
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 27925–27960
November 4-9, 2025 ©2025 Association for Computational Linguistics

Pun Unintended: LLMs and the Illusion of Humor Understanding

Alessandro Zangari ♠ Matteo Marcuzzo ♠ Andrea Albarelli ♠

Mohammad Taher Pilehvar ♢ Jose Camacho-Collados ♢
♠Dept of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice

alessandro.zangari@unive.it, matteo.marcuzzo@unive.it, albarelli@unive.it
♢School of Computer Science and Informatics, Cardiff University
pilehvarmt@cardiff.ac.uk, camachocolladosj@cardiff.ac.uk

Abstract

Puns are a form of humorous wordplay that ex-
ploits polysemy and phonetic similarity. While
LLMs have shown promise in detecting puns,
we show in this paper that their understand-
ing often remains shallow, lacking the nuanced
grasp typical of human interpretation. By sys-
tematically analyzing and reformulating exist-
ing pun benchmarks, we demonstrate how sub-
tle changes in puns are sufficient to mislead
LLMs. Our contributions include comprehen-
sive and nuanced pun detection benchmarks,
human evaluation across recent LLMs, and an
analysis of the robustness challenges these mod-
els face in processing puns.

1 Introduction

Understanding linguistic nuances, such as hedges,
idiomatic phrases, figures of speech, and
metaphors, is crucial for effective communica-
tion (Boisson et al., 2024; Qamar et al., 2025).
This requires deep contextual and cultural aware-
ness, presenting ongoing challenges for LLMs that
struggle with subtle, multi-layered language (Liu
et al., 2023; Ghosh and Srivastava, 2022; Zhang
et al., 2024). One notable example of nuanced
language is the pun (paronomasia), a form of word-
play generating rhetorical, often humorous, effects
through polysemy and phonetic similarity. Promi-
nent in literature, poetry, and advertising (Miller
and Gurevych, 2015), puns depend on the intuitive
recognition of dual meanings (literal vs. figura-
tive), creating the characteristic pun effect (Brown,
1956; Attardo, 2017). The ability to automatically
recognize puns is relevant for digital humanities
and NLP tasks, such as sentiment analysis, and
machine translation, which struggle with the am-
biguity and non-literal nature of puns (Miller and
Turković, 2016). In comparison to other rhetorical
devices, such as sarcasm, metaphors, or jokes, puns
are structurally simpler (Raskin, 2008; Miller et al.,
2017), and easier to formalize (Sun et al., 2022b).

Figure 1: Example pun detection and explanation by
GPT-4o vs. human. Subtle modifications to the pun (re-
placing the polysemous word, attention, with a random
one, ukulele) are often sufficient to mislead LLMs.

These qualities make them a good candidate for
assessing linguistic understanding in LLMs.

While recent studies have examined pun gener-
ation (Mittal et al., 2022; Tian et al., 2022), detec-
tion, and explanation (Sun et al., 2022a; Xu et al.,
2024; Miller et al., 2017), this line of research faces
two key limitations. First, most studies have relied
on a single dataset from SemEval (Miller et al.,
2017), where shallow cues and data leakage may
inflate performance (Ermakova et al., 2023a). Sec-
ond, evaluations are typically focused on binary
classification or hard-to-assess free-text rationales.
A systematic analysis of more structured rationales
would help clarify the capabilities and limitations
of LLMs in interpreting rhetorical ambiguity (Kim,
2025; Wiegreffe et al., 2021).

Motivated by these limitations, we introduce two
new collections of annotated short texts, PunnyPat-
tern and PunBreak, designed specifically to evalu-
ate the robustness of LLMs in pun detection (see
Fig. 1). These collections move beyond simple
detection, using targeted substitutions and common
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language patterns to probe whether models can ac-
curately recognize puns’ context and structure, or
if they rely on memorization and superficial cues.
We publicly release both datasets.1

We evaluate 7 open- and closed-weights LLMs
on both identifying puns and providing support-
ing rationales, then analyze the quality of these
rationales, and report their impact on detection
performance. In contrast to earlier studies (Sun
et al., 2022a; Xu et al., 2024), we design prompts
that elicit semi-structured rationales, enabling more
systematic evaluation via automatic metrics and de-
tailed manual analysis guided by a new annotation
protocol. More specifically, we organize our dis-
course around the following research questions:

• RQ1: How well can LLMs detect puns on new
and existing datasets?

• RQ2: How robust are LLMs at detecting puns?

• RQ3: To what extent can LLMs explain puns?

Our results show that most LLMs superficially
associate puns with common language patterns,
which makes it difficult for them to distinguish gen-
uine puns from structurally similar sentences that
contain no pun. Automatic and manual error analy-
ses further reveal that the models struggle to handle
context and phonological properties effectively.

2 Related Work

SemEval-2017 Task 7 (Miller et al., 2017) targeted
pun detection, location, and interpretation tasks
by releasing a dataset of annotated puns and non-
puns. The participating systems were mostly based
on traditional NLP techniques, with leading sys-
tems employing heuristics based on positional and
semantic features, such as n-grams enhanced by
Word2Vec embeddings (Mikolov et al., 2013) and
phonetic distance measurements. The reported re-
sults showed strong performance in binary detec-
tion, moderate in pun location, but notably weak in
correct sense association. SemEval-2021 (Meaney
et al., 2021) later expanded this dataset by adding
new jokes, although without additional annotations.

Building upon this foundation, the JOKER work-
shop (Ermakova et al., 2023b) introduced multi-
lingual datasets for pun detection, location, inter-
pretation, and translation, encompassing English,
French, and Spanish. The JOKER corpus (Er-
makova et al., 2023a) aimed to address earlier criti-
cisms of imbalance and reliance on superficial cues

1https://github.com/alezanga/punintended

by providing 3,506 annotated short jokes in English
and French, alongside 1,700 negative examples
generated via word substitutions. Despite utilizing
advanced LLMs such as GPT-3 (Brown et al., 2020)
and BLOOM (Workshop et al., 2023), a custom-
trained T5 model (Raffel et al., 2020) consistently
outperformed others on all tasks, albeit with lim-
ited success (detection F1 < 0.6). Other studies
have further explored non-English puns (Gameiro
et al., 2025; Chen et al., 2023; Dsilva, 2024).

Complementing these efforts, Sun et al. (2022a)
investigated pun explanation by enhancing training
data with rationales generated by T5 models. They
measured explanation quality using simulatability,
defined as the accuracy difference when explana-
tions are provided as additional input vs. when
they are not. They found that high-quality human-
annotated rationales can improve model perfor-
mance, but automatically generating such expla-
nations with language models remains challenging.
In a related work, Sun et al. (2022b) focus on pun
generation by retrieving context and pun words.
They propose a system that first retrieves a suitable
pair of words, along with their senses, from given
contextual words, and then employs a T5 model
to generate a pun. However, the success rate of
the generated puns was reported to be significantly
lower than that achieved by humans.

To the best of our knowledge, Xu et al. (2024) is
the only study to evaluate recent LLMs on pun de-
tection, explanation, and generation. They refined
the SemEval dataset by removing duplicates and
adding human-annotated explanations. While the
study included a manual evaluation of a small set
of generated explanations, it lacks a comprehen-
sive error analysis and detailed evaluation guide-
lines. Their results indicate that, although LLMs
perform reasonably well on binary pun detection,
they struggle with pun generation and explanation,
often relying on memorization or biased shortcuts.
Building on this work, our study conducts a robust-
ness analysis targeting specific biases and examines
common errors in model-generated rationales.

3 Experimental Methodology

The primary pun-related tasks previously discussed
in the NLP literature relate to detection, location,
and interpretation. Pun detection is a binary
classification task, categorizing texts as either
containing a pun or not. Pun location involves
identifying the specific pair of words responsible
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for creating the double entendre, while pun
interpretation requires associating each identified
pun word with its correct meaning or sense
(Ermakova et al., 2023b; Jain et al., 2019).

Preliminaries. Structurally, a pun is composed of
a pun word (wp), an alternative word (wa) and their
respective senses sp and sa (Sun et al., 2022b). For
brevity, we will refer to (wp, wa) as the pun pair.
Following previous literature (Miller et al., 2017;
Xu et al., 2024), we focus on heterographic and
homographic puns.

In heterographic puns (het-puns), only wp ap-
pears in the sentence, while wa and its sense are
evoked through the context. For example, the het-
pun “I bought a boat because it was for sail (sale)”
creates a double meaning by playing on the homo-
phones sail (to navigate on a boat) and sale (an
occasion when items are sold). In contrast, ho-
mographic puns (hom-puns) feature a polysemous
wp, resulting in wp = wa. The hom-pun “I was
wondering why the ball was getting bigger; then it
hit (hit) me” plays on the two senses of hit (to be
physically struck) and hit (to suddenly realize).

The term rationale has been used in the literature
to denote various types of evidence justifying a de-
cision, particularly in the form of natural language
explanations (Herrewijnen et al., 2024). This is
consistent with its usage in prior research on puns
(Xu et al., 2024; Sun et al., 2022a), although we do
not limit it to unstructured or free-text explanations.

3.1 Datasets
Existing collections of puns annotated with the
structure just described are limited. The SemEval
2017 dataset (Miller et al., 2017) provides 4,030
samples encompassing heterographic and homo-
graphic puns. Later research (Sun et al., 2022a; Xu
et al., 2024) refined this dataset by adding senti-
ment annotations and removing incorrect examples.
The English part of the JOKER corpus (Ermakova
et al., 2023a,b) extends SemEval and adds 632 new
English puns collected from PunOfTheDay.com.
By removing or replacing a single contextual word,
these puns have been altered to create an equal
number of non-puns. Both datasets contain pun
words and senses annotations.

We utilize the dataset proposed by Xu et al.
(2024), which is the most refined iteration of the
SemEval 2017 dataset, along with a subset of the
JOKER dataset. In the former, we corrected several
typographical errors and 13 incorrect annotations,

resulting in 2,589 samples. We split the dataset
into training (1,071 samples), testing (1,341), and
validation (177) sets, ensuring that no wp and wa

in the training set appear in the test and validation
sets. We refer to this as the PunEval dataset. Un-
like the SemEval dataset, the full JOKER corpus
is not publicly available and was released only as
part of the JOKER CLEF workshop (Ermakova
et al., 2023b). However, the authors kindly agreed
to share the complete dataset with us upon request.
Since most examples in this dataset originate from
the SemEval dataset, we retained the subset of
632 puns and 632 non-puns created by replacing
a single word in the original pun. Statistics for all
datasets are in Appendix §B.

3.2 Comparison models
We benchmark five recent instruction-tuned LLMs
on pun understanding, including both open- and
closed-weights models: GPT-4o-2024-08-06 (Ope-
nAI) (OpenAI et al., 2024), Qwen2.5-72B (Al-
ibaba) (Yang et al., 2025), Llama3.3-70B (Meta)
(Grattafiori et al., 2024), Gemini2.0-Flash (Google
DeepMind) (Anil et al., 2025), and Mistral3-24B
(Mistral AI) (Jiang et al., 2023). We refer to these
models as follows: GPT-4o, Qwen2.5, Llama3.3,
Gemini2.0, and Mistral3. Additionally, we em-
ployed two reasoning models from the DeepSeek
family: DeepSeek-R1 (R1) and DeepSeek-R1-
Distill-Llama-70B (R1-D) (DeepSeek-AI et al.,
2025), the latter being a distilled version of the
full R1, based on Llama-3.3-70B-Instruct.

3.3 Prompts
Unlike in Xu et al. (2024), in this work we leverage
the pun structure described in §3 and instruct the
model to respond in a semi-structured format, facil-
itating parsing and the evaluation of the rationales.

We adopt the following response format that is
compatible with the rationale: (yes|no) [<wp>
<wa> [<sp> <sa>]]. In the configurations
without rationales, the answer would simply
be yes or no for the pun detection task. The
content within the angular brackets represents
the rationale (or justification) for the answer.
Inspired by the success of CoT prompting (Kojima
et al., 2022; Wei et al., 2022), we explore an
alternative prompting strategy to elicit reasoning
from non-reasoning LLMs by asking them to
think before answering. Unlike previous cases
where responses were restricted to a structured
format, the reasoning prompts allow the model to
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provide free-text reasoning before delivering the
final answer in the same structured format. In what
follows, we describe the prompt configurations
used. Validation experiments with alternative
prompts, along with the exact prompts we adopted,
are detailed in Appendix §A.1.

Zero-Shot. (0S) This prompt asks to provide a
“Yes” or “No” answer on whether the text contains
a pun, with no formal definition of a pun.
Few-Shot. (FS) A definition of pun is provided,
including the concepts of wp, wa, sp, and sa, fol-
lowed by six examples (three puns, three non-puns)
drawn from the same set used by Xu et al. (2024).
Examples are held constant across experiments.
Words. (W) Same as Few-Shot prompt, but requires
reporting the pun pair as justification.
Words+Senses. (W+S) This prompt mirrors the
Words prompt, but additionally requires reporting
sp and sa after the pun pair.
Reasoning. (R+) This configuration uses the same
prompts, but allows the generation of arbitrary text
before the final answer. This prompt is applied only
to the five non-reasoning LLMs.

4 RQ1: Can LLMs Detect Puns?

The first research question investigates LLMs’ over-
all performance in binary pun detection. We thus
evaluate all comparison LLMs described in §3.2
using the prompting strategies outlined in §3.3.

4.1 Data

In addition to the PunEval and JOKER datasets
described in §3.1, we annotate a new collection of
128 puns from various sources, including websites2,
personal recollections, and original creations. The
main reason for creating this new dataset was to
avoid any potential contamination from existing
datasets. Each pun is rephrased into a non-pun,
similar to the JOKER dataset, but without the re-
quirement of replacing a single word, resulting in
a total of 256 instances. We use Mistral3 for this
rephrasing process, and all generated samples are
manually inspected and modified as needed. We
refer to this as the Newly Annotated Puns (NAP)
dataset. A sample pun and its corresponding non-
pun are shown in Example 1, while general NAP
statistics are included in Appendix §B. Finally, we
also annotate each pun with its pun pair (wp, wa)

2https://parade.com/1024249/marynliles/
funny-puns

Original Pun

What did the buffalo say to his son? Bison (Bye son).

Rephrased pun

What did the buffalo ask his son? I do not know.

Example 1: A pun and non-pun from the NAP dataset.

and respective senses (sp, sa), using short defini-
tions from online dictionaries3. This process is
consistent with the methods employed in the Se-
mEval and PunEval datasets, and these annotations
will be used to address RQ3.

4.2 Results

The average F1-score for these datasets across 3
runs is shown in Table 1. Additional results can be
found in the Appendix (see Table 7 and Fig. 9). All
LLMs achieved F1-scores around 0.8 on the NAP
dataset with the best prompting strategy. GPT-4o
performed the best, while Mistral had the lowest
scores. Notably, Mistral only performed well in
the zero-shot setting and struggled to learn from
additional context in the prompt.

Results on the JOKER dataset show a similar
trend but are slightly more challenging for all mod-
els. This is likely due to its method of creating
non-puns by replacing a single word, resulting in
more “adversarial” examples. In contrast, in the
NAP dataset, we rephrased puns into non-puns,
potentially replacing or removing multiple words.

Aside from Mistral, which consistently performs
poorly on our new datasets, the W/W+S prompts —
which require LLMs to justify each decision with a
rationale — achieve the highest performance, with
an average improvement of +3% in F1-score com-
pared to the few-shot configuration (more details
in Appendix §C). This finding aligns with previ-
ous research (Sun et al., 2022a) that shows expla-
nations can enhance pun detection performance.
However, the reasoning prompt did not yield signif-
icant improvements over the rationale-augmented
prompts (W and W+S) on the NAP and JOKER
datasets. Overall, the strong performance suggests
that LLMs can understand puns to some extent and
benefit from jointly detecting and explaining.

Embedding Space Analysis. In addition to the
comparison LLMs, we also include a RoBERTa-
large encoder model (Liu et al., 2019) that has been

3https://dictionary.cambridge.org/dictionary,
https://www.merriam-webster.com
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M Prompt F1-score (%)

NAP JOKER PunEval
G

em
in

i2
.0

0S 73.3 ± 0.0 71.2 ± 0.0 85.7 ± 0.2
FS 74.9 ± 0.0 74.0 ± 0.1 89.3 ± 0.1
W 76.2 ± 0.4 74.4 ± 0.1 88.3 ± 0.1
W+S 77.9 ± 0.3 74.4 ± 0.0 89.1 ± 0.2
R+FS 70.9 ± 0.6 71.1 ± 0.2 82.7 ± 0.3
R+W 76.6 ± 0.0 74.4 ± 0.0 90.6 ± 0.1
R+W+S 75.4 ± 0.2 74.6 ± 0.1 89.5 ± 0.1

G
PT

-4
o

0S 78.4 ± 0.1 77.2 ± 0.0 89.7 ± 0.1
FS 81.0 ± 0.7 79.7 ± 0.1 92.8 ± 0.2
W 86.9 ± 0.8 83.3 ± 0.4 87.3 ± 0.9
W+S 85.0 ± 0.8 82.6 ± 0.1 88.9 ± 0.9
R+FS 82.9 ± 0.0 80.5 ± 0.3 92.3 ± 0.1
R+W 84.0 ± 1.1 81.1 ± 0.2 92.6 ± 0.4
R+W+S 82.9 ± 0.8 81.3 ± 0.3 93.0 ± 0.3

L
la

m
a3

.3
(7

0B
)

0S 79.6 ± 1.5 77.1 ± 0.8 84.0 ± 0.4
FS 81.0 ± 0.7 77.6 ± 0.1 84.4 ± 0.4
W 83.4 ± 0.9 79.2 ± 0.2 87.2 ± 0.2
W+S 83.6 ± 0.9 77.9 ± 0.6 86.4 ± 0.3
R+FS 79.2 ± 0.2 75.2 ± 0.1 83.8 ± 0.2
R+W 78.1 ± 0.8 76.4 ± 0.1 85.1 ± 0.5
R+W+S 78.3 ± 1.0 76.8 ± 0.2 84.5 ± 0.3

M
is

tr
al

3
(2

4B
)

0S 75.0 ± 0.5 75.3 ± 0.2 80.8 ± 0.2
FS 69.5 ± 2.2 66.2 ± 1.2 74.6 ± 1.9
W 69.0 ± 1.7 69.3 ± 0.4 78.4 ± 0.5
W+S 68.5 ± 0.9 68.5 ± 0.4 74.9 ± 0.9
R+FS 73.6 ± 1.1 70.9 ± 0.1 82.4 ± 1.3
R+W 70.7 ± 0.3 69.0 ± 0.4 84.2 ± 0.4
R+W+S 70.9 ± 0.2 70.1 ± 0.3 84.5 ± 0.2

Q
w

en
2.

5
(7

2B
)

0S 71.3 ± 0.4 73.6 ± 0.2 83.6 ± 0.1
FS 78.6 ± 0.4 76.4 ± 0.7 87.2 ± 0.2
W 81.1 ± 0.0 77.1 ± 0.4 86.8 ± 0.4
W+S 80.7 ± 0.6 76.8 ± 0.8 87.3 ± 0.1
R+FS 80.2 ± 0.7 77.5 ± 0.6 88.5 ± 0.6
R+W 77.2 ± 0.2 75.0 ± 0.1 89.4 ± 0.5
R+W+S 77.0 ± 1.1 75.8 ± 0.6 88.7 ± 0.1

R
1-

D
(7

0B
) 0S 74.8 ± 0.5 75.3 ± 0.6 86.7 ± 0.3

FS 76.3 ± 2.7 76.2 ± 0.5 87.0 ± 0.3
W 79.8 ± 1.4 78.1 ± 0.9 86.8 ± 0.4
W+S 78.7 ± 1.2 78.7 ± 0.6 88.3 ± 0.6

R
1

(6
71

B
) 0S 74.2 ± 0.4 75.5 ± 0.5 88.5 ± 0.2

FS 76.6 ± 0.5 78.4 ± 0.4 90.8 ± 0.2
W 77.7 ± 0.4 77.7 ± 0.1 90.9 ± 0.1
W+S 79.1 ± 0.8 79.2 ± 0.0 91.3 ± 0.4

RoBERTa-L 64.0 ± 0.1 65.7 ± 0.1 92.5 ± 0.3

Table 1: Pun detection F1-score ± STD over 3 runs.
Top results per model are in bold.

fine-tuned on the PunEval training split. The sig-
nificant performance difference observed between
PunEval (92.5) and the other datasets (64.0 in NAP
and 65.7 in JOKER) prompted an investigation to
understand the reasons behind this disparity. We an-
alyzed the embedding distribution of the RoBERTa
model using t-SNE (van der Maaten and Hinton,
2008) to visualize the embeddings in a 2D space
(Fig. 2, see details in Appendix §A). The visu-

Figure 2: Separation of PunEval embeddings for the
RoBERTa model: after fine-tuning (left), before fine-
tuning (middle), and NAP+ JOKER separation before
fine-tuning (right). Orange dots represent puns, while
black triangles represent non-puns. Notably, PunEval
puns exhibit greater separability in the embedding space
compared to NAP/JOKER, even before fine-tuning.

alizations reveal poor separation between subtly
altered positive and negative examples in the NAP
and JOKER datasets (Fig. 2, right). In contrast,
PunEval embeddings show better separation even
before fine-tuning (Fig. 2, center), with clusters
often corresponding to recurring templates. For
instance, the top-left cluster from the middle im-
age represents puns structured as “Old [...] never
die, they just”, a common pattern for creating puns
(e.g., “Old bankers never die, they just lose inter-
est”). This suggests that dataset artifacts or struc-
tural similarities in PunEval may facilitate shortcut
learning.

5 RQ2: How Robust Are LLMs at
Detecting Puns?

Given the analysis in the previous section, one may
wonder whether the performance gap between the
PunEval dataset and the other two datasets is partly
due to LLMs recognizing superficial cues or overfit-
ting to specific pun structures without fully under-
standing their meanings. This observation prompts
us to investigate the LLMs’ robustness to common
pun language patterns and simple pun alterations.

5.1 Pun Language Patterns

The PunEval dataset contains language patterns
frequently used to create puns. Examples include
“Old [...] never die, they just [...]” and “Tom” (a
common name in English jokes), which may serve
as shortcuts for recognizing puns.

To analyze the impact of these recurrent pat-
terns on model performance, we extracted bag-of-
n-gram features and trained a logistic regressor for
pun detection on the PunEval training set. By ex-
amining the top-20 expressions based on learned
coefficients and frequency, we manually identified
six patterns that significantly correlate with the
presence of a pun. These patterns, along with ex-
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Original pun

I used to be a comedian, but my life became a joke (joke).

Rephrased pun

I used to be a comedian, but my life became chaotic.

Example 2: A pun with a common pun language pattern
and a derived non-pun.

amples and their frequencies, are listed in Tables
8 and 9 in the Appendix. While their presence has
been noted previously (Ermakova et al., 2023a), no
detailed analysis of their effects has been provided.
In the PunEval test split, 171 out of 173 samples
that contain these patterns are puns. Excluding
them results in a 2-3% drop in F1-score and a 2-6%
drop in precision across all models compared to
the full test split, confirming that the presence of
these recognizable patterns can inflate performance.
To further investigate this issue, we created a new
benchmark to test robustness against this bias.

5.1.1 Data
For each of the six extracted patterns, we sampled
100 puns from the PunEval test split that contain the
same expression, supplementing with new exam-
ples collected from the Internet or generated using
GPT-4o (verified manually) as needed to complete
the set. More details on this collection are reported
in Appendix §B.1. We also generated an equal
number of verified non-pun sentences using GPT-
4o (with human oversight), ensuring they contain
the same expression. The resulting dataset, referred
to as the PunnyPattern dataset, contains 1,200 sam-
ples, two of which are presented in Example 2.

5.1.2 Results
Table 2 compares the average performance metrics
over 3 runs between the entire PunnyPattern dataset
and the PunEval dataset. More detailed results for
each language pattern can be found in the Appendix
(see Table 10 and Fig. 11). Overall, there is an av-
erage drop of 16-23% in precision and 4-13% in
F1 on the PunnyPattern dataset across all models.
Additionally, we observe a sharp imbalance of low
precision and high recall for some of the patterns
(see Fig. 11), which indicates LLMs are prone to
identifying puns whenever they observe a typical
pun-like pattern. These results suggest that most
LLMs tend to process certain patterns somewhat su-
perficially, lacking understanding of the underlying
principles of well-crafted puns.

Model F1 Precision Recall

Gemini2.0 76.9 (-12.2) 66.7 (-20.9) 91.6 ( +0.9)
GPT-4o 83.1 ( -4.2) 79.7 (-18.2) 88.1 ( +9.4)
Llama3.3 81.0 ( -6.2) 71.5 (-16.4) 94.2 ( +7.7)
Mistral3 77.4 ( -3.4) 72.1 (-14.8) 87.5 (+11.9)
Qwen2.5 79.7 ( -7.1) 74.1 (-19.3) 87.5 ( +6.5)
R1-D 78.3 (-10.0) 66.9 (-18.7) 94.8 ( +3.7)
R1 81.1 (-10.2) 69.5 (-15.9) 98.3 ( +0.3)

Table 2: F1-score, precision, and recall (%) on the best
prompt on PunnyPattern and the absolute performance
difference with the PunEval dataset.

5.2 Pun Alterations

Motivated by our previous results, we investigate
whether LLMs exhibit robustness to simple alter-
ations of puns designed to ruin them. For humans,
the pun effect relies on the perception of two well-
supported senses that create ambiguity and contrast.
Therefore, replacing the pun word (wp) with a lex-
ical unit that fails to convey this duplicity would
result in the loss of such effect, and the failure of
the intended pun.

5.2.1 Data
To systematically investigate LLMs’ understand-
ing of this phenomenon, we replace the pun word
wp with multiple alternative expressions and mea-
sure their ability to classify “ruined” puns. To this
end, we randomly select 100 heterographic and
100 homographic puns from the NAP and PunEval
datasets and modify each pun with four different
substitutions:

• Pun syn: a synonym or hypernym of the pun
word wp, different in phonetics and orthography.

• Alt syn: as above, but for the alternative word
wa.

• Homophone: a nonsensical expression phoneti-
cally similar to wp.

• Random: a nonsensical random word.

Additionally, we include 100 randomly generated
sentences (non-puns) as a control group, resulting
in a total of 1,100 examples, which we refer to as
the PunBreak dataset. A complete set of substi-
tutions is shown in Example 3, and more details
on the generation procedure are in Appendix §B.2.
Note that while some non-sensical replacements
may be humorous due to the absurdity of the re-
sulting sentences, they do not represent valid puns.
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Original pun

Long fairy tales have a tendency to dragon (drag on).

Pun syn substitution

Long fairy tales have a tendency to wyvern.

Alt syn substitution

Long fairy tales have a tendency to prolong.

Homophone substitution

Long fairy tales have a tendency to brag gone.

Random substitution
Long fairy tales have a tendency to tick.

Example 3: Example substitutions from the PunBreak.

Figure 3: Binary accuracy of comparison LLMs with
their best prompt on the PunBreak dataset, with error
bars representing the standard deviation over 3 runs.

5.2.2 Results

The binary accuracy of each LLM for every sub-
stitution subset, using each model’s best prompt
from the RQ1 experiments, is shown in Fig. 3.
The “pun” subset contains exactly 200 puns (100
het-puns and 100 hom-puns); every other subset
contains exactly 200 non-puns representing the var-
ious substitutions. Results from single prompts are
reported in Appendix §C.4. The “rand sent” results
are obtained from a control of 100 randomly gen-
erated non-puns to detect any unseen bias toward
the pun class; scores exceed 0.8, indicating no such
bias in the random sentences.

All models exhibit a bias toward labeling altered
examples as puns, reflected in low accuracy across
all substitution categories, which contain only neg-
ative examples (non-puns). In particular, GPT-4o,
the best performer overall, reaches a low of 0.33
on the homophone subset and a high of 0.59 on alt
syn. Conversely, all models achieve accuracy of
around 0.8 or higher on the negative examples from
PunEval and the control group (rand sent) (see
Table 11 for details). The homophone subset is the

most challenging overall, indicating that phonetic
similarity between wp and its replacement degrades
the LLMs’ ability to distinguish them in context.
This may also be influenced by orthographic simi-
larity, as similar phonetics often imply similar or-
thography (e.g., stock/stork or dragon/brag gone in
Example 3). Pun-word synonym substitutions (pun
syn) also generally challenge the models, suggest-
ing they may overlook the effect of the replaced
word when it is semantically similar to a more fit-
ting alternative. This suggests that LLMs might be
actively “fixing” the pun in their reasoning process,
thereby rectifying the alteration. The random and
alt syn sets show slightly higher accuracy overall,
further indicating that semantic or phonetic simi-
larity to valid puns misleads predictions more than
loosely related substitutions. These results suggest
that LLMs fail to recognize contexts that should
not trigger the pun effect in cases where the target
sentence has a typical pun structure.

6 RQ3: To What Extent can LLMs
Explain Puns?

Our rationale-augmented prompts achieve the best
performance in our previous experiments, notably
reducing bias on the PunnyPattern dataset with a
9.8% increase in precision (see §C.1 in the Ap-
pendix for details on rationale impact). In this
section, we systematically examine the quality of
the generated rationales to gain insights into LLMs’
understanding of puns.

6.1 Keyword Evaluation

Our goal is to measure the overlap between human-
provided semi-structured rationales and LLM-
generated rationales, while also accounting for pre-
diction accuracy. To this end, we quantify the align-
ment between the LLM-predicted pun pair (w′

p, w′
a)

and the true pun/alternative word pair (wp, wa) us-
ing the pun pair agreement (PPA) metric. Each
prediction is scored: 2 if both wp and wa are cor-
rectly generated, 1 if only one is correct, and 0 if
neither is correct. Predictions with incorrect labels
receive a score of 0, since no rationales are gener-
ated for non-pun predictions. For further details on
the evaluation process, see §A.2.

Results. Table 3 reports the average PPA over
three runs, representing the mean number of words
correctly identified in generated rationales for pun
pairs on a 0–2 scale. GPT-4o is the top performer,
with ∼1.5 out of 2 correctly predicted words per
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Model NAP JOKER PunEval

W W+S W W+S W W+S

Gemini2.0 1.2 1.2 1.1 1.1 1.5 1.5
GPT-4o 1.5 1.5 1.5 1.4 1.6 1.6
Llama3.3 1.4 1.3 1.3 1.2 1.5 1.5
Mistral3 0.8 0.7 0.8 0.7 1.2 0.9
Qwen2.5 1.2 1.2 1.2 1.2 1.5 1.5
R1-D 1.3 1.2 1.2 1.2 1.5 1.6
R1 1.3 1.2 1.2 1.3 1.6 1.7

Table 3: Average Pun Pair Agreement (PPA), in [0–2],
for each prompt setting (W, W+S) across datasets. Stan-
dard deviation is 0.0 for all measurements, and the best
results are marked in bold.

pun across all three datasets. It is followed by
Llama3.3 and DeepSeek-R1, whose performance
is noticeably lower. Mistral has the lowest scores,
trailing the next-lowest model, Gemini2, by ∼33%.
Among the 70B models, Llama3.3 performs best
on average. We also observed no significant dif-
ference between the two prompts tested. Consis-
tent with our earlier results, scores on the PunEval
datasets are generally higher than on JOKER and
NAP, where performance drops by approximately
20% and peaks at 1.5 out of 2. Furthermore, a
PPA evaluation restricted to true positives (see Ap-
pendix Table 12) shows that most models, except
Qwen and Mistral, can effectively justify their cor-
rect answers. In this specific evaluation, GPT-4o
and DeepSeek-R1 emerge as the top performers by
a wide margin. These findings motivate our investi-
gation of the main error types in model reasoning,
which is addressed in the next subsection.

6.2 Error Analysis: Manual Evaluation

The PPA metric measures the ability to match the
original pun pair but does not indicate why predic-
tions were wrong, nor does it evaluate the complete
rationale obtained with the more expressive W+S

prompt. Upon inspection of the produced ratio-
nales, we identify four main categories of mistakes
frequently made by our LLMs regarding the pre-
dicted pun pair (w′

p, w′
a) and the associated pair of

senses (s′p, s′a):

• Word-sense association (word-sense error): in-
correct association between word and sense (i.e.,
w′
p–s′p or w′

a–s′a).

• Missing context (context): the interpretation
of w′

p as s′p or w′
a as s′a is not supported by the

context.

• Pun pair (pun pair): w′
p and w′

a are not suffi-

ciently similar in phonetic or orthographic terms
to create wordplay (this only applies to het-puns).

• Senses similarity (sense sim): senses s′p and
s′a are too similar. Puns work when polysemous
words carry well-separated senses that create con-
trast.

These types of mistakes also highlight different
weaknesses. A word-sense mistake can be consid-
ered a hallucination (e.g., “crustacean” interpreted
as “a species of bird”) while a pun pair mistake
(as in Fig. 1) indicates difficulty in grasping the
phonological properties of words.

To precisely characterize the model’s mistakes
in the categories above, we conducted an error anal-
ysis with five native English speakers specifically
hired for this task. We randomly sampled 80 incor-
rect answers from each of the three top-performing
LLMs, according to the PPA evaluation: GPT-4o,
Llama3.3, and DeepSeek-R1. For each of the sam-
pled answers, we designed a set of questions to
determine the presence of each category of mistake.
For example, the first two questions assess whether
s′p (the LLM-predicted pun sense) and s′a (the pre-
dicted alternative sense) are legitimate interpreta-
tions of w′

p (predicted pun word) and w′
a (predicted

alternative word), respectively. Annotators could
answer with “Yes”, “No”, or “Maybe” if uncer-
tain. If any of these questions is answered with
“No” for a given sample, that sample is counted as
a word-sense association error. Note that if both
senses are incorrect, it still counts as a single error,
ensuring a more comparable error count across all
mistake categories. The full evaluation procedure,
guidelines, and questionnaire are detailed in §A.3
of the Appendix. Table 13 shows the error-analysis
results for six example samples.

Error Breakdown by Category

Error Category GPT-4o Llama3.3 R1

context 66 49 50
pun pair 50 39 27
word-sense 9 17 8
sense sim 2 3 2

Aggregated statistics

Total errors 128 111 87
Avg. errors 1.6 1.4 1.2

Table 4: Error statistics by category and overall on 80
misclassified samples from the PunBreak dataset. Note
that there may be more than one error per sample.
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Results. Table 4 reports the results of the man-
ual evaluation for the three analyzed LLMs. Our
analysis reveals that, in general, the most frequent
errors involve: (i) missing the required context
to support both sp and sa (context) and (ii) se-
lecting unsuitable word pairs that do not fit into a
pun (pun pair). The latter category only applies
when w′

a! = w′
p, and typically results from forcing

words that are not phonetically compatible to create
wordplay. A third fairly common mistake arises
from incorrectly pairing words with their meanings
(word-sense). Llama3.3, the smallest among the
three LLMs, tends to struggle the most in this area,
producing more sense hallucinations. In contrast,
GPT-4o and R1 tend to assess the senses correctly,
even when some words in the pun pair are incor-
rectly identified. These error patterns suggest a lack
of understanding of the mechanisms of puns, partic-
ularly the inability to distinguish inappropriate con-
texts and difficulties in handling wordplay based
on phonetic or orthographic similarity. Among the
three evaluated models, DeepSeek-R1 proved to be
the most precise, exhibiting the lowest number of
errors in its responses.

6.3 Discussion
Our findings align with prior work showing that
LLMs struggle with humor, particularly when it de-
pends on nuanced context or roleplay (Quan et al.,
2025; Mirowski et al., 2024). These studies note
that safety constraints (e.g., the “Harmless, Helpful,
Honest” criteria) can cause LLMs to misinterpret
relational context in potentially offensive situations.
These safety mechanisms bias models toward a
safer, “washed-out” form of humor, stripping away
the surprise and edge on which many jokes depend.
Puns, in contrast, are rich in surprise, subtlety, and
timing; they are also deeply rooted in human emo-
tions and experiences, qualities that current LLMs
cannot fully tap into.

LLMs also exhibit a form of “regressive syco-
phancy” — a tendency to agree with a user prompt
even when incorrect — particularly in ambigu-
ous or sensitive contexts (Malmqvist, 2025; Cheng
et al., 2025). We suspect that this tendency causes
the models to produce false positives by forc-
ing inputs into a “pun” template. Such behav-
ior is a known artifact of human-preference align-
ment (post-training), which can bias models toward
agreeable responses at the expense of contextual
and factual accuracy (Sharma et al., 2025).

Finally, the frequent pun pair errors point to

weaknesses in assessing phonetic and orthographic
similarity. These issues are likely tied to tokeniza-
tion, which can mask morphological elements criti-
cal to wordplay, and to limited phonological mod-
eling (Liao and Shi, 2025). The composition of
pre-training corpora and data cleaning practices
may also deprive models of the informal, creative
language where puns are common. Because de-
velopers rarely disclose detailed preprocessing and
corpus information, it is difficult to determine how
these practices affect fluency with such language.

Improving an AI’s grasp of puns and humor in
general will likely require deeper human-machine
collaboration and greater social awareness. Prior
work suggests that human alignment of LLMs
should shift from a single global standard to a more
granular, audience-aware approach (Quan et al.,
2025; Mirowski et al., 2024). This would help
models to adapt to specific audiences and contexts,
adjusting appropriateness and fairness criteria ac-
cordingly.

7 Conclusion

Results in pun detection benchmarks often show
a high performance by current LLMs. How-
ever, it remains unclear whether this high perfor-
mance comes from true understanding or other
data-specific factors. To assess robustness, we chal-
lenged state-of-the-art LLMs with two new anno-
tated datasets that we publicly released for future
research: PunnyPattern, which collects examples
with language patterns common in English puns,
and PunBreak, containing sentences subtly mod-
ified to mimic puns. Although LLMs can detect
puns on existing benchmarks (> 0.83 average ac-
curacy), accuracy drops substantially on our more
challenging datasets: −15% on PunnyPattern, and
−50% on PunBreak, indicating limited understand-
ing of pun mechanisms and over-reliance on simi-
larity with known puns. We also used LLMs to ex-
plain puns by generating semi-structured rationales
and evaluated those explanations with automatic
and manual assessments. Only three models cor-
rectly identified the pun-related words in more than
70% of cases. Moreover, they all struggled to rec-
ognize when contexts and word choice legitimately
supported wordplay. This research underscores
the need for more rigorous evaluations of LLMs’
performance on ambiguous-language tasks, particu-
larly those requiring subtle language understanding,
such as pun detection and generation.
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Limitations

A limitation of our work is that, despite our efforts
to create high-quality data, the newly contributed
datasets have not been comprehensively validated
by language experts. Our manual error analysis
indicates the possibility of incorrect annotations or
“accidental” puns, stemming from the inherently
subjective nature of pun perception. Discussions
with annotators also revealed that the definition of
a pun should be more formally characterized; we
therefore provided many examples before annota-
tion and corrected some samples based on their
feedback. Despite these efforts, our manual error
analysis remains limited by the subjectivity of sev-
eral questions.

Additionally, there is the possibility that most
LLMs have previously encountered many examples
from our datasets, as puns often exist in various
versions and can be easily found online. Conse-
quently, we may not have fully disentangled this
effect from our bias measurements on the PunBreak
and, in particular, the PunnyPattern dataset, the lat-
ter of which includes many examples sourced from
PunEval. We believe that further tests — such as
injecting the identified language patterns into arbi-
trary sentences — could help clarify the impact of
model bias on performance.

Future work should investigate the severity and
correctability of these biases. As reviewers sug-
gested, it remains to be tested whether in-context
learning with targeted negative examples, such as
those from our new datasets, can mitigate the mod-
els’ tendencies to classify most examples as puns.
Moreover, the fact that our evaluation was con-
ducted solely on English puns further limits the
scope of the conclusions that can be drawn from
these results.

Finally, our prompt design was tailored for
Llama 3.1, and we utilized the same prompt for
all LLMs. We acknowledge that custom-tailored
prompts for each model are likely to impact per-
formance. During this work, several new LLMs
were published, and while we tested some of them,
we did not have the opportunity to extensively opti-
mize prompts for each one.

Ethics Statement

All puns used in this study were either sourced
from previous work publicly released for research
purposes, devised by the authors, generated using
LLMs, or obtained from other open sources. In all

instances, proper citations are provided to acknowl-
edge the original authors. All collected puns are
used solely for research purposes, and we do not
claim authorship over any of them. As per the au-
thors’ request, the JOKER dataset was not released
and was used exclusively for this study.

The pun datasets do not contain any personal
information and do not refer to specific individu-
als; however, some may be considered offensive
by certain audiences. While we have limited the
number of offensive puns in our new datasets, such
content may still exist in other datasets utilized in
this work.

Human judges were hired for their participa-
tion in the evaluation process. Each annotator re-
sponded to 7-9 questions, which included multiple-
choice answers and a Likert scale for two ques-
tions. Annotators had the option to select a specific
answer or skip questions if they did not possess
sufficient knowledge to respond. They were com-
pensated 15-20£ per hour, which is well above the
minimum wage in the country where the annota-
tions took place. The annotators, who were stu-
dents from diverse backgrounds — including Com-
puter Science, Theology, and Literature — were
interviewed by the authors in a virtual meeting fol-
lowing the initial pilot study.
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A Experimental Details

Throughout all experiments, the temperature was
set to 0 to ensure more deterministic outputs, while
the beam search decoding strategy was used for
models that support it (beam size = 2). RoBERTa-
large4 was trained on the PunEval training split for
max 4 epochs with early stopping on the validation
set, based on F1-score. We use a batch size of 32
and a learning rate of 1.5e−5.

For testing, we utilized hosted instances of
Llama 3.3-70B, Mistral, DeepSeek-R1-DistiLlama,
and Gemini 2.0-Flash through OpenRouter5. The
RoBERTa model was fine-tuned on a local server
using the latest dumps available on Hugging Face.

For the embedding space analysis, we averaged
token embeddings to obtain a sentence-level rep-
resentation for each sample, preferring this strat-
egy over CLS token embeddings, as the CLS token
is not used during RoBERTa pre-training. Clus-
ters representing patterns were identified using DB-
SCAN (Ester et al., 1996) with UMAP (Healy and
McInnes, 2024) for dimensionality reduction. We
employed k-nearest neighbor (kNN) to determine
the optimal eps hyperparameter.

A.1 Prompts

The final prompts utilized are reported below. Ta-
ble 5 presents a comparison of performance with
other prompting strategies based on the validation
split of the PunEval dataset using GPT-4o, the best-
performing LLM. The +ZC prompts refer to those
used with the Zero-shot CoT strategy. We edited
the original prompt by removing all examples and
instructing the models to "think step by step." We
first asked them to produce reasoning and then to
output the final answer. Since the performance was
very similar to the reasoning (+R) prompt, we pre-
ferred the latter, as it allowed for a single prompt
call instead of two. The RATIONALE and BASE

prompts refer to the initial prompts that utilized
JSON formatting for output. This strategy did not
work well for smaller models, leading to the adop-
tion of our custom prompting format, showcased
in Figs. 7,6,5,4.

A.2 Keywords Evaluation

The output of the automatic evaluation indicates
how many correct words the model produces in the

4https://huggingface.co/FacebookAI/
roberta-large

5https://openrouter.ai

Prompt F1-score

Final prompts

0S 90.2
FS 95.6
W 93.9
W+S 89.7

JSON prompts

JSON-W+S 87.1
JSON-0S 85.0

Reasoning and Zero-shot CoT

FS+R 95.1
W+R 93.3
W+S+R 93.3
FS+ZC 91.4
W+ZC 88.3
W+S+ZC 87.7

Table 5: F1-score of GPT-4o over different versions of
prompts tried.

rationale. During the evaluation process, both pun
pairs are tokenized, lemmatized, and stripped of
punctuation, with the overlap between each pair
serving as the scoring metric. A score of 2 is as-
signed only if both w′

p and w′
a correctly match

the true pun pair. A score of 1 is given if only
one is correct, while a score of 0 is assigned if
both are incorrect. This evaluation is conducted
both with and without lemmatization, retaining the
maximum score to mitigate issues arising from in-
correct lemmatization. Pun words and alternative
words are lemmatized using SpaCy, specifically the
en_core_web_lg model6.

A.3 Error Analysis
For our error analysis, we sample 80 examples from
the set of false positives identified in the results on
the PunBreak dataset (which has the worst overall
performance), sampling from results using the W+S

prompt, which provides the most expressive ratio-
nale. Given that we have 200 examples for each
of the four substitution categories, this represents
10% of the dataset size.

We hired five native English speakers from vari-
ous backgrounds based on their expertise in corpus
annotation. Specifically, the group consists of three
men and two women who are students at our univer-
sity, ranging from undergraduate to postgraduate
levels.

The annotators were asked to answer 7-9
multiple-choice questions assessing the reasonable-
ness of the models’ responses for each selected

6https://spacy.io/models/en
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sample. We conducted an initial round of annota-
tion on a small subset to validate agreement among
the annotators and gather feedback. The pilot study
resulted in moderate inter-annotator agreement,
with Fleiss’s κ = 0.41).

We use Google Forms for collecting answers,
and we show a screenshot of all questions in Fig.
16, 17, and 18. Each annotator reviewed a batch of
40 examples and was asked to annotate according
to a set of guidelines that clarified the nature of the
task and provided examples. The full guidelines,
along with the questions, are provided at the end of
this Appendix. Note that after the pilot study, we
added two additional questions to assess the pres-
ence of “accidental” puns. However, we ultimately
excluded these from the final study because the
results were inconsistent among reviewers, which
led us to conclude that the questions were not prop-
erly formulated and produced overly subjective re-
sponses that did not provide reliable evidence.

A.3.1 Results processing
We identify each question with a letter from A to I
(see Fig. 16). Let a(ℓ) be the answer to the question
identified by ℓ ∈ {A,B, ..., I}. All questions have
four possible answers: “Yes”, “No”, “Maybe” and
“I don’t understand”. The exceptions are questions
C and H, where respondents must express their
rating on a Likert scale from 0 to 5. Although
we received only one answer to question I, several
annotators rated a small number of examples as
possible puns, despite the low agreement on this
question observed during the pilot test.

In our analysis, we adopt a conservative ap-
proach to detecting errors based on the annota-
tors’ responses, ensuring that errors are recorded
only when the annotators express clear certainty.
Hence, for answers on a qualitative scale, we as-
sume “No” = 0 and all other answers are coded
with 1. In this case, each error category is assigned
to samples when specific conditions are met:

• Word-sense association (word-sense): a(A)
AND a(B) (i.e., at least one of the senses must
be clearly wrong);

• Missing context (context): a(D) AND a(E);

• Pun pair (pun pair): a(F ) OR a(G) (i.e., the
pun words must be both phonetically and ortho-
graphically diverse);

• Senses similarity (sense sim): a(C) ≤ 1.

Note that additional error categories may be ap-
plicable. In some cases, annotators, despite finding
no errors according to our guidelines, marked the
example as a non-pun. This observation highlights
that our guidelines may not be exhaustive, in part
due to the inherent subjectivity of pun interpreta-
tion.

B Dataset information

Aggregated statistics for all datasets are presented
in Table 6. In the PunEval dataset, we initially
identified annotation issues by locating puns where
the annotated wp did not appear in the text. We
detected 13 such issues, along with several typos,
and addressed them by re-annotating the examples.
The PunEval dataset also includes a list of contex-
tual words that support both senses and a human
explanation. Additionally, we removed contextual
words that did not appear in the text (consistency
errors). While the contextual words and human
explanations are not utilized in this study, we have
incorporated all these refinements in the published
data splits.

B.1 PunnyPattern

To select common pun patterns for the PunnyPat-
tern, we use scikit-learn7 to train a logistic regres-
sor (LR) on the PunEval training split and then
infer the target labels on the testing split, using de-
fault parameters. The LR coefficients with higher
absolute values are deemed more significant for the
outcome. We train four separate LRs with n-gram
features (n ∈ {1− 4}), imposing a minimum fre-
quency threshold for each feature (10 for unigrams
and 3 for the others). In addition, we compute the
percentage difference between the occurrences of
each feature in puns and non-puns, as we seek fea-
tures that effectively differentiate the two sets. The
final feature score is calculated by multiplying this
percentage difference by the absolute value of the
corresponding coefficient, and the top 20 features
are then manually reviewed.

We observed that n-grams belonging to the same
pattern often appeared as separate features (e.g.,
both “she was only” and “daughter” are part of
the pattern “she was only a [...] daughter but”).
Consequently, we retained the 6 most representa-
tive patterns for each feature. Some features were
discarded because they did not represent a genuine
pattern (for example, the expression “lot of ” ap-

7https://scikit-learn.org/stable/index.html
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W+S (system)

/* Definition */
Puns are a type of wordplay that use words with multiple meanings or similar-sounding words to create humor by
juxtaposing these different meanings. Non-puns are jokes or statements that do not rely on this kind of wordplay. A
pun is created by a pair of words or short expressions, referred to as "w_p" (the pun word) and "w_a" (the alternative
word), which together create a humorous effect. Note that "w_p" and "w_a" must be the minimal text spans that create
the pun. Depending on the type of pun, either "w_p" equals "w_a", or only "w_p" appears in the text, with "w_a" being
evoked by the context. Each of these expressions, "w_p" and "w_a", carries its own meanings, denoted as "s_p" and
"s_a" respectively, and these meanings are supported by a set of contextual words.
/* Instruction */
You are a helpful assistant tasked with analyzing texts to determine if they contain a pun or not. You must first answer
with ’yes’ if the given text is a pun and ’no’ if it is a non-pun. If you think it is a pun, you must also justify your answer
by providing "w_p" and "w_a", along with their meanings "s_p" and "s_a".

W+S (user)

You must answer with ’yes’ if the given text is a pun and ’no’ if it is a non-pun.
If you think it is a pun, you must also justify your answer by providing the words, or short expressions, "w_p" and "w_a",
along with their meanings "s_p" and "s_a". Note that "w_p" and "w_a" must be the minimal text spans that create the
pun, or empty strings if the text is a non-pun. "s_p" and "s_a" must contain short definitions of "w_p" and "w_a" that
match their meanings in the context of the sentence, or empty strings if the text is a non-pun. Please provide your answer
in one line using the following formats: ’yes <w_p> <w_a> <s_p> <s_a>’ for puns and ’no <> <> <> <>’ for non-puns.
Do not add any additional text or characters.
/* Examples */
Text: A carpenter sat on his drill and was bored to tears.
Output: yes <bored> <bored> <make a hole, especially with a pointed power or hand tool> <cause to be bored>
Text: Don’t kill the goose that lays the golden eggs?
Output: no <> <> <> <>
Text: I scream, you scream, we all scream for ice cream!
Output: yes <ice cream> <I scream> <a dessert made from frozen sweetened cream, usually flavored> <to utter a long
loud piercing cry, as from pain or joy>
Text: He’s dead Jim. Grab his tricorder. I’ll get his wallet!
Output: no <> <> <> <>
Text: The whistling fisherman was always out of tuna.
Output: yes <tuna> <tune> <any very large marine food and game fish of the genus Thunnus> <the property of producing
accurately a note of a given pitch>
Text: Better go about than fall into the ditch.
Output: no <> <> <> <>
Text: INPUT TEXT Output:

Figure 4: W+S system and user prompts.

Dataset Avg. Statistics Labels Count

N. chars N. words Heterographic puns Homographic puns Non-puns Total samples

PunEval (train) 58 13 279 304 488 1071
PunEval (test) 58 13 312 461 568 1341
PunEval (val) 59 13 56 46 75 177
NAP 67 16 64 64 128 256
JOKER 64 14 381 251 632 1264
PunnyPattern 64 15 212 388 600 1200
PunBreak 66 15 100 100 900 1100

Table 6: Dataset statistics. Datasets in bold represent the new ones introduced in this work. N. chars and N. words
denote the average number of characters and words per sample, respectively.
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W (system)

/* Definition */
Puns are a type of wordplay that use words with multiple meanings or similar-sounding words to create humor by
juxtaposing these different meanings. Non-puns are jokes or statements that do not rely on this kind of wordplay. A
pun is created by a pair of words or short expressions, referred to as "w_p" (the pun word) and "w_a" (the alternative
word), which together create a humorous effect. Note that "w_p" and "w_a" must be the minimal text spans that create
the pun. Depending on the type of pun, either "w_p" equals "w_a", or only "w_p" appears in the text, with "w_a" being
evoked by the context. Each of these expressions, "w_p" and "w_a", carries its own meanings, denoted as "s_p" and
"s_a" respectively, and these meanings are supported by a set of contextual words.
/* Instruction */
You are a helpful assistant tasked with analyzing texts to determine if they contain a pun or not. You must first answer
with ’yes’ if the given text is a pun and ’no’ if it is a non-pun. If you think it is a pun, you must also justify your answer
by providing "w_p" and "w_a".

W+S (user)

You must answer with ’yes’ if the given text is a pun and ’no’ if it is a non-pun. If you think it is a pun, you must also
justify your answer by providing the words, or short expressions, "w_p" and "w_a". Note that "w_p" and "w_a" must be
the minimal text spans that create the pun, or empty strings if the text is a non-pun. Please provide your answer in one
line using the following formats: ’yes <w_p> <w_a>’ for puns and ’no <> <>’ for non-puns. Do not add any additional
text or characters.
/* Examples */
Text: A carpenter sat on his drill and was bored to tears.
Output: yes <bored> <bored>
Text: Don’t kill the goose that lays the golden eggs?
Output: no <> <>
Text: He’s dead Jim. Grab his tricorder. I’ll get his wallet!
Output: no <> <>
Text: The whistling fisherman was always out of tuna.
Output: yes <tuna> <tune>
Text: Better go about than fall into the ditch.
Output: no <> <>
Text: INPUT TEXT Output:

Figure 5: W system and user prompts.
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FS (system)

/* Definition */
Puns are a type of wordplay that use words with multiple meanings or similar-sounding words to create humor by
juxtaposing these different meanings. Non-puns are jokes or statements that do not rely on this kind of wordplay. A
pun is created by a pair of words or short expressions, referred to as "w_p" (the pun word) and "w_a" (the alternative
word), which together create a humorous effect. Note that "w_p" and "w_a" must be the minimal text spans that create
the pun. Depending on the type of pun, either "w_p" equals "w_a", or only "w_p" appears in the text, with "w_a" being
evoked by the context. Each of these expressions, "w_p" and "w_a", carries its own meanings, denoted as "s_p" and
"s_a" respectively, and these meanings are supported by a set of contextual words.
/* Instruction */
You are a helpful assistant tasked with analyzing texts to determine if they contain a pun or not. You must answer only
with ’yes’ if the given text is a pun and ’no’ if it is a non-pun.

FS (user)

You must answer only with ’yes’ if the given text is a pun and ’no’ if it is a non-pun. Do not add any additional text or
characters.
/* Examples */
Text: A carpenter sat on his drill and was bored to tears.
Output: yes
Text: Don’t kill the goose that lays the golden eggs?
Output: no
Text: I scream, you scream, we all scream for ice cream!
Output: yes
Text: He’s dead Jim. Grab his tricorder. I’ll get his wallet!
Output: no
Text: The whistling fisherman was always out of tuna.
Output: yes
Text: Better go about than fall into the ditch.
Output: no
Text: INPUT TEXT Output:

Figure 6: FS system and user prompts.

0S (system)

You are a helpful assistant tasked with analyzing texts to determine if they contain a pun or not. You must answer only
with ’yes’ if the given text is a pun and ’no’ if it is a non-pun.

0S (user)

You must answer only with ’yes’ if the given text is a pun and ’no’ if it is a non-pun. Do not add any additional text or
characters.
Text: INPUT TEXT Output:

Figure 7: 0S system and user prompts.
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peared only 8 times and likely reflects a spurious
correlation rather than a common pun construc-
tion).

After selecting the patterns, we sampled all
puns containing these language patterns from the
PunEval dataset. Missing examples were collected
online and generated via GPT-4o using the prompt
shown in Fig. 8, with the temperature set to 1.0.
All generated examples were manually reviewed,
and those that were poorly crafted were either re-
vised or discarded. We queried the model multiple
times until we obtained 100 puns for each pattern.

B.2 PunBreak

To create the PunBreak, we selected 100 hetero-
graphic puns and 100 homographic puns from the
NAP and PunEval test split. We generated alter-
natives using GPT-4o-mini for homophone replace-
ments and employed Google Translate to ensure
that the substituted words sounded similar to the
originals. For random replacements, we compiled
a list of random words and replaced them in the
dataset, ensuring that these words did not fit contex-
tually within the sentences. To generate synonyms
(alt syn and pun syn), we utilized online the-
sauruses and dictionaries to find synonyms for each
word; when synonyms were unavailable, we opted
for a hypernym instead. We do our best to ensure
that none of these substitutions result in accidental
puns. For example, consider the pun “«Consult
an investment broker»was Tom’s stock (stock) an-
swer”, which plays on stock as both “commonly
used or brought forward” (sp) and “capital raised
by a corporation representing ownership interest”
(sa). For the synonym substitutions, we replaced
“stock” with “routine”, which is roughly equivalent
in context, and equity, respectively. We purposely
avoided using “default” in the second substitution,
as it carries an economic connotation. As a nonsen-
sical but phonetically similar expression, we used
“stork” (a bird) and “yawn” as a random replace-
ment.

C Additional Results

Table 7 reports recall over all prompts and the
dataset, divided by heterographic and homographic
puns.

C.1 Effect of rationale

Fig. 9 highlights the impact of rationale-augmented
prompts for all models on the NAP and JOKER

datasets. Fig. 12 compares the impact of the best
rationale-augmented prompt (W or W+S) on pun de-
tection performance over the PunnyPattern dataset,
excluding the tom and when patterns that do not
consistently bias the tested LLMs. Fig. 13 shows
the same results on the PunBreak, when consid-
ering only the four substitution sets (800 negative
examples). The best prompt used is the one high-
lighted in Table 10, except for Mistral3, where we
select the W prompt as it appears to work better
overall. In the violin plots, the right side (light
blue) represents the results distributions over the
three runs with the rationale-augmented prompt,
while the left side (red) represents performance
using the FS prompt — typically the best prompt
without rationales. Note that in all cases except
Mistral, incorporating rationalization reduces the
number of false positives, thereby lowering recall
and improving precision, countering the bias effect.

C.2 RQ1

Fig. 9 shows the difference in performance for each
prompt used. Fig. 10 shows the same effect over
the PunnyPattern dataset. This shows that, overall,
the W or W+S prompt improves performance over
the simpler prompts.

C.3 RQ2: Pun Language Patterns

Pattern identification. Table 8 lists the six lan-
guage patterns identified as commonly used to cre-
ate puns. Table 9 summarizes the statistics for these
patterns in our datasets. We omit data for the Pun-
nyPattern dataset, as all examples in it are designed
to contain a language pattern.

Performance. Table 10 compares the results ob-
tained using each prompt for PunEval and Punny-
Pattern. Note that the best prompts (in bold) are
the same as those that performed best in our RQ1
(Table 1). Fig. 11 visualizes the performance dif-
ferences for each set of expressions containing lan-
guage patterns. We interpret bias as being present
in models with very high recall but low precision,
indicating they tend to classify all instances con-
taining the pattern as puns.

We observe a sharp imbalance of low preci-
sion and high recall for the never_die, used, and
doctor patterns (Fig. 11), indicating that these pat-
terns tend to mislead LLMs into identifying puns.
In contrast, the tom and when patterns do not ap-
pear to consistently affect them. While all LLMs
tend to produce many false positives with the used,
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Non-puns generation

/* Definition */
Puns are a form of wordplay that exploits multiple meanings of a word or similar-sounding words to produce a humorous
effect. Puns typically involve a clever juxtaposition of words or phrases, where the humor arises from the interplay of
their meanings or sounds. In contrast, non-puns are jokes or statements that do not rely on such linguistic ambiguities.
/* Instructions */
You are a creative linguist who thinks out-of-the-box. You receive a JSON-formatted string in the format "expression":
"EXPR1 [X] EXPR2", "count": C where [X] represents a missing expression, and you must generate C pairs of distinct
short paragraphs where: - the first text in the pair must be a short paragraph containing a pun and respect the template
given in "expression"; - the second text in the pair must be a rephrased version of the first one, that removes the pun (i.e.,
a non-pun) but keeps a similar meaning. You can add words before or after the template, but you must ensure that each
generated paragraph contains the given template with proper substitutions. You must format each pair in JSON format:
"pun": "[generated pun]", "non-pun": "[generated non-pun]". You must make sure that field "pun" contains a good pun,
and "non-pun" contains no pun at all. You must write each JSON-formatted pair in a new line, respecting the JSONL
format. Do not add any superfluous text and report a JSON-formatted string in each line.
/* Examples */
INPUT: "expression": "Old [X] never die, they just", "count": 3
OUTPUT: "pun": "Old wizards never die, they just improve their spelling.", "non-pun": "Old wizards never die, they just
improve their pronunciation." "pun": "Old squirrels never die, they just go nuts!", "non-pun": "Old squirrels never die,
they just go crazy!" "pun": "Old crabs never die, they just became a little more shellfish!", "non-pun": "Old crabs never
die, they just became a little more egocentric!"
INPUT: "expression": "is", "count": 2
OUTPUT: "pun": "Denial is a river in Egypt.", "non-pun": "The river Nile is a river in Egypt." "pun": "The cyclist is two
tired to win", "non-pun": "The cyclist is too drained to win"
INPUT: "expression": "This [X] always", "count": 2
OUTPUT: "pun": "This vacuum always sucks!", "non-pun": "This vacuum always disappoints!" "pun": "This candy
cane always remains in mint condition.", "non-pun": "This candy cane always remains in good condition."
INPUT: INPUT EXPRESSION
OUTPUT:

Figure 8: Prompt used to generate puns and non-puns containing language patterns.

Figure 9: Distribution of F1-score over 3 runs on the NAP and JOKER datasets. The dotted line represents the
mean, while the solid line is the median.
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Model

Pr
om

. NAP JOKER PunEval PunnyPattern

hom het hom het hom het hom het

Gemini2.0

0S 100.0 ±0.0 100.0 ±0.0 96.0 ±0.0 95.9 ±0.2 97.3 ±0.1 92.3 ±0.0 97.2 ±3.6 95.4 ±6.0
FS 96.9 ±0.0 98.4 ±0.0 92.4 ±0.0 93.6 ±0.2 95.3 ±0.1 88.3 ±0.2 97.1 ±3.1 96.2 ±5.7
W 94.3 ±0.9 97.9 ±0.9 90.4 ±0.0 94.0 ±0.0 94.3 ±0.1 86.9 ±0.0 92.0 ±8.7 95.3 ±7.6
W+S 98.4 ±0.0 98.4 ±0.0 87.7 ±0.0 91.9 ±0.0 94.0 ±0.1 85.7 ±0.4 91.5 ±8.0 91.4 ±10.3

GPT-4o

0S 99.0 ±0.9 100.0 ±0.0 95.2 ±0.0 96.3 ±0.0 96.4 ±0.3 93.0 ±0.6 98.2 ±2.3 98.3 ±2.3
FS 97.4 ±0.9 98.4 ±0.0 93.6 ±0.0 94.6 ±0.2 94.2 ±0.3 88.9 ±0.4 96.9 ±3.5 96.9 ±2.9
W 84.9 ±2.4 98.4 ±0.0 79.9 ±0.3 92.7 ±0.4 77.7 ±3.0 80.3 ±0.7 86.2 ±8.3 91.3 ±9.8
W+S 87.5 ±1.6 97.9 ±0.9 85.9 ±0.3 93.0 ±0.2 81.1 ±1.9 82.8 ±1.4 88.2 ±7.2 94.7 ±6.1

Llama3.3

0S 96.9 ±0.0 99.5 ±0.9 92.8 ±0.0 94.2 ±0.4 94.6 ±1.3 86.7 ±2.5 97.3 ±3.8 94.4 ±6.7
FS 98.4 ±0.0 97.4 ±2.4 92.6 ±0.3 93.3 ±0.6 94.9 ±0.3 88.1 ±1.1 97.0 ±4.2 96.2 ±4.7
W 90.1 ±0.9 93.2 ±1.8 87.9 ±0.3 90.0 ±0.0 89.4 ±0.6 82.2 ±0.7 95.1 ±4.3 92.7 ±5.1
W+S 96.9 ±0.0 97.4 ±0.9 91.8 ±0.3 92.0 ±0.6 92.6 ±0.7 83.0 ±0.6 93.7 ±7.5 93.9 ±7.7

Mistral3

0S 93.2 ±0.9 80.7 ±0.9 79.5 ±0.3 86.0 ±0.6 80.3 ±1.2 68.7 ±0.8 87.8 ±12.4 87.9 ±16.3
FS 88.0 ±3.3 87.0 ±9.2 84.7 ±1.4 86.6 ±4.5 81.1 ±1.1 81.8 ±4.0 88.3 ±3.9 86.2 ±5.3
W 88.0 ±3.9 96.9 ±3.1 91.4 ±0.8 94.6 ±0.6 84.0 ±1.2 82.5 ±0.5 92.2 ±6.0 90.8 ±8.2
W+S 95.3 ±1.6 96.4 ±2.4 95.6 ±0.6 97.6 ±0.4 93.2 ±1.2 92.1 ±0.8 97.6 ±1.6 97.5 ±4.1

Qwen2.5

0S 100.0 ±0.0 100.0 ±0.0 92.8 ±0.6 96.5 ±0.2 96.1 ±0.4 88.6 ±0.4 97.1 ±4.2 95.2 ±11.2
FS 95.8 ±0.9 96.4 ±0.9 84.5 ±1.7 91.3 ±0.0 87.6 ±0.1 78.5 ±0.3 92.2 ±7.5 91.6 ±13.1
W 94.8 ±0.9 93.8 ±1.6 80.7 ±0.8 86.5 ±0.2 85.0 ±0.6 75.1 ±0.7 88.1 ±11.8 87.6 ±17.0
W+S 94.3 ±0.9 94.3 ±0.9 82.1 ±1.7 87.8 ±0.2 87.8 ±0.8 75.8 ±1.0 88.5 ±12.3 88.4 ±16.3

R1-D

0S 100.0 ±0.0 99.0 ±0.9 97.8 ±0.3 98.3 ±0.2 96.8 ±0.3 96.6 ±0.4 98.4 ±1.9 99.0 ±2.1
FS 98.4 ±1.6 96.9 ±2.7 96.4 ±1.7 96.8 ±0.4 96.8 ±0.2 93.3 ±1.2 97.0 ±3.4 98.0 ±3.3
W 93.7 ±2.7 99.0 ±0.9 91.8 ±0.3 96.6 ±1.1 91.9 ±1.1 91.8 ±1.0 92.6 ±3.5 97.0 ±3.6
W+S 94.8 ±0.9 99.0 ±1.8 92.6 ±2.0 94.4 ±0.2 93.2 ±1.0 87.9 ±1.0 93.9 ±5.2 95.9 ±4.8

R1

0S 100.0 ±0.0 100.0 ±0.0 99.0 ±0.3 99.0 ±0.4 99.3 ±0.1 99.2 ±0.2 99.7 ±0.5 99.0 ±1.6
FS 99.5 ±0.9 99.0 ±0.9 97.8 ±0.3 97.9 ±0.4 98.9 ±0.1 98.0 ±0.5 98.8 ±0.9 98.3 ±1.6
W 98.4 ±0.0 100.0 ±0.0 98.4 ±0.0 98.6 ±0.2 98.8 ±0.3 98.5 ±0.2 99.2 ±1.1 99.1 ±1.1
W+S 99.0 ±0.9 100.0 ±0.0 97.0 ±0.9 97.9 ±0.4 98.4 ±0.1 97.4 ±0.9 98.3 ±1.2 98.7 ±1.7

Table 7: Recall (puns) on the subsets of heterographic (het) and homographic (hom) puns for each dataset.

Figure 10: Distribution of F1-score over 3 runs on the PunnyPattern. The dotted line represents the mean, while the
solid line is the median.
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Structure Short name Example

Old [...] never die [...] they never_die OLD BANKERS never die they just lose interest
Tom tom “I’ve been to a film festival in Southern France” said Tom cannily
When the when When the TV repairman got married the reception was excellent
She was only [...] daughter but daughter She was only a horseman’s daughter, but she didn’t know how to say

neigh
Doctor, Doctor doctor Doctor, Doctor, I keep thinking I’m a spoon. - Sit there and don’t stir
used to [...] but used I used to be addicted to soap, but I’m clean now

Table 8: Pun language patterns and their occurrences in the PunEval dataset.

Pattern Occurrences

PunEval
(train)

PunEval
(test)

PunEval
(val) NAP JOKER PunBreak

never_die 65 62 1 2 12 50
tom 61 61 1 0 0 15
when 13 20 0 0 22 5
daughter 11 19 1 0 0 15
doctor 3 7 0 0 0 0
used 2 4 1 2 10 10

Table 9: Occurrences of pun language patterns in all the datasets.

never_die, and doctor patterns, results for the
other patterns are more varied. For instance, GPT-
4o, Qwen2.5, and Mistral3 are more resilient to
the daughter pattern compared to the other mod-
els. Interestingly, examples containing the word
“Tom” produce both false positives and negatives,
suggesting that this pattern is unlikely to serve as a
reliable shortcut for classifying puns. In contrast,
sentences beginning with “When the” are classified
more reliably by all models.

C.4 RQ2: Pun Alterations
Table 11 contains the performance (recall) on the
substitution categories for each prompt. For the
“Pun” column, the recall is computed for class 1
(pun), while for the other columns, recall is relative
to class 0 (non-pun). The “Rand sent” column
represents the set of 100 generated non-puns used
to control for unseen bias toward class 1 (pun). The
highest values for each model are highlighted in
bold.

Model confidence. We observe that, on most sub-
stitution categories in the PunBreak dataset, the
standard deviation between measurements is sig-
nificantly higher compared to the examples of posi-
tive (i.e., pun) and random sentences (rand sent).
This indicates that models are less confident when
classifying altered puns. To further investigate this,
we retrieve the confidence values for the responses
across the entire dataset. Specifically, we collect
the log probabilities for the “yes” or “no” tokens.

Figure 11: Precision and recall on the PunnyPattern
dataset using the best prompt (all patterns).
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Model

Pr
om

. F1 Precision Recall Accuracy

PP PE PP PE PP PE PP PE

Gemini2

0S 71.9 ± 4.6 85.7 ± 0.2 57.6 ± 5.4 78.0 ± 0.2 96.2 ± 5.3 95.3 ± 0.1 62.2 ± 7.6 81.7 ± 0.2
FS 73.0 ± 6.4 89.3 ± 0.1 59.1 ± 8.5 86.3 ± 0.1 96.4 ± 4.8 92.5 ± 0.2 63.7 ± 10.1 87.2 ± 0.1
W 74.7 ± 6.6 88.3 ± 0.1 62.7 ± 8.8 85.5 ± 0.2 93.6 ± 7.5 91.3 ± 0.1 67.7 ± 10.0 86.0 ± 0.1
W+S 76.9 ± 7.5 89.1 ± 0.2 66.7 ± 8.6 87.6 ± 0.4 91.6 ± 9.5 90.7 ± 0.2 72.3 ± 9.0 87.2 ± 0.2

GPT-4o

0S 78.3 ± 8.1 89.7 ± 0.1 65.8 ± 12.2 84.9 ± 0.2 98.3 ± 2.2 95.0 ± 0.4 71.8 ± 11.6 87.4 ± 0.1
FS 78.8 ± 9.0 92.8 ± 0.2 67.0 ± 12.7 93.5 ± 0.3 97.1 ± 3.1 92.1 ± 0.2 72.6 ± 13.9 91.8 ± 0.2
W 83.1 ± 7.8 87.3 ± 0.9 79.7 ± 12.3 97.9 ± 0.5 88.1 ± 8.6 78.7 ± 1.7 81.7 ± 9.2 86.8 ± 0.7
W+S 83.0 ± 8.7 88.9 ± 0.9 77.4 ± 13.5 97.3 ± 0.1 90.8 ± 5.9 81.8 ± 1.6 80.6 ± 11.6 88.2 ± 0.8

Llama3.3

0S 79.4 ± 7.3 84.0 ± 0.4 68.1 ± 9.0 77.8 ± 1.8 95.9 ± 6.1 91.4 ± 1.8 74.8 ± 9.4 79.9 ± 0.9
FS 78.9 ± 7.5 84.4 ± 0.4 67.2 ± 10.5 77.8 ± 0.7 96.8 ± 4.6 92.2 ± 0.6 73.5 ± 10.4 80.3 ± 0.6
W 81.0 ± 7.5 87.2 ± 0.2 71.5 ± 11.1 87.9 ± 0.5 94.2 ± 4.6 86.5 ± 0.3 77.3 ± 9.5 85.3 ± 0.3
W+S 78.7 ± 9.1 86.4 ± 0.3 68.4 ± 12.6 84.2 ± 0.9 94.0 ± 7.4 88.7 ± 0.3 74.0 ± 11.5 83.9 ± 0.5

Mistral3

0S 77.4 ± 8.0 80.8 ± 0.2 72.1 ± 13.2 86.9 ± 0.1 87.5 ± 14.9 75.6 ± 0.4 74.2 ± 9.8 79.3 ± 0.2
FS 66.3 ± 2.2 74.6 ± 1.9 53.7 ± 2.1 68.8 ± 1.9 87.2 ± 5.1 81.4 ± 2.3 55.8 ± 3.1 68.0 ± 2.4
W 68.2 ± 3.5 78.4 ± 0.5 54.6 ± 3.8 74.0 ± 0.6 91.4 ± 7.3 83.4 ± 0.9 57.3 ± 5.6 73.6 ± 0.6
W+S 68.7 ± 1.6 74.9 ± 0.9 53.1 ± 1.7 62.8 ± 1.3 97.2 ± 2.9 92.8 ± 1.0 55.6 ± 3.0 64.2 ± 1.7

Qwen2.5

0S 74.0 ± 8.3 83.6 ± 0.1 61.1 ± 10.9 75.9 ± 0.0 95.6 ± 9.0 93.1 ± 0.3 65.5 ± 12.4 79.0 ± 0.1
FS 77.9 ± 7.1 87.2 ± 0.2 68.4 ± 6.7 90.7 ± 0.3 91.4 ± 11.1 83.9 ± 0.2 74.2 ± 7.6 85.8 ± 0.2
W 79.7 ± 9.6 86.8 ± 0.4 74.1 ± 7.2 93.4 ± 0.2 87.5 ± 15.1 81.0 ± 0.5 78.2 ± 8.5 85.8 ± 0.3
W+S 79.1 ± 9.2 87.3 ± 0.1 72.6 ± 7.6 92.1 ± 0.6 88.3 ± 14.8 82.9 ± 0.3 77.1 ± 8.5 86.0 ± 0.2

R1-D

0S 75.4 ± 4.1 86.7 ± 0.3 61.2 ± 5.2 78.5 ± 0.4 98.5 ± 2.0 96.7 ± 0.1 67.5 ± 6.5 82.9 ± 0.4
FS 75.1 ± 4.4 87.0 ± 0.3 61.3 ± 5.6 80.0 ± 0.5 97.4 ± 3.1 95.3 ± 0.6 67.4 ± 7.0 83.5 ± 0.4
W 77.2 ± 4.6 86.8 ± 0.4 65.6 ± 6.2 82.2 ± 0.7 94.1 ± 3.1 91.9 ± 1.0 71.9 ± 6.9 83.8 ± 0.5
W+S 78.3 ± 4.9 88.3 ± 0.6 66.9 ± 6.7 85.6 ± 0.4 94.8 ± 4.5 91.1 ± 1.0 73.4 ± 6.9 86.1 ± 0.7

R1

0S 76.4 ± 6.6 88.5 ± 0.2 62.5 ± 9.4 79.8 ± 0.3 99.3 ± 1.2 99.2 ± 0.1 68.5 ± 10.2 85.1 ± 0.3
FS 80.9 ± 6.5 90.8 ± 0.2 69.1 ± 10.3 84.3 ± 0.4 98.6 ± 1.1 98.5 ± 0.2 76.1 ± 8.9 88.5 ± 0.3
W 79.9 ± 5.8 90.9 ± 0.1 67.3 ± 8.8 84.2 ± 0.2 99.0 ± 0.9 98.7 ± 0.1 74.6 ± 8.3 88.6 ± 0.1
W+S 81.1 ± 6.0 91.3 ± 0.4 69.5 ± 9.4 85.4 ± 0.7 98.3 ± 1.0 98.0 ± 0.4 76.6 ± 8.2 89.2 ± 0.6

Table 10: Percentage F1-score, precision and recall (± standard deviation) on PunnyPattern (PP) and PunEval (PE)
datasets. Best results and best overall prompt per model are in bold.
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Model Prompt Substitution Category Control groups

Homophone Random Pun syn Alt syn Pun Rand sent JOKER

Gemini2.0

0S 23.7 ± 5.5 37.0 ± 1.5 11.5 ± 0.5 18.0 ± 5.5 99.0 ± 1.1 70.3 ± 0.5 26.3 ± 0.1
FS 9.3 ± 0.8 16.2 ± 1.0 14.7 ± 0.5 20.3 ± 5.9 98.0 ± 1.1 85.7 ± 0.5 41.3 ± 0.2
W 10.0 ± 1.1 14.5 ± 4.9 13.2 ± 1.0 20.3± 7.7 97.5 ± 1.4 87.0 ± 0.0 43.8 ± 0.3
W+S 11.8 ± 1.0 21.5 ± 0.5 18.2 ± 2.0 25.3± 7.3 97.0 ± 1.1 89.3 ± 0.5 47.9 ± 0.1

GPT-4o

0S 9.2 ± 1.3 23.8 ± 1.6 10.7 ± 0.5 23.2 ± 4.9 99.2 ± 0.4 87.7 ± 1.4 47.4 ± 0.1
FS 12.5 ± 3.1 26.2 ± 3.5 20.5 ± 0.5 32.5 ± 9.1 97.2 ± 1.2 91.3 ± 0.5 57.8 ± 0.6
W 32.5 ± 2.3 57.5 ± 1.4 37.3 ± 4.1 58.7± 4.8 92.8 ± 3.2 99.0 ± 0.0 77.4 ± 0.9
W+S 24.0 ± 0.9 39.5 ± 5.5 30.0 ± 1.5 49.0 ± 5.9 93.5 ± 3.6 97.7 ± 0.5 71.8 ± 0.6

Llama3.3

0S 22.0 ± 1.4 45.5 ± 3.4 16.5 ± 2.7 35.2 ± 11.1 96.8 ± 1.5 79.7 ± 2.1 50.6 ± 3.0
FS 16.3 ± 6.0 37.0 ± 4.3 21.8 ± 1.5 40.3 ± 13.0 96.7 ± 1.6 88.7 ± 1.0 53.2 ± 0.1
W 23.3 ± 3.8 49.2 ± 1.2 35.2 ± 5.2 51.5± 7.2 90.5 ± 2.1 94.0 ± 0.9 63.9 ± 0.7
W+S 13.2 ± 3.8 32.8 ± 5.9 26.5 ± 2.7 42.5 ± 7.6 92.3 ± 1.2 93.0 ± 0.0 56.0 ± 1.6

Mistral3

0S 37.3 ± 6.7 53.2 ± 3.3 29.2 ± 1.2 44.3± 19.0 88.8 ± 2.0 90.0 ± 0.0 61.9 ± 0.2
FS 14.5 ± 4.6 17.0 ± 5.8 15.8 ± 2.0 21.7 ± 5.0 86.7 ± 2.4 37.7 ± 1.4 26.4 ± 0.2
W 5.2 ± 1.9 9.2 ± 1.5 12.3 ± 2.0 19.2 ± 5.1 93.3 ± 3.4 48.7 ± 3.1 24.1 ± 1.6
W+S 2.7 ± 1.4 3.5 ± 2.5 6.5 ± 1.8 9.5 ± 3.4 96.7 ± 1.5 25.7 ± 4.2 14.0 ± 1.7

Qwen2.5

0S 5.0 ± 0.6 11.2 ± 3.7 5.7 ± 0.8 11.3 ± 3.8 98.2 ± 0.4 59.3 ± 2.1 36.6 ± 0.3
FS 11.3 ± 3.4 14.7 ± 2.8 19.0 ± 4.6 33.7 ± 11.7 94.7 ± 1.0 90.0 ± 0.9 56.5 ± 0.9
W 19.2 ± 5.2 32.7 ± 3.4 26.3 ± 5.6 40.5± 12.2 92.8 ± 1.6 94.3 ± 1.4 65.7 ± 0.5
W+S 15.5 ± 4.4 29.8 ± 5.8 27.0 ± 3.6 37.2 ± 11.9 95.0 ± 1.4 92.7 ± 1.4 62.7 ± 1.1

R1-D

0S 6.2 ± 1.2 24.9 ± 6.6 14.2 ± 1.2 21.2± 8.1 99.3 ± 0.5 59.0 ± 2.4 37.5 ± 2.2
FS 7.1 ± 2.3 27.3 ± 3.8 18.8 ± 4.5 26.9 ± 9.8 98.5 ± 0.5 69.7 ± 5.5 42.9 ± 1.3
W 8.5 ± 3.7 36.9 ± 3.1 26.7 ± 2.7 34.6± 8.3 96.5 ± 2.0 79.3 ± 5.2 52.1 ± 1.4
W+S 9.7 ± 2.2 34.3 ± 1.4 28.8 ± 5.0 38.8± 11.6 96.3 ± 1.2 82.7 ± 2.3 55.5 ± 3.3

R1

0S 6.5 ± 2.7 27.3 ± 4.1 12.2 ± 2.0 18.8 ± 7.3 99.8 ± 0.4 71.3 ± 1.0 37.0 ± 1.7
FS 8.5 ± 2.3 38.8 ± 3.7 22.3 ± 2.9 31.8 ± 4.1 99.3 ± 0.8 83.0 ± 0.9 48.2 ± 1.5
W 9.5 ± 1.8 40.3 ± 2.7 22.3 ± 3.1 34.0 ± 6.0 99.8 ± 0.4 84.7 ± 2.3 44.9 ± 0.5
W+S 10.5 ± 2.6 41.8± 2.0 25.5 ± 2.8 35.3± 8.3 99.8 ± 0.4 84.7 ± 1.9 51.2 ± 0.1

Table 11: Percentage recall (on the true class) ± standard deviation for each substitution category on the PunBreak
dataset. Note that for all columns except JOKER, recall equals accuracy because each evaluation set contains only
puns or only non-puns. JOKER reports recall for the negative class on the full dataset. The best overall prompt per
model is marked in bold.
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Figure 12: Precision and recall over the PunnyPattern
dataset using the few-shot (fs) and the best prompt
between w and w+s.

Since not all LLMs provide the option to re-
trieve confidence scores at the time of writing (e.g.,
DeepSeek models and Gemini), we limit this step
to GPT-4o, Qwen 2.5, and Llama3.3, which repre-
sent three top-performing models in the previous
tasks.

Our analysis confirms that, on the PunBreak
dataset, these models exhibit very high confidence
when predicting puns but are much less confident
when predicting the non-pun class. Fig. 14 clearly
illustrates this trend, with the True Negative (TN)
and False Negative (FN) classes showing signifi-
cantly more variance than the other classes. It is
important to note that the number of FNs is quite
low, with only 38 instances across the three models.
The lower confidence levels indicate that classify-
ing altered examples as non-puns is significantly
more challenging for the models compared to cor-
rectly identifying puns from the PunEval dataset
and the negative sentences we generated as a con-
trol set.

C.5 RQ3

To isolate the quality of the rationales from raw
detection performance, we introduce an alternative

Figure 13: Accuracy over the PunBreak dataset (only
negative examples) using the few-shot (fs) and the best
prompt between w and w+s.

Figure 14: Confidence on each prediction class (W+S
prompt).

evaluation criterion. For this analysis, we calculate
the PPA score exclusively on true positives (i.e.,
puns that the LLMs correctly identified). The re-
sults for this specific subset are presented in Table
12.

This targeted analysis reveals that most models
can generate reasonably accurate rationales for the
puns they successfully identify. Mistral and Qwen
achieve lower scores in this setting, producing up
to 40% incorrect rationales, while GPT-4o, Gemini,
and R1 produce correct predictions for the wrong
reasons at least 20% of the time.

However, this metric does not account for a
model’s overall detection rate; a model might excel
at explaining the few puns it identifies, yet fail to
detect many others. We therefore argue that the
comprehensive PPA score in Table 3, which con-
siders all predictions, provides a more robust and
useful comparison. Consequently, we base our se-
lection of models for manual analysis on that initial
metric.

The barplot in Fig. 15 shows the distribution of
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Model NAP JOKER PunEval

W W+S W W+S W W+S

Gemini2.0 1.6 1.5 1.4 1.4 1.6 1.6
GPT-4o 1.5 1.5 1.6 1.5 1.8 1.8
Llama3.3 1.4 1.4 1.4 1.4 1.6 1.6
Mistral3 1.2 1.2 1.3 1.2 1.4 1.3
Qwen2.5 1.3 1.3 1.3 1.4 1.5 1.6
R1-D 1.5 1.5 1.5 1.5 1.7 1.7
R1 1.5 1.5 1.6 1.6 1.8 1.8

Table 12: Average Pun Pair Agreement (PPA) measured
on the true positive examples, in [0–2], for each prompt
setting (W, W+S) across datasets. Standard deviation is
0.0 for all measurements, and the best results are marked
in bold.

errors made by the LLMs in each category. Our
analysis indicates that the most frequent error in
the rationales is the identification of double mean-
ings that lack support from the surrounding context
(Context). For instance, the phrase “Long fairy
tales have a tendency to wyvern” was incorrectly
interpreted as a play on words between wyvern (a
mythical dragon-like creature) and wizen (to be-
come dry or shriveled). Although the meanings
of the words are correctly matched (so it is not a
Word-sense pair error), there are no contextual
clues to support the use of wizen. Additionally, the
annotators could not recognize any similarity in
spelling or pronunciation between the two words,
highlighting a mistake in the Pun pair category.
A third typical mistake is the incorrect pairing of
words to their meanings (Word-sense pair). For
example, in the non-pun phrase “Her decision to
take up rock climbing was preset-pit-toes to say the
least” Llama incorrectly interpreted the expression
preset-pit-toes as ”ready to jump or spring into
action” apparently referring back to the original
pun word “precipitous” and ignoring the different
spelling.

Examples of all the error categories are shown
in Table 13, along with human annotators’ ques-
tionnaire responses. For brevity, the questionnaire
items shown in the table have been slightly short-
ened; the full questionnaire, guidelines, and an-
notation examples are attached at the end of this
document.

Figure 15: Frequency of LLMs’ mistakes in the gener-
ated rationales.
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Input Output Answers by annotators Errors

GPT-4o

German
sausage
jokes are
just the
sausage

yes <the
sausage> <the
wurst> <the
main part or
essence of
something> <a
type of Ger-
man sausage>

• A. Can “the sausage” be interpreted as “the main part or essence of some-
thing”? No

• B. Can “the wurst” be interpreted as “a type of German sausage”? Yes
• E. Does the context support the interpretation of “the wurst” as “a type of

German sausage”? Yes
• FG. Are “the sausage” and “the wurst” orthographically or phonetically

close? No
• H. Rate pun quality in 0− 5: 1

word-sense
(A&B),
pun pair
(F |G)

Those
who make
magnets
can be
quite
charming

yes <charm-
ing> <charm-
ing> <at-
tractive or
pleasing>
<using magic>

• A. Can “charming” be interpreted as “attractive or pleasing”? Yes
• B. Can “charming” be interpreted as “using magic”? Yes
• C. How diverse are the two previous senses in 0− 5? 2
• D. Does the context support the interpretation of “charming” as “using

magic”? No
• E. Does the context support the interpretation of “charming” as “attractive

or pleasing”? Yes
• H. Rate pun quality in 0− 5: 0

context
(D&E)

Llama3.3

The sailor
called
his girl-
friend’s
belly ring
an oven
destroyer

yes <oven de-
stroyer> <over
destroyer> <a
device that
ruins an oven>
<one who
destroys from
above>

• A. Can “oven destroyer” be interpreted as “a device that ruins an oven”? Yes
• B. Can “over destroyer” be interpreted as “one who destroys from above”?

No
• D. Does the context support the interpretation of “oven destroyer” as “a

device that ruins an oven”? No
• FG. Are “oven destroyer” and “over destroyer” orthographically or phoneti-

cally close? Yes
• H. Rate pun quality in 0− 5: 0

word-sense
(A&B),
context
(D&E)

A cir-
cus lion
won’t eat
clowns
because
they taste
humorous

yes <hu-
morous>
<humorous>
<having or
showing a
sense of hu-
mor> <having
a funny or
unusual taste>

• A. Can “humorous” be interpreted as “having or showing a sense of humor”?
Yes

• B. Can “humorous” be interpreted as “having a funny or unusual taste”?
Maybe

• C. How diverse are the two previous senses in 0− 5? 1
• D. Does the context support the interpretation of “humorous” as “having or

showing a sense of humor”? Yes
• E. Does the context support the interpretation of “humorous” as “having a

taste, especially a funny or unusual one”? Yes
• H. Rate pun quality in 0− 5: 1

sense sim
(C)

DeepSeek-R1

If a dog
was com-
puter
literate,
would
his bark
be worse
than his
octet?

yes <octet>
<bite> <a
group of eight
bits in com-
puting> <the
act of using
teeth to cut or
pierce>

• A. Can “octet” be interpreted as “a group of eight bits in computing”? Yes
• B. Can “bite” be interpreted as “the act of using teeth to cut or pierce”? Yes
• C. How diverse are the two previous senses in 0− 5? 4
• D. Does the context support the interpretation of “octet” as “a group of eight

bits in computing”? No
• E. Does the context support the interpretation of “bite” as “the act of using

teeth to cut or pierce”? No
• FG. Are “octet” and “bite” orthographically or phonetically close? No
• H. Rate pun quality in 0− 5: 0

context
(D&E),
pun pair
(F |G)

Why are
frogs so
happy?
They eat
whatever
feather
them

yes <feather>
<fed them>
<to cover with
feathers> <to
provide food
for them>

• A. Can “feather” be interpreted as “to cover with feathers”? No
• B. Can “fed them” be interpreted as “to provide food for them”? Yes
• E. Does the context support the interpretation of “fed them” as “to provide

food for them”? Yes
• FG. Are “feather” and “fed them” orthographically or phonetically close?

Yes
• H. Rate pun quality in 0− 5: 2

word-sense
(A&B)

Table 13: Examples of error-analysis results for the three models analyzed in RQ3. The last column lists the errors
derived from annotators’ answers and used in the final statistics. The logical expression in brackets indicates how
each error was computed; see §A.3.1 for details. Questions that were not relevant to the sample or were unanswered
are omitted. Questions F and G are combined for brevity. Answers marked in red indicate the model’s errors.
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Figure 16: Questions A-B-C utilized in the Error Analysis.
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Figure 17: Questions D-E-F utilized in the Error Analysis.
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Figure 18: Questions G-H-I utilized in the Error Analysis.
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Annotator’s Guidelines 
Pun Explanation - Error Analysis 
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Task Introduction 

Welcome! Thank you for participating in this study. 

Your responses will contribute to an error analysis that examines how Artificial 
Intelligence (AI) explains the use of puns in short English texts. 

Please read the following sections carefully before proceeding to the questions. 

Background 

Puns are a type of wordplay that exploits words with multiple meanings or 
similar-sounding words for humorous or rhetorical effect. The pun effect is created by 
the greatly accelerated perception of two different senses of an expression.  

For example, in the sentence “You lamb! said Tom sheepishly”, there is a pun because 
“sheepishly” can be interpreted as “in an embarrassed manner” while also evoking 
“sheep” referring to the “woolly ruminant mammal”. 

Another example is “The plot to his story of the pond was quite shallow”, where the word 
“shallow” can be interpreted in the sense of “lacking physical depth” and “lacking depth 
of intellect or knowledge”.  

The first sentence contains a heterographic pun, as “sheepishly” and “sheep” are 
different words. The second example features a homographic pun, where the same 
word “shallow” is used in two different senses. 
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In our study, we asked an AI agent to analyze short texts, some containing puns and 
some not, and to identify the words and senses that create the pun effect.  

In the following quiz, you will see a selection of non-puns that the AI agent classified as 
puns. Your job is answering 9 questions to help us evaluate how wrong the AI agent’s 
answers are. 

Definitions 

●​ Expression. An expression can be a single word, such as “car” or “beach”, or it can 
contain multiple words. Examples of these include phrasal verbs such as “put up 
with”, or polywords such as “ice cream”, and “run-through”. 

●​ Sense. A meaning or interpretation of an expression. By interpretation we intend 
a legitimate reading of an expression that is not necessarily its definition. For 
example, two interpretations of “parrot” are (1) “a species of tropical birds”, (2) “a 
play on word on ‘carrot’” (this interpretation can be reasonable in certain contexts 
because the two words are similar). Conversely, the sense “a colorful dress” would 
not be considered a valid interpretation. 

●​ Support. In this evaluation, we discuss the concept of support in relation to 
expressions and their senses. Polysemous expressions can only be 
disambiguated if the context supports the intended meaning. We say that a pun 
is “supported” if some contextual clues in the sentence facilitate the perception 
of the two senses that create the pun effect. For instance, consider the previous 
pun “The plot to his story of the pond was quite shallow”.  What would happen if we 
replace “pond” with “mountain”?​
​
                        The plot to his story of the mountain was quite shallow. ​
​
Now, the sense “lacking physical depth” cannot be perceived anymore, as the 
context does not support it. In the original text, “pond” evokes this specific 
meaning, but words related to “water”, such as “lake” or “river,” could also work. 

●​ Relationship between words. You will be asked to identify relationships in terms 
of orthography (spelling) or phonetics (sound).​
For example, in the previous heterographic pun, the words “sheepishly” and 
“sheep” share the same root, indicating an orthographic and phonetic similarity. 
Additionally, the words “sheep” and “ship” can also be considered similar in both 
regards.​
In homographic examples, you may be asked to rate the relationship/similarity 
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between the same word (e.g., between “shallow” and “shallow”). In such cases, 
the similarity is trivially present, as the two words are identical. 

Instructions 

Each page of this survey will present a short text, which was not intended to contain a 
pun. You should answer the 7-9 questions related to the text, following these guidelines: 

●​ Most questions require a Yes or No answer, but some will ask you to provide a 
rating on a scale; 

●​ If you're unsure, you can choose Maybe if the answer depends on additional 
information; 

●​ If you do not understand (some parts of) the text or the question, select I don't 
understand; 

●​ Some questions can be skipped depending on your answers to previous 
questions. These questions will be clearly marked, and we ask you to ONLY SKIP 
them if the condition is met. ​
However, you can always choose to answer these questions if you wish; skipping 
them is only intended to help speed up the process; 

●​ We expect you to spend around 2 minutes per page. 

Keep in mind that: 

●​ You will find the original text repeated under most questions, allowing you to 
quickly access it if needed; 

●​ The 7-9 questions are always presented in the same order, which should help 
you speed up the answering process a little bit; 

●​ You are required to sign in with your Google account in order to save your 
progress. This way, you can stop the annotation and continue it later, provided 
that you are connected to the Internet (check before closing your browser!). 
Google will save your progress for up to 30 days; 

●​ You can reach out to [ANONYMOUS] for any question or clarification. 

Thank you for your participation! 
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Questions with Examples 
Here is the list of questions asked for each short text, along with some examples of 
possible answers. ​
To help clarify the task, some answers include justifications for the responses in 
brackets [], but keep in mind that some answers might be subjective. ​
Please read these examples carefully. 
 

 
The first two questions (A, B) are meant to determine if any expression (wp’/wa’)  is 
associated with a legitimate interpretation, regardless of whether each expression is 
part of a pun. 

A.​Is sp’ a possible interpretation of wp’  (irrespective of it being a pun or not)?  

B.​ Is sa’ a possible interpretation of wa’  (irrespective of it being a pun or not)? 

 
Examples: 

●​ Is “a species of tropical birds” a possible interpretation of “parrot” (irrespective of 
it being a pun or not)?  

○​ Answer: Yes 
●​ Is “one who imitates the words or actions of another, especially without 

understanding them” a possible interpretation of “parrot” (irrespective of it being 
a pun or not)?  

○​ Answer: Yes [this is a possible figurative interpretation of the word] 
●​ Is  “a colorful dress” a possible interpretation of “parrot” (irrespective of it being a 

pun or not)? 
○​ Answer: No 

 
Question C asks to rate how different two senses are. This should be answered 
regardless of the presence of the two senses in the original text and their correct usage 
in the pun. 

C.​ [SKIP THIS QUESTION IF YOU ANSWERED “NO” TO QUESTION A OR B]​
Consider the  word-sense pairs “wp’ ⸺ sp’ ” and “wa’ ⸺ sa’ ”. ​
Rate how different the two senses are on a scale from 1 (overlapping or very 
similar) to 5 (very different). 

 
Examples:  

●​ Consider the  word-sense pairs “parrot ⸺ a species of tropical birds” and 
“parrot ⸺ one who imitates the words or actions of another ”. Rate how 
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different the two senses are on a scale from 1 (overlapping or very similar) to 5 
(very different). 

○​ Answer: 5 [totally different senses, one literal, one figurative] 
●​ Consider the  word-sense pairs “parrot ⸺ a species of tropical birds” and 

“parrot ⸺ a colorful animal primarily found in subtropical forests”. Rate how 
different the two senses are on a scale from 1 (overlapping or very similar) to 5 
(very different). 

○​ Answer: 1 [this is a bit subjective, but birds are animals, so these senses 
refer to the same thing with different words] 

 
The next two questions (D, E) ask to contextualize an expression in the original text and 
decide if its sense is supported or not, irrespective of the expression being part of a 
pun. 

D.​[SKIP THIS QUESTION IF YOU ANSWERED “NO” TO QUESTION A]​
Is there at least one contextual clue in the text (other than the expression itself) 
that supports the interpretation of wp’ as sp’ (irrespective of it being in a pun or 
not)? 

E.​ [SKIP THIS QUESTION IF YOU ANSWERED “NO” TO QUESTION B]​
Is there at least one contextual clue in the text (other than the expression itself) 
that supports the interpretation of wa’ as sa’  (irrespective of it being in a pun or 
not)? 

 
Examples: ​
​ TEXT: A parrot flies, a coconut rolls. 

●​ Is there at least one contextual clue in the text (other than the expression itself) 
that supports the interpretation of “parrot” as “a species of tropical birds”?  

○​ Answer: Yes [the verb “flies” suggests we are talking about a bird; 
“coconut” also suggests a tropical setting, which fits the definition of the 
bird] 

●​ Is there at least one contextual clue in the text (other than the expression itself) 
that supports the interpretation of “parrot” as “one who imitates the words or 
actions of another, especially without understanding them”?  

○​ Answer: No [there is nothing in the text that hints at this human behavior] 
 

The next two questions (F, G) ask if you can recognize any similarity between two 
expressions, irrespective of how the expressions are used in the text. Additionally, these 
questions are not shown for some examples. 

F.​ Can you recognize a relationship or similarity between wp’ and wa’ in terms of 

phonetics (pronunciation)? 
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G.​Can you recognize a relationship or similarity between wp’ and wa’ in terms of 

orthography (spelling)? 
 
Examples: 
​ TEXT: A parrot flies, a coconut rolls. 

●​ Can you recognize a relationship or similarity between “parrot” and “barrow” in 
terms of phonetics (pronunciation)? 

○​ Answer: Yes [however, this can be subjective] 
●​ Can you recognize a relationship or similarity between “parrot” and “carrot” in 

terms of orthography (spelling)? 
○​ Answer: Yes 

 
Finally, the last questions (H, I) ask you to decide if a pun is present in the text or not. 

H.​Do you think the text contains a pun involving wp’ and wa’ ? ​

If you think no pun is present, answer 0. If you think there is a pun, rate the 
quality of the pun from 1 (very poor) to 5 (very effective). If you don’t know, skip 
this question. 

I.​ Do you think the text contains any puns involving words or expressions NOT 

previously mentioned? ​
If so, write down the words or expressions that produce the pun, separated by 
commas. Otherwise, skip this question. 

Examples: 
​ TEXT: Time flies like an arrow, fruit lies like a banana. 

●​ Do you think the text contains a pun involving ”lies” and “flies” ? ​
If you think no pun is present, answer 0. If you think there is a pun, rate the 
quality of the pun from 1 (very poor) to 5 (very effective). If you don’t know, skip 
this question. 

○​ Answer: 0 [the word “lies” does not make any sense in the sentence, so 
the pun does not work] 

​
​ TEXT: What do you call a movie about a parrot mocking a topic? A parrot-y. 

●​ Do you think the text contains a pun involving ”parrot-y” and “parody” ? ​
If you think no pun is present, answer 0. If you think there is a pun, rate the 
quality of the pun from 1 (very poor) to 5 (very effective). If you don’t know, skip 
this question. 

○​ Answer: 5 [“pardod-y” and “parroty” both make sense in the sentence, so 
there is a good pun] 
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