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Abstract

Advances in large language models (LLMs)
significantly enhance reasoning capabilities
but their deployment is restricted in resource-
constrained scenarios. Knowledge distillation
addresses this by transferring knowledge from
powerful teacher models to compact and trans-
parent students. However, effectively captur-
ing the teacher’s comprehensive reasoning is
challenging due to conventional token-level su-
pervision’s limited scope. Using multiple rea-
soning paths per query alleviates this problem,
but treating each path identically is suboptimal
as paths vary widely in quality and suitability
across tasks and models. We propose Quality-
filtered Routing with Cooperative Distillation
(QR-Distill), combining path quality filtering,
conditional routing, and cooperative peer teach-
ing. First, quality filtering retains only correct
reasoning paths scored by an LLM-based evalu-
ation. Second, conditional routing dynamically
assigns paths tailored to each student’s current
learning state. Finally, cooperative peer teach-
ing enables students to mutually distill diverse
insights, addressing knowledge gaps and biases
toward specific reasoning styles. Experiments
demonstrate QR-Distill’s superiority over tradi-
tional single- and multi-path distillation meth-
ods. Ablation studies further highlight the im-
portance of each component—quality filtering,
conditional routing, and peer teaching—in ef-
fective knowledge transfer. Our code is avail-
able at https://github.com/LzyFischer/Distill.

1 Introduction

Recent scaling-law studies suggest that the rea-
soning abilities of large language models (LLMs)
grows with model size and pre-training data (Zhang
et al., 2024; Yang et al., 2024b; Patil and Gudivada,
2024; Zhang et al., 2024; Lei et al., 2025; Chen
et al., 2025a). Despite these advances, the high
inference latency, memory demands, and licensing
costs of proprietary black-box models limit their
adoption in resource-constrained settings (Agrawal

Figure 1: Distillation effectiveness of teacher-generated
reasoning paths are path-, task-, and student-dependent.

denotes effective, denotes ineffective distillation.

et al., 2024; Sun et al., 2024b; Hong et al., 2023a),
thus ill-suited to many real-world deployments.
Knowledge distillation provides a natural solu-
tion by training a compact and transparent student
to replicate a powerful teacher (McDonald et al.,
2024; Xu et al., 2024; Yang et al., 2024a; Muralid-
haran et al., 2024), recovering most of the teacher’s
competence while restoring efficiency and control-
lability.

Reproducing the teacher’s full reasoning ability
remains challenging because conventional black-
box distillation supervises students only at the to-
ken level (West et al., 2021; Acharya et al., 2024;
West et al., 2023), which exposes only a narrow
slice of the conditional distribution that underlies
the teacher’s outputs. Empirical work shows that
supervising on multiple chains of thought (CoTs)
sampled for the same query can improve down-
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stream accuracy (Li et al., 2023b; Luo et al., 2025),
suggesting that different reasoning trajectories cap-
ture complementary facets of the teacher’s problem-
solving abilities and that aggregating them yields
stronger learning signals than any single path alone.

However, simply feeding every student all avail-
able paths is sub-optimal since the pedagogical
value of reasoning paths is not universal. First,
some traces arrive at incorrect conclusions (Lyu
et al., 2023; Trivedi et al., 2022) or embed spurious
intermediate steps (He et al., 2021), thus providing
harmful teaching signals. Second, some reasoning
paths are useful only for specific tasks or students,
while irrelevant or even misleading for others, as
shown in Figure 1. For example, program-style ex-
planations often benefit algorithmic reasoning but
add little value to routine arithmetic; long multi-
hop chains help with complex commonsense puz-
zles but may overthink on questions that admit
concise solutions (Chen et al., 2024c). Moreover,
since student models differ in architecture, capacity,
and pre-training data that leads to different learn-
ing abilities (Turc et al., 2019), a reasoning path
that aligns well with one learners can misguide an-
other. As a result, Effective distillation requires
path selection that is simultaneously quality-aware,
task-aware, and student-aware.

We meet these requirements in two stages. (i)
Quality filtering. We retain only paths whose fi-
nal answers match ground truth labels, then score
their internal reasoning with an LLM-as-judge, pre-
serving the highest-rated traces. (ii) Conditional
routing. For each query, a trainable router scores
the surviving paths with respect to each student’s
current state and selects the subset predicted to
yield maximal learning gains.

Nevertheless, filtering narrows each student’s
view of the teacher’s knowledge again, risking a
wider teacher–student gap and bias toward a limited
set of reasoning styles. To close this gap, we in-
troduce Quality-filtered Routing with Cooperative
Distillation (QR-Distill), a cooperative framework
in which multiple students train concurrently while
acting as peer teachers. Each sample is processed
in two passes: first in a teacher-driven pass, where
the router assigns the filtered paths to individual
students, and then in a peer-teaching pass, where a
weighted ensemble of the students serves as a pro-
visional teacher. A feature-level mutual-distillation
loss channels information through this ensemble
bottleneck, enabling learners to compensate for
gaps in the others’ coverage, redistributing diverse

insights obtained from the teacher’s supervision.
We generate a broad, high-quality reasoning path

pool by prompting an advanced black-box teacher
with carefully designed variants, ensuring wide
coverage of its solution space. Experiments on
various benchmarks show that our framework con-
sistently outperforms strong baselines that rely on
either single-path distillation or multi-path distilla-
tion without routing. Ablation studies confirm that
all components including quality filtering, condi-
tional routing, and peer teaching contribute to the
final gains, underscoring the value of path-aware
selection and cooperative learning in distillation
with multiple reasoning paths.

2 Methodology

Our method consists of four main components: (1)
Reasoning Path Generation to augment training
data, (2) Quality Filtering to eliminate incorrect
paths, (3) Conditional Routing to assign reason-
ing paths to students adaptively, and (4) Mutual-
Student Distillation to enable information exchange
across student models, each elaborated below.

2.1 Problem Setup
Let D = {(Q(i), A(i))}ni=1 denote a reasoning
dataset consisting of n samples, where each sample
consists of a question Q(i) and its corresponding
ground-truth answer A(i). We assume black-box
access to a teacher model T , meaning we can ob-
tain outputs but not logits. Our goal is to train a
smaller student model s to improve its reasoning
ability. During training, We augment D to obtain a
new dataset Daug = {(Q(i),R(i))}ni=1, where each
R(i) = {R(i)

1 , R
(i)
2 , . . . , R

(i)
k } is a set of k diverse

reasoning paths generated by a black-box teacher
model T . The student model s is trained on Daug.
At test time, the student receives a simple instruc-
tion along with a question, similar to zero-shot
prompting (Kojima et al., 2022).

2.2 Reasoning Path Generation
To induce diversity in reasoning styles of multiple
generated reasoning paths, we design and apply a
set of prompting templates, each tailored to elicit a
specific reasoning skill. The categories include:

• Vanilla Reasoning: Standard prompts which
encourage simple and linear reasoning.

• Chain-of-Thought Reasoning: Prompts to
decompose the problem into multiple fine-
grained reasoning steps (Wei et al., 2022).
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{Question}\n\nLet's reason step by step, writing
each reasoning step clearly before giving the final

answer.

Use code to solve the following problem and print
the final answer.\n{Question}

First retrieve some relevant facts from your
knowledge, then use them to reason to the final

answer.\n{Question}

Think in a tree of thoughts: outline multiple solution
paths and choose the most promising one to derive

the answer.\n{Question}

Use forward reasoning to propose a candidate
answer, then backward reasoning to verify it and
provide the final verified answer.\n{Question}

Reason to solve the problem:\n{Question}

Chain-of-
Thought

Program-
based

Reasoning

Fact
Retrieval
Reasoning

Tree-of-
Thought

Backward
Reasoning

Vanilla
reasoning

Figure 2: Prompt templates of different reasoning paths.

• Tree-of-Thought Reasoning: Prompts to ex-
plore multiple solution paths before converg-
ing on a final answer (Yao et al., 2023).

• Program-Based Reasoning: Prompts to syn-
thesize Python-like pseudocode to solve algo-
rithmic problems (Liu et al., 2024).

• Backward Reasoning: Prompts to generate
backward reasoning consistent with forward
reasoning, simulating reverse-thinking of a
problem (Chen et al., 2024a).

• Fact-Retrieval Reasoning: Prompts guiding
the model to recall and retrieve relevant fac-
tual information before reasoning.

An example set of such prompt templates is il-
lustrated in Figure 2.

2.3 Quality Filtering

Not all generated reasoning paths are equally infor-
mative or reliable for distillation. To ensure that
the student model is trained on high-quality signals,
we apply a two-stage filtering strategy that removes
incorrect and misleading reasoning paths.

Step 1: Incorrect Answers Removal. For each
reasoning path R

(i)
j generated for question Q(i), we

extract the final predicted answer Â(i)
j and compare

it against the ground-truth A(i). Paths for which
Â

(i)
j ̸= A(i) are discarded. This step ensures that

only reasoning traces that lead to the correct solu-
tion are retained.

Step 2: Spurious Reasoning Removal. The re-
maining paths are evaluated by a separate LLM-
as-a-judge module J , which is prompted to assess
whether a path contains hallucinated or spurious
intermediate steps. Only those marked as logically
valid are retained. This yields a cleaned set R̃(i) of
paths for each question.

2.4 Conditional Routing

While quality filtering removes clearly incorrect or
spurious reasoning paths, it does so in a coarse and
static manner. In practice, the usefulness of a rea-
soning path can vary depending on the query con-
text and the specific student model. To enable more
adaptive supervision, we introduce a conditional
routing mechanism that automatically assigns each
reasoning path to one or more students. For each
reasoning path R

(i)
j , we first extract a fixed repre-

sentation using an encoder, i.e.,

h
(i)
j = Enc(R̃(i)

j ) ∈ Rd. (1)

Next, this representation is mapped to student-
specific routing logits by a trainable router parame-
terized by an MLP, which are then processed via a
Gumbel-Softmax to produce discrete but differen-
tiable assignments, i.e.,

α
(i)
j = GumbelSoftmax(MLP(h(i)

j )) ∈ {0, 1}S ,
(2)

where α
(i)
j [s] = 1 if reasoning path R̃

(i)
j is as-

signed to student s, and 0 otherwise. S denotes
number of students involved during distillation.
This allows the model to assign different reasoning
paths to different students based on their compati-
bility, enabling adaptive supervision.

To prevent trivial cases such as always selecting
all students or none, we apply an entropy-based
regularization to promote balanced usage across
students. Specifically, we average the routing as-
signment across all students and all reasoning paths
and maximize its entropy, i.e.,

ᾱ(i) =
1

S · k
k∑

j=1

S∑

s=1

α
(i)
j [s], (3)

Lentropy = −ᾱ(i) log ᾱ(i)−(1−ᾱ(i)) log(1−ᾱ(i)).
(4)

This regularization penalizes extreme routing
decisions, thereby promoting informative and bal-
anced supervision across students.
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Figure 3: Overview of our framework, including (1) Quality Filtering that drops flawed chains-of-thought; (2)
Conditional Routing that sends each reasoning path to the most suitable students for fine-tuning; (3) Mutual-
Student Distillation that shares and refines learned insights of different students.

2.5 Mutual-Student Distillation

After filtering and routing, each student Ss receives
a subset of reasoning paths. However, isolated
learning from limited reasoning styles may lead
to narrow reasoning coverage and a persistent gap
between students and the teacher. To mitigate this,
we propose a mutual-student distillation frame-
work that allows students to learn from each other
through internal representations of co-routed paths.

Let z(i,j)s ∈ RT×d denote the last hidden states
of student s for path R̃

(i)
j , where T is the number

of tokens. Each student projects their hidden states
to a lower-dimensional shared space via a student-
specific projection function, i.e.,

z̃(i,j)s = Projs(z
(i,j)
s ). (5)

We then compute a competence score γ
(i,j)
s by

averaging the projected hidden states across tokens
and passing them through a linear regressor fol-
lowed by a softmax over students, i.e.,

γ(i,j)s = softmaxs
(
w⊤

s · meant(z̃(i,j)s )
)
, (6)

The scores are used to form a soft ensemble rep-
resentation of the reasoning path, which includes
knowledge from both students, i.e.,

z
(i,j)
ens =

S∑

s=1

γ(i,j)s · z̃(i,j)s . (7)

Each student then aligns its representation with
the ensemble via a mean-squared error loss, i.e.,

Lmutual =

S∑

s=1

∑

i,j

∥∥∥z̃(i,j)s − z
(i,j)
ens

∥∥∥
2

2
. (8)

This mutual distillation allows each student to
benefit from complementary knowledge learned by
its peers, thereby reducing the gap between student
and teacher.

2.6 Training Objective
The full objective function combines vanilla distil-
lation losses, entropy regularization for the router,
and mutual distillation losses:

L =
S∑

s=1

L(s)
distill + λ1Lentropy + λ2Lmutual, (9)

where L(s)
distill denotes supervised fine-tuning

(SFT) loss for student s on the reasoning paths as-
signed by the router. λ1 and λ2 control the relative
importance of the other two losses.

3 Experimental Setup

3.1 Backbone Models
We use Gemini-1.5-Pro-001 (Team et al., 2024a)
as the black-box teacher model T , chosen for its
strong reasoning performance across diverse do-
mains. We train S = 2 student models and instanti-
ate them as Mistral-7B-Instruct-v0.3 (Jiang
et al., 2024) and Gemma-7B-Instruct (Team
et al., 2024b), both of which are widely-used
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Methods SQA ARC MATH ANLI Date Avg

Gemini-1.5-Pro-001 (Teacher Model)

Zero-shot (Kojima et al., 2022) 77.39 91.51 55.90 70.12 80.00 79.76

Mistral-7B-Instruct

Zero-shot (Kojima et al., 2022) 53.89 73.68 10.42 43.92 39.64 44.31

SKD (Li et al., 2023b) 63.76 74.66 12.48 44.90 48.50 48.86
Distill Step-by-Step (Hsieh et al., 2023) 64.19 75.32 11.54 44.42 49.63 49.02
Rephrase Question (Yu et al., 2024) 65.07 74.51 12.98 43.58 45.51 48.33
Question Aug (Li et al., 2024c) 65.07 73.32 13.64 42.20 47.21 48.29

Answer Aug (Yu et al., 2024) 66.38 76.77 14.78 45.01 49.12 50.41
RevTHINK (Chen et al., 2024a) 70.97 78.50 15.28 48.58 70.40 56.75

QR-Distill (Ours) 69.87 80.25 16.92 55.75 73.37 59.23

Gemma-7B-Instruct

Zero-shot (Kojima et al., 2022) 56.33 68.34 8.58 37.92 40.24 42.28

SKD (Li et al., 2023b) 56.77 73.29 16.86 45.42 59.62 50.39
Distill Step-by-Step (Hsieh et al., 2023) 56.77 72.92 16.04 44.23 60.91 50.17
Rephrase Question (Yu et al., 2024) 54.15 72.37 16.96 43.07 57.99 48.91
Question Aug (Li et al., 2024c) 55.10 72.74 17.76 41.22 59.83 49.33

Answer Aug (Yu et al., 2024) 57.21 73.92 18.92 42.72 64.14 51.38
RevTHINK (Chen et al., 2024a) 64.19 75.09 19.96 47.36 66.27 54.57

QR-Distill (Ours) 67.29 78.05 23.32 51.50 79.29 59.89

Table 1: Performance comparison across five reasoning benchmarks with two students: Mistral-7B-Instruct and
Gemma-7B-Instruct. Results are reported from prior work unless noted. Best values are bolded.

open-weight instruction-tuned LLMs for distilla-
tion (Chen et al., 2024a). For encoding reason-
ing paths during routing, we use a pretrained
RoBERTa-base model (Liu et al., 2019).

3.2 Training Details

All students are fine-tuned using QLoRA (Dettmers
et al., 2023) with rank 32. The learning rate is set to
5×10−6 for Mistral and 2×10−4 for Gemma, and
remains consistent across all experiments. Each
student model is fine-tuned using the AdamW opti-
mizer with a batch size of 8 per device. We train
for 3 epochs on mathematical reasoning datasets
(MATH, GSM8K) and 10 epochs on all other tasks.

3.3 Datasets

We evaluate our method across diverse reasoning
benchmarks spanning multiple domains, including
(1) Commonsense Reasoning: StrategyQA (SQA,
Geva et al. (2021)) and ARC-Challenge (ARC,
Clark et al. (2018)); (2) Mathematical Reason-
ing: Math (Hendrycks et al., 2021); (3) Natural
Language Inference: ANLI (Nie et al., 2019); (4)

Logical Reasoning: Date (Srivastava et al., 2022).

3.4 Baselines
We compare against three categories of baselines.
(1) Zero-shot: Standard CoT prompting without
fine-tuning (Kojima et al., 2022). Single-Path
Distillation: This includes (2) Symbolic Knowl-
edge Distillation (SKD) (Li et al., 2023b), which
trains on teacher-generated CoTs using next-token
prediction, and (3) Distilling Step-by-Step (Hsieh
et al., 2023), which adds supervision on both ra-
tionale and answer. We also include question-
level augmentation methods: (4) Question Rephras-
ing (Yu et al., 2023) and (5) Question Genera-
tion (Li et al., 2021). Multi-Path Distillation:
These methods leverage multiple teacher-generated
reasoning paths, including (6) Answer Augmenta-
tion (Yu et al., 2023) and (7) Backward Reasoning
Augmentation (Chen et al., 2024a).

4 Results and Analysis

In this section, we aim to address four research
questions. RQ1: How does QR-DISTILL compare
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with existing baselines? RQ2: What is the impact
of each module inside QR-DISTILL? RQ3: How
does the conditional router assign reasoning paths?
RQ4: How does QR-Distill perform under varying
training sample size?

4.1 Main Results
To address RQ1, we present our main results in
Table 1. Overall, QR-Distill outperforms all base-
lines across datasets and models. Compared to the
zero-shot performance of the student model, QR-
Distill achieves an average improvement of 41.44%
with Mistral and 63.33% with Gemma, indicating
that knowledge learned from the teacher model
can significantly enhance student performance on
downstream reasoning tasks. When compared to
baselines in which teachers provide only a single
reasoning path for distillation, QR-Distill yields a
substantial performance gain of 24.32% on aver-
age, demonstrating that leveraging multiple reason-
ing paths leads to more effective student training.
Against baselines that also use multiple reason-
ing paths but without our routing or collaborative
mechanisms, QR-Distill still achieves up to 13.36%
improvement, which highlights the benefit of our
path-aware routing and multi-student collaboration
design in distilling diverse reasoning signals.

We also observe several noteworthy patterns.
QR-Distill shows a larger performance boost for
Gemma compared to Mistral across most datasets.
Interestingly, on the Date dataset, Gemma even
outperforms Mistral under QR-Distill, whereas it
consistently underperforms in other baselines. This
suggests that weaker student models benefit more
from our method, likely due to the mutual distil-
lation effect where Gemma learns useful patterns
from its peer Mistral, which helps bridge the gap
between Gemma and the black-box teacher.

Finally, we find that QR-Distill’s improvements
are most pronounced on datasets where multi-path
distillation baselines greatly outperform single-
path ones, suggesting that QR-Distill can further
unlock the potential of multiple reasoning paths.

4.2 Ablation Study
To address RQ2, we conduct an ablation study by
systematically removing different components of
QR-Distill to assess their individual contributions.
In the Table 2, we denote QF as Quality Filter-
ing, Route as Conditional Routing, and Collab as
Mutual-Student Distillation. Our observations are
summarized as follows: (1) Across most datasets,

Methods ARC ANLI Date Avg

Mistral-7B-Instruct

w/o QF 77.98 53.04 66.86 65.69
w/o Route 78.07 59.00 72.78 69.95
w/o Collab 75.38 59.16 72.19 68.91

QR-Distill 80.25 55.75 73.37 69.79

Gemma-7B-Instruct

w/o QF 68.00 31.10 69.23 56.11
w/o Route 75.19 30.17 78.10 61.15
w/o Collab 77.88 46.33 76.33 66.85

QR-Distill 78.05 51.50 79.29 69.61

Table 2: Ablation results on ARC, ANLI, and Date.
Best values are bolded.
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Figure 4: Routing selection rates across different dataset
and student model architectures.

removing any individual module results in perfor-
mance degradation, suggesting that each compo-
nent contributes to the overall distillation process.
(2) Among the three components, Quality Filter-
ing appears to contribute the most consistently.
This supports the hypothesis that filtering out low-
quality reasoning paths particularly those with in-
correct final answers or spurious intermediate steps
can help reduce harmful supervision signals and
mitigate potential hallucinations in the student mod-
els. This effect is especially pronounced on ANLI,
suggesting that natural language inference tasks
may be more sensitive to the quality of reasoning
chains. (2) The Mutual Distillation module seems
particularly beneficial for the Gemma student, as
its removal results in more noticeable performance
drops compared to Mistral. This aligns with our
earlier observation that weaker models tend to ben-
efit more from peer collaboration.
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Figure 5: Routing selection rates across different ques-
tion difficulty levels and student model architectures.

4.3 Routing Analysis

To answer RQ3, we analyze the routing deci-
sions made for different reasoning paths across the
two student models. Specifically, we investigate
whether the domain and difficulty of questions
influence routing behavior. For the domain aspect,
we compare routing choices across datasets. In
Figure 4, CoT denotes chain-of-thought, ToT de-
notes tree-of-thought, program refers to program-
based reasoning, backward denotes backward rea-
soning, and FactRtr indicates fact-retrieval reason-
ing. We make the following observations: (1) For
the same dataset, the two students often select dif-
ferent reasoning paths, suggesting that compatibil-
ity between reasoning styles and model architec-
ture can vary. (2) For the same student, different
datasets lead to different path preferences, indi-
cating that question domain affects routing deci-
sions. (3) Fact-retrieval reasoning is favored on
the ARC-Challenge dataset instead of the Date
dataset, which aligns with our intuition that com-
monsense tasks rely more on factual recall than
structured reasoning. (4) A trade-off is observed
between program-based and tree-of-thought rea-
soning, where when one is preferred, the other is
often suppressed, suggesting a possible antagonis-
tic relationship between these reasoning styles.

For question difficulty, we examine routing on
the Math dataset at varying levels of complexity
in Figure 5. We have the following observations:
(1) At the same difficulty level, different students
favor different reasoning paths, further verifying
the existence of student-reasoning path compatibil-
ity. (2) Easier questions have higher selection rates,
possibly reflecting a greater gap between student
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Figure 6: Comparison of QR-Distill and the SFT base-
line with different sample sizes.

and teacher on more challenging questions. (3) As
question difficulty increases, differences in routing
across reasoning paths diminish, suggesting a limi-
tation in the students’ ability to effectively assess
and select among reasoning strategies when facing
complex problems.

4.4 Sample Efficiency
Having demonstrated the QR-Distill’s performance
on the full training set, we now address RQ4 by
evaluating whether QR-Distill maintains its advan-
tage under limited supervision. Specifically, we
compare QR-Distill with SFT across varying ratios
of the training data of Date dataset, as shown in Fig-
ure 6. We can observe that QR-Distill consistently
outperforms SFT at all training levels. Notably,
QR-Distill is even comparable with SFT trained
with 100% data when using as little as 30% data
for Gemma, indicating better sample efficiency.

5 Related Works

5.1 LLM Reasoning
Recent advancements in LLMs have demon-
strated significant capabilities in complex reason-
ing tasks (Tan et al., 2025a; Plaat et al., 2024; Wang
et al., 2024c; Huang and Chang, 2022; Yu et al.,
2024; Sun et al., 2023; Ahn et al., 2024; Chen
et al., 2025a; Tan et al., 2024b; Zhu et al., 2025;
Zheng et al., 2025). A key factor behind this suc-
cess is the use of advanced prompting techniques
such as Chain-of-Thought (CoT) prompting (Zhao
et al., 2025; Chu et al., 2023; Wei et al., 2022;
Lyu et al., 2023; Wei and Liu, 2025) and Tree-of-
Thought prompting (Yao et al., 2023; Long, 2023;
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Bi et al., 2024). These methods encourage models
to articulate reasoning explicitly, enhancing their
ability to solve intricate problems. Building on
CoT approaches, researchers have explored vari-
ous strategies to further exploit the diversity and
richness of multiple reasoning paths (Naik et al.,
2023; Chen et al., 2023d; Wang et al., 2024b). For
instance, Self-Consistency employs multiple rea-
soning samples from the same prompt, aggregating
them via majority voting to improve answer relia-
bility (Wang et al., 2022; Chen et al., 2023a; Liang
et al., 2024; Ahmed and Devanbu, 2023; Tan et al.,
2025b; Chen et al., 2025b; Yuan et al., 2025; Li
et al., 2024b).

Despite these improvements, existing strategies
utilizing multiple reasoning paths largely focus on
aggregating reasoning paths post-generation with-
out adequately addressing the selective utilization
of reasoning paths (Yin et al., 2024; Wang et al.,
2024b; Fang et al., 2024). Most approaches in-
discriminately combine reasoning samples, which
risks incorporating redundant or low-quality ratio-
nales (Xu et al., 2023; Wang et al., 2024a; Tong
et al., 2024), potentially limiting model efficacy.
A critical yet under-explored direction involves
systematically identifying and selecting reasoning
paths based on their quality, relevance, and compat-
ibility with specific tasks and model characteristics.

5.2 Knowledge Distillation
Knowledge distillation (KD) aims to transfer
knowledge from powerful but cumbersome teacher
models to smaller student models (Li et al., 2024a;
Gou et al., 2021; Hinton et al., 2015; Park et al.,
2019; Chen et al., 2021). Traditional KD ap-
proaches typically align the student’s predictive
distributions closely with those of the teacher, often
requiring internal access to the teacher’s parame-
ters (Tan et al., 2024a; Zhao et al., 2022; Cho and
Hariharan, 2019; Kim and Rush, 2016; Gu et al.,
2023). However, such methods become impracti-
cal for proprietary and black-box LLMs (Xu et al.,
2024; Yang et al., 2024a; Hong et al., 2023a), moti-
vating the exploration of distillation methods that
rely on token-level model outputs.

Recently, symbolic distillation techniques have
emerged, which leverage explicit rationales or sym-
bolic outputs from large-scale teacher models with-
out requiring internal access (Acharya et al., 2024;
West et al., 2021; Li et al., 2023b). Hsieh et al.
(2023) demonstrated that the utility of rationales
in the distillation step by step can improve the per-

formance and improve sample efficiency. In addi-
tion, Jiang et al. (2023) propose a teacher-feedback
mechanism where LLM-generated rationales for
challenging examples guide student models.

Despite their effectiveness, these symbolic dis-
tillation approaches frequently employ a single rea-
soning path per query, thus inadequately captur-
ing the teacher’s comprehensive reasoning capabil-
ities. Consequently, recent efforts have explored
multi-path distillation, integrating diverse CoT sam-
ples to enhance student performance (Zhang et al.,
2025b; Chen et al., 2023b, 2024a; Li et al., 2023b).
Nonetheless, most of these studies lack a rigorous
selection mechanism for reasoning paths, risking
the inclusion of suboptimal or irrelevant rationales,
thus hindering the potential benefits. In addition,
none of existing methods utilize the collaboration
of students to improve the distillation of multiple
reasoning paths.

5.3 Multi-Agent Collaboration

Multi-agent collaborative frameworks have demon-
strated notable improvements in complex reasoning
and problem-solving tasks by harnessing collective
intelligence (Tran et al., 2025; Hong et al., 2023b;
Talebirad and Nadiri, 2023; Chen et al., 2023c; Li
et al., 2023a, 2024c; Zhang et al., 2025a; Zhou and
Ai, 2024; Lee et al., 2024). This is achieved by
combining diverse perspectives and complemen-
tary capabilities to enhance overall performance.
Through mechanisms such as information shar-
ing (Han et al., 2024), joint decision-making (Sun
et al., 2024a), and iterative refinement (Chen et al.,
2024b), collaborative approaches consistently out-
perform isolated single-agent models.

Despite the advantages of collaborative frame-
works, integrating these principles explicitly within
knowledge distillation is relatively unexplored. Our
approach uniquely combines collaboration of multi-
ple student models with selective distillation, lever-
aging inter-agent cooperation to enhance reasoning
path selection and learning, thereby addressing crit-
ical gaps identified in prior research.

6 Conclusion

We propose QR-Distill, a novel framework that
addresses the varied suitability of multiple reason-
ing paths across tasks and student models. QR-
Distill integrates three key components: (1) Qual-
ity Filtering to retain only high-quality, correct
reasoning paths using an LLM-based evaluator; (2)
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Conditional Routing to adaptively assign paths
to students based on their current learning state;
and (3) Mutual-Student Distillation to enable mu-
tual knowledge transfer among students, mitigating
reasoning style bias and teacher-student gaps. Ex-
tensive experiments confirm the effectiveness of
our approach in improving multi-path distillation.

Limitations

Limited number of student models. Due to con-
straints in computational resources, we conduct
experiments using only two student models. While
this setup already demonstrates the benefits of col-
laborative learning, increasing the number of col-
laborative students holds huge potential for further
performance gains.
Single teacher model. All reasoning paths in this
work are generated using the Gemini-1.5 model.
Although Gemini is a strong teacher, including
outputs from additional teacher models such as
GPT may expose students to a broader range of
reasoning styles and improve generalization.
Restricted diversity of reasoning prompts. We
employ a predefined set of prompt templates to in-
duce different reasoning styles. Exploring a wider
set of reasoning path types could further enrich
training signals and enhance the effectiveness of
our distillation framework.
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Model SQA ARC MATH ANLI Date Avg

Mistral-7B-Instruct 06:07 04:08 19:37 06:28 00:41 07:24
Gemma-7B-Instruct 07:50 04:59 24:45 08:00 00:54 09:18
Sum 13:57 09:07 44:22 14:28 01:35 16:42
QR-Distill 09:49 05:44 32:15 09:05 00:59 11:34

Table 3: Training time per epoch (minutes). QR-Distill achieves efficiency gains via parallel supervision.

A Additional Experiments

Training Efficiency. To further examine compu-
tational efficiency, we compare the training time of
QR-Distill with that of training individual student
models separately. Since QR-Distill jointly super-
vises multiple students in a single run, it benefits
from parallel supervision, whereas single-model
baselines process only one rationale per sample.
As shown in Table 3, this design leads to reduced
training time per epoch.

Smaller & Different Sized Models. To evalu-
ate QR-Distill beyond 7B-scale students, we also
conduct experiments with both smaller and differ-
ently sized models. This setting examines whether
the proposed framework can still provide benefits
when applied to lightweight architectures. Results
on several datasets are summarized in Table 4.

Model ANLI ARC Date

TinyLLaMA 2.33 23.50 15.38
TinyLLaMA-1.1B-QR-Distill 21.25 32.42 20.71

Qwen2.5-3B 14.26 73.50 63.31
Qwen2.5-3B-QR-Distill 30.83 81.48 74.56

Table 4: Preliminary results on smaller and differently
sized student models.

Resource-Constrained Settings. To explore QR-
Distill under resource-constrained conditions, we
conduct an experiment where one student is frozen
while the other continues training. Table 5 shows
that the target student can still achieve lower per-
formance in this setting, suggesting that static guid-
ance from an untrainable peer may hinder effective
knowledge transfer.

Model Frozen-Another QR-Distill

Mistral 66.27 73.37
Gemma 76.97 79.29

Table 5: Results on the Date dataset when freezing one
student. Freezing leads to degraded performance.
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