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Abstract

Recent progress in large language models
(LLMs) has enabled the automated process-
ing of lengthy documents even without super-
vised training on a task-specific dataset. Yet,
their zero-shot performance in complex tasks
as opposed to straightforward information ex-
traction tasks remains suboptimal. One fea-
sible approach for tasks with lengthy, com-
plex input is to first summarize the document
and then apply supervised fine-tuning to the
summary. However, the summarization pro-
cess inevitably results in some loss of infor-
mation. In this study we present a method
for processing the summaries of long docu-
ments aimed to capture different important as-
pects of the original document. We hypothesize
that LLM summaries generated with different
aspect-oriented prompts contain different in-
formation signals, and we propose methods to
measure these differences. We introduce ap-
proaches to effectively integrate signals from
these different summaries for supervised train-
ing of transformer models. We validate our
hypotheses on a high-impact task — 30-day read-
mission prediction from a psychiatric discharge
— using real-world data from four hospitals, and
show that our proposed method increases the
prediction performance for the complex task of
predicting patient outcome.

1 Introduction

Recent progress in large language models (LLMs)
has allowed the processing of long documents that
were previously difficult to process due to limita-
tions in the model sequence length (Zeng et al.,
2024). Although this enabled a variety of NLP
tasks to be applied to longer documents, particu-
larly using a zero- or few-shot approach, some tasks
that require deeper text processing beyond infor-
mation extraction remain challenging in zero-shot
settings (Yoon et al., 2024; Fan et al., 2024). One
such complex task is patient outcome predictions
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such as out-of-hospital mortality or readmission
prediction, where the task objective is to predict a
future event given the summary of the patient’s stay
as recorded at their discharge in a type of clinical
note called a discharge note. In this work, we are
concerned with the high-impact real-world task of
predicting readmissions in psychiatric hospitals.

Due to the immense computational cost required
to fine-tune LLMs (especially given the length of
clinical documents), and the regulatory challenges
presented by transferring sensitive patient data to a
large compute environment, traditional supervised
training approaches are not feasible for tasks where
patient data are the primary source.! On the other
hand, recent studies show that one of the core LLM
strengths is their ability to generate high-quality
summaries (Zhang et al., 2024b; Liu et al., 2023;
Van Veen et al., 2024). Furthermore, clinical notes
contain detailed information about the patient’s
disease/s not all necessarily relevant to a particular
classification task (Hultman et al., 2019). Thus,
summarization emerges as a feasible approach to
retain only the relevant content.

The recent advances in LLM capabilities make
it possible to explore an approach where long docu-
ments are first summarized to an acceptable length,
and the summaries are used to fine-tune a smaller
language model. This approach takes advantage of
the strengths of LLM while avoiding the challenges
of fine-tuning them (Chen et al., 2024). However,
since the summarization process shortens a doc-
ument, some content details that are important
signals for downstream tasks might be removed.
Aspect-oriented prompting (Ahuja et al., 2022),
where prompt variations are used to condition the
summary on important aspects of the text (e.g., risk
factors), could capture the relevant details more
reliably.

"Due to the Transformers architecture, a vanilla method to
fine-tune a model with n context size will require O(n?) of
GPU memory.
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Therefore, we address the following research
questions: 1) Does the use of LLM-based aspect-
oriented summarization extract measurably differ-
ent information signals with different information-
focused prompts (i.e. aspects)? 2) What are effec-
tive strategies for merging signals from different
aspect-oriented summaries?

The present work makes the following contribu-
tions to answering these research questions. First,
we develop and quantify methods for measuring
the information signal differences in the summa-
rized text. Working with our domain experts, we
created three different types of prompts to sum-
marize discharge notes from the Electronic Health
Record (EHR) into a paragraph-length document.
We generated summarized documents using the
prompts and used them as training data for the
downstream task of readmission prediction by fine-
tuning smaller pre-trained language models. Dur-
ing this process, the differences in information
contained in the summaries become internalized
within the fine-tuned models, allowing to measure
these differences by comparing the prediction dif-
ferences. For scientific rigor, we fine-tuned repeat-
edly with random seed variations, setting the con-
trol group as the variation among models trained
using the same prompt and the experimental group
as the variation among models trained using differ-
ent prompts.

Second, we explore methods for combining
summaries generated by different aspect-oriented
prompts and propose their integration at the dataset
level. We show that our proposed method improves
the performance of fine-tuned models and demon-
strate that effectively integrating information from
diverse summaries generated via aspect-oriented
summarization yields better performance than fine-
tuning with a single summary.

2 Dataset and task

In this section, we describe the readmission pre-
diction task and the data sourced from real-world
hospital EHRs.

2.1 Source of experimental data

We extracted psychiatric discharge notes from the
EHR databases of four hospitals within a single
academic health center in the United States. Pa-
tient encounters were selected with two criteria: (1)
range for patient’s age at admission of 18-65 years
old; pediatric and elderly patients excluded because
of the disease specifics for these age groups, and

Hospital | Train Dev  Test Total | Pos/Total
McLean | 6066 775 1718 8559 0.2914
MGH 8840 1392 2610 12842 | 0.2979
BWH 979 130 339 1448 0.3384
FH 793 94 242 1129 0.2214

Table 1: Dataset distribution by hospital sites. The
middle section lists the note counts for the train, devel-
opment (dev), and test splits; the right section shows the
positive label ratio (Pos/Total).

(2) ICD-10 diagnosis codes for mood disorders or
psychotic disorders (All codes starting with F2 or
F3). Table 1 shows the number of notes in the
training, development, and test sets grouped by
hospital. This study was approved by the Mass
General Brigham Institutional Review Board with
a formal reliance at Boston Children’s Hospital.
All experiments, including data processing, were
conducted within the secure firewall of the health
center in HIPA A-compliant environments.

2.2 Task definition

The psychiatric short-term readmission prediction
task involves determining whether a patient will
be readmitted to the hospital within 30 days af-
ter discharge. This task is important for the pa-
tient’s quality of life (Owusu et al., 2022; Ren et al.,
2025) as well as used by the United States Centers
for Medicare and Medicaid Services (CMS) as a
quality metric for some conditions that is tied to
reimbursement rates (CMS).

This short-term readmission prediction task dif-
fers from long-term or lifetime readmission predic-
tion in nature; a more detailed discussion of this
distinction is provided in Appendix J.

The dataset’s unit is a hospital admission, and
a single patient might have multiple admissions.
Since discharge notes are generated once per ad-
mission at the time of discharge, there is a one-to-
one correspondence between a discharge note and a
hospital admission, making both units equivalent in
the dataset. To ensure that discharge notes from the
same patient do not scatter across the training, de-
velopment and test splits, we used the patient ID. In
this study, the model’s input is the text of a psychi-
atric discharge note, without any EHR structured
data, i.e. ICD-10 codes or medication orders. The
label is binary: a positive label indicates readmis-
sion within 30 days, while a negative label indicates
no readmission within that period.
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Figure 1: Overview of our aspect-oriented summarization pipeline. Discharge notes sourced from hospitals’ EHR
databases and processed with LLM prompts. The summarized notes are used in the experiments detailed in

Sections 3.2 and 3.3.

3 Methods

Our methodology comprises of three components:
aspect-oriented summarization, measuring informa-
tion signal differences, and integrating information
signals with a focus on readmission prediction.

3.1 Aspect-oriented summarization

The intrinsic nature of summarization leads to infor-
mation loss as some of the original content is omit-
ted from the summary (Tang et al., 2023). Sum-
marization becomes challenging if the document
is long and if the source document is written in a
nuanced language, where overlooking even small
details could significantly alter the intended mean-
ing (Zhang et al., 2024a).

Psychiatric discharge notes are valuable re-
sources for assessing LLM summarization capabil-
ities, not only due to their length but also because
of their nuanced language. A plain-language de-
scription of an event could be a significant signal.
For example, an event where a patient stops taking
a medication is informative, but its importance and
meaning is highly dependent on context — whether
it was due to side effects, ineffectiveness, or some
other reason.

These factors motivate our aspect-oriented sum-
marization approach. Data processing steps are
shown in (Figure 1). We started with the raw EHR
data and extracted the discharge notes. These dis-
charge notes are summarized using an instruction-
tuned LLM. Three types of prompts, plain,
riskfactor, and timeline, were used to produce
different types of summaries, i.e. aspects. The
prompt templates are shown in Figure 2 and in
Appendix A. The plain prompt was intended to
create a generic summary; the riskfactor prompt
focused on specific research factors previously pub-
lished in psychiatric NLP research (Holderness
et al., 2019; Ding et al., 2020); and the timeline

prompt was designed to generate summaries con-
taining an ordered sequence of important events
before and during the admission. All three prompts
were developed with input from researchers with
clinical NLP and psychiatric expertise.

We use the summarized discharge notes in the
experiments presented in Sections 3.2 and 3.3.

3.2 Measuring information differences

Since we hypothesize that different types of sum-
maries potentially contain non-overlapping pieces
of information, we describe our method to quantify
the degree of overlap.

Existing methods for automatically comparing
documents, such as ROUGE (Lin, 2004) and
BERTSscore (Zhang et al.), are designed for pur-
poses not fitting our goal to estimate the informa-
tion differences of summaries intended to represent
different sides of the original document. Moreover,
they are inadequate for capturing subtle informa-
tion differences. Based on our preliminary study,
manually evaluating summaries for information
preservation, i.e., determining whether important
information is kept or omitted, is not scalable and is
subjective. Therefore, we developed a data-driven
approach.

The intuition behind our approach is that models
capture signals specific to the text used during the
supervised training phase. Therefore, if during the
supervised training stage the model is exposed to
aspect-oriented summaries each targeting a differ-
ent side of the original text, the model will learn the
various aspects. Therefore, we train task-specific
models on each type of summary, expecting the
models to learn the summary-specific signals which
in turn will be reflected in the final predictions. By
comparing the outputs of the task-specific models
we measure the difference in the signals present in
the inputs. Figure 3 is the Venn diagram illustrat-
ing that models derived from different summaries
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Plain summarization prompt

<s>[INST] The following is a discharge summary for a patient leaving a psychiatric hospital.
Discharge note inserted here.
This is the end of the discharge summary. Please summarize the patient’s hospital course in a paragraph. [/INST]

Timeline-focused summarization prompt

<s>[INST] The following is a discharge summary for a patient leaving a psychiatric hospital.

Discharge note inserted here.

This is the end of the discharge summary. Write a very brief semi-structured timeline with the major events in the
patient’s medical history, including prior to admission. Do not give a full medication history, though recent medications
and a note of a complex medication history are useful. Each line has the form <Date/Time>: <Event description>

[/INST]

\

Figure 2: Prompts for summarization. Three types of prompts, plain, riskfactor, and timeline, were used to
generate different types of summaries. For riskfactor prompt, please see Appendix A

Plain Riskfactor

66 59
80

82
102
54

80
Timeline

Figure 3: Differences between predictions (True Posi-
tives) of task-specific models fine-tuned with different
summary types. The non-overlapping predictions sug-
gest that aspect-oriented prompting extracts different
yet complimentary information from the source docu-
ment. The figure shows experiments from MGH with a
random seed set to 0.

make distinct decisions.?

We iterated model training with identical set-
tings but with different seeds on the same summary
types. Intra-aspect experiments (i.e. measuring the
difference between summaries generated using the
same prompt) were conducted as a control group
and compared against inter-aspect experiments (i.e.
measuring the difference between summaries gen-
erated using different prompts). This approach
aims to mitigate differences arising from sources
of randomness such as random initialization.

3.2.1 Pair-wise similarity scores between
models

We assess the similarity between the outputs of any
given pair of models. The outputs were ranked
based on probabilities, and Kendall’s tau was em-
ployed to evaluate the similarity between the two

Note that these predictions are based on one experimental
run, rather than the aggregation of multiple runs reported in
Table 2.

ranked lists.?

We define a list of prediction from a model M;
on k notes as Ly = {p{,pl,..p.}, and define
Ly = {p?,p3,...p3} similarly for another model
M5 on the same set of £ notes, where pé is a prob-
ability value in the range [0, 1]. From here, we
can define lists of ranks, Ry = {R{,..., R} and
Ry = {R%,..., R} where the elements represent
the rank of each element in the list. Following the
definition of Kendall (1945) and its implementation
by SciPy (Virtanen et al., 2020), the Kendall’s Tau
7(1,2) between L; and Ly is defined as:

_ P-Q
" VIN=T)(N-D)

T(1,2

where N = k(k — 1)/2 is the total number of
pairs. P represents the count of concordant pairs
and @) denotes the count of discordant pairs. T
is the number of tied pairs in R;, and U is the
number of tied pairs in Ry. Here concordant pairs
are all (i, j) such that R} < le and R? < R? or
R} > le- and R? > R? while discordant pairs
are all (i,7) such that R} < le- and R? > R?
or Rj > R} and R; < Rj. 7 is in the range
[—1, 1], where 1 indicates complete concordance,
and -1 indicates complete discordance. We define
Kendall’s 7-based distance as d; ; = (1 — 7;5)/2.
Since 7 € [—1, 1], it follows that d € [0, 1].

3.2.2 Dataset-level information difference
score

We perform multiple experiment runs per type of
summarization and per hospital sites. The mean
distance between the predictions of one summary

3We utilized implementation of SciPy v1.14.1.
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Figure 4: Information difference by summary type combinations. Lower values indicate smaller difference observed.
[Left figure] The y-axis represents the Tau-based distance d. The box indicates the interquartile range (the middle
50% of the data), and the dots indicate outliers from the iterated experiments. [Right figure] The bar chart represents
the Difference (D) (i.e. mean distance at the dataset level) by the summary type combination.

type (intra-aspect difference) is calculated by av-
eraging the distances of all combinations within
the same settings. For example, the difference D
within Sp4:p, type summary experiments for a hos-
pital A can be defined as:

Z?:l Z?:l di,;j

D<A7 Splain) = n2

where 7 is the number of repeated training runs for
the same settings with different random seeds (i.e.
models My, M>, ... M, are trained on Spy4in)-

The mean distance between two different types
of summarization methods (inter-aspect difference)
is measured analogously. For example, the differ-
ence between Plain summarization and Riskfactor
summarization can be measured by:

D1 e dig

D(A, Splainu Sriskfactor) = m

where n is the number of repeated training runs
for the Plain summarization dataset and m for the
Riskfactor dataset.

3.3 Readmission prediction task

In this section, we propose methods to utilizing
the different types of summarized text for training
task-specific models.

3.3.1 Baseline models

Discharge notes are typically long usually requir-
ing a 10k-token window, which exceeds the ca-
pacity of most encoder-only transformer models
thus rendering fine-tuning impractical. Therefore, a

Bag-of-Words (BoW) approach with Support Vec-
tor Machine (SVM) (Cortes, 1995; Joachims, 1998)
was used as a baseline model to estimate the per-
formance using the content of the entire document
(i.e. no summarization).

Additionally, we experimented with supervised
fine-tuning (using LoRA adapters (Hu et al., 2022))
of two relatively small LLMs capable of handling
longer inputs. However, due to the nature of the
training dataset, specifically, the number of training
examples not large enough to train LL.Ms and the
considerable length of each input, the fine-tuning
process was challenging. The resulting model per-
formance was unstable and often failed to yield
meaningful results. (See Appendix C for details.)
These outcomes further support our approach of
summarizing discharge notes before training, as
a way to overcome the limitations posed by full-
document modeling in low-resource settings.

For baseline classification from single sum-
maries, we used two types of models: (1) a tra-
ditional baseline with SVM with BoW features,
and (2) a transformer-based Pretrained Language
Model (PLM). The SVM baseline allows us to com-
pare directly to full-document performance, while
the PLM allows us to measure the capability of
more advanced models.

3.3.2 Integration of information from
different summaries

We examine two methods of data integration: in-
stance concatenation, which we refer to as merged,
where we combine summaries at the note level; and
dataset concatenation, which we refer to as union,
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where we create one large dataset where each in-
stance has its own summary type.
Let s? 19 denote a plain summarized note at the
i-th index, and likewise sziSkf actor and slimeline for
their respective summary types. The three datasets
of the LLM-summarized notes, Spiqin, Srisk factors
and Sy;meline, €ach contain k instances that can be
aligned.

The instance concatenation (merged) approach
is represented as building a dataset composed

d . . . lai
f 579, which is three summaries, s"*"

; . . g ’
gwkf actor _ gtimeline simply concatenated together
with summary demarcation indicated by “Another
summary” to form one longer document.

merged lain risk factor i i
' ged _ Slp + Py f + Sz;zmelzne

d .
Smerged = {Slfnerge ‘ 1=1,2,...,k }

The dataset concatenation (union) approach is
more straightforward and can be represented as the
union of three summary datasets. This approach
requires a pooling strategy during testing to com-
bine the outputs of the summaries with the same
original index and produce a single prediction for
each original instance.

Sunion = Oplain U Sriskfactor U Stimeline
_ r.plain _plain plain
={s] ", sy s
risk factor timeline
51 yees SE }

We examined two prediction strategies for the
dataset concatenation approach, Soft voting and
Any voting. A prediction for the i-th input can be
expressed as follows, if the prediction and proba-

bility of the model for a summary type s/*"° are
given as /Y7 € {0,1} and pi¥*° € [0, 1]:

Z§oftvote _ average(pgdain’p:iskfactor’ ;?imeline)
softvote _ {1, if pft e > 0.5,

' ~ |0, ifptvee <05

p?nyvote _ max(pflain,p;“iskfactor‘vpgimeline)
Z)gnyvote _ Z)zplain V, Qz"isk:factor V. :&fimeline

The number of elements in Sy, Will be 3 * k
whereas for S,,¢pgeq it Will remain k. However, the
length of each element for Sy,crgeq Will be longer
than Syi0n -

4 Results

4.1 Information differences

We conducted our experiments with encoder-only
models as they produce a list of outputs with likeli-

hood. Figure 4 shows results for BiomedBERT (for-
merly known as PubMedBERT) (Gu et al., 2020)
which we fine-tuned for the specific task of readmis-
sion prediction. Aspect-oriented summarization
was done with prompts to mistral 7B instruct v0.2
(Jiang et al., 2023) (see Appendix D for details).

Intra-aspect information difference scores (con-
trol group) were lower than inter-aspect difference
scores (experimental group). This implies that
the different aspect-oriented prompts produce sum-
maries with non-overlapping information, and this
is not the effect of randomness introduced during
initialization steps. Further, these results provide
a strong justification for developing methods that
integrate signals from aspect-oriented summaries.

In addition to experimenting with BiomedBERT,
we experimented with Clinical Longformer (CLF)
(Li et al., 2023). A detailed description is provided
in Appendix E. The result patterns for CLF are
consistent with those of BiomedBERT.

4.2 Readmission prediction

Evaluation metrics We utilized multiple evalu-
ation metrics, including threshold-dependent met-
rics (precision, recall, and F1-score) and threshold-
independent metrics such as area under the re-
ceiver operating characteristic (AUROC) and area
under the precision-recall curve (AUPRC). For
the threshold-dependent metrics, we used 0.5 as
a fixed threshold for positive and negative label-
ing. We prioritized threshold-independent metrics
as our primary evaluation criteria, as threshold-
dependent metrics e.g. Fl-score are highly sensi-
tive to the choice of threshold in the presence of
class imbalance—a characteristic of all our datasets
(see Table 1). We examined threshold-dependent
metrics mainly to understand how the model per-
forms at the default threshold. We also report F1
scores for the negative class (denoted as Neg F1)
and Macro average of positive and negative F1
scores (denoted as MaF1) as an alternative way
to address the limitations of the F1-score.

Table 2 shows the results of models trained on
aspect-oriented summaries and our proposed data
integration approaches for the 30-day readmission
prediction task. The columns are grouped into
two types of supervised models, SVM with BoW
features and fine-tuned BiomedBERT Transformer
models. Regardless of model types, models trained
on the integrated dataset showed strong perfor-
mance over those trained on monotone summa-
rization datasets, where summaries were generated
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Model types SVM with Bow Transformer Model (BiomedBERT)
Input type Full note | Plain  Riskfactor Timeline Merged | Plain  Riskfactor Timeline Soft vote Any vote
McLean | AUROC 0.5770 | 0.5784  0.5415 0.5668  0.5853 | 0.6051  0.5193 0.5788 0.6005 0.5988
AUPRC 0.3465 | 0.3541  0.3164 0.3490  0.3717 | 0.3960  0.3074 0.3650 0.3868 0.3943
MaAvg F1 | 0.5570 | 0.5531 0.5346 0.5704  0.5728 | 0.5630  0.5113 0.5500 0.5694 0.5122
Neg F1 0.7450 | 0.7390  0.7313 0.7392  0.7459 | 0.7695  0.7617 0.7748 0.7721 0.5887
Pos F1 0.3689 | 0.3671 0.3379 0.4016  0.3997 | 0.3566  0.2608 0.3252 0.3667 0.4357
MGH AUROC 0.5923 | 0.6075  0.5565 0.6102  0.6233 | 0.6476  0.5890 0.6494 0.6672 0.6564
AUPRC 0.4208 | 0.4123  0.3447 0.4127  0.4233 | 0.4730  0.3988 0.4809 0.4870 0.4823
MaAvg F1 | 0.6120 | 0.6022  0.5462 0.5949  0.5965 | 0.6020  0.5477 0.6006 0.6025 0.6025
Neg F1 0.7491 | 0.7330  0.7153 0.7351 0.7401 | 0.7684  0.7622 0.7746 0.8044 0.7144
Pos F1 0.4749 | 04715 03772 0.4547  0.4529 | 04355  0.3333 0.4267 0.4007 0.4907
BWH AUROC 0.5420 | 0.5601  0.5312 0.5527  0.5518 | 0.5402 05174 0.5677 0.5938 0.5966
AUPRC 0.3803 | 0.4014  0.3590 0.4032  0.3939 | 0.3694  0.3457 0.3856 0.4124 0.4284
MaAvg F1 | 0.5520 | 0.5485  0.5196 0.5674  0.5669 | 0.5383  0.5052 0.5404 0.5518 0.5206
Neg F1 0.6982 | 0.6855  0.6779 0.6944  0.6941 | 0.6901 0.6678 0.7168 0.7295 0.5474
Pos F1 0.4059 | 04116  0.3614 0.4404  0.4396 | 0.3865  0.3426 0.3640 0.3741 0.4938
FH AUROC 0.5750 | 0.5413  0.5115 0.5290  0.5646 | 0.4800  0.4905 0.5350 0.5353 0.5336
AUPRC 0.4190 | 0.3473  0.3224 0.3541  0.3497 | 0.3007  0.3138 0.3549 0.3415 0.3528
MaAvg F1 | 0.5703 | 0.6041  0.4935 0.6280  0.4861 | 0.4558  0.4755 0.4671 0.4451 0.5126
Neg F1 0.7182 | 0.6899  0.6849 0.6909  0.6860 | 0.7426  0.7106 0.7721 0.8027 0.6996
Pos F1 0.4223 | 0.5183  0.3022 0.5652  0.2862 | 0.1691 0.2404 0.1620 0.0874 0.3257

Table 2: Performance of supervised models by summarization methods. Boldfaced numbers indicate the top-2
performances for each model type, while underlined numbers denote the best performances. Columns titled
Merged, Soft vote, and Any vote show the performance of models using three types of summarized inputs. Pos
F1 refers to the Fl-score for the positive label (patient readmitted within 30 days), while Neg F1 represents the
F1-score for the negative label (patient NOT readmitted within 30 days). MaAvg F1 denotes the macro-average of

Neg F1 and Pos F1.

using a single-type aspect-oriented prompt.

The first column presents the results of the base-
line approach (SVM with BoW features) using full
discharge notes. These results, with AUROC val-
ues ranging from 0.54 to 0.59, indicate that the
task is highly challenging, yet there are detectable
signals that the models can learn.

For the SVM with BoW features results on
summarized discharge notes, the merging method
showed a performance gain across all datasets. For
Transformer models, soft voting and any voting
showed a large improvement over the same archi-
tecture models trained on three summary types.

The training runs were performed 5 times
(BiomedBERT) or 10 times (SVM with BoW) us-
ing different random seeds while keeping the hyper-
parameters identical to ensure statistical robustness
against the effects of random initialization. All re-
ported numbers represent the averaged values of
these runs. Additional statistics for these results
are provided in Table 4 in Appendix F.

5 Discussion

5.1 Integration method by model types

We reported different integration methods depend-
ing on the model type: instance concatenation

(Merged) for SVM with BoW, and dataset concate-
nation (Soft voting and Any voting) for transformer-
based models. Because the Merged method in-
creases input sequence length—sometimes up to
1,500 tokens (with a median range of 870 to 950
across hospitals)—we applied it only to Clinical
Longformer (Li et al., 2023), an encoder-only trans-
former that can handle inputs longer than 512 to-
kens. The results of this experiment are provided
in Appendix G (Table 5).

Our findings show that the Merged approach
improves performance for the Bow model but does
not benefit transformer models. One likely reason
is that BoW methods are relatively unaffected by
input length, whereas transformer models often
exhibit degraded performance on lengthy inputs
(Beltagy et al., 2020; Ainslie et al., 2020; Li et al.,
2023; Yoon et al., 2024). When tested on Clinical
Longformer, the Merged method was less effective
than the Union method. Among Soft Voting and
Any Voting, the results followed a similar pattern
to our main findings with BiomedBERT (Table 2).

5.2 Zero-shot LLM prompting

An alternative to our classification pipeline is using
LLMs to directly predict readmission. We tested
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the ability of an LLM, Llama-3.1-8B-Instruct
(Dubey et al., 2024), and report its performance
on zero-shot short-term readmission prediction in
Table 6 in Appendix H.

The zero-shot results do not show superior per-
formance when compared with supervised models.
This is reasonable for the zero-shot prompting sce-
nario as the LLLM is unlikely to have been exposed
to similar data during pre-training and thus cannot
learn the distribution without labels. To support this
argument, we examined the proportion of positive
labels across LLLM predictions, supervised model
predictions, and gold-standard datasets, following
Yoon et al., 2024. (See Appendix H, Figure 8, for
the results plot.) Compared to the Transformer
model predictions, the proportion of positive labels
is notably misaligned in the LLLM model predic-
tions. This supports our assumptions that one of
the reasons LLMs exhibit sub-optimal results is
due to their misalignment with the true label distri-
bution.

5.3 Performance of supervised models on raw
discharge notes

At the first stage of our study, we examine the per-
formance of supervised models trained directly on
raw discharge notes (i.e., without summarization)
across hospitals. These results serve as a baseline
and provide preliminary evidence for the benefits of
incorporating summarization prior to classification.
We experimented with SVM with BoW, a hier-
archical transformer (HT) model (Su et al., 2021),
and a Clinical-Longformer (CL)-based approach.
The performance of the SVM and HT models is
reported in Table 7 in Appendix I. In our exper-
iments, the CL approach trained on our dataset
with the first 4k tokens was not successful, likely
because the length of our instances substantially
exceeded the token window. As shown in the table,
the HT model did not outperform the SVM with
BoW baseline. For this reason, and due to space
constraints, we included the SVM with BoW as the
representative raw note baseline in the main text.

5.4 Hallucination risks and mitigation

While our use of LLMs is limited to summariza-
tion conditioned on discharge notes, hallucina-
tions remain a critical concern. Large language
models (LLMs) may produce content that is not
fully grounded in the input text. In the medical
domain, such hallucinations are particularly con-
cerning because inaccurate or fabricated informa-

tion can propagate into high-stakes downstream
tasks and negatively affect clinical decision-making
(Kim et al., 2025). Future work toward clinical ap-
plications should therefore investigate approaches
to verify factual consistency and develop comple-
mentary strategies to reduce hallucination risks.

6 Related work

6.1 Prompting strategies

With the recent advance of LLMs, a growing body
of research has focused on designing effective
prompting strategies to better leverage their capa-
bilities. A foundational work by Lester et al., 2021
introduced prompt tuning, a method that learns soft
prompts while keeping the model parameters fixed.
Since then, one research stream has aimed toward
dynamic or adaptive prompting, a term proposed
in contrast to static, hard-coded prompts. For ex-
ample, Yang et al., 2023 and Nehring et al., 2024
propose frameworks that adapt prompts based on
input context or task complexity.

Another direction is self-consistency prompt-
ing, which improves reasoning performance by
generating multiple reasoning paths and selecting
the most consistent answer. A significant work
by Wang et al., 2022 applied self-consistency to
Chain-of-Thought (CoT) prompting, and more re-
cently, Chen et al., 2023 proposed Universal Self-
Consistency, extending the method to general gen-
eration tasks beyond CoT.

Closely related to prompt tuning is the task of
Aspect-Oriented Summarization (AOS). This task
can be traced back to the work of Hu and Liu, 2004,
which introduced feature-focused summarization
for customer reviews. More recently, Ahuja et al.,
2022 proposed ASPECTNEWS, a modern AOS
dataset and benchmark that aligns closely with
our work, particularly in settings such as single-
document summarization with multiple targeted
aspects. This was followed by datasets such as
ACLSum (Takeshita et al., 2024), which further
expanded the scope of aspect-aware summarization
to scientific publications.

While methods like dynamic prompting aim
to optimize prompt selection, identifying and
combining multiple prompts that capture diverse
and complementary information signals remains
an open challenge. In this work, we address
this gap by proposing an automatic framework
for quantifying informational differences between
prompts, enabling more effective integration of

28033



multi-perspective summaries for downstream tasks.

6.2 Clinical text summarization

Our research lies at the intersection of clinical NLP
and summarization. Work on clinical text sum-
marization has a long history, with foundational
research addressing the complexities of healthcare
data. One example is McKeown et al. 1997, where
the authors developed systems to generate multime-
dia summaries to support time-pressured caregivers.
Subsequent research introduced natural language
generation techniques for summarizing time-series
clinical text data to assist in neonatal care (Sri-
pada et al., 2003; Portet et al., 2009). These early
systems addressed key challenges in content selec-
tion. A comprehensive overview by Pivovarov and
Elhadad 2015 provides an important summary of
EHR summarization methods, capturing the state
of the field prior to the emergence of LLM:s.

Recent studies have demonstrated the strong ca-
pabilities of LLLMs in clinical summarization tasks.
For instance, Van Veen et al., 2024 demonstrated
that summaries generated by LLMs can be more
complete and concise than those written by clini-
cians. Similarly, Ellershaw et al., 2024 proposed
a method for generating discharge summaries by
guiding LLMs with structured clinical guidelines,
highlighting the potential of combining domain
knowledge with generative models.

6.3 Patient outcome prediction in Clinical
NLP

Patient outcome prediction is a core task in clinical
NLP, encompassing subproblems such as mortal-
ity prediction and other outcome measures. Our
work focuses specifically on readmission predic-
tion. In this area, the ClinicalBERT paper (Huang
et al., 2019) proposed fine-tuning of transformer
model to various types of clinical notes to predict
readmission. While Clinical BERT focused on rela-
tively short notes as input, LCD Benchmark paper
(Yoon et al., 2024) introduced another challeng-
ing task: predicting out-of-hospital mortality from
long-form discharge notes. This study did not in-
corporate summarization; however, it highlighted
the challenges of outcome prediction with lengthy
documents, which motivates our use of summariza-
tion in this context.

7 Conclusion

In this study, we explored a method for processing
long documents using aspect-oriented summariza-

tion aimed to capture different views of the informa-
tion of the original document. Our study provides
three key insights: (1) we hypothesize that LLM
summaries generated with different aspect-oriented
prompts hold different details or information sig-
nals, (2) we propose methods to measure these
signals, (3) we investigate methods to effectively
integrate signals from different types of summaries
for supervised training of transformer models. We
applied our methodology to the high-impact task
of 30-day psychiatric re-admission prediction.

Limitations

We collected datasets from four different sites in the
US. Two of the most notable differences between
those datasets are dataset size and the positive-label
ratio. However, the datasets differ in the length of
the notes. In this study, we did not account for
these variations and leave it as future work.

This study utilized only one type of EHR docu-
mentation — discharge notes. Other types of notes
(e.g., progress notes) and additional data modal-
ities (e.g., structured data) are available but not
included in this paper. In terms of prompt diversity,
our aspect-oriented summarization prompts could
be further enriched with other critical aspects for
readmission prediction, e.g. medications, trauma
history and comorbidities.

Our current study is a research into the impor-
tant topic of 30-day psychiatric readmission predic-
tion. It is not an application ready for direct clini-
cal applications. Such clinical applications require
carefully designed clinical trials involving multiple
domain experts. In the medical domain, hallucina-
tions carry particular risks because misleading or
fabricated information may directly affect patient
safety and clinical decision-making. Since our ap-
proach uses LLMs to summarize input text, it is
not entirely free from the risk of hallucinations.
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Appendix

A Prompt template

One of the prompt templates, riskfactor-focused
prompt, is shown in Figure 5. Other prompt tem-
plates are shown in Figure 2 of main text Sec-
tion 3.1.

B Sample psychiatric note

Figure 6 shows three sample summaries generated
from a psychiatric note using our specified prompt.
All numerical values and dates presented in this ap-
pendix have been replaced with randomized place-
holders for illustrative purposes. Due to this pro-
cess, some dates (e.g., those in the year 2030) may
fall in the future relative to the time of submission.

C Baseline - Supervised fine-tuning of
LLMs using LoRA adapters

As an alternative baseline in this study, we explored
direct supervised fine-tuning of relatively small-
scale LLMs. This experiment was designed to test
the viability of full-document modeling and to sup-
port our premise that summarization may be a more
effective strategy for discharge note classification.

We fine-tuned the models using Low-Rank Adap-
tation (LoRA) adapters (Hu et al., 2022). Specifi-
cally, we used two instruction-tuned models capa-
ble of handling extended context: Qwen-2.5-0.5B-
Instruct (Qwen et al., 2024) and Qwen3-0.6B (Yang
et al., 2025). The LoRA configuration used a rank
of 12 and targeted the ["q_proj", "v_proj"]
modules.

The models were fine-tuned for a binary se-
quence classification task: predicting whether a
patient would be readmitted within 30 days (label
1) or not (label 0). Training was conducted for 10
epochs using the full discharge notes as input.

Table 3 presents the results in terms of AUROC
and Positive-class F1 score (PosF1) for each hos-
pital dataset. The results reported reflect a single
run for each model. Despite their larger size and
the ability to process full discharge notes thanks to
extended input length capacity, both models demon-
strated limited and unstable performance across all
sites and evaluation metrics. Performance varied
substantially across institutions and was often close
to random chance, with AUROC values near or be-
low 0.5 on the test set. Notably, AUROC values

below 0.5 suggest that the model may have failed
to learn meaningful patterns during training. How-
ever, it is worth noting that AUROC values on the
development set were mostly above 0.5, indicating
a potential mismatch between the training distri-
bution and the unseen test data, or overfitting due
to the limited dataset size. F1 scores on positive
labels (Pos F1) were particularly low, highlight-
ing the models’ difficulty in accurately identifying
positive cases.

These findings suggest that, under the current
training setup and dataset constraints, supervised
fine-tuning of small LLMs using LoRA does not
serve as a reliable baseline, and further support-
ing our approach of using summarization followed
by model training. Potential contributing factors
include class imbalance, limited dataset size, and
the models’ restricted capacity to generalize within
the complex, domain-specific language of clinical
documentation.

D Experimental details

Summarization: Full discharge notes are sum-
marized using a quantized version of mistral 7b
instruct v0.2 4 with 11ama.cpp library. Inference
speed varies, but even for the largest dataset, pro-
cessing was completed within a day on a work-
station with a single NVIDIA GeForce RTX 4090
GPU. The generated summaries were always fewer
than 512 tokens, and the median number of tokens
varied by hospital and summary type, though all
fell within the range of 256 to 356.

Supervised training: For SVM with BoW fea-
tures, we used the scikit-learn library (Pedregosa
et al., 2011). For transformer models, we em-
ployed the Clinical NLP Transformers library
v0.7.0 (CNLPT, 2021)°, which wraps the Hugging
Face Transformers library for training and testing
(Wolf et al., 2019). For pretrained weights, we uti-
lized the abstracts version of BiomedBERT (Gu
et al., 2020).°

D.1 Transformer model hyperparameter
settings

For transformer models, we performed a mini-
mal hyperparameter search using the development

“mistral-7b-instruct-v@.2.Q4_K_M. gguf

5 Available at: https://github.com/Machine-Learning-for-
Medical-Language/cnlp_transformers

®microsoft/BiomedNLP-BiomedBERT-base-uncased-
abstract-fulltext
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Riskfactor-focused summarization prompt

<s>[INST] The following is a discharge summary for a patient leaving a psychiatric hospital.

Discharge note inserted here.

This is the end of the discharge summary. We would like to summarize the discharge summary in terms of risk factors
for readmission within 30 days. Psychiatric experts have created a list of risk factors that they believe are important.
1: Appearance: Physical appearance, gestures, and mannerisms;

2: Thought content: Suicidal/homicidal ideation, obsessions, phobias, delusions, hallucinations;

3: Interpersonal: Family situation, friendships, and other social relationships;

4: Mood: Feelings and overall disposition;

5: Occupation: School and/or employment;

6: Thought process: Pace and coherence of thoughts. Includes linear, goal-directed, perseverative, tangential, and flight
of ideas;

7: Substance: Drug and/or alcohol use;

8: Other: Any risk factor that does not fall into one of the preceding categories;

These risk factors could have positive or negative valence. Please summarize the risk factors from the above list that are
present in the discharge summary, along with their valence (positive, negative, neutral). [/INST]

\

Figure 5: Prompts for summarization. Three types of prompts, plain, riskfactor, and timeline, were used to
generate different types of summaries.

Plain-prompt summary

The patient, a **-year-old individual, was admitted to the psychiatric hospital for a major depressive episode with
suicidal ideation. Upon admission, they were assessed to have moderate depression severity with significant impairment
in daily functioning. The patient received a combination of pharmacological treatment and psychotherapy during their
stay. They were initially prescribed **** and later added ***** due to persistent symptoms. Psychotherapy sessions
focused on cognitive behavioral techniques and interpersonal skills training. The patient showed gradual improvement
and was able to engage in activities of daily living and maintain a stable mood by the time of discharge. They were
advised to continue outpatient treatment and follow-up appointments with their mental health care provider.

Riskfactor-prompt summary

| r

Based on the provided discharge summary, the following risk factors and their valence are identified:

1. Thought content: The patient reports passive suicidal thoughts that are baseline for her, but no intent or plan; this can
be considered a negative risk factor.

2. Substance: The patient has a history of alcohol use and relapse during the hospitalization, which is a negative risk
factor.

3. Occupation: The patient’s academic progress and employment status were not mentioned in the summary, so this risk
factor is neutral.

4. Interpersonal: The patient has supportive family and close follow-up with established treaters, which are positive risk
factors.

5. Mood and overall disposition: The patient expresses anxiety and feels ready for discharge, which can be considered
neutral risk factors.

6. Thought process: No abnormalities were reported in the patient’s thought process during the hospitalization, so this
risk factor is neutral.

7. Other: The patient’s close proximity to a liquor store and chronic suicidal thoughts are negative risk factors.

8. Appearance, gestures, and mannerisms: No information about the patient’s appearance was provided, so this risk
factor is neutral.

Timeline-prompt summary

| r

*12/31/19**: Born

* Unknown date: Diagnosed with Schizoaffective disorder, bipolar type

* Unknown date: Diagnosed with borderline personality disorder

* Unknown date: Diagnosed with polysubstance disorder, including alcohol and cannabis use

* Unknown date: Multiple prior hospitalizations

* Unknown date: History of self-injury by cutting, no known suicide attempts

*9/12/2030: Admitted to psychiatric hospital for evaluation and treatment of confusion/disorganization in the context of
worsening depression and alcohol/cannabis use

*9/28/2030: Discharged from psychiatric hospital, diagnosed with Schizoaffective disorder, bipolar type, and prescribed
lithium carbonate *** mg capsule nightly at bedtime.

\

Figure 6: Summarized notes. All numerical values and dates presented in this appendix have been replaced with
randomized placeholders. Each summaries are generated using three types of prompts, plain, riskfactor, and
timeline
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Qwen-2.5-0.5B-Instruct Qwen3-0.6B

Dataset Metrics Devel. Test Devel. Test
McLean AUROC 0.5203 0.4887 0.5692 0.5452
Pos F1 0.0513 0.1184 0.2362 0.2298
MGH AUROC 0.6549 0.6109 0.5878 0.5584
Pos F1 0.2032 0.1098 0.1327 0.0963
BWH AUROC 0.3986 0.4893 0.4908 0.5595
Pos F1 0.3385 0.2275 0.4058 0.4369
FH AUROC 0.6461 0.4480 0.5271 0.3883
Pos F1 0.2286 0.0430 0.2222  0.0238

Table 3: Performance of supervised fine-tuned Qwen-2.5-0.5B-Instruct and Qwen3-0.6B (instruction tuned) using
LoRA adapters. The columns labeled Devel. and Test show model performance on the development and test

datasets, respectively.

dataset for the smaller datasets BWH and FH
Specifically, we explored the following hyperpa-
rameters:

* Learning Rate: {2e-5, 5e-6, 2e-6}; Epochs:
{40, 200}.

For the final reported performance, we ap-
plied the same hyperparameter settings across all
datasets and pretrained language models:

* Learning Rate: 2e-5; Epochs: 40; Batch Size:
8.

For the iterated experiments, random seeds were
incrementally set starting from 0. For example, in
five iterations for BiomedBERT, the seeds were
{0, 1, 2, 3, 4}. During training, the model was
evaluated on the development set using loss, and
the best checkpoint was saved. All results reported
in this paper are based on the test dataset split.

E Information difference for Clinical
Longformer

This section provides details on our additional ex-
periments conducted using the Clinical Longformer
(Li et al., 2023). We conducted 10 iterations of ex-
periments for models initialized with the Clinical
Longformer. Figure 7 shows the information differ-
ence scores for Clinical Longformer model outputs.
The results are consistent with those provided in
the main text, Section 4.1.

F Statistics of iterated experiments

The transformer model results in the Table 2 show
averaged scores of 5 runs, and their standard devia-
tion is in Table 4.

G Supplementary results for Section 5.1

In this section we present Table 5 to support the
discussions in Section 5.1.

H Zero-shot LLM prompting results

Table 6 reports the performance of zero-shot LLM-
based prediction of readmission likelihood, using
verbal (i.e., string-formatted) outputs. Main text of
this section is in Section 5.2

I Performance of supervised models on
raw discharge notes

In this section, we present experiments with super-
vised models trained on raw discharge notes (i.e.
notes that are not summarized) across hospitals in
Table 7.

J Comparison of short-term and
long-term patient outcome prediction

In general, the length of the follow-up period until
an outcome event occurs is an important factor that
affects both the characteristics and the difficulty of
patient outcome prediction tasks. Which factors are
more influential in short-term versus long-term pre-
diction depends on the specific task, and is outside
the scope of this study. However, short-term pre-
diction tasks often show different characteristics
compared to long-term prediction tasks because
of differences in prevalence. For example, in the
Pos/Total column of Table 1, the proportion of pos-
itive cases in our task is about 22-34% of admis-
sions, which is comparable to prior findings—for
instance, Pederson et al. 2016 reported a 30-day
readmission rate of 16.2% (20.4% for patients with
depressive symptoms)—whereas in long-term or
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Figure 7: Information difference for Clinical Longformer.

Hospital Summ Type AUROC AUPRC MaAg F1 Neg_FI Fi Group Size

McLean Plain 0.0084  0.0162 0.0105 0.0225  0.0257 5
Riskfactors ~ 0.0101  0.0130 0.0097 0.0157  0.0296 5
Timeline 0.0129  0.0156 0.0134 0.0384  0.0522 5
Soft voting  0.0075  0.0150 0.0064 0.0133  0.0201 5
MGH Plain 0.0265  0.0367 0.0150 0.0277  0.0344 5
Riskfactors ~ 0.0132  0.0142 0.0074 0.0238  0.0377 5
Timeline 0.0371  0.0402 0.0213 0.0230  0.0500 5
Soft voting  0.0164  0.0259 0.0217 0.0098  0.0446 5
BWH Plain 0.0157  0.0147 0.0131 0.0286  0.0427 5
Riskfactors ~ 0.0200  0.0248 0.0360 0.0477  0.0764 5
Timeline 0.0135  0.0118 0.0178 0.0251  0.0453 5
Soft voting ~ 0.0139  0.0094 0.0102 0.0308 0.0234 5
FH Plain 0.0252  0.0195 0.0357 0.0595  0.1037 5
Riskfactors ~ 0.0413  0.0306 0.0173 0.0505 0.0484 5
Timeline 0.0200  0.0222 0.0302 0.0198  0.0747 5
Soft voting ~ 0.0217  0.0074 0.0338 0.0066 0.0724 5

Table 4: Standard deviation of the performance of iterated supervised transformer model, corresponding to the
averages shown in Table 2 of the main paper.

lifetime readmission prediction the prevalence is
substantially higher (Burcusa and Iacono, 2007).
Another difference lies in the confounding factors,
such as deaths due to natural causes in elderly pa-
tients, or acute deterioration and clinical uncer-
tainty. Therefore, short-term and long-term patient
outcome prediction tasks can be regarded as dis-
tinct problems.
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Input type Plain Risk Time Merge Softvote Any vote

McLean | AUROC | 0.587 0.525 0.569 0.576 0.606 0.599
AUPRC | 0.389 0.309 0.343 0.387 0.386 0.381
MaFl1 0.556 0.510 0.532  0.560 0.564 0.533
NegFI | 0.778 0.752 0.786  0.782 0.776 0.644
PosF1 | 0335 0.268 0.278 0.338 0.352 0.422

MGH AUROC | 0.633 0.584 0.615 0.612 0.675 0.668
AUPRC | 0.440 0.372 0.417 0417 0.492 0.489
MaFl1 0.595 0.556 0.583 0.585 0.601 0.617
NegFI | 0.791 0.758 0.767 0.779 0.814 0.764
PosF1 | 0.400 0.354 0399 0.392 0.389 0.470

BWH AUROC | 0.547 0.540 0.563 0.543 0.604 0.591
AUPRC | 0373 0.372 0395 0.369 0.419 0.406
MaFl1 0.530 0514 0.537 0.527 0.549 0.528
NegFI | 0.711 0.675 0.706 0.710 0.732 0.572
PosF1 | 0349 0.353 0368 0.343 0.366 0.483

FH AUROC | 0.480 0.526 0.526 0.483 0.507 0.506
AUPRC | 0310 0.331 0.348 0.310 0.333 0.322
MaF1 0.455 0.498 0.497 0.460 0.438 0.499
NegFl | 0.758 0.745 0.757 0.765 0.775 0.662
PosF1 | 0.152 0.251 0.237 0.155 0.100 0.336

Table 5: Performance of the Clinical Longformer model evaluated using different summarization methods.

Input type Full Plain Risk Time Merged

McLean | Ma F1 0.5650 0.5458 0.4087 0.3866 0.3983
NegFl | 0.7696 0.7166 0.3840 0.3338 0.3818
PosF1 | 03604 0.3750 0.4335 0.4394 0.4147

MGH Ma F1 0.4708 0.4895 0.3548 0.3707 0.3252
NegFl | 0.5312 0.5532 02772 0.2927 0.2011
PosFI | 0.4104 0.4257 0.4325 0.4487 0.4493

BWH Ma F1 0.4794 0.4590 0.3892 0.3527 0.3706
NegFl | 0.5792 0.4845 0.2847 0.2420 0.2388
PosF1 | 03796 0.4334 0.4937 0.4635 0.5024

FH Ma F1 0.5093 0.4565 0.3688 0.2604 0.2986
NegF1 | 0.7465 0.5149 0.2462 0.0465 0.1304
PosF1 | 02720 0.3981 0.4913 0.4744 0.4667

Table 6: Performance of zero-shot LLM prompting for readmission prediction. Note that we cannot calculate
AUROC or AUPRC because our LLM evaluation setting only provides binary predictions and therefore, ranking of
predictions is not possible.
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Figure 8: Boxplots showing the ratio of positive-label predictions in the model outputs. The red rhombus symbol
indicates the ratio in the dataset. The box represents the interquartile range of the ratio values in the iterated
experiments.
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Location Metric BoW+SVM Hier-transformer

McLean AUROC 0.5770 0.5346
AUPRC 0.3465 0.3136

MaAvg F1 0.5570 0.5224

NegFl 0.7450 0.7581

PosF1 0.3689 0.2867

MGH AUROC 0.5923 0.5475
AUPRC 0.4208 0.3435

MaAvg F1 0.6120 0.5343

NegFl 0.7491 0.7596

PosF1 0.4749 0.3090

BWH AUROC 0.5420 0.5316
AUPRC 0.3803 0.3579

MaAvg F1 0.5520 0.5043

NegFl 0.6982 0.7285

PosF1 0.4059 0.2801

FH AUROC 0.5750 0.5077
AUPRC 0.4190 0.3342

MaAvg F1 0.5703 0.4923

NegFl 0.7182 0.7745

PosF1 0.4223 0.2101

Table 7: Performance of supervised-tuned models on raw discharge notes (non-summarized). Results for BoW+SVM
and Hier-transformer across hospitals are reported.
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