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Abstract

This research investigates how to improve ma-
chine translation systems for low-resource lan-
guages by integrating loanword constraints
as external linguistic knowledge. Focusing
on the Portuguese-Emakhuwa language pair,
which exhibits significant lexical borrowing,
we address the challenge of effectively adapt-
ing loanwords during the translation process.
To tackle this, we propose a novel approach
that augments source sentences with loanword
constraints, explicitly linking source-language
loanwords to their target-language equivalents.
Then, we perform supervised fine-tuning on
multilingual neural machine translation models
and multiple Large Language Models of differ-
ent sizes. Our results demonstrate that incorpo-
rating loanword constraints leads to significant
improvements in translation quality as well as
in handling loanword adaptation correctly in
target languages, as measured by different ma-
chine translation metrics. This approach of-
fers a promising direction for improving ma-
chine translation performance in low-resource
settings characterized by frequent lexical bor-
rowing.

1 Introduction

In multilingual contexts, lexical borrowing is a
common phenomenon that facilitates communica-
tion by addressing linguistic diversity and filling
vocabulary gaps. This is particularly evident in
societies where multiple languages coexist, often
with a dominant one (e.g., languages of former
colonies in Africa) serving as an official or widely
used medium alongside indigenous or regional lan-
guages. In such settings, translation practices fre-
quently rely on lexical borrowing as a strategy to
compensate for the lack of equivalent terms in the
target language, ensuring that the intended meaning
is effectively conveyed (Gauton et al., 2008).

For example, when translating technical or mod-
ern concepts—such as "internet" or "computer"—

from a dominant language into a less-resourced or
indigenous language, human translators may adopt
phonetic adaptations or construct sound-meaning
equivalents. These adaptations, which vary based
on orthographic conventions, function as linguis-
tic innovations that help fill lexical gaps. While
such borrowed terms are generally accepted and un-
derstood by speakers, they also present significant
challenges, particularly in the context of machine
translation.

A key challenge in machine translation is han-
dling loanword adaptation effectively. Unlike hu-
man translators, who can make context-sensitive
decisions about adaptation strategies—such as pho-
netic transliterations, calques (literal translations),
or culturally appropriate substitutions—machine
translation models often struggle with these nu-
ances. Moreover, the absence of standardized or-
thography in some languages further complicates
the process, as variations in spelling must be ac-
counted for while maintaining consistency in trans-
lation outputs.

Another critical aspect of lexical borrowing is
its integration into the target language’s grammat-
ical structure. This involves applying appropriate
pluralization rules, verb conjugations, and other
morphological adjustments to ensure that borrowed
terms conform to the target language’s linguistic
norms. For instance, a borrowed noun may require
modifications to match native pluralization patterns,
or a verb may need conjugation to fit syntactic con-
straints. While human translators systematically
apply these rules, machine translation systems must
be tuned to handle such challenges.

This study investigates the possibility of enhanc-
ing machine translation systems by integrating
loanword constraints into source sentences. Our
approach focuses on incorporating essential termi-
nology from the target language, enabling transla-
tion models to effectively leverage external lexical
constraints. By doing so, the models produce trans-
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lations that more closely align with their reference
counterparts, particularly in terms of loanword us-
age. This targeted improvement ultimately results
in measurable gains in translation performance.

2 Related Work

Constrained Neural Machine Translation (CNMT)
has emerged as a strong approach for ensuring
the consistent use of domain-specific terminol-
ogy, improving the translation of named entities,
and enhancing the overall reliability of translation
models (Hasler et al., 2018). A key challenge
in CNMT is enforcing adherence to specific ter-
minological constraints during translation. Sev-
eral strategies have been proposed to address this
challenge, broadly falling into three categories:
decoding-based, architecture-based, and training
data augmentation.

Decoding-based approaches focus on modifying
the decoding process to enforce terminological con-
straints. These methods typically extend the search
space during decoding to ensure that specific terms
are correctly translated (Hokamp and Liu, 2017;
Post and Vilar, 2018; Hu et al., 2019; Hasler et al.,
2018). While effective, these approaches often in-
cur significant computational overhead and may
yield only marginal improvements in overall trans-
lation quality (Guanhua et al., 2021; Zhang et al.,
2023).

Architecture-based approaches, conversely, ex-
plore modifications to the neural network architec-
ture to integrate external information. Examples
include incorporating alignment information (Song
et al., 2020; Guanhua et al., 2021), vectorized ter-
minology representations (Wang et al., 2022; Conia
et al., 2024), non-autoregressive translation models
(Song et al., 2020), and retrieval-augmented tech-
niques combined with knowledge graphs (Conia
et al., 2024). These methods aim to enhance the
model’s ability to handle constrained translation
by leveraging additional contextual or structural
information.

Another widely adopted strategy is data aug-
mentation, which has proven effective for con-
straining translation outputs (Crego et al., 2016;
Song et al., 2019; Dinu et al., 2019; Michon et al.,
2020; Niehues, 2021; Chen et al., 2021; Ailem
et al.,, 2021; Zhang et al., 2023; Conia et al.,
2024). Data augmentation methods can be further
divided into three main categories: placeholder-
based, code-switching, and post-editing methods.

In placeholder-based methods, the raw bitext is
pre-processed by replacing source and target con-
straints with ordered labels during training. At
inference time, the source constraints are marked
with these labels, and the model predicts the
corresponding target terms autonomously (Zhang
et al., 2023). In contrast, code-switching meth-
ods directly substitute source constraints with their
corresponding target terms in the input sentence.
This allows the model to learn a copy behavior,
where the decoder generates the target text step-by-
step while preserving the pre-specified constraints
(Zhang et al., 2023). Placeholder-based and code-
switching methods aim to signal the model to pri-
oritize the correct use of terminology during trans-
lation.

Lastly, post-processing methods, or post-editing,
include directly incorporating the required termi-
nology into the translated output. Recently, Bogoy-
chev and Chen (2023) demonstrated the potential
of leveraging Large Language Models (LLMs) for
refining translation output with specific terminol-

ogy.

Loanword Handling in Machine Translation
Loanwords present a unique challenge in machine
translation. Nath et al. (2022) highlight the po-
tential of effectively managing loanwords to im-
prove translation systems, particularly for handling
out-of-vocabulary (OOV) terms, co-referents, and
named entities. Despite this potential, practical
implementations of loanword handling techniques
remain limited, with only a few studies exploring
this area in depth.

A notable contribution in this field comes from
Mi et al. (2018), who investigated the role of loan-
words in Neural Machine Translation (NMT) sys-
tems, focusing on their ability to mitigate the OOV
problem. Building on Luong et al. (2015), their
approach enriches the training data with explicit
information, allowing the NMT system to gener-
ate special tokens for OOV words that match the
source sentence. These tokens are subsequently re-
placed with the correct translations after they have
been processed using a bilingual dictionary. This
method shares similarities with placeholder-based
CNMT approaches, as described earlier. However,
a key limitation of placeholder-based augmenta-
tion is the difficulty in producing fluent translations
(Zhang et al., 2023).

While constrained translation has shown promise
in improving translation quality, the intersection
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of constrained translation and loanword handling
remains underexplored. To the best of our knowl-
edge, there is limited research on leveraging data
augmentation techniques to enforce loanword ter-
minologies in translation systems. Our study ad-
dresses this gap by exploring data augmentation
approaches with a particular emphasis on enforcing
loanword constraints, so as to enhance the trans-
lation of loanwords while maintaining translation
fluency.

3 Approach

In this section, we detail our proposed method for
handling loanword adaptation in machine transla-
tion.

3.1 Loanword definition

In the context of this study, we define loanwords
as words that originate in a donor language and
are borrowed into a recipient language. This bor-
rowing process may sometimes involve translitera-
tion, where the original word is adapted to fit the
phonological or orthographic system of the recipi-
ent language. It is important to note that cognates
are excluded from this definition.

3.2 Problem Statement

Let x = {x1,..., 2} represent the source sen-
tence and y = {y1,...,yn} represent the target
sentence. Let C = {(s1,t1), ..., (sk, tk)} denote
the set of loanword constraints between x and y,
where s; and ¢; correspond to the i-th source and
target constraint, respectively. Each constraint can
be a single word or a multi-word span, i.e., |s;| > 1
and |t;| > 1. Then, the problem requires that the
translation systems enforce that s; is translated into
t;.

3.3 Loanword-constrained Machine
Translation

Given x, y and constraints C =

{(s1,t1), (s2,t2),..., (sKk,tK)}, we augment the
source text x into X as follows:

Replacement In this approach, loanwords identi-
fied in the source sentence s; are replaced with an
extended schema that explicitly links s; to its target
counterpart t;. The schema follows a structured
format:

<|start|>s;<|translate-as|>t;<|end]|>

This method is inspired by data augmentation
techniques for guiding NMT systems, commonly
used in prior work on encoder-decoder architec-
tures (Crego et al., 2016; Song et al., 2019; Dinu
et al., 2019; Michon et al., 2020; Nichues, 2021;
Chen et al., 2021; Ailem et al., 2021; Zhang et al.,
2023; Conia et al., 2024). In particular, we adopt
the schema proposed by Conia et al. (2024). This
format serves as an explicit signal to the model,
guiding it to correctly incorporate the target term
t; in the output. While the "replacement” strategy
is primarily designed for encoder-decoder models,
alternatives for decoder-only models are discussed
in the following section.

Prompting Similar to the replacement approach,
this strategy involves augmenting the source text
with constraints but adopts a prompt-based format.
The prompt template (see Figure 1) provides de-
tailed instructions for the model, incorporating the
constraints of the loanword alongside the transla-
tion task. Our prompt design builds on prior work
in terminology-constrained prompting for large lan-
guage models, particularly the studies by Moslem
et al. (2023), Ghazvininejad et al. (2023), and Lu
et al. (2024). This method is designed for decoder-
only instruction-tuned models, capitalizing on their
capabilities in following natural language direc-
tives.

Both "Replacement" and "Prompting" aim to
enforce a copy behavior based on the provided con-
straints, to encourage the model to map s; and ¢;.
However, while this approach provides strong guid-
ance for loanword adaptation, it does not fully guar-
antee that the model will always adhere to the con-
straints. This is due to the inherent unpredictability
of language models’ decoding behavior. To thor-
oughly assess the effectiveness of the proposed
methods, we provide a comprehensive evaluation
in the following sections.

4 Experimental Setup

In this section, we begin by outlining the datasets
used in the experiments and data preparation.
Lastly, we detail the models used for fine-tuning in
the machine translation task.

4.1 Datasets

We used a Portuguese-Emakhuwa bitext dataset
augmented with constraint annotations to train our
models. The dataset includes considerable manu-
ally annotated constraints, but a significant propor-
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Prompt template

Translate the following sentence  from
{source_language} into { target_language}:

Sentence: {source}

Guidelines:

You may adapt loanwords as necessary.
For instance:

{50} should be translated as {to}

{51} should be translated as {¢1 }

{sk} should be translated as {tx }

Output:

Figure 1: Prompt template for machine transla-
tion task. The placeholders s; and t; are replaced
with corresponding loanwords constraint pairs C =

{{s1,t1), (s2,t2), ..., (5K, 1K) }-

tion of the data lacks these annotations. To address
this, we used weak supervision techniques to an-
notate the remaining data. Further details on the
dataset and our annotation methodology are pro-
vided below.

4.1.1 Training and Validation Data

For training and validation, we used the dataset by
Ali et al. (2024a), which is Portuguese-Emakhuwa
bitext. Specifically, we selected the configuration
that contains approximately 65k training examples
and 964 validation examples. The configuration
combines biblical parallel texts, manually trans-
lated news articles and other materials sourced on
the Web (see Table 1). The manually translated
news subset is exceptional as it provides triples of
source text, target translations, and manually an-
notated loanwords, captured during the translation
process.

Given that the training data was partially anno-
tated with manual loanwords (see Table 1), we
expanded the loanword pairs annotations by using
weak supervision, leveraging large language mod-
els as annotator. Specifically, we leveraged the ex-
isting gold standard annotations, reformatted them
into instruction-tuning prompts, and performed su-
pervised fine-tuning on GPT40-mini model. The
fine-tuned model was then used to automatically
annotate the remaining unlabeled subset of the data.
The full details of this process are provided in the
following subsection.

Category TRAIN DEV Manual
Loanwords
Annotations
religious 45,386 290 X
news-politics 1,950 67 v
news-economy 1,950 65 v
news-culture 3,611 108 Ve
news-sports 3,030 63 v
news-health 2,256 33 v
news-society 1,922 90 v
news-world news 2,515 89 v
tales 2,059 20 X
legal 893 24 X
Wikipedia 27 28 X
history 9 37 X
Total 65,608 964

Table 1: Training and validation Portuguese-Emakhuwa
bitext data (Ali et al., 2024a). Note: Some strings in
the news category did not contain loanword constraints,
meaning translations were performed entirely using na-
tive words in the target language.

4.1.2 Generating Loanword Constraint Pairs

Given a source sentence X = {x1,Z2,...,Zy}
and a target sentence y = {y1,v2,...,yn}, the
objective is to build a model M capable of mapping
loanword pairs between the two sequences. This
mapping is represented as a set of aligned pairs C =
{(s1,t1), (s2,t2),...,(SKk,tKx)}, where each pair
(s;,t;) denotes a correspondence between donor
s; in the source sentence and a recipient ¢; in the
target sentence.

For the model M we leveraged the capabilities of
gpt-4o-mini-2024-07-18", a state-of-the-art LLM
by OpenAl. We fine-tuned on manually annotated
sentence-level loanword pairs. We divided the gold-
standard instances into an 80/20 split for training
and validation, respectively. Then, for fine-tuning
we used instruction prompt to guide the model in
predicting loanword pairs alignments C from the
parallel sentences x and y (see Figure 2 and Fig-
ure 4). Finally for inference, we set the tempera-
ture hyperparameter to O to ensure deterministic
outputs.

We evaluated the model’s performance using
the dataset introduced by Ali et al. (2024c), which
extends FLORES+ for Portuguese—Emakhuwa ma-
chine translation evaluation. A key advantage of
this evaluation set is the inclusion of manually
annotated loanwords in each pair of parallel sen-

'We fine-tuned this model during the OpenATI’s free 1M-
token offer period held from August through September 2024.

27635



x | Eles estdo na lista do Patriménio Mundial da Unesco )

y [ Awo arisi eliixita ya Patirimooniyu Muntiyaali wa Uneexiku ]

. 4
@ GPT
A

c lista — eliixita
Patriménio Mundial da Unesco — Patirimooniyu Muntiyaali wa Uneexiku

Figure 2: Generating Loanword Constraint Pairs Using
the Fine-Tuned gpt-40-mini-2024-07-18 Model

tences. Below, we present a detailed analysis of the
model’s performance:

Evaluation To assess the effectiveness of the
model described above, we compared its output
against the gold standard annotations of our test
dataset. For that, for each sentence pair we concate-
nated source and target text, then for each token we
assigned a tag from one of two categories: LOAN-
indicating that the token is part of a loanword—or
O-indicating that the token is not part of a loan-
word. We adopted the BILOU scheme, which is
primarily used in Named Entity Recognition (NER)
tasks. In our case, the BILOU format was adapted
to label tokens based on their position within or
outside a loanword category (see Figure 5 in Ap-
pendix A.5 for details).

The evaluation results, presented in Table 2,
show that the model achieves an F1-score of 95%
on the gold standard test set. This high accu-
racy provided us some confidence on the reliability
of the automatic annotations using the model de-
scribed above.

Tag Precision Recall F1-Score Accuracy
LOAN 0.87 0.95 0.91
(0} 0.99 0.98 0.99
Macro Avg. 0.93 0.97 0.95 -
Accuracy 0.98

Table 2: Evaluation results of loanword constraints
generation model

4.1.3 Test Data

To evaluate the performance of our machine transla-
tion results, we also used the FLORES+ DEV and
DEVTEST datasets (Ali et al., 2024c¢), which con-
tain 997 and 1012 pairs of sentences, respectively.
Each sentence pair includes manually annotated
loanword constraint information.

4.1.4 Data Pre-Processing

Given source sentences x target sentences y, and
C, we augment all source sentences into X using
C as described in Section 3.3. This preprocessing
step was applied to the training, validation, and test
sets.

4.2 Models

We fine-tuned and evaluated a range of multilingual
NMT models and large language models:

Multilingual NMT Models: M2M-100 (Fan
et al., 2021): A many-to-many multilingual transla-
tion model designed to directly translate between
100 languages. NLLB-200 (NLLBTeam et al.,
2024): A cutting-edge model designed for large-
scale multilingual translation, supporting over 200
languages. Its architecture is optimized for low-
resource languages and supports extension to new
unseen languages. We used NLLB-200’s distilled
variant with 600M parameters.

Large Language Models: We used a set of
decoder-based LLLMs for multilingual fine-tuning
experiments, including Llama 3.2 (3B), Qwen2.5
(3B, 7B), Phi-3.5-mini (3.8B), Gemma-3 (4B),
Llama 3.1 (8B), and Gemma-2 (9B). For fine-
tuning, we applied LoRA (Hu et al., 2022), a
parameter-efficient tuning method that inserts train-
able low-rank matrices, using a rank of 16 and
a scaling factor (lora_alpha) of 16. To optimize
memory usage, we used Unsloth (Daniel Han and
team, 2023), which reduces VRAM requirements
and supports larger batch sizes.

Training Training is performed using pairs of
source sentences X, their augmented counterparts
X, and the corresponding translations y. This
setup is applied to both translation directions: Por-
tuguese—Emakhuwa and Emakhuwa—Portuguese.
We experiment with two training settings:

* Without Constraints: The model is trained
to perform standard translation from source to
target x — y, without any form of constraint
injection.

* With Constraints: The model is trained on
a mixed setup: (1) translating unconstrained
source sentences X — y, and (2) translating
source sentences with constraints explicitly
injected x — y.
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Inference For both training setups, we perform
inference using two types of inputs:

* Unconstrained Input (x): To verify whether
constraint-aware training degrades or en-
hances general translation performance on
standard inputs/prompts.

 Constrained Input (X): To evaluate the
model’s capacity to accurately respect and
incorporate the constraints provided during
translation, leveraging the experience gained
during training.

Our experiments were carried out on 8 NVIDIA
H100 GPUs for both model training and inference.
Table 5 lists the base model used, while the hy-
perparameters are detailed in Section A.2 of the
Appendix.

Evaluation For our machine translation evalu-
ation, we used three key metrics: BLEU (Pap-
ineni et al., 2002), ChrF (Popovi¢, 2015), and
AfriCOMET (Wang et al., 2024). AfriCOMET, an
extended version of the COMET framework (Rei
et al., 2020), was initially introduced to support a
limited set of African languages. It has since been
expanded by Wang et al. (2024) to encompass a
broader range of 76 African languages.

In addition, we assess loanword accuracy us-
ing sentence-level constraint accuracy (SCA), a
metric introduced by Zhang et al. (2023), which
measures how accurately loanwords are translated
within sentences. Under this metric, a translation
is considered correct only if it accurately renders
all required loanwords within a sentence.

5 Results and Discussion

Table 3 summarizes the outcomes of our exper-
iments, comparing the performance of multilin-
gual neural machine translation (NMT) models
and large language models (LLMs) under two
training scenarios: constrained training and un-
constrained training. The table reports BLEU,
CHREF, AfriCOMET, and SCA scores on two eval-
uation sets—the FLORES development (DEV)
and devtest sets. We evaluate translation per-
formance in both directions: Portuguese to
Emakhuwa (pt—vmw) and Emakhuwa to Por-
tuguese (vmw—pt). Statistical significance is as-
sessed through paired bootstrap resampling tests,
comparing each alternative model against the base-
line (i.e., standard input training).

nlib_1
Llama-3.2-3B_2
Qwen2.5-7B_3
gemma-2-9bit_4
llama-3.1-8b_5
nllb_6
Phi-3.5-mini_7
Qwen2.5-3B_8
Llama-3.2-3B_9
M2M_10

M2M_11

nllb_12
gemma-3-4bit_13
llama-3.1-8b_14
gemma-3-4bit_15
gemma-2-9bit_16
llama-3.1-8b_17
llama-3.1-8b_18
Llama-3.2-3B_19
M2M_20
Phi-3.5-mini_21
gemma-3-4bit_22
gemma-2-9bit_23
gemma-3-4bit_24
Llama-3.2-3B_25
qwen2.5_3B_26
Phi-3.5-mini-_27
gemma-2-9bit_28
Qwen2.5-7B_29
Qwen2.5-7B_30
Phi-3.5-mini-_31
qwen2.5_3B_32
Qwen2.5-7B_33
Qwen2.5-3B_34

Models

0 20 40
Average Adequacy Score

Figure 3: Ranking of the models based on human judg-
ments

Models trained with constraint injection con-
sistently outperform their unconstrained counter-
parts across all metrics. The improvements are
particularly notable in SCA, supporting the hy-
pothesis that constraint-aware training more effec-
tively preserves loanword translation fidelity, espe-
cially in the pt—vmw direction. BLEU, CHREF,
and AfriCOMET also increase significantly un-
der constraint-aware training, indicating gains not
only in lexical constraint adherence but also in
overall translation quality. Decoder-only models
(e.g., Qwen2.5, LLaMA, Phi) generally lag be-
hind encoder-decoder architectures like NLLB in
unconstrained settings. However, when trained
with constraints, these models exhibit signifi-
cant improvements. Interestingly, the gains from
constraint-aware training are consistently greater
in the pt—vmw direction. This asymmetry reflects
a broader trend in low-resource machine transla-
tion, where generating text in a low-resource lan-
guage is more challenging due to its limited target-
side vocabulary and training data. In this context,
constraint-aware training proves beneficial, as it
provides additional guidance that helps the model
produce more accurate translations.

Robustness We also evaluated the robustness
of the models under mismatched input condi-
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DEV DEVTEST
SRC Model Size ‘ BLEU CHRF COMET SCA BLEU CHRF COMET SCA |BLEU CHRF COMET SCA BLEU CHRF COMET SCA
[ pt—vmw vmw—pt pt—vmw vmw—pt

M2M-100 0.4B, 9.07 40.09 050 14.84 2024 4475 059 3039, 7.01 3624 047 4308, 13.19 37.16 053 5652

‘2 NLLB  0.6B| 930 4122 050 3209|2030 4438 0.60 51.05| 855 41.09 050 33.59| 19.60 43.62 059 52.17
® , Llama32 3B | 654 3536 047 14.04| 2031 4471 057 12.14| 517 3254 045 4200|1237 3752 051 40.22
z % Qwen2.5 3B | 538 3294 047 1254|1452 3844 054 12.04| 472 3136 046 3982| 896 33.17 049 3883
S E Phi3.5-mini 3.8B| 544 3152 046 1294 16.62 3922 053 1234| 465 2991 0.44  41.11| 1032 3396 048 40.51
é 4 Gemma-3 4B | 7.19 3557 049 14.14)21.20 4399 057 1224 563 3221 045 4249|1332 3677 051  40.02
= Qwen2.5 7B | 596 33.87 048 13.14| 17.54 4238 058 11.94| 534 3228 046 4091| 11.38 3595 052 39.62
= Llama3.1 8B | 825 37.79 050 14.54| 2440 4792 0.60 1234 6.65 3471 047 4377|1476 39.70  0.54  40.02
Gemma-2 9B | 8.09 37.18 049 14.14| 2543 4816 0.62 12.14| 7.14 3451 047 4298|1539 3939 055 3992

M2M-100 0.4B| 17.46 49.73  0.54 70.61| 2525 48.60  0.62 75.32| 10.06 39.54 049 8596| 1486 3875 0.55 84.78

" NLLB  0.6B| 1446 46.74 0.53 60.88|21.85 4585 0.61 64.59| 14.18 46.65 0.53 79.15| 20.96 44.73  0.60 79.54
.% Llama3.2 3B | 17.78 50.19  0.56 78.03| 25.65 49.50  0.61 12.34| 945 3853 0.50 87.75| 13.68 39.08 0.53 40.12
& Qwen2.5 3B | 13.94 4500 0.53 70.51| 21.74 4537 0.59 1244| 720 3428 048 80.34| 1195 3592 0.50 39.53
S X Phi3.5-mini 3.8B| 1629 4675 0.54 69.51|2549 47.89 059 1244| 834 3527 047 8093|1378 3742 051 40.12
2 Gemma-3 4B | 1391 4393  0.53 45.84| 2564 4836 0.60 1229| 865 3633 049 6324|1474 3874 053 4037
'E Qwen2.5 7B | 16.56 4832  0.55 75.53|25.09 4858 0.61 1244| 816 3672 049 86.17| 1432 3832 0.53 4022
Llama3.1 8B | 19.53 52.08 0.57 82.65|29.19 52.14 0.63 1244| 999 3942 050 87.65| 1563 4097 0.54 40.12

Gemma-2 9B | 19.12 5046  0.56 84.55| 31.40 5291 0.64 1244 10.11 3778 049 87.45| 18.10 4156 056 39.92

Table 3: Evaluation results. For COMET values underlined indicate significant evidence that they outperform the
baseline (p < 0.05), based on pairwise randomized significance tests (Koehn, 2004).The SRC column indicates
whether loanword constraints are applied (X) or not (z) in source sentences. COMET refers to AfriCOMET.

tions—specifically, when unconstrained models are
given constrained inputs (X), and when constraint-
trained models are tested with unconstrained inputs
(x). As shown in Table 4, unconstrained models do
not consistently benefit from receiving constrained
input. While SCA scores occasionally show slight
improvements, overall performance often declines,
likely due to a mismatch between the input for-
mat and the model’s training distribution. In con-
trast, constraint-aware models, having been trained
on a mix of constrained and unconstrained inputs,
exhibit better robustness. When evaluated with
unconstrained input, their performance remains sta-
ble for most models. These results suggest that
mixed training not only improves generalization
but also makes models more adaptable to varying
input types.

5.1 Human Evaluation

To assess the quality of translations produced by
the different models, we conducted a human evalu-
ation focusing on adequacy. Two independent pro-
fessional translators volunteered to rate the transla-
tions based on a direct assessment score. This score
ranged from O to 100, with specific guidelines: A
score of 0 indicates that no meaning is preserved
in the translation. A score between ]0 - 34] means
the translation retains some of the source meaning
but loses significant parts. A score between ]34 -
67] indicates that most of the meaning is preserved.
A score between 167 - 99] reflects a translation that

is consistent with the source text, while a score of
100 represents a perfect translation.

Inter-annotator agreement was measured to en-
sure the reliability of the human judgments. We
calculated Pearson’s correlation coefficient (0.620),
Spearman’s rank correlation coefficient (0.580),
and the Intraclass Correlation Coefficient ICC(3,2)
(0.764). These values collectively suggest a moder-
ate level of agreement between the two evaluators.

The overall rankings derived from these human
judgments are presented in Figure 3. A key finding
is that constraint-trained models (in blue) gener-
ally achieved higher adequacy scores compared to
their counterparts trained solely on unconstrained
inputs. Furthermore, the results indicate that both
encoder-decoder and decoder-only architectures
demonstrated competitive performance in this eval-
uation, with specific NLLB and Llama variants
standing out within their respective categories. This
suggests that training with awareness of constraints
contributes positively to translation adequacy as
perceived by human evaluators. Interestingly, hu-
man evaluation findings align with the trends ob-
served in our automatic evaluation metric and cor-
roborate the quantitative improvements seen in met-
rics such as BLEU, CHRF, and AfriCOMET.

5.2 Case Study

To illustrate the impact of loanword injection, we
present one translation example in Table 9 (see Ap-
pendix A.4). This example demonstrates that our
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DEV DEVTEST

SRC Model Size | BLEU CHRF COMET SCA BLEU CHRF COMET SCA |BLEU CHRF COMET SCA BLEU CHRF COMET SCA

,E Llama3.2 3B | 6.64 35.65 048 21.66| 19.88 43.55 056  12.14| 534 32.09 0.46  48.12| 10.68 3540  0.50 40.81
K] Qwen2.5 3B | 548 3262 047 1575|1439 3850 052 13.94| 485 3080 045 42.89| 8.64 32.16 047  41.21
’g Phi3.5-mini 3.8B| 6.21 32.07 046 2187|1822 39.62 054 12.74| 475 2896 044 4881 12.33 33.93 049  40.71
S X  Gemma3 4B | 989 4016 051 21.06| 2470 4756 059 12.64| 679 3405 047 51.38| 1472 38.04 0.52 4130
g Qwen2.5 7B | 581 3430 047 17.95| 1488 39.17 052 16.15| 486 31.67 0.46  46.25| 10.80 34.28 048 4229
= Llama3.1 8B | 11.45 4280 0.53 2558|2545 4841 0.60 13.14| 7.53 3588 048 52.87| 14.81 38.95 0.53  41.30
5 Gemma-2 9B | 1224 4346  0.52 2397|2856 5048 0.62 1244 | 830 3648 048 5237 16.18 3990 055 4022
M2M-100 04B| 927 3948 050 13.94| 20.33 4455 0.58 29.98| 7.05 3630 047 4347|1320 37.06 0.53  56.02

" NLLB 0.6B | 10.10 42.07  0.51 1494 20.08 44.37 0.60 3350 | 9.61 4201 0.50  43.28| 20.37 44.06 0.59 5839
E Llama3.2 3B | 7.77 38.09 049 13.84|20.12 4498 057 1254 6.16 3480 046 4249| 12.84 38.06 0.52 40.71
;E Qwen2.5 3B | 409 2922 045 12.04| 11.84 35.61 052 1143 372 2840 044 37.65| 834 3212 0.48  39.03
£ o Phi3.5-mini 3.8B| 6.74 33.75 048 1294|1680 3990 053 12.24| 6.03 3222 046 4150 10.84 34.82 049 4042
z Gemma-3 4B | 8.60 37.55 050 13.54|22.02 4560 058 12.24| 7.22 3472 048 41.80| 1389 37.85 0.52 4032
'§ Qwen2.5 7B | 5.14 3196 046 12.04| 1518 39.12 0.56 11.63| 4.87 31.77 0.46  38.83| 1046 34.83 0.51  39.23
Llama3.1 8B | 9.27 40.11 0.51 1444 24.66 48.37 0.60 1224 720 3620 048 44.66| 14.81 39.71 0.54  40.22

Gemma-2 9B | 6.64 3369 047 13.04| 2330 46.13 0.60 1234 6.11 3253 0.45 42.00| 1522 39.07 0.55  39.92

Table 4: Robustness evaluation results under mismatched input conditions. Underlined scores indicate statistically
significant improvements over the baseline (see Table 3). Note that NLLB and M2M models are excluded from the
“without constraints”, as encoder-decoder models are expected to produce poor translations when constraint tags are
added to input sentences without having been trained to handle them.

method effectively guides both encoder-decoder
and decoder-only models to incorporate specified
loanword constraints into the generated transla-
tions.

Baseline (Without Loanword Injection) In the
translation direction pt—vmw, all baseline mod-
els, trained without loanword injection, struggled
to accurately translate the Portuguese loanwords
murais and rabiscos. These terms were often mis-
translated or omitted entirely, resulting in low ade-
quacy scores across the board. One exception was
the Llama 3.2 model, which, although deviating
from the reference at the lexical level, managed
to convey the intended meaning more accurately.
Additionally, most models identified grafite as a
potential loanword and attempted to adapt it to
Emakhuwa. However, these adaptations often vio-
lated phonological norms. For example, the letter
g does not exist in the Emakhuwa orthography and
should ideally be replaced by k (Ali et al., 2024b).

A similar trend is observed in the reverse di-
rection vmw—pt. Words such as imuraaxi, irapi-
ixiku, and ekarafiiti were often identified as loan-
words and phonetically adapted into Portuguese-
like forms. However, most models struggled to
map them to the correct Portuguese equivalents.
The exception was the Gemma-3 4B model, which
successfully captured the full semantic mapping.
This difficulty likely stems from the fact that these
are innovative borrowings that were not present in
the training data, making them unfamiliar to the
models.

Loanword Injection Improves Translation
When loanwords were injected into the source sen-
tences for both pt—vmw and vmw—pt, transla-
tion quality improved substantially. This is re-
flected in the adequacy scores, which increased
significantly, ranging from 52 to 98, depending on
the model and direction.

6 Conclusion

In this study, we explored the impact of incorporat-
ing loanword constraints into machine translation
models for low-resource languages, specifically
focusing on the Portuguese-Emakhuwa language
pair. Our experiments demonstrated that explicitly
guiding models to recognize and adapt loanwords
significantly improves translation quality, as evi-
denced by higher BLEU, CHRF, and AfriCOMET
scores. The improvements are evident both using
multilingual neural machine translation models and
LLM:s.

This research presents a practical approach to
enhancing machine translation, particularly in low-
resource language settings, by leveraging external
loanword glossaries. The proposed method aug-
ments training data with explicit loanword con-
straints, effectively guiding the translation model
to handle lexical borrowing correctly. In real-world
applications, this demands the development of a
dynamic, human translator-curated loanword glos-
sary. This continuously refined glossary then serves
as external information that directly improves the
machine translation model’s performance, espe-
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cially in handling the complexities of loanword
adaptation, a common challenge in resource-scarce
scenarios.

Future Work While the proposed approach has
shown promise in guiding MT models to handle
loanwords, we believe it also holds significant po-
tential use-case for promoting the use of native
terminology. In future work, we plan to investigate
how this method can be extended to incorporate
bilingual dictionary entries, enabling models to
integrate native lexical items that were unseen dur-
ing training. Such an extension would allow MT
systems to balance the use of culturally grounded
words and the accurate adaptation of borrowings,
thereby enhancing both translation adequacy and
linguistic authenticity.

7 Limitations

Our experiments are constrained by the scarcity
of parallel corpora that include explicit loanword
annotations. As a result, our findings are based
solely on the Portuguese—Emakhuwa pair. While
the results are promising, additional data from other
languages is needed to confidently assess the gen-
eralizability and broader applicability of our ap-
proach.data.

Another limitation lies in our choice of eval-
uation metrics. In addition to traditional met-
rics like BLEU and CHREF, we used AfriCOMET-
a new metric designed to support African lan-
guages. However, to the best of our knowl-
edge, AfriCOMET currently does not support
Emakhuwa, despite its inclusion of several typo-
logically similar languages. Future work should
focus on validating and, if necessary, adapting these
metrics to ensure a fair and precise evaluation of
translations involving Emakhuwa.

Our study investigates two main strategies for in-
corporating lexical constraints into translation: re-
placement and prompting. While both approaches
proved effective, we recognize that our exploration
of alternative prompt formulations and schema vari-
ations was not exhaustive. Building on insights
from previous research, the replacement strategy
involved minimal edits to the source text to main-
tain fluency. In contrast, the prompting strategy
used direct, instruction-based templates.

Future work should expand on these foundations
by exploring a wider array of constraint integration
techniques to evaluate their relative effectiveness.
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A Appendix

A.1 Base Models

Table 5 lists the base models used and the reposito-
ries or sources from which they were obtained.

Table 5: Base models hugging-face checkpoints.

Models Size

Model name

M2M-100 418M facebook/m2m100_418M

NLLB 600M facebook/nllb-200-distilled-600M
Qwen2.5 3B unsloth/Qwen2.5-3B-Instruct
Qwen2.5 7B unsloth/Qwen2.5-7B-Instruct

Llama 3.1 8B
Llama 3.2 3B
Phi3.5-mini
Gemma-3 4B
Gemma-2 9B

unsloth/Llama-3.2-3B-Instruct
unsloth/1lama-3.1-8b-instruc
unsloth/Phi-3.5-mini-instruct
unsloth/gemma-3-4b-it
unsloth/gemma-2-9b-it

A.2 Hyperparameters

Table 6: NLLB Hyperparameters for fine-tuning.

Hyperparameter Value

Epochs
Learning Rate
Optimizer

3

le-4

Adafactor,
relative_step=False,
scale_parameter=False,
clip_threshold=1.0
weight_decay=1.3

Table 7: M2M Hyperparameters for fine-tuning.

Hyperparameter Value

Epochs
Learning Rate
Optimizer

3

3e-05

Adamw with
betas=(0.9,0.98) and

epsilon=1e-06

A.3 Prompt Template

Figure 4, shows the prompt template for mapping
donor-recipient loanwords relationships, given a

sentence pair.

Table 8: LLMs Hyperparameters for fine-tuning (with

Unsloth).

Hyperparameter Value

Epochs
Learning Rate
Lora Alpha
Lora Rank
Optimizer

1

2e-4

16

16

Adamw, Scheduler=linear
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facebook/m2m100_418M
facebook/nllb-200-distilled-600M
unsloth/Qwen2.5-3B-Instruct
unsloth/Qwen2.5-7B-Instruct
unsloth/Llama-3.2-3B-Instruct
unsloth/llama-3.1-8b-instruc
unsloth/Phi-3.5-mini-instruct
unsloth/gemma-3-4b-it
unsloth/gemma-2-9b-it

Prompt template

Given a source sentence in {source_language} and its corresponding translation in { target_language}, identify the
{source_language?} loanwords used in the { source_language?} sentence.

Present the results in the format:

"donor sequence" => "recipient sequence” without any further explanation.

Sentences:
{source_language}: {source_sentence}
{target_language}: {target_sentence}

Output:

Figure 4: Prompt template. The placeholders are substituted with source and target languages and corresponding
sentences.
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A.4 Examples

pt Murais ou rabiscos indesejados sdo conhecidos como grafite.
vmw Imuraaxi wala irapiixiku soohitthuneya ti soosuwelaxiwa okhala ekarafiiti.
en Unwanted murals or scribble is known as graffiti.
Baseline Adequacy
[0-100]
M2M-100 pt-vmw Makhalelo-oovirikana-a-atthu anisuweliwa okhala grafite. 52
vmw-pt MURAGES ou rapieses desnecessdrios sdo conhecidos como grafices. 63
NLLB pt-vmw Ithoonyeryo soohiloka sa-exirt sinnisuweliwa okhala karafiiti. 55
vmw-pt Buraeos desnecessarios sdo conhecidos como grafite. 65
Llama 3.2 pt-vmw Murais wala rabiscos, itthu soohiloka, sinthimmwa okhala grafite. 80
vmw-pl - Os-marromados-ow-brancos sdo-os-mais-comuns. 0
pt-vmw Nto-makhala-oeohitthuneya-wala-alavilavi annisuweliwa ntoko grafiti. 32
Qwen2.5 38 vmw-pt As-ris-eurapazes sdo conhecidos como earabias. 38
. .. pt-vmw -Murisint wala olepa soohiloka oniitthaniwa grafite. 60
Phi3.5-mini 3.8B vmw-pt Imeraques-ou-irapeiscos-inofensives sdo conhecidos como earabeiros. 12
Gemma-3 4B pt-vmw Ikarafiiti ti soolempwa soohiloka. 20
vmw-pt Os murais ou rabiscos s3o conhecidos como grafite. 83
pt-vmw Otthukweliwa-wa-muare oniitthaniwa grafite. 15
Qwen2.5 78 vmw-pt Pilhas-delixo-e-de lixeiras-semnecessidade sdo conhecidas como grafiteiros. 13
Llama 3.1 8B pt-vmw Murais wala soolempwa soohiloka siniitthaniwa grafite. 82
vmw-pt Imunidades-ou-isentimentos-injustificades sdo conhecidos como grafitis. 35
Gemma-2 9B pt-vmw Murais wala rabisko woohiphavela onisuweliwa okhala grafite. 79
vmw-pt As-murathas ou grafites sdo conhecidos como arte urbana. 65
Augmented with Loan Injection
M2M-100 pt-vmw Makhalelo-oovirikana-a-atthu anisuweliwa okhala grafite. 52
vmw-pt Murais ou rabiscos desnecessdrios sdo conhecidos como grafite. 98
NLLB pt-vmw Imuraaxi wala irapiixiku soohitthuneya sinisuweliwa ntoko ekarafiiti. 98
vmw-pt Murais ou debulthes desnecessdrios sdo conhecidos como grafite. 90
Llama 3.2 3B pt-vmw Imuraaxi wala irapiixiku sihiniireliwa aya, sinnisuweliwa okhala ekarafiiti. 91
vmw-pt Os murais ou os rabiscos sdo fermas-de-desenho-que-se-tornaram-um-tipe de 62
grafite.
Qwen2.5 3B pt-vmw Imuraaxi wala irapiixiku soohikhala sa atthu aniihaniwa ekarafiiti. 70
vmw-pt Os murais ou rabiscos ndo oficiais sdo considerados grafite. 71
Phi3.5-mini 3.8B pt-vmw Imuraaxi wala irapiixiku soohiloka, sinnooniwa okhala ekarafiiti. 92
vmw-pt Murais e rabiscos inefensives sdo conhecidos como grafite. 70
Gemma-3 4B pt-vmw Imuraaxi wala irapiixiku seehikhala-sa-atthu aniihaniwa ekarafiiti. 68
vmw-pt Os murais ou rabiscos ndo oficiais sdo considerados grafite. 86
Qwen2.5 7B pt-vmw Imuraaxi wala irapiixiku sihikhanle soosuweliwa ntoko ekarafiiti 84
vmw-pt Murais ou rabiscos ndo autorizados sdo conhecidos como grafite. 90
Llama 3.1 8B pt-vmw Imuraaxi wala irapiixiku soohiloka siniitthaniwa ekarafiiti. 98
vmw-pt Muranjes ou rabiscos sdo conhecidos como grafite. 69
Gemma-2 9B pt-vmw Irapii.xiku wala ekarafiiti soohiloka sinisuweliwa okhala muraaxi-wala-irapiixike 67
seohiloka.
vmw-pt Murais ou rabiscos ndo autorizados sdo conhecidos como grafite. 88

Table 9: One sample example for case of study
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A.5 Loanword Tagging

To evaluate the performance of loanword constraint
models (see Section 4.1.2), we preprocessed both
the gold standard test data and the model’s pre-
dicted outputs using the BILOU format, as illus-
trated in Figures 5.

Source Target

[Eles estdo na lista do Patriménio Mundial da Unesco] [Awo arisi eliixita ya Patirimooniyu Muntiyaali wa Uneexiku]

0 0 COEENE CEU (0N CNEN [ - MmN - 20 5

Figure 5: Labeling scheme for tagging source and target
sentence tokens with "LOAN" or "O" category
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