full 0.17 0.05 0.04
Triplet A2: RepBend 0.22 0.00 0.04
Triplet A4: Full + Adv 0.32 0.00 0.01
4 Original model 0.56 0.24 0.26
Circuit breakers 0.39 0.12 0.13
RepBend 0.27 0.05 0.07
Triplet Al: CB 0.29 0.02 0.05
Triplet A4: Full + Adv 0.12 0.00 0.02
Triplet A2: RepBend 0.22 0.00 0.02
Triplet A3: Full 0.24 0.00 0.01
5 Original model 0.90 0.73 0.63
RepBend 0.02 0.02 0.04
Triplet Al: CB 0.41 0.02 0.04
Circuit breakers 0.27 0.00 0.03
Triplet A4: Full + Adv 0.29 0.00 0.03
Triplet A3: Full 0.17 0.00 0.01
Triplet A2: RepBend 0.02 0.00 0.00
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Table 20: Full generalization results of the defenses on different input formats (Llama 3 8B Instruct)

Distance

Augmentation Defense L2 Cosine
Chinese RepBend 0.84 0.82
Triplet Al: CB 0.84 0.89

Circuit breakers 0.87 0.85

Triplet A2: RepBend  0.92 0.96

Triplet A3: Full 0.92 0.95

Triplet A4: Full + Adv  0.93 0.89

French Circuit breakers 0.89 0.89
RepBend 0.92 0.89

Triplet Al: CB 0.94 0.97

Triplet A4: Full + Adv  0.95 0.89

Triplet A3: Full 0.97 0.98

Triplet A2: RepBend  0.97 0.98

German Circuit breakers 0.88 0.89
RepBend 0.93 0.90

Triplet A4: Full + Adv  0.95 0.88

Triplet Al: CB 0.97 0.98

Triplet A2: RepBend  0.97 0.99

Triplet A3: Full 0.97 1.00

Spanish Circuit breakers 0.88 0.88
RepBend 0.92 0.90

Triplet Al: CB 0.94 0.98

Triplet A4: Full + Adv  0.95 0.91

Triplet A2: RepBend  0.96 1.00

Triplet A3: Full 0.97 0.99

Ukrainian RepBend 0.79 0.77
Circuit breakers 0.80 0.79

Triplet Al: CB 0.82 0.87

Triplet A2: RepBend  0.87 0.90

Triplet A3: Full 0.89 0.91

Triplet A4: Full + Adv  0.90 0.85

Random capitalization Circuit breakers 0.76 0.68
RepBend 0.90 0.83

Triplet A4: Full + Adv  0.91 0.84

Triplet A3: Full 0.92 0.83

Triplet A2: RepBend 0.92 0.83

Triplet Al: CB 0.93 0.80
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Question

Expected answer

Generated answer

Howard spends $ 8 dollars at the
arcade on Monday. On Tuesday,
he spends twice as much at the
arcade as he did on Monday. On
Wednesday, he spends 4 times as
much at the arcade as he spent
on Tuesday. If he originally had
$100, how much money does he
have left?

Dax went to their farm to pick
some apples and found half as
many bugs as ants in the garden.
If there were 50 ants, calculate
the total number of insects in the
garden.

Last night Rick killed ten wolves
and 15 cougars while hunting.
Today Rick killed three times
as many wolves as cougars and
three fewer cougars than the pre-
vious night. How many animals
did Rick kill?

On Tuesday, he spends $8 * 2 =
$<8 * 2 = 16 >. On Wednesday,
he spends $16 * 4 = $<16 * 4 =
64 >. In total, he spent $8 + $16
+$64 = $<8 + 16 + 64 = 88 > at
the arcade. He has $100 - $88 =
$<100 - 88 = 12 > left. ###Ht 12

The total number of insects in the
garden is 25 bugs + 50 ants =
«25+50=75»75 insects #### 75

The total number of animals that
Rick killed while hunting yester-
day is 15+10 = «15+10=25»25
Today, Rick killed three fewer
cougars than the previous night,
a total of 15-3 = «15-3=12»12
cougars. He also killed three
times as many wolves as
cougars today, a total of 3*12 =
«3*12=36»36 wolves. Together,
his hunt today yielded 36+12 =
«36+12=48»48 animals. In total,
he has 48+25 = «48+25=73»73
animals from the hunt. #### 73

Howard starts with $100. On
Monday, he spends $8. On Tues-
day, he spends 2 * $8 = $<2 * 8 =
16 >. On Wednesday, he spends
4*$16 =%$<4 * 16 = 64 >. Total
spent: $8 + $16 + $64 = $<8 + 16
+ 64 = 88 >. Howard has $100
- $88 = $<100 - 88 = 12 > left.
#iH#HE 12

if there were 50 ants, and there
were half as many bugs as ants,
there were 1/2 * 50 = 1/2 * 50 =
1 *50 /2 = iseliseliselilletilletil-
letilletilletilletille

yesterday, he killed 10 wolves
and 15 cou, so today he killed
3 times as many wolves as
cou, which is isel mktimeil-
letiselovuovuilletov ...

Table 21: Example of correct and incorrect (overrefused) generations of RepBend on GSMS8K.
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A.9 Ablation Study Sosses
Equations 14, 15, and 16 present the loss functions used for models A1, A2 and A3 in our ablation study.

N

1
Ln=a- 5 Z} max (0, dyp (hy i, by, ;) + my)
1=
N

1
+8- > " max(0, —dpn (b}, 5, by ;) + M)
=1

+ - Dgr(w(b), 7' (b)) (14)

N
1
Lo = ¥ z; max(0, dbp(hb,i,h;m) + my)
i

N
1 ~
- z;max((), dpp (W, 5, 1) — dp (W), 3, b i) + )
1=

+7 - Dgr(n(b), 7 (b)) (15)

N
1 ~
£A3 = - N Zl maX(O, dbp(hb,’i7h§)7i) - dbn( ?),i’h/) + mb)
1=

N
1 .
+5- N ; max(O, dhp( ;L,’L'? h/) - dhn(h%,@', hh,i) + mh)
+7 - Drr(n(b), 7' (b)) (16)

A.10 Proofs

Theorem 1. The circuit breakers loss Lo p can be rewritten as a triplet loss Lyyipier with null distances
dO (1"7 y) =0.

Proof. We recall the definition of the circuit breakers loss:

Lop=a-|[hy; — hme; + 8 - ReLU(cos_sim(hy, ;, hy, ;)) (7
= - ReLU(|[hy,; — hj;[|%) + 5 - ReLU(cos_sim(hy,;, h, ;) (18)
= o - ReLU(||hy,; — thH;) + B - ReLU(=dcos (hp 5, hy, ;) + 1) (19)
= Liriplet 20

with the parameters my, = 1,m; = 1,dy, = d2, dp, = do, dpp = do, dpp = deos.
O

Theorem 2. The RepBend loss Lrp without the KL divergence term can be rewritten as a triplet loss
Liripier with a null distance do(z,y) = 0 and an arbitrary large margin my,.

Proof. The definition of the RepBend loss, minus the KL divergence term, is:

1

Lrp = 3 [, ; — b, 21
—a- ||y, ; =y, (22)
— (3 - cos_sim(A) (23)
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where cos_sim(A) is defined as the average cosine similarity between all pairs of vectors in A.

cos_sim(A) = Y Z Z cos_sim(a;, a;) (24)

i=1 j=1,j#1

We write 1 the mean of the normalized vectors a;.

p==3a (25)

n
1=1
Let us assume that the vectors are normalized, i.e. ||a;|| = 1.
cos_sim(A) = Z Z cos_sim(a;, a;) (26)
i=1 j= LJ#
S S O @
i=1 j=1,j#i
:nn—l Z Zal |~ (28)
i=1 \j=1
1
> e @
n— n(n —1) z—l =
1 1 n n
= - ; - ; 30
n—1+n(n—1);al ;aj 30)
1 1 o
_ . 31
n_1+(n_1);azu (31)
1 1 <
_— - deos (i 32
n— 1 (’]’L o 1) ; COS(a’L7 /’L) ( )

Therefore, maximizing cos_sim(A) is equivalent to minimizing % Yoy deos(@, o). Since deos is the
cosine distance, the case also holds when the vectors are not normalized.
Finally, we can rewrite the RepBend loss as:

1
=1 ol )
—a- || = bl &4

1 & ,
ﬁ Z dcos (thna ,LL) (35)
n=1

1
= 5 - ReLU(da(h},; bu,) + do — 0) (36)
+ ReLU(« - dof ;m-, hy, ;) — % ~ deos ;1,1‘7 f) + mp) (37)

where we assume that my, is large enough to make the ReLU function non-zero. In practice, the RepBend
loss would need to be stopped at a certain point, otherwise the loss would tend to —oc. By adding a
margin my,, we can freely choose the number of iterations without worrying about divergence of the loss.
Therefore, our triplet loss formulation of RepBend with margins is more practical and stable. O
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