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Abstract

We investigate the potential of LLM-generated
synthetic data for improving low-resource Ma-
chine Translation (MT). Focusing on seven
diverse target languages, we construct a
document-level synthetic corpus from English
Europarl, and extend it via pivoting to 147 ad-
ditional language pairs. Automatic and human
evaluation confirm its overall high quality. We
study its practical application by (i) identifying
effective training regimes, (ii) comparing our
data with the HPLT dataset, (iii) studying the
effect of varying training data size, and (iiii)
testing its utility beyond English-centric MT.
Finally, we introduce SynOPUS, a public repos-
itory for synthetic parallel datasets. Our find-
ings show that LLM-generated synthetic data,
even when noisy, can substantially improve MT
performance for low-resource languages.

1 Introduction

Machine translation (MT) has achieved remarkable
success for high-resource languages, but its appli-
cation to the vast majority of the world’s languages
remains severely hampered by the scarcity of high-
quality parallel corpora. Traditional data augmen-
tation techniques like back-translation (Sennrich
et al., 2016) and pivoting (Costa-jussd et al., 2018;
Cheng, 2019) preserve the human-written target
and synthesize the other. The advent of Large Lan-
guage Models (LLMs) presents a transformative
opportunity, as reflected by the growing number
of survey papers on the subject (Zhou et al., 2024;
Ding et al., 2024; Wang et al., 2024; Nadas et al.,
2025). LLM-based synthetic data generation, akin
to sequence-level knowledge distillation (Kim and
Rush, 2016), opens up the possibility of creating
vast amounts of training data even where human-
translated resources are virtually non-existent.
This raises the question: Can an MT system
trained on LLM-generated data benefit truly low-
resource language pairs? To date, there is little to

no systematic investigation of (a) generating large-
scale synthetic data using LLMs for low-resource
languages, (b) evaluating its intrinsic quality, (c)
quantifying its downstream impact when training
or fine-tuning modern MT systems. This paper pro-
vides such a systematic investigation. We make the
following contributions:

» We use GPT-40! to generate a document-level
synthetic parallel corpus by forward-translating
English Europarl (Koehn, 2005) into seven di-
verse low-resource languages.

* We assess the corpus quality using both auto-
matic metrics and human evaluation, finding the
data to be generally of high quality.

* We comprehensively evaluate the utility of this
synthetic data by demonstrating that:

(1) Compact MT models trained from scratch
solely on this data achieve strong baseline
performance (e.g., 49.49 ChrF for English-
Georgian, compared to NLLB’s 48.31).

(2) Fine-tuning pretrained state-of-the-art
(SOTA) systems (OPUS-MT, NLLB-
200-1.3B, Llama-3B) consistently yields
substantial improvements (e.g., average
gains of +2.95 ChrF for NLLB and +20.63
ChrF for Llama-3B).

(3) Our synthetic data is complementary to ex-
isting corpora like HPLT, e.g., leading to
further ChrF increases of up to +2.79 when
combined (for English-Icelandic).

(4) Fine-tuned models that are 10-20 times
smaller than SOTA models perform similar
or better than their large counterparts.

* We study the effect of training data size to inves-
tigate the scalability of our approach.

* We extend our dataset into a multi-way paral-
lel corpus via pivoting. As a case study, we

demonstrate that Finnish-Somali translation im-

'We use the gpt-40-2024-08-06 model.
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proves by +14.78 ChrF and +21.64 ChrF when
fine-tuning OPUS-MT.

* To promote reproducibility and future research,
we introduce SynOPUS, a public repository of
synthetic parallel corpora. We also publicly re-
lease our dataset, which we publish under a new
version of Europarl (v8syn),” code,® and base-
line models.*

Our results show that LLM-generated synthetic
data, even when noisy, can train competitive MT
models from scratch and consistently improves
pretrained systems, especially for the least re-
sourced languages in the resource spectrum. Our
work demonstrates a clear path towards open high-
quality MT for underrepresented languages, by har-
nessing widely available high-resource monolin-
gual corpora and powerful LLMs.

2 Related Work

Low-resource MT. Low-resource MT targets
language pairs with little to no parallel data avail-
able (Haddow et al., 2022). To mitigate the data
scarcity problems, two main lines of research have
emerged: (a) transfer learning (Zoph et al., 2016)
and multilingual training (Johnson et al., 2017),
and (b) data augmentation (Xia et al., 2019). First,
transfer learning involves using a model trained
on a high-resource language as a starting point for
training the low-resource language, while multilin-
gual training proposes to train jointly on multiple
language pairs to compensate for the lack of text
in a specific language. Second, data augmentation
proposes to generate synthetic samples to train on,
by perturbing, translating or otherwise modifying
existing sentences (Fadaee et al., 2017). Below, we
focus on data augmentation and recent work that
uses LL.Ms to generate such data.

Classical data augmentation. The most popu-
lar approach for low-resource languages is back-
translation, which involves translating the mono-
lingual target-language data into the source lan-
guage (Ko et al., 2021; Khenglawt et al., 2024).
The reverse process, forward translation of source-
side monolingual sentences, has also been explored,
and while less common in MT, proved valuable for

2https://opus.nlpl.eu/synthetic/Europarl.php
The data is subject to the terms and conditions defined by the
usage policies of OpenAl.

3https ://github.com/Helsinki-NLP/low-res-1mt

“Helsinki-NLP/scaling-low-res-mt-via-synthetic-data-
generation-with-1lms

LLM pretraining. For example, Wang et al. (2025)
used NLLB to forward-translate monolingual cor-
pora in nine languages and demonstrated its value
for LLM pretraining. This process also relates
closely to sequence-level knowledge distillation
(Kim and Rush, 2016), where compressing a large
model involves training a small student model on
synthetic data constructed by forward-translating it
with the teacher model (Gordon and Duh, 2019).

LLM-based data augmentation. LLMs have
opened new avenues for synthetic data generation,
driven by their strong performance in low-resource
language settings. Several studies assess the trans-
lation performance of LLMs: Claude on Yoruba-
English (Enis and Hopkins, 2024), Claude on 13
low-resource languages of Mali (Dembele et al.,
2025), and GPT-4 on 3 languages (Jiao et al., 2023).
These efforts encouraged researchers to use LLMs
for synthetic data generation. For instance, Oh
et al. (2023) explore different prompting strate-
gies to generate synthetic data for German-Korean
translation with ChatGPT. Our work is most simi-
lar to Yang and Nicolai (2023), where they exploit
data generation for MT between German and Gali-
cian with ChatGPT. However, the authors generate
source synthetic sentences that are later translated,
while we use original English sentences as source
data, and experiment on more languages.

Gap addressed in this work. Despite the above
advances, there is still no systematic study that
produces a fully synthetic multi-way parallel cor-
pus with SOTA LLMs for low-resource languages
and evaluates that corpus both intrinsically and on
downstream MT. We close this gap by extending
Europarl, a multilingual resource with alignments
across all the official EU languages, into seven low-
resource languages and evaluating its quality and
usefulness.

3 Dataset Construction

Our goal is to study real-world cases instead of
selecting common language pairs in an artificially
constructed low-resource scenario. We conduct
a preliminary experiment to help us select the
languages to prioritize (Section 3.1). We then
forward-translate the English Europarl corpus (Sec-
tion 3.2), and, in a final post-processing step, we
filter out noise to ensure high-quality translations
(Section 3.3). Finally, we expand our dataset via
pivoting to all languages of Europarl (Section 3.4).
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eu ed is mk SO uk
n. after segmentation 2167164 2192082 2504071 2370036 2054167 2373145 2359720
n. after lang. id. 2160061 2182553 2481357 2362411 2044219 2364985 2351562
n. aligned sentences 2138713 2164999 2317070 2348030 2027406 2353915 2341706

Table 1: Statistics of the different post-processing steps described in Section 3.3 for each language.

3.1 Language Selection

We start by selecting a small set of low-resource
languages for which GPT-40 can produce usable
translations. To do so, we begin with a list of 204
European minority languages> and retain only the
39 languages that are supported by the FLORES+
benchmark (Goyal et al., 2022). For each of the 39
languages, we prompt GPT-40 to produce transla-
tions of (i) 100 random samples from the FLORES+
development set and (ii) 20 five-sentence chunks
to simulate paragraph-level translation. We specify
the script of the target language in the prompt.®

To contextualize GPT-40’s performance against
existing well-performing translation models, we
translate the same datasets with EMMA-500 (Ji
et al., 2024), using both zero-shot and 3-shot set-
tings, by selecting 3 unused examples from FLO-
RES+. Additionally, we compare the results to the
best available OPUS-MT model (Tiedemann et al.,
2024) per language, selected from the OPUS-MT
Dashboard (Tiedemann and De Gibert, 2023). We
compare the performance of the three systems us-
ing ChrF (Popovié, 2015).” Appendix A (Table 6)
presents the results of the pilot evaluation. We
proceed to select seven languages: Basque (eu),
Scottish Gaelic (gd), Icelandic (is), Georgian (ka),
Macedonian (mk), Somali (so), and Ukrainian (uk).
We select these languages based on the linguistic di-
versity, low-resource coverage, model performance,
and our practical interest.

3.2 Synthetic Data Generation

We use the English Europarl® (Koehn, 2005) as
the source for generating the synthetic dataset. Eu-
roparl, which is derived from the proceedings of
the European Parliament, offers well-defined docu-

The list is derived from https://en.wikipedia.org/
wiki/Regional_and_minority_languages_in_Europe.

®Qur initial experiments suggested that GPT-40 occasion-
ally produces translations using a script different from that
used in the FLORES+ dataset. This issue was the most promi-
nent in Serbian, which uses both Cyrillic and Latin scripts.

Tnrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:nol|
version:2.5.1

8To the best of our knowledge, the Europarl corpus is not
subject to any copyright restrictions.

ment boundaries and is multi-way parallel across
21 European languages. We leverage the metadata
within the Europarl corpus to segment the data into
paragraphs in a way that each generated translation
can be matched back to its exact English source,
preserving the multi-way parallel structure. Para-
graphs are sent in bulk to the OpenAlI’s Batch API°.
We instruct the model to generate translations for
source-target language pairs using the following
prompt:

This is an English to TARGET translation, please
provide the TARGET translation to this sentence
in SCRIPT script. Do not provide any explana-
tion or text apart from the translation.

For instance, in the English-Ukrainian direction,
we set the target language (TARGET) to Ukrainian,
and the script information (SCRIPT) to Cyrl. We
use script identifiers from the FLORES+ language
codes, such as ukr_Cyrl.

3.3 Data Post-Processing

After translating the data with GPT-40, we align
the translated sequences with the original English
sentences to produce parallel datasets. To produce
aligned sentence pairs, we must first segment the
paragraphs into individual sentences. For every
language except Georgian, we use a sentence split-
ter from the Moses package (Koehn et al., 2007),
selecting the language-specific system whenever it
exists. Otherwise, we rely on the settings for the
closest available language. For Somali we use the
fallback to English, which seems to perform rea-
sonably well. For Georgian we apply WtP (Minix-
hofer et al., 2023) with the sat-31-sm model for
sentence segmentation.

Because of the inherent noise in the translation
process, and because of their tendencies to produce
hallucinations, the LLMs may make errors in trans-
lation. To filter such cases, we apply language iden-
tification using heliport!®, which is based on the
HeLI-OTS language identification models (Jauhi-
ainen et al., 2022), to every generated segment

‘)https: //platform.openai.com/docs/guides/batch
Ohttps://pypi.org/project/heliport/
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after sentence segmentation, and discard those that
are not classified correctly. On average, this step
removes only about 0.45 % of sentences in each
language.

Lastly, we align the cleaned target sentences with
their English counterparts using the Yasa alignment
tool (Lamraoui and Langlais, 2013), while preserv-
ing document boundaries so each sentence can be
matched to its document and sentence identifiers.
The resulting corpus contains 2—2.3 million aligned
sentences per language pair. The data statistics are
presented in Table 1.

3.4 MultiEuroparl: a Multi-Way Parallel
Document-Level Corpus

An important design decision in our experiments
was the focus on an inherently multi-way parallel
dataset. Since all languages are aligned through
English, we can use it as a pivot to project synthetic
translations onto existing alignments.

In order to achieve that, we preserve sentence,
paragraph, and document IDs from the original
dataset during translation. Then, translated para-
graphs are sentence-aligned to their input para-
graphs and the alignment of English sentences to
other existing languages in the original Europarl
corpus are retrieved from OPUS. A minor compli-
cation is that sentence alignment is not one-to-one
in all cases. We expand alignments by including
neighboring sentence pairs until we get a match.
In the worst case, this would cover the entire para-
graph but, luckily, the data is quite well-behaved
and aligns rather nicely also across language pairs.

Using the procedures above, we are able to cre-
ate 147 new language pairs added to the original
Europarl corpus, while keeping document infor-
mation. Europarl has multi-way parallel corpora
originally available in 21 languages. We add 7 new
languages to the existing 21, yielding additional
21 x 7 = 147 language pairs when pairing each
new language with all the existing ones. All of
the language pairs are now available as training
data for non-English-centric MT, a valuable source
that comes for "free" due to the multilinguality and
metadata of the source data. We study the useful-
ness of this data in Section 5.5.

4 Dataset Quality Analysis

In this section, we delve into the quality of the gen-
erated low-resource data. We first conduct a quan-
titative analysis (Section 4.1) producing numerical

scores for each sentence pair and then proceed to
ask native speakers of the target languages to rate
a subsample of the dataset (Section 4.2). Finally,
we compute inter-annotator agreement scores and
correlation metrics.

4.1 Quantitative Analysis

To evaluate the quality of the generated parallel
dataset, we compute two neural metrics at the seg-
ment level: Bicleaner-AI'! (Zaragoza-Bernabeu
et al., 2022) and COMETKiwi (Rei et al., 2022).
These two metrics are optimized for different tasks
and therefore behave differently: Bicleaner-Al is a
binary classifier trained to determine whether two
sentences are valid translations of each other. In
contrast, COMETKiwi is a reference-free Quality
Estimation (QE) metric based on COMET (Rei
et al., 2020), trained to predict human judgment
scores (on a 0—100 scale, normalized to 0-1) for
machine-translated sentences.

Figures 1a and 1b show the distribution of
Bicleaner-Al scores and COMETKiwi per lan-
guage pair. Looking at the Bicleaner-Al scores, we
observe that over 92% of the sentences in Ukrainian
and Macedonian fall in the highest bin and over
12% of the sentences for Somali, Georgian and
Scottish Gaelic fall in the lowest bin. Although
the general trend of COMETKiwi is similar to
Bicleaner-Al, the results are interpreted differently
as COMETKiwi reveals the actual quality of the
sentences in the dataset generated. We can see that
more than 85% of the sentences per language are
in the top quality bins, noticing that the sentences
with lower quality sentences are in Scottish Gaelic,
Somali, and Georgian. However, COMETKiwi has
not been explicitly trained on any of the languages
in our dataset, even though its underlying model,
XLM-R (Conneau et al., 2020), includes them. The
fine-tuning for QE was conducted using data from
the WMT General Shared Tasks (2017-2020). As
such, these results are zero-shot and should be in-
terpreted with caution.

4.2 Human Evaluation

To further assess the quality of our synthetic
dataset, we conduct a human evaluation for five lan-
guages.'? For each of language pair, we randomly
sample 100 sentences and ask native speakers to

UWe use the bitextor/bicleaner-ai-full-large
-en-xx model.

2We were, unfortunately, unable to find annotators for
Scottish Gaelic and Somali.
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Figure 1: Distribution of scores of the dataset quality analysis. Each bar represents the proportion of sentence pairs
falling within different score intervals. We normalize human evaluation scores to use the same scale across plots.

evaluate them. Each language pair was scored
by 1-3 annotators. Following the Direct Assess-
ment (DA) protocol (Graham et al., 2013) from the
WMT2017 Shared Task (Bojar et al., 2017). An-
notators were shown the source sentence and its
translation, and were asked to assign a score on
a 0-100 scale, using the guidelines provided (see
Appendix B). All ratings were collected through a
custom web interface built with Gradio (Abid et al.,
2019).

We measure Inter-Annotator Agreement (IAA)
using Krippendorff’s alpha (interval level) and com-
pute the z-scored version by normalizing each anno-
tator’s scores to account for differences in scoring
behavior. Table 2 shows the results of the IAA,
which indicates moderate consistency among anno-
tators.

Figure 1c presents the results of our human eval-
uation. Consistent with the findings in the previ-
ous section, Macedonian and Ukrainian stand out
with high-quality outputs, where human annota-
tors rated over 92% of the data within the 80-100
score range. Icelandic and Basque exhibited more
variability, with approximately 40% of data rated
as good quality (scores between 60 and 100) and
around 30% considered acceptable (scores between
40 and 60). In contrast, Georgian data was consid-
erably lower, with about 40% judged by annotators
as being of unacceptable quality (scores below 40).

Correlation scores We report Spearman’s
rank correlation (ps) between Bicleaner-Al and
COMETKiwi scores, and human judgments in Ta-
ble 2. In general, the correlations with BicleanerAl
are weak across most language pairs, suggesting
limited alignment. Georgian shows a relatively
higher correlation (p; = 0.39), likely due to the
greater variance in human scores for this language.
We observe that Bicleaner-Al tends to assign lower

Pair Ann. Count z-IAA  pg(BicleanerAl) ps (COMETKiwi)
en-eu 3 0.49 0.25 0.43
en-is 2 0.53 0.27 0.43
en-ka 1 - 0.39 0.64
en-mk 1 - 0.21 0.21
en-uk 2 0.39 0.15 0.22

Table 2: Annotator count (Ann. Count), Inter-Annotator
Agreement (IAA), as measured by z-score normalized
Krippendorff’s Alpha, and Spearman correlation (p;)
of the human judgements with the Bicleaner-Al and
COMETKiwi scores per language pair.

scores to samples that received very high ratings
from human annotators, indicating a potential
underestimation of high-quality translations. In
contrast, correlations are consistently higher for
COMETKiwi. This is expected, as COMETKiwi
is designed to evaluate translation quality (a task
more closely aligned with human judgments).

Overall, we can conclude that the generated
dataset is of fairly good quality, with both auto-
matic and human metrics indicating that most sen-
tence pairs are of good to excellent quality, par-
ticularly for Ukrainian and Macedonian. Lower
performance is observed for Georgian, Somali, and
Scottish Gaelic. This is coherent with the GPT-40
pilot evaluation that we conducted on FLORES+,
as GPT-4o performs the best in terms of translation
accuracy on Ukrainian and Macedonian, and worse
for the rest of the languages (see Appendix A, Ta-
ble 6).

5 Leveraging our Synthetic Data for MT

We evaluate the quality of our synthetic data by
analyzing model performance both before and after
fine-tuning across multiple architectures (Sections
5.1 and 5.2), serving as a proxy for data quality.
Furthermore, we compare our dataset to a web-
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Language Pair

Model en-eu en-gd en-is en-ka en-mk en-so en-uk # Params
Synthetic 53.00 51.10 49.91 49.49 57.72 45.10 51.71 60.6M
OPUS-MT 54.99 41.60 51.97 42.69 64.45 44.20 60.14 191.6M
OPUS-MT-ft 55.68 52.07 53.80 50.16 61.99 46.35 56.98 '

A 4069 +1047%  +1.83%  +7.47%  —246%  +2.15% -3.16%
NLLB 52.05 49.94 47.98 48.31 60.13 45.90 54.44 13B
NLLB-ft 56.32 51.81 52.93 52.75 62.32 46.14 57.13 '

A HA27F +1.87F +4.95%  +444%  42.19% 4024 42.69%
Llama 29.25 26.56 22.66 13.17 26.58 22.76 30.24 3B
Llama-ft 49.85 47.01 46.12 25.06 55.60 42.31 49.68

A +20.59% +20.45% +23.46% +11.89% +29.02*% +19.55% +19.44%
GPT-4o0 57.10 53.24 55.94 51.84 64.45 46.82 60.88

Table 3: ChrF scores (%) on seven translation tasks. For each architecture (Synthetic, OPUS-MT, NLLB, Llama),
we report the raw ChrF of the base and fine-tuned (ft) models when available, along with the absolute improvement

Cek9d

(A). The rightmost column shows model size.

indicates a significant difference (p < 0.05) between base and

fine-tuned models, based on paired -test and bootstrap resampling (5,000 iterations).

crawled SOTA corpus (Section 5.3), investigate the
effect of variable training data size (Section 5.4)
and study the usefulness of MultiEuroparl (Section
5.5).

5.1 Experimental Setup

Data We focus on the translation direction from
English into the low-resource language, as this is
typically the more challenging scenario. For all
experiments we use the synthetic data as training
set, and the FLORES+ (Goyal et al., 2022) de-
velopment and test sets for model selection and
evaluation, respectively.

Models Since the languages under consideration
are not linguistically similar, we train individual
bilingual models for each target language and leave
multilingual studies for future work. We experi-
ment using the following models (more details are
provided in Appendix C):

Synthetic: a transformer-base model (Vaswani
et al., 2017) trained on the synthetic data with
MarianNMT (Junczys-Dowmunt et al., 2018).

OPUS-MT: the best OPUS-MT model per lan-
guage pair, based on the OPUS-MT Dashboard
scores (Tiedemann and De Gibert, 2023). The
full list of the selected models is provided in
Appendix D. Each model is fine-tuned without
modifying its original tokenizer.

NLLB-200-distilled-1.3B: the distilled 1.3B pa-
rameter NLLB-200 model (Meta Al, 2022). For

fine-tuning NLLB, we used DeepSpeed (Rasley
et al., 2020).

Llama-3.2-3B-Instruct: the 3B parameter
Llama-3.2 Instruct model (Dubey et al., 2024).
For the fine-tuned version, we adapt LoRA (Hu
et al., 2022) using Unsloth (Han et al., 2023).

All models are run on four 32 GB NVIDIA Volta
V100 GPUs and take less than 9 hours to train.

Evaluation We evaluate all models before and af-
ter fine-tuning. We report ChrF (Popovic, 2015) as
our main automatic metric, as it has been the stan-
dard metric for low-resource MT and it is shown to
correlate more closely with human judgments than
BLEU (Papineni et al., 2002). We report COMET!3
(Rei et al., 2020) for all our experiments in Ap-
pendix E.

We also evaluate GPT-40 on the full FLORES+
test set (in the pilot evaluation in Appendix A, we
used only 100 samples from the development set)
and include it as a reference in our results.

5.2 Overall Results and Analysis

Table 3 summarizes the ChrF scores across three
experimental conditions: off-the-shelf inference,
fine-tuned training, and their performance differ-
entials. We assessed the statistical significance of
all the differences using paired Student’s z-tests
and paired bootstrap resampling (5000 iterations at
95% confidence).

3We use the Unbabel/wmt22-comet-da model.
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Effectiveness for Training from Scratch The
60M parameter baseline, trained exclusively on our
dataset, surpasses the out-of-the-box performance
of billion-parameter models like NLLB and Llama
for Basque, Scottish Gaelic, Icelandic and Geor-
gian, while nearly matching them for Somali. This
shows that our corpus is rich enough to train func-
tional MT systems without any external pretraining
or multilingual transfer.

Impact on Fine-Tuning Pretrained Models
Fine-tuning consistently improves NLLB and
Llama, confirming that the synthetic data is well-
suited for adaptation. OPUS-MT also benefits from
fine-tuning in five of seven cases; however, per-
formance drops for Macedonian and Ukrainian,
the two highest-resource low-resource pairs in our
set. This suggests that when the model is trained
on enough real parallel data, it ends up fitting too
closely to the synthetic examples.

Quality versus Usefulness Based on the results
from the previous section, we observe high qual-
ity for Ukranian and Macedonian, medium quality
for Basque and Icelandic, and noticeably lower
quality for the rest. Yet, noisy does not mean use-
less. In fact, Table 3 shows that the languages
with the noisiest synthetic corpora also result in the
largest downstream gains (Scottish Gaelic, Geor-
gian and Somali). When the alternative is no data
at all, quantity is better than quality. However, for
mid-resource languages such as Macedonian and
Ukrainian, cleaner text is already available before-
hand and multilingual pretrained models benefit
from large quantities of data from closely related
languages. Therefore, additional synthetic data
offers diminishing returns and mainly hurts the per-
formance of these systems. The lower the resource
level, the more tolerant MT training is to noise.

Challenges with General Purpose LLMs
Llama initially struggles (13-30 ChrF), reflect-
ing its lack of inherent translation capability for
low-resource languages. While adapter training
yields substantial improvements (+11-29 ChrF),
the model still underperforms compared to smaller,
translation-specific models. This indicates that
while synthetic data allows for adaptation, it can-
not fully compensate for mismatches between the
pretraining objective and the translation task itself.
In Llama’s case, the 3B parameter scale appears
unnecessarily large for this specific MT task, and
leads to unnecessarily large fine-tuning times.

Competitiveness with GPT-40 GPT-40'* is the
best performing system for almost all language
directions, however fine-tuned models like OPUS-
MT-ft and NLLB-ft still offer competitive results,
despite being much smaller. OPUS-MT-ft is far
behind by 1-2 ChrF points in most languages and
NLLB-ft even outperforms GPT-40 for Georgian.
This indicates that while GPT-4o is a challenging
system to beat, smaller and more efficient models
can achieve comparable results with far fewer pa-
rameters. These models close the performance gap
using only our moderately-sized synthetic corpus
(~2M sentences), a mere fraction of the vast data
required to train a frontier model like GPT-40. This
underscores a key finding: a targeted strategy of
generating high-quality data provides a powerful
and practical pathway to SOTA performance. Our
approach significantly lowers the computational
and financial barriers, making high-quality MT for
low-resource languages much more accessible.

A practical recipe for exploiting fully—synthetic
low-resource data These experiments point to a
clear best practice:

1. Generate in bulk for truly low resource lan-
guages. Prioritize volume over perfection, as
even noisy data drives significant gains when
no alternatives exist.

2. Fine-tune MT multilingual models. NLLB-
200 benefits consistently across all language
directions. Our findings are consistent with
previous research that finds that fine-tuning
NLLB is among the best approaches for low-
resource MT (Iyer et al., 2024; Zhu et al.,
2024; Scalvini et al., 2025; Tapo et al., 2025;
de Gibert et al., 2025).

3. Avoid general-purpose LLMs for low-
resource MT. Despite Llama’s large gains,
its inefficient computational costs and in-
ferior translation performance confirm that
translation-specific encoder-decoder models
leverage synthetic data more effectively.

5.3 Comparison with HPLT v2

To further assess our dataset’s utility, we conduct
comparative experiments against HPLT v2 (de Gib-
ert et al., 2024; Burchell et al., 2025), a "real" par-
allel corpus derived from web sources (Internet

4Since GPT-40’s training data is not public, FLORES+
may be included, making evaluation unfair.
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Training Data Language Pair

en-eu en-is  en-mk

Synthetic 53.00 4991 57.72
JHPLT 5463 5060  62.09

A +1.63*%  +0.69*% +4.37*

HPLT 54.63 50.60 62.09
_HPLT + Synthetic 5620  53.39  62.92

A +1.57*% +2.79* +0.83*

Table 4: ChrF scores for the comparison of our data
with HPLT.

Archive!® and Common Crawl).!¢

We train systems for three out of the four overlap-
ping language pairs (English paired with Basque,
Icelandic and Macedonian). This decision was mo-
tivated by the significant variation in HPLT v2 data
sizes (see Appendix F, Table 10), with Ukrainian
having approximately ten times more data than
the others; therefore, we leave it out. We train
three models: (1) the same synthetic baseline as
described earlier (Synthetic), (2) a model trained
on HPLT dataset (HPLT), and (3) a model trained
on the concatenation of our synthetic dataset and
the HPLT (HPLT + Synthetic). All models follow
the same architecture (transformer-base) and hyper-
parameters. All models are evaluated using ChrF
on the same test set described previously. Table 4
reports the detailed ChrF scores.

Comparable Performance The models trained
on our synthetic data alone perform on the same
ballpark as the ones trained on the HPLT dataset,
with an average difference of 2.23 ChrF points.
The largest performance difference is observed for
Macedonian, following a similar pattern as our ex-
periments in the previous section. These results
demonstrate that our synthetic dataset is of suffi-
ciently high quality to challenge real-world parallel
corpora, even when trained from scratch.

Complementary when Combined Adding our
corpus to HPLT yields the best overall performance
across all language pairs, with significant improve-
ments. This proves the effectiveness of our syn-
thetic data in low-resource MT. The consistent in-
creases suggest that our data introduces useful di-
versity and complements the HPLT dataset, as it
represents previously unseen material.

"Shitps://archive.org/
1https://commoncrawl.org/

Training data used (sentences)
224k 448k 673k 897k 1.1M 13M 1.6M 1.8M 2.0M 2.2M
0 , A ; : \ , : . : \

55

ChrF

Language pair

40 —e— en-eu —e— en-mk
en-gd —e— en-so
—e— en-is en-uk

—e— en-ka

35

10 20 30 40 50 60 70 80 90 100
Training data used (%)

Figure 2: Learning curves with different data sizes.

Combined beats Transfer Learning If we com-
pare these results with Table 3, we can observe
how training on the combined HPLT and synthetic
datasets not only matches the performance of the
fine-tuned NLLB for Basque, but surpasses it for
both Icelandic and Macedonian, even though the
Synthetic model is 21.6 times smaller. This high-
lights the power of data augmentation: enriching
real-world corpora with high-quality synthetic data
can outperform SOTA transfer learning approaches
in low-resource settings.

5.4 Effect of Training Data Size

To assess the efficiency and scalability of our syn-
thetic data approach, we train models with in-
creasing fractions of the available synthetic data
(10-100%) by creating cumulative subsets. For
each subset, we trained a Marian NMT model using
the same tokenizer and identical hyperparameters
to the baselines presented in Section 5.1 to ensure
comparability across runs, where data is the only
changing variable.

Effective Scaling with Synthetic Data Figure
2 shows that performance improves consistently
as more data is used, confirming that additional
synthetic data is beneficial across all language di-
rections. However, the gains decrease after 50-60%
has been used. For example, English-Basque im-
proves by +8.7 chrF from 10% to 50%, but only
+1.4 additional points from 50% to 100%. This
means that larger synthetic corpora brings gains but
substantial improvements can already be achieved
with a fraction of the full dataset. This suggests that
future research on synthetic data generation should
prioritize data quality and diversity for greater ben-
efits than further scaling alone.
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Language Pair

Model fi-so so-fi fi-uk uk-fi
Synthetic 38.72 3587 42.01 46.01
OPUS-MT 26.31 1586 50.56 55.24
OPUS-MT-ft 41.09 3750 49.36  53.30
A +14.78%  +21.64% -121%  -1.94%
NLLB 40.33 39.66 4559  47.78
NLLB-ft 42.21 4231 47.61 51.62
A 41.88%  42.65%  42.02% +3.84%

Table 5: ChrF scores for Finnish-Somali and Finnish-
Ukrainian translation.

5.5 Beyond English-Centric MT: The Finnish
Use Case

To explore the multilingual potential of our ex-
panded dataset via pivoting (Section 3.4) and
move beyond English-centric translation, we train
MT models for two additional language pairs:
Finnish—Somali and Finnish-Ukrainian. The data
consists of 1 876 672 sentences for Finnish-
Ukranian and 1 882 712 for Finnish-Somali.

These languages were selected due to their
prominence in Finland’s linguistic landscape,
where Ukrainian and Somali are among the most
widely spoken foreign languages, accounting for
approximately 0.7% and 0.5% of the population,
respectively (Official Statistics of Finland (OSF),
2024). Developing high-quality models for these
pairs is therefore both practical and relevant.

Our setup for this experiment is similar to the
ones above. We first evaluate the out-of-the-box ca-
pabilities of OPUS-MT and NLLB. Next, we train
a synthetic baseline (transformer-base), and finally,
we fine-tune OPUS-MT and NLLB. We exclude
Llama fine-tuning from this stage, as previous re-
sults have shown that it consistently underperforms.
Table 5 reports the results.

Usefulness of Pivoted Data It is important to
note that our synthetic baselines are weaker here
than in previous experiments, providing greater
headroom for fine-tuning improvements. OPUS-
MT obtains clear gains from fine-tuning on syn-
thetic data for the low-resource Finnish—Somali
pair (+14.78 and +21.64 ChrF). However, for
Finnish-Ukranian, fine-tuning does not improve.
NLLB, which already exhibits a strong baseline,
sees consistent gains across all directions. Overall,
these results highlight the utility of synthetic data,
particularly for low-resource language pairs.

6 SynOPUS: a New Synthetic Parallel
Corpus Repository

The increasing adoption of LLMs in generating
synthetic data underscores the growing need to sys-
tematically organize synthetic datasets. Although
it is well known that many parallel datasets already
contain MT content (Thompson et al., 2024), when
synthetic data is intentionally produced, especially
when involving significant financial or computa-
tional resources, proper archiving are paramount
for promoting reuse, ensuring transparency, and
maximizing resource utility. Therefore, with the
release of our dataset, we introduce SynOPUS,!7a
new repository for parallel synthetic datasets, i.e.,
data that has been (partially) generated by translat-
ing text into other languages using MT systems or
LLMs. We invite the community to contribute with
their own datasets.

7 Conclusions

In this work, we thoroughly studied the quality and
usefulness of LLM-generated synthetic data for
low-resource MT. We presented a new synthetic
corpus at document-level by forward translating Eu-
roparl, a parliamentary corpus, with GPT-40. Then,
we evaluated the resulting dataset both quantita-
tively and through human evaluation. Furthermore,
we investigated the usefulness of this dataset for
low-resource MT by: (i) identifying the most effec-
tive strategy for training, (ii) comparing our dataset
with the public HPLT dataset, (iii) extending our
analysis beyond English-centric MT by generating
a multi-way parallel corpus via pivoting through
alignments to English, and (iiii) studying the effect
of varying training data size.

Our study highlights a crucial and often over-
looked opportunity: the ability to create valuable
parallel resources for low-resource MT by lever-
aging widely available high-resource monolingual
data. This challenges the traditional reliance on
scarce real target-language data for data augmen-
tation approaches, and opens new directions for
scalable MT development.

For future work, we aim to explore optimal meth-
ods for combining real and synthetic data, as well
as extending our experiments to the document-level
and investigating the use of synthetic data for mono-
lingual LLM pretraining.

"https://opus.nlpl.eu/synthetic/
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Limitations

Domain Bias First and foremost, because of the
origin of our source data, which is Europarl, a cor-
pus compiled from parliamentary proceedings, the
presented dataset belongs to a very specific domain.
This implies that our models may suffer from do-
main bias and that any system trained on this data
may not generalize well to informal, conversational,
or domain-specific language; where linguistic style,
vocabulary, and discourse structure differ signifi-
cantly.

Language Coverage While we focus on seven
diverse languages (varied language families, lin-
guistic typologies, written scripts), our approach
relies on GPT-40’s ability to produce a certain lan-
guage reasonably well. Even though we rely on the
results of our pilot study (shown in Table 6), our
method may not translate well to other languages.
Determining where the threshold lies, that is to
say, how well a language must be supported for
GPT-generated data to be viable; remains an open
question.

Human Evaluation Scope We aim to provide
enough pointers to evaluate the quality of our
dataset both numerically and qualitatively. How-
ever, our human evaluation is limited to a 100 sam-
ples per language pair due to a lack of resources.
Furthermore, we use Direct Assessment (DA), a
widely accepted but increasingly outdated method.
More recent evaluation approaches, such as Error
Span Annotation (ESA) (Kocmi et al., 2024), offer
more fine-grained insights into translation errors,
but were beyond our reach for this study.

Data Contamination of the Test Set Due to the
the closed-source nature of GPT-4o, there is a risk
of data contamination, since the model may have
already seen our test set (FLORES+) during pre-
training. Recent studies (Mansurov et al., 2025)
have shown that distilled data may inherit intrinsic
biases from the teacher model and this may have
an impact on benchmark results. We note, however,
that there is a strong domain mismatch between our
source data (formal Europarl proceedings) and the
FLORES+ benchmark (general encyclopedic text),
which reduces the likelihood of simple memoriza-
tion affecting results. While this risk is inherent to
most widely used test sets and cannot be fully con-
trolled, we acknowledge it here for transparency.

Data Contamination of the Source GPT-40 pre-
training data also likely includes the Europarl cor-
pus. This means our experiments could be affected
by data contamination, in the sense that the model
may have had indirect prior exposure to the un-
derlying content and domain, even if not in our
low-resource target languages. Because our setup
requires cross-lingual generation into languages
that are not present in Europarl, direct memoriza-
tion is unlikely. Still, there remains a risk of overes-
timating translation quality, which should be kept
in mind when interpreting our results.

Ethical Considerations

Hallucinated Content LLMs are known to gen-
erate hallucinated content, outputs that are fluent
and well-formed but factually incorrect or irrele-
vant (Vazquez et al., 2025). This phenomenon is
a risk in iself, as it can introduce noise and prop-
agate misinformation in downstream MT models.
In our case, we observed that in some cases, the
model disregards the input and instead generates a
response similar to, “You have been trained on data
up until October 2023” in the target language. This
issue is most prevalent in Georgian, with around
9,000 cases, and Ukrainian, with approximately
4,000 cases. For these languages, we removed each
line containing the string “2023”. While such hal-
lucinations appear to be an intrinsic limitation of
current LLMs, they highlight the need for care-
ful post-processing and validation when using syn-
thetic data.

Reproducibility Since our synthetic data is gen-
erated using a closed-source LLM, the exact repro-
duction of our work is not possible. To mitigate
this, we publicly release the generated dataset along
with all preprocessing scripts and training code.

Cost-Benefit Trade-off Our empirical results
demonstrate that augmenting training data with
high-quality LLM-generated translations improve
translation performance for low-resource lan-
guages, outperforming existing baselines. This
benefit is valuable in contexts where existing par-
allel training data is scarce or even unavailable.
However, the cost of generating such translations
with LLMs is significant both in terms of com-
pute and financial expense, and may therefore be
unreasonable for many groups. For example, gen-
erating the synthetic data used in our work costed
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approximately $5 000. While the improvements in
translation quality may justify the use of LLMs for
data generation, future work should explore more
cost-efficient methods for synthetic data generation.
Promising directions could include e.g., distilling
larger models into smaller ones and selective data
augmentation to reduce the volume of unnecessary
synthetic data while preserving improvements in
performance.

ChatGPT was used to assist code development
for this project.
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A Pilot Evaluation Results

Table 6 reports the ChrF scores of GPT-40 and EMMA on low-resource MT for a 100 random sample of
the FLORES+ development set. We compare performance at the sentence (Sent.) and chunk (Chunk) level.
For EMMA, both zero-shot (Sent./0) and three-shot (Sent./3) settings are reported. The best OPUS-MT
model is included as a reference. There is no OPUS-MT model for Aragonese and Aranese.

We do not evaluate our synthetic baseline models on these sample sentences, as the development set
was used during training. Evaluating on this data risks overfitting and leads to optimistically biased
performance estimates, which may not reflect true generalization.

OPUS-MT GPT-40 EMMA
Language Code Sent. | Sent. Chunk Sent./3 Sent./O
Aragonese arg_Latn - | 439 47.5 38.1 39.8
Aranese arn_Latn - 412 454 16.7 27.6
Armenian hye_Armn 475 | 56.3 56.5 45.7 48.7
Asturian ast_Latn 59.6 | 59.6 62.8 52.7 53.3
Bashkir bak_Cyrl 40.6 | 514 52.2 24.2 29.1
Basque eus_Latn 55.0 | 57.3 60.4 41.5 44.0
Belarusian bel_Cyrl 444 | 46.6 49.2 39.0 37.9
Bosnian bos_Latn 58.8 | 63.9 65.4 51.6 533
Catalan cat_Latn 674 | 679 69.8 56.7 56.5
Crimean Tatar crh_Latn 359 | 37.6 40.0 13.7 23.2
Croatian hrv_Latn 61.5 | 60.9 62.2 50.9 51.2
Esperanto epo_Latn 59.7 | 63.2 65.6 60.8 60.5
Friulian fur_Latn 499 | 45.7 50.0 454 43.8
Galician glg_Latn 62.5 | 633 66.2 55.7 559
Georgian kat_Geor 427 | 51.3 42.4 453 459
Hebrew heb_Hebr 61.3 | 58.1 59.2 41.1 47.0
Icelandic isl_Latn 53.0 | 55.6 59.3 41.1 41.6
Irish gle_Latn 60.5 | 61.3 61.6 48.9 49.3
Ligurian lij_Latn 439 | 36.2 40.1 34.5 35.3
Limburgish lim_Latn 36.5 | 43.7 44.6 28.3 29.8
Lombard Imo_Latn 341 | 353 38.8 25.3 28.4
Luxembourgish Itz_Latn 55.5 | 594 60.9 51.5 49.9
Macedonian mkd_Cyrl 64.5 | 65.3 64.2 55.2 56.8
Northern Uzbek uzn_Latn 12.7 | 59.3 60.7 30.5 44 4
Occitan oci_Latn 64.0 | 67.5 67.0 51.7 46.0
Sardinian srd_Latn 50.1 | 434 46.2 40.0 48.8
Scottish Gaelic  gla_Latn 426 | 524 55.7 44.5 459
Serbian srp_Cyrl 63.0 | 64.1 65.0 35.5 46.7
Sicilian scn_Latn 39.9 | 45.0 48.7 434 43.8
Somali som_Latn 442 | 47.6 53.0 42.7 38.6
Tatar tat_Cyrl 43.0 | 53.6 54.9 21.1 33.9
Tosk Albanian als_Latn 539 | 61.3 63.1 44.7 54.4
Turkish tur_Latn 62.8 | 66.1 67.1 36.8 34.5
Turkmen tuk_Latn 42.6 | 55.1 54.8 22.3 25.8
Ukrainian ukr_Cyrl 60.1 | 60.1 62.1 48.7 49.4
Uyghur uig_Arab 37.1 | 38.1 36.8 30.2 31.1
Venetian vec_Latn 44.6 | 49.5 52.0 34.7 37.1
Welsh cym_Latn 649 | 733 73.6 59.4 59.8
Yiddish ydd_Hebr 0.0 | 40.5 42.6 414 51.5
Average 49.2 | 539 55.6 40.8 43.6

Table 6: ChrF scores of the evaluation of GPT-40 and EMMA on low-resource MT. Highlighted rows correspond to
the final set of selected languages for our study.
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B Human Evaluation Annotation Guidelines

In Figure 3, we provide an exact copy of the annotation guidelines given to the annotators.

Introduction

You will be asked to evaluate the quality of machine-translated (MT) sentences by comparing each one
directly to its human-written original sentence (the source sentence). You will assign a score, based
on how well the translation preserves meaning, fluency, and naturalness. This is what is known as
Direct Assessment (DA, Graham et al., 2013). DA elicits human assessments of translation adequacy
on an analogue rating scale (0—100), where human assessors are asked to rate how adequately the APE
system output expresses the meaning of the human reference translation (Bojar et al., 2017). In this
annotation project, you will be shown 100 samples of source-hypothesis pairs. Your task is to evaluate
each translation pair through DA.

Annotation Guidelines

1.
2.

Carefully read the sentence pair. Try to understand the intended meaning of the source.

Evaluate whether the sentences are parallel or not. Compare the MT sentence with the source. Does
the MT output preserve the key meaning of the source sentence?

Evaluate whether the target sentence contains fluency mistakes. Is the MT sentence grammatically
correct? Are there any strange phrases, broken structure, or missing words?

Decide the score based on the scoring scale below.

Ensure that you double-check your annotations prior to moving to the next example. Re-read both
source and translation. Does the score reflect meaning and fluency? Were you consistent with your
previous scores? Adjust the score if needed to maintain fairness and consistency.

Scoring scale
Use the full range of the scale. Do not be afraid to give very low or very high scores when appropriate.

Score Interpretation

100 Perfect: grammatically flawless, fluent, and semantically identical to the source.

85-99 Excellent: small stylistic or fluency issues; all meaning preserved.
70-84  Good: mostly fluent; minor issues in grammar, wording, or slight meaning distortion.
50-69 Acceptable: understandable, but multiple issues with grammar, style, or partial meaning loss.
30—49 Poor: hard to understand, major meaning lost, broken grammar.
1-29  Very poor: barely comprehensible or mostly wrong meaning.

0 Incomprehensible: completely unrelated, meaningless, or unreadable.

Figure 3: Annotation guidelines: Instructions.
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C Training Regimes

* Synthetic: We employ a shared 32k Senten-
cePiece (Kudo and Richardson, 2018) vocab-
ulary trained on the synthetic corpus; other
settings follow the original Transformer-base
recipe. Mini-batch fitting is enabled to opti-
mize memory usage. Validation every 2500
updates checks perplexity. Early-stopping is
employed on the development set, with a pa-
tience of 10.

* OPUS-MT-ft: We fine-tune each model with-
out modifying its original tokenizer; appro-
priate language tags are prefixed at train and
test time for multilingual models. Mini-batch
fitting is enabled to optimize memory usage.
Validation every 500 updates checks perplex-
ity. Early-stopping is employed on the devel-
opment set, with a patience of 20.

* NLLB-200-distilled-1.3B-ft: We fine-tune
the NLLB-distilled-1.3B model with Deep-
Speed on four V100 GPUs in FP16 mixed
precision. Training uses a per-GPU batch size
of 32 sentences, a maximum sequence length
of 128 tokens, the Adam optimiser with a 1
x10~* learning rate, and runs for up to four
epochs. DeepSpeed ZeRO-1 is used for ba-
sic tensor sharding; everything else is left on-
GPU. Early-stopping is employed on the de-
velopment set, with a patience of 5.

* Llama-3.2-3B-Instruct-ft: We adapted the
model with LoRA using the Unsloth frame-
work. We used the quantized 4-bit version
of the model, applying LoRA adapters, and
we used with prompts designed to mimic a
professional translator’s task using Unsloth’s
template system. Training was done using
SFTTrainer with fp16 mixed precision, gradi-
ent accumulation, and 50k training steps with
effective batch size of 16 utterances.

D OPUS-MT Models selected for

fine-tuning

We select the best available OPUS-MT model
based on the OPUS-MT Dashboard (Tiedemann
and De Gibert, 2023), by looking at the BLEU
score on the FLORES+ dataset.
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en-eu: translate-en-eu-v1.0-hplt_opus
en-gd: deu+eng+fra+por+spa-ine/tf-big
en-is: translate-en-is-v1.0-hplt_opus
en-mk: deu+eng+fra+por+spa-sla/tf-big
en-so: deu+eng+fra+por+spa-afa/tf-big
en-uk: eng-zle/tf-big

en-ka: deu+eng+fra+por+spa-cau/tf-big
fi-so: mul-mul/tf-big

fi-uk: fin-zle/tf-big

so-fi: afa-fiu/tf-base

uk-fi: zle-fin/tf-big


https://huggingface.co/HPLT/translate-en-eu-v1.0-hplt_opus
https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-ine/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip
https://huggingface.co/HPLT/translate-en-is-v1.0-hplt_opus
https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-sla/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip
https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-afa/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.zip
https://object.pouta.csc.fi/Tatoeba-MT-models/eng-zle/opusTCv20210807+bt_transformer-big_2022-03-13.zip
https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-cau/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip
https://object.pouta.csc.fi/Tatoeba-MT-models/mul-mul/opusTCv20230926+bt+jhubc_transformer-big_2024-08-17.zip
https://object.pouta.csc.fi/Tatoeba-MT-models/fin-zle/opusTCv20210807+xb+bt+pft+pbt_transformer-big_2022-04-27.zip
https://object.pouta.csc.fi/Tatoeba-MT-models/afa-fiu/opus-2021-02-12.zip
https://object.pouta.csc.fi/Tatoeba-MT-models/zle-fin/opusTCv20210807+xb+bt+pft+pbt_transformer-big_2022-04-18.zip

E COMET scores for MT training

We report the COMET scores for all our experiments to provide a more comprehensive evaluation. Table
7 shows the COMET scores equivalent to Table 3 for our fine-tuning experiments. Table 8 shows the
COMET scores equivalent to Table 4 for our comparison with HPLT. Finally, Table 9 shows the COMET
scores equivalent to Table 5 for our study on Finnish-centric translation.

Language Pair

Model en-eu  en-gd en-is en-ka en-mk en-so  en-uk 7 Params
Synthetic 81.51 78.04 80.16 80.72 8224  78.15 78.89 60.6M
OPUS-MT 83.27 7130 79.69 69.09 8734 77.06  89.02 191.6M
OPUS-MT-ft  84.15 79.30 8321 81.60 86.19 79.34  87.61 '

A 4088  +8.00 +3.52 1251 -1.15 4228 141
NLLB 84.55 7873 82.06 8049 8745 80.06 87.21 3B
NLLB-ft 8684 7943 8536 8694 88.74 8090 88.14 '

A 4229 407 433 4645  +1.29 4084 +093
Llama 4094 4461 3696 3368 4250 43.79 50.86 3B
Llama-ft 70.00 7592 76.63 5453 82.09 76.67 80.80

A +29.06 +31.31 +39.67 +20.85 +39.59 +32.88 +29.94
GPT-4o0 86.65 80.11 86.70 8576 90.04 80.67 91.13

Table 7: COMET scores for our fine-tuning experiments.

Language Pair

Training Data .
en-eu  en-is en-mk

Synthetic 81.51 80.16 82.24
HPLT 8247 78.09 85.38
A 4096 207 +3.14
HPLT 8247 78.09 85.38
HPLT + Synthetic  84.53 82.82  86.96
A 4206 +4.73 +1.58

Table 8: COMET scores for the comparison of our data with HPLT.

Language Pair
fi-so so-fi  fi-uk  uk-fi

Synthetic 75.09  66.55 76.89 77.36
OPUS-MT 54.06 3433 89.07 88.01
OPUS-MT-ft 76.72  68.32 87.77 87.10

Model

A +22.66  +33.99 -1.30 -0.91

NLLB 7735 7637 85.17 84.40

NLLB-ft 78.60  78.62 87.09 87.04
A 41250 4225 +1.92 +2.64

Table 9: COMET scores for Finnish-Somali and Finnish-Ukrainian translation.
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F HPLT Data Sizes

We report the total amount of sentences of the HPLT v2 dataset in Table 10 for the overlapping language
pairs with our selected languages.

en-eu en-is en-mk en-uk

n. sentences 1491873 2694541 3991617 25125019

Table 10: Data sizes in amount of sentences in the HPLT v2 dataset.
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