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Abstract
Achieving human-level translations requires
leveraging context to ensure coherence and han-
dle complex phenomena like pronoun disam-
biguation. Sparsity of contextually rich exam-
ples in the standard training data has been hy-
pothesized as the reason for the difficulty of
context utilization. In this work, we system-
atically validate this claim in both single- and
multilingual settings by constructing training
datasets with a controlled proportions of con-
textually relevant examples. We demonstrate a
strong association between training data spar-
sity and model performance confirming spar-
sity as a key bottleneck. Importantly, we re-
veal that improvements in one contextual phe-
nomenon do no generalize to others. While we
observe some cross-lingual transfer, it is not
significantly higher between languages within
the same sub-family. Finally, we propose and
empirically evaluate two training strategies de-
signed to leverage the available data. These
strategies improve context utilization, resulting
in accuracy gains of up to 6 and 8 percentage
points on the ctxPro evaluation in single- and
multilingual settings respectively.1

1 Introduction

Context-Aware Machine Translation (MT) mod-
els use surrounding sentences (context) to improve
translation by maintaining coherence and resolving
ambiguities (Agrawal et al., 2018; Bawden et al.,
2018; Müller et al., 2018; Voita et al., 2019b). The
context can be sentences in the source language
and the previously translated sentences in the target
language. While many works improved the transla-
tion quality of the context-aware MT by applying
standard Transformer (Vaswani et al., 2017) model
(Sun et al., 2022; Majumde et al., 2022; Gete et al.,
2023b; Post and Junczys-Dowmunt, 2024; Alves
et al., 2024; Kocmi et al., 2024), specialized ar-
chitectures (Tu et al., 2017; Bawden et al., 2018;

1https://github.com/Pawel-M/data-composition

Figure 1: Composition of the English-to-German train-
ing datasets with the Gender phenomenon in Pure
IWSLT and IWSLT+OpenSubtitles settings. Annota-
tions are based on ctxPro (Wicks and Post, 2023), and
the dashed bars represent the contextually-rich datasets.
Note that the horizontal axis starts at 100,000.

Miculicich et al., 2018; Maruf et al., 2019; Huo
et al., 2020; Zheng et al., 2021), and decoder-only
LLMs (Alves et al., 2024; Kocmi et al., 2024), the
reason why the context utilization is challenging
for the models remain an open question.

The low density of contextually rich (requiring
context for correct translation) examples in the
training datasets has been suspected as the main
reason why MT models have trouble in translating
contextual phenomena. For example, Lupo et al.
(2022) proposed the two-fold sparsity hypothesis,
where the low density of examples in the dataset
and the tokens in the examples requiring context
increases the difficulty of learning to leverage con-
text. Post and Junczys-Dowmunt (2024) show that
sparsity in the evaluation datasets makes it difficult
to assess the context utilization of the models. We
argue that this also points to the sparsity hypothe-
sis in the training data, as the evaluation datasets
are often sampled from the same distribution (the
underlying dataset).
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In this work, we evaluate how the the proportion
of contextually rich examples in the training data
of the context-aware MT models affects the overall
translation quality measured by BLEU (Papineni
et al., 2002) and COMET (Rei et al., 2020), and
performance on the examples requiring context (us-
ing generative and contrastive evaluations). To this
end, we use ctxPro toolset (Wicks and Post, 2023)
to extract the relevant examples containing the fol-
lowing phenomena: Gender, Formality, Auxiliary,
Inflection, and Animacy. The details of the anno-
tation and phenomena can be found in the original
paper (Wicks and Post, 2023) (see Appendix A for
short descriptions). We constructed training data
by mixing contextually rich and poor examples
with varying proportions (Figure 1 illustrates this
for Gender in English-to-German). Moreover, we
evaluate cross-lingual transfer of context utiliza-
tion in multilingual models on English-to-X and
X-to-English where X is {German, French, Polish,
Russian, and Spanish}. Finally, we explore several
ways to effectively leverage the available data to
obtain models that perform well both generally and
in context-sensitive settings. The contributions of
this work are:

1. We empirically validate the sparsity hypothe-
sis, showing strong relation between the density of
the contextual phenomena in the training data and
the resulting performance of the context-aware MT
models.

2. We reveal limitations in generalization, show-
ing that the improvement in one linguistic phe-
nomenon does not transfer to others. We ob-
serve limited cross-lingual transfer, not substan-
tially higher between languages in the same sub-
family.

3. We propose and empirically evaluate two train-
ing strategies designed to improve context utiliza-
tion by leveraging the available data. We show
a trade-off between improving context utilization
and general translation metrics such as BLEU.

2 Related Work

Through years many dedicated architectures have
been proposed for context-aware MT (Miculicich
et al., 2018; Voita et al., 2019b,a; Bao et al., 2021;
Chen et al., 2022; Feng et al., 2022; Bulatov et al.,
2022; Maka et al., 2024) including popular multi-
encoder (where a separate encoder is responsible
for processing the context sentences; Jean et al.,
2017; Miculicich et al., 2018; Maruf et al., 2019;

Huo et al., 2020; Zheng et al., 2021), but the stan-
dard Transformer model (Vaswani et al., 2017) with
the sentences being concatenated (single-encoder;
Tiedemann and Scherrer, 2017; Ma et al., 2020;
Zhang et al., 2020) exhibited high performance de-
spite its relative simplicity (Majumde et al., 2022;
Sun et al., 2022; Gete et al., 2023b; Post and
Junczys-Dowmunt, 2023). While decoder-only
LLMs have achieved state-of-the-art results in MT
(Alves et al., 2024; Kocmi et al., 2024), they require
extensive datasets for training, have a large num-
ber of parameters, and increased inference time
(Pang et al., 2025), which can limit their useful-
ness in computationally constrained environments.
In recent years, research interest in the architec-
tures other than decoder-only has remained rele-
vant (Mohammed and Niculae, 2024; Warner et al.,
2024; Alastruey et al., 2024; Azeemi et al., 2025;
Marashian et al., 2025). Therefore, we largely fo-
cus this paper on encoder-decoder models.

The standard sentence-level metrics (e.g., BLEU
(Papineni et al., 2002) do not capture the contextual
utilization by the models (Hardmeier, 2012; Wong
and Kit, 2012). To address this, several evaluation
datasets have been proposed including contrastive
(Müller et al., 2018; Bawden et al., 2018; Voita
et al., 2019b; Lopes et al., 2020) and generative
such as ctxPro (Wicks and Post, 2023) used in this
study. Moreover, metrics like CXMI (Fernandes
et al., 2021) and PCXMI (Fernandes et al., 2023)
can measure how much the model relies on context
during translation.

The effects of the training dataset on the final
model has also been studied extensively (Kaplan
et al., 2020; Hoffmann et al., 2022) in different
domains (Alabdulmohsin et al., 2023), including
document-level MT (Zhuocheng et al., 2023). The
studies mostly concentrated on the scale of the
training dataset. We, instead, investigate the com-
position of the dataset and its effect on the context-
aware MT models.

Several works proposed methods increasing con-
textual capabilities of the models by training the
models on annotated data (Jwalapuram et al., 2020;
Yin et al., 2021; Gete et al., 2023a; Mąka et al.,
2025) but they target only pronoun disambiguation.
Fine-tuning in this case can be seen as similar to do-
main adaptation (Luong and Manning, 2015; Chu
et al., 2017) where loss weighting (similar to one of
our methods) is an effective strategy (Wang et al.,
2017).
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3 Effects of Data Composition

We first measured how the presence of contextu-
ally rich examples in the training data affects both
translation quality and the models’ ability to lever-
age context. To that end, we trained models on
datasets whose composition we systematically var-
ied. Specifically, we identified contextual examples
(containing relevant phenomena) from the avail-
able datasets using ctxPro toolset (Wicks and Post,
2023) and constructed a series of datasets with
varying densities of different phenomena. This
setup allowed us to assess inter-phenomena as well
as cross-lingual effects of the composition of the
training datasets. We used three settings: sin-
gle language pair (English-to-German), and mul-
tilingual with encoder-decoder and decoder-only
(LLM) models. For the multilingual setting, we
used English-to-X and X-to-English language di-
rections, where X is {German, French, Polish, Rus-
sian, and Spanish} - a subset of directions cov-
ered by the ctxPro. We utilized two Germanic,
Romance, and Slavic languages.

3.1 Datasets

We base our research on two document-level trans-
lation datasets: IWSLT 2017 English-to-German
(Cettolo et al., 2017) and OpenSubtitles 2018 (Li-
son et al., 2018). For the English-to-German direc-
tion, we employ both datasets, and for the multi-
lingual setting, we only use OpenSubtitles. We ex-
tract contextual annotations from the training sub-
set of the IWSLT dataset using the ctxPro toolset.
The annotated (containing contextually-rich exam-
ples) subset forms IWSLT-dense dataset, which
can be further divided based on the target phe-
nomenon: Gender, Formality, Auxiliary, Inflection,
and Animacy. We discard examples containing
more than one type of phenomena in any of the
sentences. From the remaining examples we form
IWSLT-sparse dataset of size 123,000, containing
no examples annotated with any contextual phe-
nomena. CtxPro released annotations extracted
from the OpenSubtitles 2018 dataset divided into
dev, devtest, and test subsets. We set aside the test
subset for the evaluation and used the combined
dev and devtest subsets for training, forming OS-
dense dataset. The released ctxPro dataset is not
exhaustive; therefore, we do not create the sparse
version of the OpenSubtitles dataset. Instead, we
randomly sample the OpenSubtitles dataset to the
desired size (referred to as OS-random). It should

be noted that OS-random datasets can contain a
very limited number of examples from OS-dense
datasets (less than 1 per 1000). In Appendix B we
present the sizes of the dense component datasets.

To create the training datasets with varying den-
sities of contextually rich examples, we sample and
concatenate examples from both dense and sparse
datasets to form a training dataset. For English-
to-German, we study two settings: Pure IWSLT
(only IWSLT-sparse and IWSLT-dense datasets)
and IWSLT + OS (using IWSLT-sparse, IWSLT-
dense, and English-to-German OS-rand and OS-
dense datasets). These allow us to study two
regimes: extremely low sparsity with the first set-
ting, and very dense with the second one. We
progressively replace examples from sparse and
random datasets with the examples sampled from
dense datasets. In the multilingual experiments,
we formed the baseline training dataset by sam-
pling 50,000 examples from OS-rand for all lan-
guage directions we considered. For each phe-
nomenon in a language direction, we formed the
enriched datasets by replacing n examples with
the examples sampled from the OS-dense dataset
corresponding to the phenomenon and language di-
rection. We chose n to be the minimum number of
examples (rounded) for a particular phenomenon
across language directions maximizing the result-
ing density of the training datasets while making
the results comparable between language direc-
tions. We present the illustration of the composition
of the datasets in Figure 1 for Gender on English-
to-German and further details in Appendix B. To
reduce the complexity of the analysis we add only
examples containing a single type of phenomenon.
Assessing the complex interconnections between
phenomena is left for future work.

3.2 Training
For encoder-decoder models, we employed a two-
stage training process where first the sentence-
level model is trained on more abundant sentence-
aligned datasets, followed by the context-aware
training on the document-level dataset. Following
Mąka et al. (2025), we rely on the publicly avail-
able pre-trained sentence-level models, namely
OPUS-MT en-de (Tiedemann and Thottingal, 2020;
Tiedemann et al., 2023) and No Language Left Be-
hind (NLLB-200) with 600M parameters (NLLB
Team et al., 2022). For LLM-based MT models,
we utilize Towerbase 7B model (Alves et al., 2024)
which we fine-tune using LoRA (Hu et al., 2022) on
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Figure 2: Measured metrics of BLEU on IWSLT 2017 testset, and ctxPro accuracy on Gender, Formality, and
Auxiliary phenomena (in columns) of the OpusMT en-de models trained on the datasets with varying amounts of
contextually-rich examples of Gender, Formality, and Auxiliary phenomena (in rows). Shows two experimental
settings: Pure IWSLT and combined IWSLT+OS.

document-level MT dataset. Because Towerbase
models were not pre-trained on Polish language
we do not include English-to-Polish and Polish-to-
English language pairs in training and evaluation.
We concatenate consecutive sentences separated by
the special [SEP] token in case of encoder-decoder
models and <sep> string in case of LLMs on both
the source and target sides. Similar to Sun et al.
(2022), we create examples with all context sizes
(number of previous sentences to concatenate) from
zero to the maximum context size. We set the maxi-
mum context size to three as further increases have
shown diminishing returns regarding context uti-
lization (Post and Junczys-Dowmunt, 2023). In
Appendix A, we show the number of examples in
the ctxPro dataset with antecedent distance inside
the context size. During inference, the models re-
ceive only the source-side context and generate
the target-side context before the current sentence.
We obtained the translation of the current sentence
by splitting the output on the separator token (for
encoder-decoder models) or substring (for LLMs).
The training hyper-parameters and additional de-
tails can be seen in Appendix C.

3.3 Single Language Pair Results

For the models in the English-to-German experi-
ments, we trained 5 models with different seeds and

averaged the results. Apart from the constructed
datasets, we also trained a baseline model on the
unmodified IWSLT training dataset. To measure
the general translation quality, we translated the
IWSLT 2017 English-to-German test subset (with
BEAM search of 5) and measured BLEU (Pap-
ineni et al., 2002). Additionally, we translated test
subsets of the ctxPro dataset (based on OpenSub-
titles) and measured the accuracy of matching the
expected word in the translation (using the scripts
provided with the dataset). The results can be seen
in Figure 2. Extended results including COMET
and ContraPro (Müller et al., 2018) accuracy can
be found in Appendix D.

We observed a drop in BLEU for the models
trained on the sparse datasets, even for the datasets
with mixed OpenSubtitles examples. While the
reduction was relatively small (less than 2%), it
returned to the baseline value only when Formality
IWSLT-dense examples were added to the dataset.
This could mean that the examples from the IWSLT
dataset annotated with Formality were particularly
influential for the model’s general translation abil-
ity, and mixing in the random examples from Open-
Subtitles did not help.

For Gender and Formality, increasing their den-
sity in the training dataset improved the ctxPro
accuracy for the corresponding phenomenon. No-
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Figure 3: Accuracy on all phenomena for each relevant language direction in ctxPro (in columns) of the NLLB-200
600M models trained on the OpenSubtitles datasets with varying amounts of contextually-rich examples for each
phenomenon and language direction (in rows). We show the differences from the baseline model (top row).

tably, Formality in the IWSLT+OS setting only im-
proved when OS-dense examples were added, but
exceeded the accuracy of the baseline model even
with the most sparse dataset. Adding OS-dense ex-
amples improved the accuracy significantly above
the baseline (up to 30%). Interestingly, adding
dense examples in one phenomenon had minimal
effect on the accuracy of the other phenomena, with
only a very small increase of Formality for the
Gender-enriched dataset and vice versa. Those
results show that the generalizability of the mod-
els’ ability to handle contextual phenomena is very
limited. While we argue that experimenting with
the publicly-available pre-trained models enhances
reproducibility OpusMT was trained on OpenSub-
titles dataset on which ctxPro dataset was based.
Therefore, we include the results where the weights
has been randomly initialized in Appendix D which
show the same behavior corroborating our findings.

3.4 Multilingual Results
For the multilingual experiments, we trained mod-
els (with a single seed due to the computational
cost of training and evaluation) on the composed
datasets and measured ctxPro accuracy for all appli-

cable phenomena and language directions included
in the experiments. Note that Inflection applies
only to English-to-Polish and English-to-Russian,
and Animacy only to X-to-English. The results are
presented in Figures 3 and 4 for encoder-decoder
and decoder-only models respectively. Results in
terms of BLEU and COMET on the testsets sam-
pled from OpenSubtitles for each language direc-
tion can be seen in Appendix D.

For each model, the highest improvement in
accuracy was observed for the phenomenon and
language direction that was added to the training
dataset (values on the diagonal in the figures). In
line with the results on the single language pair,
we did not observe any intra-lingual transfer be-
tween phenomena. Interestingly, there was some
transfer between language directions for the same
phenomenon, which was the strongest for Auxil-
iary, moderate for Gender, Inflection (for encoder-
decoder models), and Animacy, and no transfer for
Formality. Contrary to our expectations, we did not
observe notably stronger transferability between
languages in the same linguistic sub-family, with
the exception of Auxiliary in encoder-decoder mod-
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Figure 4: Accuracy on all phenomena for each relevant language direction in ctxPro (in columns) of the Towerbase
7B trained on the OpenSubtitles datasets with varying amounts of contextually-rich examples for each phenomenon
and language direction (in rows). We show the differences from the baseline model (top row).

els, where the increase in accuracy is slightly higher
inside Romance and Slavic languages than for other
languages. Surprisingly, Towerbase did not exhibit
higher generalizaility compared to NLLB-200 cor-
roborating the notion that LLMs are a reflection of
their training data.

3.5 Discussion

We experimentally confirmed the dataset sparsity
hypothesis by showing that the models trained on
datasets sparse in contextually rich examples ex-
hibit poor context utilization, and increasing the
density leads to large improvements for the tested
phenomena. Our experiments showed that the mod-
els do not generalize context utilization between
phenomena. This finding calls for caution when in-
terpreting the results of evaluations targeting a sin-
gle phenomenon (Müller et al., 2018; Lopes et al.,
2020). While document-level training datasets
typically include a representative (for a particu-
lar domain) mixture of contextual phenomena, we
found that models can develop strong capabilities
for some phenomena, while remaining weak on
others. Mąka et al. (2025) found attention heads in
context-aware MT models responsible for pronoun
disambiguation with some cross-lingual behavior,
which is in line with the observed transferability
between language directions. We hypothesize that

the poor transfer between phenomena can be ex-
plained by the models developing separate heads
for each of them.

4 Methods Exploiting Contextual Data

Inspired by the fact that increased density in
contextually-relevant examples of the training
dataset leads to improvement in context utilization,
we tested several techniques that could leverage
the available data more efficiently. We broadly
divide them into annotation-based and annotation-
free. Annotations can inform the training process
but require an external tool (e.g., ctxPro) to mark
the relevant examples. A straightforward method
is to simply extract the annotated examples from
the training dataset and use them to fine-tune the
model. Annotation-free methods do not rely on
an external tool and have the advantage of gener-
alizability beyond the phenomena covered by any
tool. Crucially, the presented methods aim to im-
prove contextual capabilities without the need for
any additional data beyond the standard training
datasets.

4.1 Token-level Loss Weighting

We adapted the weighting of the loss elements
(Wang et al., 2017), which increases the error sig-
nal coming from selected examples. Instead of
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weighting the whole examples, we apply a token-
level approach as phenomena annotations contain
an expected word or phrase that requires context for
successful translation. We train the models using
the weighted negative log-likelihood loss function:

L = − 1

|Da|
∑

(xi,yi,ai)∼Da

|yi|∑

j=1

w(ai,j)log(ŷi,j),

(1)
where ŷi,j is the probability of the j-th token in i-th
example, Da is the annotated training dataset with
examples containing input and output sequences
(xi and yi respectively), as well as the token-level
annotations ai marking the contextually-dependent
tokens, and w(ai,j) is defined as:

w(ai,j) =

{
1 + λ, if contextually dependent,
1, otherwise,

(2)
for each token j in the i-th output sequence, where
λ is the hyper-parameter.

4.2 Metric-based Example Selection
A major issue with using annotations is that, ac-
cording to our experiments on data composition,
the model will improve only on the included phe-
nomena. To mitigate this, we propose to utilize the
model itself to mark contextually-rich examples.
Fernandes et al. (2023) proposed the Point-wise
Cross-Mutual Information (PCXMI) metric to mea-
sure the context reliance of the translations, which
is based on the output probabilities of the context-
aware MT model. For a particular example it is
calculated as:

PCXMI =

|y|∑

j=1

log
q(yj |yt<j , x, C)

q(yj |yt<j , x)
, (3)

where C is the context, and q represents the
context-aware MT model (returning token prob-
abilities, noted as q(yj |yt<j , x, C)) that is trained
to also be used as a sentence-level model (noted
as q(yj |yt<j , x)). We introduce a slightly modi-
fied metric that computes the maximum token-level
PCXMI for a given example:

MaxPCXMI = max
j

(
log

q(yj |yt<j , x, C)

q(yj |yt<j , x)

)
.

(4)
We motivate it by the fact that an example with even
a single token being dependent on context can be
considered a contextually-rich example (certainly

Method Requires Additional
Annotations Training

Fine-tuning ✓ ✓

Adapted D&R ✗ ✗

CoWord Dropout ✗ ✗

Head-tuning ✓ ✓

Weighting ✓ ✗

MaxPCXMI ✗ ✓

Table 1: Tested methods and whether they require anno-
tated dataset or employ additional fine-tuning.

the case for pronouns), which is better captured by
our metric. The proposed method consists of the
following steps:

1. train the model on context-aware data,

2. calculate the metric using the trained model for
the examples in the training dataset,

3. select top k examples (a hyper-parameter),

4. fine-tune the model on the selected subset.

While the method can be seen as similar to cur-
riculum learning (Zhang et al., 2018), we select
the examples that the model is already competent
at translating using context. Intuitively, this is a
positive feedback where the model learns to gener-
alize to the difficult examples by becoming better
at what it already knows.

5 Experiments

We experimentally evaluated Token-level Loss
Weighting and Metric-based Example Selection for
fine-tuning on encoder-decoder models and com-
pared them to the following baselines (Table 1 sum-
marizes their requirement of annotated dataset and
additional training):

• Fine-tuning (annotation-based) - simply fine-
tuning the model on the annotated data after the
context-aware training.

• CoWord Dropout (annotation-free; Fernandes
et al., 2021) - masking random tokens in the current
source sentence to force the model to use context
for translation, the probability of masking a token
is controlled by the hyper-parameter p.

• Adapted Divide and Rule (annotation-free;
Lupo et al., 2022) - splitting the current source
and target sentences in the middle and appending
the first parts to the context. Notably, this method
was introduced for the multi-encoder architecture
where a separate encoder was used for context sen-
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Figure 5: Accuracy of ctxPro English-to-German phenomena against BLEU on the IWSLT 2017 en-de testset of the
methods applied to OpusMT en-de model. Labels show: the number of epochs ("e"), CoWord Dropout probability
("p"), number of tuned heads ("h"), and weighting strength ("λ") hyper-parameters.

tences. Contextual parameters were trained only in
the second, context-aware phase of training with
the rest of the model frozen. We adapt it to the
single-encoder architectures we use in this study
by training the whole model in the context-aware
training phase.

• Head-tuning (annotation-based; Mąka et al.,
2025) - training selected attention heads to attend
the context cue, available only for Gender.

We evaluated all methods in the single language
pair (English-to-German) setting and annotation-
free methods in the encoder-decoder multilingual
setting (due to the lack of exhaustive annotations
for the dataset; see Table 1). We used the same base
sentence-level models: OpusMT en-de and NLLB-
200 600M, respectively. For English-to-German,
we trained on the full IWSLT 2017 en-de dataset
with ctxPro annotations, and for multilingual, we
sampled 50,000 examples for each language di-
rection from the OS-rand dataset. We used the
same hyper-parameters shared by all methods as
in previous experiments (see Appendix C for more
details) for both training and fine-tuning with the
exception of Head-tuning where we applied the
hyper-parameters from the original paper. In the
English-to-German setting, we repeated the train-
ing 5 times with different seeds and averaged the
results. In the multi-lingual setting, we performed
a single training run for all encoder-decoder mod-
els with the same seed. Fine-tuning used the base
model trained with the corresponding seed.

5.1 Single Language Pair Results
We tested several parameters for most methods.
For fine-tuning-based models, we trained for e ∈
{1, 2, 5} epochs and utilized only the examples
with the maximum context size. For Weighting we
set the λ parameter to 2, 5, and 10. In addition to

the values of p for CoWord Dropout recommended
by the authors (0.1, 0,2), we also included the value
of 0.3. For Metric-based example selection, we set
k=30,000 based on the number of annotated exam-
ples in the dataset, and used the MaxPCXMI metric
(in Appendix E we present the comparison to the
PCXMI metric). For Head-tuning we selected top
h ∈ {1, 2, 3} heads from Mąka et al. (2025). Re-
sults in terms of accuracy on the ctxPro dataset and
BLEU on the IWSLT testset can be seen in Figure 5.
Extended results are presented in Appendix E and
calculations of statistical significance of the results
can be seen in Appendix F.

It can be seen that with four metrics, the mod-
els’ performance varies, and improvement in one
metric comes at a cost of a reduction in another.
In particular, we observe a negative relation be-
tween ctxPro accuracies and BLEU for all methods
with the increase of the hyper-parameters. This
necessitates examining the Pareto front in order to
assess the performance of the methods. Metric-
based example selection achieved highest improve-
ment in Formality and outperformed the annotation-
based selection for fine-tuning in Formality and
Auxiliary, and achieved similar results for Gen-
der, with a smaller decrease in BLEU. Head-tuning
showed improvement only on Gender but with
smaller drop in BLEU. Methods applied during
training (Weighting, CoWord Dropout, and Divide
and Rule) showed a smaller reduction in BLEU
compared to fine-tuning. We attribute this to the
smaller discrepancy in the dataset distribution be-
tween training and evaluation. Weighting outper-
formed CoWord Dropout on Gender and Auxiliary.
Conversely, CoWord Dropout achieved the highest
accuracy on Auxiliary (with Weighting being the
second-best) but did not show any improvement for
Gender and Formality. Notably, the highest reduc-
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Model BLEU Gender Formality Auxiliary Inflection Animacy
Adapted D&R -0.05 -0.06 -0.19 -0.16 -0.03 +0.07
CoWord p=0.1 -0.09 +0.02 -0.16 +0.35 -0.10 +0.16
CoWord p=0.2 -0.11 +0.07 -0.28 +0.65 -0.21 +0.01
CoWord p=0.3 -0.08 +0.01 -0.42 +0.97 -0.29 -0.27
MaxPCXMI e=1 -0.42 +1.13 +0.05 +3.41 +0.44 +1.08
MaxPCXMI e=2 -0.45 +1.42 +0.05 +4.25 +0.57 +1.10
MaxPCXMI e=5 -0.50 +1.93 +0.11 +5.80 +0.76 +1.64

Table 2: The averaged (over language directions) difference from the baseline in terms of BLEU on OpenSubtitles
2018 testsets and ctxPro phenomena accuracies for the tested methods applied to NLLB-200 600M model. Number
of epochs is noted as "e", and CoWord Dropout probability as "p".

tion in BLEU was around 1% compared to the base-
line. Lack of improvement exhibited by Adapted
Divide and Rule can be attributed to our adapta-
tion implementation, which did not utilize param-
eter freezing as in the original paper. Among all
methods, metric-based example selection achieved
the highest average ctxPro accuracy across phe-
nomena, while token-level loss weighting was the
most effective among annotation-based approaches,
demonstrating that both proposed techniques can
substantially improve context utilization.

5.2 Multilingual Results

We trained models based on NLLB-200 600M on
all relevant language-directions using annotation-
free methods (due to the lack of exhaustive annota-
tions on the OpenSubtitles dataset; see Table 1) to
assess their performance in the multilingual setting.
For CoWord Dropout, we used the same values of
p (0.1, 0.2, and 0.3), and for Metric-based example
selection, we set k=10,000 per language direction
and the number of epochs equal to 1, 2, and 5. The
results aggregated over language directions can be
seen in Table 2 and extended results in Appendix E.

Fine-tuning on examples selected by Max-
PCXMI outperformed all baselines in terms of
ctxPro accuracy across phenomena, with the high-
est improvement of 5.8, 1.9, and 1.6 percentage
points (on average) for Auxiliary, Gender, and
Animacy, respectively. Contrary to the English-
to-German experiments, no improvement (on av-
erage) was observed for Formality. This was
caused by a drop of up to 1 percentage point
in the English-to-French direction, which offsets
small gains in other language directions. These
accuracy improvements came at the cost of a
greater reduction in BLEU compared to other meth-
ods, and both trends—accuracy gains and BLEU
drops—intensified with more fine-tuning epochs,

mirroring the patterns seen in the single-language-
direction experiments. It should be noted that Max-
PCXMI was effectively trained for more updates
than other methods in this experiment but addi-
tional training did not improve their results (as can
be seen in Appendix E).

6 Conclusions

This work provided a systematic empirical evalua-
tion of the influence of training data composition,
in terms of contextually rich examples, on the con-
text utilization capabilities for MT models. By sys-
tematically adapting the proportion of contextually
rich examples in the training data, we demonstrated
that such data sparsity is the key bottleneck in learn-
ing to leverage context efficiently. Crucially, we
found that (1) models do not generalize well across
different contextual phenomena (e.g. gender or for-
mality) and (2) while there is some cross-lingual
transfer, it was not significantly higher between
languages in the same linguistic sub-family.

Motivated by these findings, we proposed two
methods designed to mitigate the effect of data spar-
sity in context-aware MT: token-level loss weight-
ing (based on token-level annotations of context-
dependent words) and metric-based instance selec-
tion (fine-tuning on most contextually important
examples). Both methods significantly improved
context utilization without the need for extensive
architectural changes or additional annotated data.
Notably, the metric based method showed strong
gains across multiple phenomena and language di-
rections.

In practical terms, data composition and targeted
training should be considered as potential solutions
to developing strong context-aware MT models. In
future work, combine the strengths of weighting
and metric-based example selection.
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7 Limitations

While we investigate many language directions and
three sub-families, all of them come from the Indo-
European family. This limitation was imposed by
the language directions covered by ctxPro toolset.
Additionally, for the single language pair setting,
we only tested English-to-German direction. We
suspect that the uncovered effects of data composi-
tion go beyond the tested language pairs, but this
claim has not been tested experimentally.

For encoder-decoder architectures, we only
tested the single encoder approach (standard Trans-
former) and multi-encoder models lay beyond the
scope of this study. For decoder-only (LLM) set-
ting, we based our experiments on a single model
(Towerbase 7B). Both different model sizes and
families could exhibit different behaviors. Further-
more, we tested the proposed methods for enhanc-
ing context utilizaiton only on the encoder-decoder
models.
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Paweł Mąka, Yusuf Can Semerci, Jan Scholtes, and
Gerasimos Spanakis. 2025. Analyzing the attention
heads for pronoun disambiguation in context-aware
machine translation models. In Proceedings of the
31st International Conference on Computational Lin-
guistics, pages 6348–6377, Abu Dhabi, UAE. Asso-
ciation for Computational Linguistics.

Ali Marashian, Enora Rice, Luke Gessler, Alexis
Palmer, and Katharina von der Wense. 2025. From
priest to doctor: Domain adaptation for low-resource
neural machine translation. In Proceedings of the
31st International Conference on Computational Lin-
guistics, pages 7087–7098, Abu Dhabi, UAE. Asso-
ciation for Computational Linguistics.

Sameen Maruf, André F. T. Martins, and Gholamreza
Haffari. 2019. Selective attention for context-aware
neural machine translation. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 3092–3102, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Lesly Miculicich, Dhananjay Ram, Nikolaos Pappas,
and James Henderson. 2018. Document-level neural
machine translation with hierarchical attention net-
works. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2947–2954, Brussels, Belgium. Association
for Computational Linguistics.

Wafaa Mohammed and Vlad Niculae. 2024. On measur-
ing context utilization in document-level MT systems.
In Findings of the Association for Computational Lin-
guistics: EACL 2024, pages 1633–1643, St. Julian’s,
Malta. Association for Computational Linguistics.

Mathias Müller, Annette Rios, Elena Voita, and Rico
Sennrich. 2018. A large-scale test set for the evalua-
tion of context-aware pronoun translation in neural
machine translation. In Proceedings of the Third
Conference on Machine Translation: Research Pa-
pers, pages 61–72, Brussels, Belgium. Association
for Computational Linguistics.

NLLB Team, Marta R. Costa-jussà, James Cross, Onur
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Barrault,
Gabriel Mejia-Gonzalez, Prangthip Hansanti, and
20 others. 2022. No language left behind: Scaling
human-centered machine translation.

Jianhui Pang, Fanghua Ye, Derek Fai Wong, Dian Yu,
Shuming Shi, Zhaopeng Tu, and Longyue Wang.
2025. Salute the classic: Revisiting challenges of ma-
chine translation in the age of large language models.
Transactions of the Association for Computational
Linguistics, 13:73–95.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Matt Post and Marcin Junczys-Dowmunt. 2023. Escap-
ing the sentence-level paradigm in machine transla-
tion. arXiv preprint arXiv:2304.12959.

Matt Post and Marcin Junczys-Dowmunt. 2024. Evalu-
ation and large-scale training for contextual machine
translation. In Proceedings of the Ninth Conference
on Machine Translation, pages 1125–1139, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Noam M. Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
ArXiv, abs/1804.04235.

Zewei Sun, Mingxuan Wang, Hao Zhou, Chengqi Zhao,
Shujian Huang, Jiajun Chen, and Lei Li. 2022. Re-
thinking document-level neural machine translation.
In Findings of the Association for Computational
Linguistics: ACL 2022, pages 3537–3548, Dublin,
Ireland. Association for Computational Linguistics.

27414

https://doi.org/10.18653/v1/2022.acl-long.312
https://doi.org/10.18653/v1/2022.acl-long.312
https://doi.org/10.18653/v1/2020.acl-main.321
https://doi.org/10.18653/v1/2020.acl-main.321
https://aclanthology.org/2024.findings-eacl.127/
https://aclanthology.org/2024.findings-eacl.127/
https://aclanthology.org/2025.coling-main.424/
https://aclanthology.org/2025.coling-main.424/
https://aclanthology.org/2025.coling-main.424/
https://aclanthology.org/2025.coling-main.472/
https://aclanthology.org/2025.coling-main.472/
https://aclanthology.org/2025.coling-main.472/
https://doi.org/10.18653/v1/N19-1313
https://doi.org/10.18653/v1/N19-1313
https://doi.org/10.18653/v1/D18-1325
https://doi.org/10.18653/v1/D18-1325
https://doi.org/10.18653/v1/D18-1325
https://aclanthology.org/2024.findings-eacl.113/
https://aclanthology.org/2024.findings-eacl.113/
https://doi.org/10.18653/v1/W18-6307
https://doi.org/10.18653/v1/W18-6307
https://doi.org/10.18653/v1/W18-6307
https://doi.org/10.1162/tacl_a_00730
https://doi.org/10.1162/tacl_a_00730
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/2024.wmt-1.112
https://doi.org/10.18653/v1/2024.wmt-1.112
https://doi.org/10.18653/v1/2024.wmt-1.112
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://api.semanticscholar.org/CorpusID:4786918
https://api.semanticscholar.org/CorpusID:4786918
https://doi.org/10.18653/v1/2022.findings-acl.279
https://doi.org/10.18653/v1/2022.findings-acl.279


Jörg Tiedemann, Mikko Aulamo, Daria Bakshandaeva,
Michele Boggia, Stig-Arne Grönroos, Tommi Niem-
inen, Alessandro Raganato Yves Scherrer, Raul
Vazquez, and Sami Virpioja. 2023. Democratizing
neural machine translation with OPUS-MT. Lan-
guage Resources and Evaluation, (58):713–755.

Jörg Tiedemann and Yves Scherrer. 2017. Neural ma-
chine translation with extended context. In Proceed-
ings of the Third Workshop on Discourse in Machine
Translation, pages 82–92, Copenhagen, Denmark.
Association for Computational Linguistics.

Jörg Tiedemann and Santhosh Thottingal. 2020. OPUS-
MT — Building open translation services for the
World. In Proceedings of the 22nd Annual Confer-
enec of the European Association for Machine Trans-
lation (EAMT), Lisbon, Portugal.

Zhaopeng Tu, Yang Liu, Zhengdong Lu, Xiaohua Liu,
and Hang Li. 2017. Context gates for neural ma-
chine translation. Transactions of the Association for
Computational Linguistics, 5:87–99.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Elena Voita, Rico Sennrich, and Ivan Titov. 2019a.
Context-aware monolingual repair for neural ma-
chine translation. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 877–886, Hong Kong, China. Association for
Computational Linguistics.

Elena Voita, Rico Sennrich, and Ivan Titov. 2019b.
When a good translation is wrong in context: Context-
aware machine translation improves on deixis, ellip-
sis, and lexical cohesion. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 1198–1212, Florence, Italy. Asso-
ciation for Computational Linguistics.

Rui Wang, Masao Utiyama, Lemao Liu, Kehai Chen,
and Eiichiro Sumita. 2017. Instance weighting for
neural machine translation domain adaptation. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
1482–1488, Copenhagen, Denmark. Association for
Computational Linguistics.

Benjamin Warner, Antoine Chaffin, Benjamin Clavié,
Orion Weller, Oskar Hallström, Said Taghadouini,
Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom
Aarsen, and 1 others. 2024. Smarter, better, faster,
longer: A modern bidirectional encoder for fast,
memory efficient, and long context finetuning and
inference. arXiv preprint arXiv:2412.13663.

Rachel Wicks and Matt Post. 2023. Identifying context-
dependent translations for evaluation set production.
In Proceedings of the Eighth Conference on Machine

Translation, pages 452–467, Singapore. Association
for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, and 3 others. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Billy T. M. Wong and Chunyu Kit. 2012. Extending
machine translation evaluation metrics with lexical
cohesion to document level. In Proceedings of the
2012 Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural
Language Learning, pages 1060–1068, Jeju Island,
Korea. Association for Computational Linguistics.

Kayo Yin, Patrick Fernandes, Danish Pruthi, Aditi
Chaudhary, André F. T. Martins, and Graham Neu-
big. 2021. Do context-aware translation models pay
the right attention? In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 788–801, Online. Association
for Computational Linguistics.

Pei Zhang, Boxing Chen, Niyu Ge, and Kai Fan. 2020.
Long-short term masking transformer: A simple but
effective baseline for document-level neural machine
translation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1081–1087, Online. Association
for Computational Linguistics.

Xuan Zhang, Gaurav Kumar, Huda Khayrallah, Kenton
Murray, Jeremy Gwinnup, Marianna J Martindale,
Paul McNamee, Kevin Duh, and Marine Carpuat.
2018. An empirical exploration of curriculum learn-
ing for neural machine translation. arXiv preprint
arXiv:1811.00739.

Zaixiang Zheng, Xiang Yue, Shujian Huang, Jiajun
Chen, and Alexandra Birch. 2021. Towards making
the most of context in neural machine translation.
In Proceedings of the Twenty-Ninth International
Conference on International Joint Conferences on
Artificial Intelligence, pages 3983–3989.

Zhang Zhuocheng, Shuhao Gu, Min Zhang, and Yang
Feng. 2023. Scaling law for document neural ma-
chine translation. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
8290–8303, Singapore. Association for Computa-
tional Linguistics.

27415

https://doi.org/10.1007/s10579-023-09704-w
https://doi.org/10.1007/s10579-023-09704-w
https://doi.org/10.18653/v1/W17-4811
https://doi.org/10.18653/v1/W17-4811
https://doi.org/10.1162/tacl_a_00048
https://doi.org/10.1162/tacl_a_00048
https://doi.org/10.18653/v1/D19-1081
https://doi.org/10.18653/v1/D19-1081
https://doi.org/10.18653/v1/P19-1116
https://doi.org/10.18653/v1/P19-1116
https://doi.org/10.18653/v1/P19-1116
https://doi.org/10.18653/v1/D17-1155
https://doi.org/10.18653/v1/D17-1155
https://doi.org/10.18653/v1/2023.wmt-1.42
https://doi.org/10.18653/v1/2023.wmt-1.42
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://aclanthology.org/D12-1097/
https://aclanthology.org/D12-1097/
https://aclanthology.org/D12-1097/
https://doi.org/10.18653/v1/2021.acl-long.65
https://doi.org/10.18653/v1/2021.acl-long.65
https://doi.org/10.18653/v1/2020.emnlp-main.81
https://doi.org/10.18653/v1/2020.emnlp-main.81
https://doi.org/10.18653/v1/2020.emnlp-main.81
https://doi.org/10.18653/v1/2023.findings-emnlp.556
https://doi.org/10.18653/v1/2023.findings-emnlp.556


A Details of ctxPro Dataset

In this section, we provide a short description of
the context-dependent phenomena that can be iden-
tified by the ctxPro toolset (Wicks and Post, 2023):

• Gender (anaphoric pronouns) - translating a
pronoun from a non-gendered language to a lan-
guage with gendered nouns. Available for English-
to-X language directions, where X is {German,
French, Polish, Russian, and Spanish}.

• Formality (anaphoric pronouns) - translating
into a language with different second-person pro-
nouns distinguishing intimate from formal relation-
ships between speakers from a language lacking
this distinction. Available for English-to-X lan-
guage directions, where X is {German, French,
Polish, Russian, and Spanish}.

• Animacy (anaphoric pronouns) - translating
into English, a language that distinguishes between
animate (she/he) and inanimate (it) pronouns, from
a language that does not exhibit this distinction.
Available for X-to-English language directions,
where X is {German, French, Polish, Russian, and
Spanish}.

• Auxiliary (verb phrase ellipsis) - translating
into a language that require the head of the verb
phrase from a language that allows for only the
modal or auxiliary to be used. Available for
English-to-X language directions, where X is {Ger-
man, French, Polish, Russian, and Spanish}.

• Inflection (verb phrase ellipsis) - translating
into a language with noun morphology dependent
on the grammatical role from a language where this
is not the case. Available for English-to-Polish and
English-to-Russian language directions.

In Table 3 we present the number of examples in
the ctxPro dataset with a particular antecedent dis-
tance. Additionally, we present the proportion of
examples that have the antecedent distance larger
than three, which is beyond the context size avail-
able to our models. Note that for Formality, the
antecedent distances are not specified. We refer the
reader to the original paper (Wicks and Post, 2023)
for more details.

B Composition of the Datasets

In this section, we describe how the constructed
datasets were created. Table 4 shows the sizes
of the dense component datasets. For the Pure
IWSLT setting, we start with the IWSLT-sparse

(123,000 examples with no annotations) and pro-
gressively replace it with the examples sampled
from IWSLT-dense. The steps are based on the
size of the IWSLT-dense dataset for a particular
phenomenon: 3,000 and 6,915 (full size) for Gen-
der, 10,000 and 21,977 (full size) for Formality,
and 19 (full size) for Auxiliary. For the IWSLT
+ OS setting, we start with the datasets formed
by combining IWSLT-sparse with examples sam-
pled from OS-rand. To maximize the density of
the resulting datasets, we set the number of exam-
ples sampled from OS-rand to be dependent on
the phenomenon and equal to the (rounded) size of
the OS-dense datasets: 12,000 for Gender, 17,000
for Formality, and 1,200 for Auxiliary. We start
by replacing examples from IWSLT-sparse (we re-
tain the steps from the Pure IWSLT setting). After
reaching the maximum density in the IWSLT por-
tion of the dataset, we start replacing OS-rand with
OS-dense in the following steps: 4,000, 8,000, and
12,000 for Gender, 6,000, 12,000, and 17,000 for
Formality, and 400, 800, and 1,200 for Auxiliary.

Tables 5, 6, and 7 show the composition of the
training datasets we used in the experiments for
Gender, Formality, and Auxiliary phenomena, re-
spectively. Each example was encoded with the
context size ranging from zero to the maximum
context size (three in our experiments), increasing
the size of the datasets four times.

In the multilingual experiments, we formed the
baseline training dataset by sampling 50,000 ex-
amples from OpenSubtitles (OS-rand) for each
language direction we considered. For each phe-
nomenon in a language direction, we replaced
examples with the rich ones: 6,900 for Gender,
10,000 for Formality, 1,200 for Auxiliary, 10,000
for Inflection, and 4,000 for Animacy.

C Details of Context-aware Training

We implemented all experiments in Huggingface
transformers framework (Wolf et al., 2020). We
trained the models in the following categories: sin-
gle language direction (OpusMT en-de3), multilin-
gual (NLLB-200 600M4), and LLM-based multilin-
gual (Towerbase 7B5). Additionally, we repeated
the experiments in the single language direction

3https://huggingface.co/Helsinki-NLP/
opus-mt-en-de

4https://huggingface.co/facebook/
nllb-200-distilled-600M

5https://huggingface.co/Unbabel/
TowerBase-7B-v0.1
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Direction Phenomenon Antecedent Distance
0 1 2 3 >3 % >3

En↔De Auxiliary 0 1754 498 256 672 21%
Gender 7307 13731 4814 2308 3480 11%
Animacy 5309 9493 3115 1362 1956 9%

En↔Es Auxiliary 0 4922 1051 323 664 10%
Gender 4126 6979 2702 1317 2392 14%
Animacy 2852 4102 1550 750 1291 12%

En↔Fr Auxiliary 0 5263 1327 474 1258 15%
Gender 11236 18037 6294 2921 4887 11%
Animacy 5468 8350 2873 1317 1992 10%

En↔It Auxiliary 0 3590 1018 344 972 16%
Gender 6117 7128 2630 1365 2173 11%
Animacy 3277 3708 1367 707 1057 10%

En↔Pl Auxiliary 0 5437 1180 391 1077 13%
Gender 17186 25242 8201 3906 5992 10%
inflection 0 12905 5094 3235 8766 29%
Animacy 3455 5565 1784 855 1245 10%

En↔Ru Auxiliary 0 6056 1467 402 742 9%
Gender 8227 14283 4873 2243 3322 10%
inflection 0 15042 4659 2746 7553 25%
Animacy 5460 9760 3422 1565 2323 10%

Table 3: Number of examples in ctxPro dataset with certain values for antecedent distance for used language
directions and phenomena. Antecedent distances larger than 3 were combined and we also show the proportion of
those examples in the dataset. Note that for Formality, the antecedent distance is not specified.

Dataset Language Gender Formality Auxiliary Inflection Animacy
IWSLT-dense En→De 6,915 21,977 19 - -
OS-dense En↔De 12,326 16,064 1,230 - 8,334

En↔Es 6,936 20,374 2,768 - 4,211
En↔Fr 16,804 10,858 3,314 - 7,904
En↔Pl 23,683 41,806 3,184 10,897 5,112
En↔Ru 8,141 14,211 3,443 10,971 4,237

Table 4: Sizes of the dense component datasets divided into phenomena (columns).

setting using randomly initialized OpusMT model
for which we performed sentence-level pre-training
on the mixture of IWSLT 2017 en-de training sub-
set and randomly sampled 2.5M sentences from
WMT 2019 en-de (Barrault et al., 2019) training
subset. We trained the models with Adafactor
optimizer (Shazeer and Stern, 2018) on a single
GPU (NVIDIA GeForce RTX 3090 24GB for Opus
MT en-de and NVIDIA H100 80GB for NLLB-
200 600M and Towerbase 7B). We used LoRA
(Hu et al., 2022) to fine-tune Towerbase models.
OpusMT en-de contain 163M parameters, NLLB-
200 600M contain 615M parameters, and Tower-
base 7B contain 6,770M parameters (32M trainable
parameters through LoRA). The inputs during train-

ing and prompt used for Towerbase models can be
seen in Listings 1 and 2 respectively. We calcu-
lated loss during training only based on the target
language parts of the examples corresponding to
the generations of the model.

Listing 1: Input template used for training Towerbase
models. The number of sentences in context is the same
for source and target sides but can vary from example to
example. Sentences are separated by the "<sep>" string.� �
[src_lang]: [src_ctx] <sep> [src] \n
[tgt_lang]: [tgt_ctx] <sep> [tgt]� �
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Setting IWSLT-sparse IWSLT-dense OS-rand OS-dense Total
Pure IWSLT 123,000 0 0 0 123,000

120,000 3,000 0 0 123,000
116,085 6,915 0 0 123,000

IWSLT+OS 123,000 0 12,000 0 135,000
120,000 3,000 12,000 0 135,000
116,085 6,915 12,000 0 135,000
116,085 6,915 8,000 4,000 135,000
116,085 6,915 4,000 8,000 135,000
116,085 6,915 0 12,000 135,000

Table 5: Number of examples from datasets that were used to compose training datasets (in rows) for the Gender
phenomenon in the single language direction (English-to-German) setting.

Setting IWSLT-sparse IWSLT-dense OS-rand OS-dense Total
Pure IWSLT 123,000 0 0 0 123,000

113,000 10,000 0 0 123,000
101,023 21,977 0 0 123,000

IWSLT+OS 123,000 0 17,000 0 140,000
113,000 10,000 17,000 0 140,000
101,023 21,977 17,000 0 140,000
101,023 21,977 11,000 6,000 140,000
101,023 21,977 5,000 12,000 140,000
101,023 21,977 0 17,000 140,000

Table 6: Number of examples from datasets that were used to compose training datasets (in rows) for the Formality
phenomenon in the single language direction (English-to-German) setting.

Listing 2: Prompt template used for generation with
Towerbase models. The number of context sentences
can vary. Sentences are separated by the "<sep>" string.� �
[src_lang]: [src_ctx] <sep> [src] \n
[tgt_lang]:� �

The hyper-parameters are presented in Table 8.
We tuned the hyper-parameters (learning rate, batch
size, number of epochs) during the preliminary
experiments on OpusMT en-de model with context
size of one trained on IWSLT 2017 English-to-
German dataset. Hyper-parametes for sentence-
level pre-training were tuned on WMT 2019 en-de
evaluation subset, and on randomly sampled subset
of OpenSubtitles en-de dataset for the fine-tuning
of Towerbase 7B model.

D Extended Data Composition Results

In this section, we present the extended results
of the data composition experiments. For single
language pair setting, we measured COMET (Rei
et al., 2020) (based on Unbabel/wmt22-comet-da)
on the IWSLT 2017 en-de testset and evaluated the

models on the ContraPro (Müller et al., 2018) con-
trastive evaluation. The results for the Pure IWSLT
and IWSLT+OS settings can be found in Tables 9
and 10, respectively. The results for English-to-
German language direction with models randomly
initialized can be seen in Figure 6.

For the multilingual setting, we additionally mea-
sured BLEU (we used the sacreBLEU library (Post,
2018) using the default parameters) and COMET
on the testsets formed by sampling 20,000 exam-
ples from OpenSubtitles 2018 for each language
direction. The results for models based on NLLB-
200 600M can be seen in Tables 11 and 12 for
BLEU and COMET, respectively. The results for
models based on Towerbase 7B can be seen in Ta-
bles 13 (BLEU) and 14 (COMET).

E Extended Fine-tuning Results

For the English-to-German experiment, apart
from BLEU and ctxPro accuracy, we also mea-
sured COMET (Rei et al., 2020) (based on
Unbabel/wmt22-comet-da) on the IWSLT 2017
en-de testset and the accuracy on the ContraPro
contrastive evaluation. The results (including
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Setting IWSLT-sparse IWSLT-dense OS-rand OS-dense Total
Pure IWSLT 123,000 0 0 0 123,000

122,981 19 0 0 123,000
IWSLT+OS 123,000 0 1,200 0 124,200

122,981 19 1,200 0 124,200
122,981 19 800 400 124,200
122,981 19 400 800 124,200
122,981 19 0 1,200 124,200

Table 7: Number of examples from datasets that were used to compose training datasets (in rows) for the Auxiliary
phenomenon in the single language direction (English-to-German) setting.

Hyper-parameter Sentence-level OpusMT NLLB-200 Towerbase
Pre-training Fine-tuning Fine-tuning Fine-tuning

Optimizer Adafactor Adafactor Adafactor Adafactor
Learning Rate 5e-5 1e-5 1e-5 1e-5
LR Scheduler Linear Inverse Sqrt Inverse Sqrt Inverse Sqrt
LR Warmup Ratio 0.0 0.1 0.1 0.1
Weight Decay 0.01 0.01 0.01 0.01
Batch Size 32 32a 32 16
Gradient Accumulation Steps 16 16a 16 4
Num Epoch 30 10 10 3
Precission fp16 fp16 fp16 bf16
Seeds 1,2,3,4,5 1,2,3,4,5 1 1
Max Length 512 512 1024 2048
Max Context Size - 3 3 3
Beam size 5 5 5 1b

Lora alpha - - - 32
Lora r - - - 16

Table 8: The hyper-parameters of training and fine-tuning.
a For the cases where the CUDA Out Of Memory error occurred, we reduced the batch size to 16 and increased the
Gradient Accumulation Steps to 32, keeping the same effective size of the batch.
b For Towerbase models, we use the greedy decoding strategy.

Dataset Count COMET ContraPro
Sparse 0 0.8415 69.23
Gender 3,000 0.8417 74.70

6,915 0.8417 78.45
Formality 10,000 0.8429 69.55

21,977 0.8430 70.02
Auxiliary 19 0.8413 69.14

Table 9: Performance in terms of COMET on IWSLT
2017 en-de testset and ContraPro accuracy for the mod-
els based on OpusMT en-de in the Pure IWSLT setting
trained on datasets with different numbers of examples
annotated with different phenomena.

BLEU and ctxPro accuracies) can be seen in Ta-
ble 15.

Next, we present the results of Metric-based se-

lection of examples for fine-tuning for two metrics:
PCXMI (Fernandes et al., 2023) and MaxPCXMI
(ours). We fine-tuned the models for 1, 2, and 5
epochs and repeated the experiment 5 times with
different seeds (using the base context-aware model
trained with the corresponding seed). The averaged
results can be seen in Figure 7. Selecting exam-
ples based on MaxPCXMI outperforms PCXMI
in Gender and Formality at a lower reduction in
BLEU. PCXMI achieves a better increase in Auxil-
iary but reduces BLEU even below the level of the
annotation-based method.

The un-aggregated results of the trained models
for each language direction in the multilingual ex-
periment can be seen in Figure 8 (including models
trained for one more epoch) and Tables 16 and 17
for ctxPro accuracies, BLEU and COMET, respec-
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Figure 6: Measured metrics of BLEU on IWSLT 2017 testset, and ctxPro accuracy on Gender, Formality, and
Auxiliary phenomena (in columns) of the randomly initialized models trained on the datasets with varying amounts
of contextually-rich examples of Gender, Formality, and Auxiliary phenomena (in rows). Shows two experimental
settings: Pure IWSLT and combined IWSLT+OS.

Figure 7: Accuracy of ctxPro English-to-German phenomena (Gender, Formality, and Auxiliary) against BLEU
on the IWSLT 2017 en-de testset of the fine-tuned models with Metric-based (PCXMI and MaxPCXMI) and
annotation-based (for comparison) selection of examples. Models are based on OpusMT en-de. Labels show the
number of epochs ("e").

tively.

F Statistical Significance

In this section, we calculate the statistical signifi-
cance of the fine-tuning results on the single lan-
guage pair setting. In particular, we employ the
paired bootstrap resampling method (Koehn, 2004)
to calculate whether the differences in obtained re-
sults between tested methods are statistically signif-
icant. We use sacreBLEU (Post, 2018) implementa-
tion extended to other metrics. To include the runs
with all seeds, we concatenate the predictions (as
well as references) for all runs of a particular model.
The results in terms of p-values of the paired boot-
strapping of the results are presented in Tables 18

to 22 for: BLEU on the IWSLT 2017 en-de testset,
COMET on the IWSLT 2017 en-de testset, ctxPro
Gender accuracy, ctxPro Formality accuracy, and
ctxPro Auxiliary accuracy, respectively.
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Figure 8: Measured ctxPro accuracy on all phenomena for each of the relevant language directions (in columns) of
tested methods (in rows) applied to NLLB-200 600M model.

Dataset Count COMET ContraPro
Gender 0 0.8417 70.28

3,000 0.8417 75.03
6,915 0.8420 78.52

10,915 0.8419 83.58
14,915 0.8418 84.77
18,915 0.8420 85.24

Formality 0 0.8416 70.15
10,000 0.8426 70.59
21,977 0.8428 71.12
27,977 0.8429 71.04
33,977 0.8429 70.85
38,977 0.8430 71.03

Auxiliary 0 0.8414 69.47
19 0.8415 69.39

419 0.8415 69.60
819 0.8415 69.75

1,219 0.8416 69.79

Table 10: Performance in terms of COMET on IWSLT
2017 en-de testset and ContraPro accuracy for the mod-
els based on OpusMT en-de in the IWSLT+OS setting
trained on datasets with different numbers of examples
annotated with different phenomena.
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Model En-De En-Es En-Fr En-Pl En-Ru De-En Es-En Fr-En Pl-En Ru-En
Baseline 26.50 37.68 29.39 21.98 24.49 32.04 41.99 32.84 29.42 31.35
Gender
En-De 26.66 37.61 29.27 21.85 24.46 31.98 42.03 32.87 29.54 31.32
En-Es 26.88 37.60 29.33 22.12 24.52 32.03 41.96 32.86 29.46 31.36
En-Fr 26.75 37.53 29.16 22.05 24.41 32.01 41.97 32.87 29.50 31.33
En-Pl 26.80 37.57 29.21 21.54 24.48 32.05 42.00 32.86 29.53 31.34
En-Ru 26.78 37.60 29.56 21.91 24.45 32.01 42.04 32.81 29.52 31.41
Formality
En-De 26.61 37.27 29.29 21.75 24.44 31.98 42.05 32.85 29.52 31.31
En-Es 26.58 37.29 29.43 21.65 24.57 32.01 42.04 32.84 29.49 31.39
En-Fr 26.70 37.63 29.67 21.89 24.48 32.02 41.99 32.92 29.52 31.37
En-Pl 26.62 37.38 29.44 21.83 24.35 32.03 42.00 32.88 29.44 31.23
En-Ru 26.88 37.53 29.36 22.05 24.22 32.04 42.03 32.91 29.50 31.39
Auxiliary
En-De 26.86 37.57 29.26 21.77 24.48 32.01 42.08 32.91 29.51 31.42
En-Es 26.88 37.44 29.38 22.01 24.46 32.09 41.98 32.85 29.46 31.40
En-Fr 26.94 37.53 29.56 21.97 24.42 32.01 41.99 32.83 29.51 31.28
En-Pl 26.65 37.69 29.33 21.70 24.47 32.04 42.05 32.82 29.47 31.26
En-Ru 26.73 37.50 29.35 22.03 24.55 32.08 41.95 32.84 29.51 31.36
Inflection
En-Pl 26.95 37.58 29.41 21.68 24.59 32.07 41.98 32.87 29.49 31.40
En-Ru 26.80 37.63 29.31 21.90 24.43 32.06 42.04 32.85 29.51 31.30
Animacy
De-En 26.80 37.43 29.32 21.84 24.65 32.05 42.05 32.84 29.48 31.41
Es-En 26.83 37.59 29.39 22.20 24.50 32.02 41.97 32.81 29.51 31.27
Fr-En 26.93 37.70 29.23 21.85 24.55 32.04 42.02 32.88 29.46 31.27
Pl-En 26.71 37.55 29.35 21.89 24.46 32.09 42.01 32.88 29.44 31.35
Ru-En 26.83 37.51 29.35 21.73 24.48 32.00 41.95 32.86 29.48 31.35

Table 11: BLEU scores for the models based on NLLB-200 600M trained on datasets with different densities of
annotated examples in the multilingual setting on the test subsets of the OpenSubtitles 2018 datasets for all relevant
language pairs.

Model En-De En-Es En-Fr En-Pl En-Ru De-En Es-En Fr-En Pl-En Ru-En
Baseline 0.8023 0.8459 0.8005 0.8171 0.8321 0.8182 0.8522 0.8192 0.8009 0.8086
Gender
En-De 0.8025 0.8456 0.8001 0.8171 0.8325 0.8182 0.8522 0.8189 0.8011 0.8085
En-Es 0.8025 0.8462 0.8004 0.8172 0.8326 0.8181 0.8521 0.8193 0.8011 0.8086
En-Fr 0.8023 0.8456 0.8000 0.8172 0.8322 0.8182 0.8521 0.8192 0.8011 0.8085
En-Pl 0.8025 0.8458 0.8004 0.8176 0.8324 0.8182 0.8522 0.8193 0.8011 0.8084
En-Ru 0.8021 0.8456 0.7999 0.8168 0.8321 0.8182 0.8523 0.8189 0.8009 0.8086
Formality
En-De 0.8023 0.8456 0.8002 0.8168 0.8324 0.8181 0.8522 0.8190 0.8010 0.8084
En-Es 0.8026 0.8455 0.8003 0.8171 0.8325 0.8182 0.8523 0.8191 0.8011 0.8087
En-Fr 0.8024 0.8458 0.8008 0.8173 0.8321 0.8183 0.8522 0.8192 0.8011 0.8087
En-Pl 0.8024 0.8456 0.8005 0.8176 0.8325 0.8185 0.8523 0.8192 0.8009 0.8085
En-Ru 0.8022 0.8456 0.8001 0.8171 0.8318 0.8183 0.8524 0.8190 0.8009 0.8085
Auxiliary
En-De 0.8023 0.8458 0.8001 0.8171 0.8321 0.8185 0.8524 0.8190 0.8011 0.8085
En-Es 0.8024 0.8458 0.8006 0.8174 0.8327 0.8185 0.8522 0.8191 0.8011 0.8085
En-Fr 0.8025 0.8455 0.7999 0.8165 0.8322 0.8181 0.8521 0.8189 0.8010 0.8085
En-Pl 0.8026 0.8458 0.8001 0.8170 0.8321 0.8183 0.8522 0.8191 0.8009 0.8083
En-Ru 0.8024 0.8457 0.8001 0.8169 0.8326 0.8183 0.8520 0.8190 0.8009 0.8085
Inflection
En-Pl 0.8025 0.8458 0.8004 0.8162 0.8323 0.8184 0.8522 0.8191 0.8010 0.8087
En-Ru 0.8021 0.8457 0.7999 0.8168 0.8309 0.8184 0.8523 0.8190 0.8010 0.8084
Animacy
De-En 0.8026 0.8458 0.8003 0.8174 0.8324 0.8184 0.8524 0.8188 0.8010 0.8085
Es-En 0.8025 0.8459 0.8005 0.8171 0.8328 0.8184 0.8522 0.8191 0.8009 0.8086
Fr-En 0.8021 0.8458 0.8000 0.8168 0.8325 0.8181 0.8523 0.8191 0.8008 0.8083
Pl-En 0.8021 0.8456 0.8004 0.8171 0.8322 0.8183 0.8522 0.8192 0.8008 0.8085
Ru-En 0.8022 0.8455 0.8003 0.8172 0.8321 0.8182 0.8521 0.8189 0.8008 0.8083

Table 12: COMET scores for the models based on NLLB-200 600M trained on datasets with different densities of
annotated examples in the multilingual setting on the test subsets of the OpenSubtitles 2018 datasets for all relevant
language pairs.
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Model En-De En-Es En-Fr En-Ru De-En Es-En Fr-En Ru-En
Baseline 25.93 32.78 29.45 21.56 31.06 42.23 33.84 28.40
Gender
En-De 25.81 32.83 29.09 20.81 31.72 41.94 32.74 28.13
En-Es 25.37 34.02 28.95 21.22 31.12 42.61 33.53 28.18
En-Fr 25.60 34.00 28.64 21.86 31.37 42.22 33.77 28.02
En-Ru 24.74 32.82 28.92 22.02 30.94 42.55 33.86 27.28
Formality
En-De 25.61 33.84 29.00 20.45 31.50 42.71 33.47 28.35
En-Es 25.87 33.61 28.87 22.05 31.40 41.37 33.96 29.01
En-Fr 25.46 33.63 29.35 22.10 30.86 41.40 33.78 27.55
En-Ru 25.43 32.55 29.45 22.65 30.84 42.76 33.81 27.80
Auxiliary
En-De 26.10 31.95 28.85 21.11 31.48 41.89 33.29 28.93
En-Es 25.66 32.33 29.03 21.44 31.50 41.95 33.64 27.94
En-Fr 25.75 33.30 29.19 21.91 31.12 42.26 33.83 28.76
En-Ru 25.60 33.71 28.96 22.24 31.77 41.57 33.89 28.30
Inflection
En-Ru 25.52 32.71 28.72 21.56 30.73 42.55 33.80 28.11
Animacy
De-En 25.07 34.34 28.87 21.31 30.88 41.92 33.42 28.66
Es-En 25.94 32.01 29.03 21.58 30.78 43.05 33.88 27.84
Fr-En 25.32 32.97 29.22 22.39 31.40 41.72 33.15 28.60
Ru-En 25.48 33.04 29.15 22.23 30.26 41.85 33.48 29.34

Table 13: BLEU scores for the models based on Towerbase 7B trained on datasets with different densities of
annotated examples in the multilingual setting on the test subsets of the OpenSubtitles 2018 datasets for all relevant
language pairs.

Model En-De En-Es En-Fr En-Ru De-En Es-En Fr-En Ru-En
Baseline 0.8003 0.8407 0.7979 0.8336 0.8186 0.8547 0.8236 0.8106
Gender
En-De 0.8013 0.8410 0.7981 0.8342 0.8193 0.8548 0.8239 0.8114
En-Es 0.8000 0.8412 0.7979 0.8340 0.8193 0.8546 0.8235 0.8113
En-Fr 0.8003 0.8412 0.7983 0.8340 0.8193 0.8547 0.8237 0.8110
En-Ru 0.8005 0.8409 0.7982 0.8348 0.8187 0.8540 0.8236 0.8108
Formality
En-De 0.8013 0.8409 0.7979 0.8344 0.8191 0.8547 0.8241 0.8114
En-Es 0.8004 0.8404 0.7978 0.8341 0.8192 0.8544 0.8235 0.8116
En-Fr 0.8005 0.8412 0.7988 0.8340 0.8188 0.8546 0.8238 0.8109
En-Ru 0.8007 0.8414 0.7979 0.8345 0.8185 0.8542 0.8236 0.8107
Auxiliary
En-De 0.8005 0.8405 0.7974 0.8339 0.8189 0.8545 0.8239 0.8112
En-Es 0.8005 0.8405 0.7978 0.8338 0.8188 0.8547 0.8236 0.8114
En-Fr 0.8006 0.8406 0.7979 0.8338 0.8189 0.8546 0.8236 0.8109
En-Ru 0.8004 0.8408 0.7982 0.8339 0.8190 0.8541 0.8236 0.8107
Inflection
En-Ru 0.8007 0.8409 0.7982 0.8335 0.8189 0.8546 0.8236 0.8108
Animacy
De-En 0.8002 0.8405 0.7978 0.8342 0.8190 0.8548 0.8231 0.8112
Es-En 0.8007 0.8405 0.7977 0.8340 0.8192 0.8550 0.8237 0.8110
Fr-En 0.8003 0.8407 0.7981 0.8337 0.8189 0.8544 0.8236 0.8109
Ru-En 0.8004 0.8409 0.7978 0.8337 0.8191 0.8545 0.8237 0.8111

Table 14: COMET scores for the models based on Towerbase 7B trained on datasets with different densities of
annotated examples in the multilingual setting on the test subsets of the OpenSubtitles 2018 datasets for all relevant
language pairs.
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Model BLEU COMET Gender Formality Auxiliary ContraPro
Baseline 33.93 0.8431 60.52% 38.63% 6.81% 78.88%
Fine-tuning e=1 33.60 0.8416 66.79% 39.30% 6.30% 83.02%
Fine-tuning e=2 33.59 0.8416 67.49% 39.34% 6.37% 83.78%
Fine-tuning e=5 33.60 0.8415 68.20% 39.49% 6.48% 84.50%
Head-tuning h=1 33.89 0.8428 63.28% 38.64% 6.43% 82.61%
Head-tuning h=2 33.85 0.8427 64.04% 38.58% 6.44% 83.40%
Head-tuning h=3 33.80 0.8425 64.75% 38.27% 6.45% 84.36%
Weighting λ=2 33.94 0.8430 64.35% 39.14% 7.18% 83.10%
Weighting λ=5 33.83 0.8430 65.72% 39.48% 7.67% 84.63%
Weighting λ=10 33.74 0.8426 66.24% 39.81% 8.10% 85.11%
Adapted D&R None 33.95 0.8429 60.77% 38.17% 7.01% 78.66%
CoWord p=0.1 33.98 0.8435 60.54% 38.72% 7.79% 78.65%
CoWord p=0.2 33.95 0.8436 60.47% 38.72% 8.22% 78.52%
CoWord p=0.3 33.88 0.8433 60.29% 38.68% 8.59% 78.39%
MaxPCXMI e=1 33.71 0.8420 66.16% 41.11% 6.84% 82.95%
MaxPCXMI e=2 33.70 0.8418 66.86% 41.44% 6.99% 83.79%
MaxPCXMI e=5 33.62 0.8414 67.31% 41.82% 7.18% 84.39%

Table 15: Performance in terms of BLEU and COMET on IWSLT 2017 en-de testset and ctxPro and ContraPro
accuracy for the different methods applied to OpusMT en-de model. Number of epochs is noted as "e", and CoWord
Dropout probability as "p", number of tuned heads as "h", and weighting strength as "λ".

Model En-De En-Es En-Fr En-Pl En-Ru De-En Es-En Fr-En Pl-En Ru-En
Baseline 26.50 37.68 29.39 21.98 24.49 32.04 41.99 32.84 29.42 31.35
Adapted D&R 26.50 37.00 29.48 22.00 24.44 32.05 42.01 32.88 29.50 31.30
CoWord p=0.1 26.72 37.48 28.86 21.89 24.27 32.10 41.97 32.77 29.41 31.31
CoWord p=0.2 26.45 37.31 29.27 22.01 24.25 32.05 41.88 32.75 29.35 31.30
CoWord p=0.3 26.58 37.61 29.48 21.95 24.15 32.11 41.82 32.68 29.28 31.22
MaxPCXMI e=1 26.00 37.04 28.71 21.23 24.02 31.89 41.78 32.73 29.35 30.76
MaxPCXMI e=2 26.04 37.02 28.59 21.34 23.90 31.81 41.81 32.71 29.31 30.68
MaxPCXMI e=5 26.09 36.93 28.74 21.29 23.85 31.78 41.65 32.62 29.22 30.46

Table 16: BLEU scores for the methods applied to NLLB-200 600M model in the multilingual setting on the test
subsets of the OpenSubtitles 2018 datasets for all relevant language pairs.

Model En-De En-Es En-Fr En-Pl En-Ru De-En Es-En Fr-En Pl-En Ru-En
Baseline 0.8023 0.8459 0.8005 0.8171 0.8321 0.8182 0.8522 0.8192 0.8009 0.8086
Adapted D&R 0.8026 0.8456 0.8000 0.8175 0.8322 0.8183 0.8522 0.8191 0.8011 0.8085
CoWord p=0.1 0.8023 0.8454 0.7994 0.8167 0.8317 0.8182 0.8521 0.8188 0.8006 0.8086
CoWord p=0.2 0.8015 0.8453 0.7994 0.8166 0.8316 0.8178 0.8518 0.8187 0.8002 0.8083
CoWord p=0.3 0.8014 0.8453 0.7990 0.8164 0.8313 0.8176 0.8516 0.8183 0.7996 0.8083
MaxPCXMI e=1 0.7990 0.8433 0.7963 0.8125 0.8296 0.8155 0.8501 0.8170 0.7988 0.8057
MaxPCXMI e=2 0.7987 0.8431 0.7958 0.8123 0.8296 0.8150 0.8499 0.8167 0.7982 0.8053
MaxPCXMI e=5 0.7974 0.8427 0.7947 0.8109 0.8285 0.8137 0.8490 0.8158 0.7970 0.8043

Table 17: COMET scores for the methods applied to NLLB-200 600M model in the multilingual setting on the test
subsets of the OpenSubtitles 2018 datasets for all relevant language pairs.
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Table 18: The p-values of the paired bootstrapping of the results in terms of BLEU on the IWSLT2017 English-to-
German testset for each pair of the models based on OpusMT en-de. Values <0.05 are in bold.
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Baseline - 0.045 0.243 0.103 0.192 0.001 0.001 0.001 0.001 0.001 0.001 0.319 0.001 0.001
CoWord p=0.1 0.045 - 0.085 0.007 0.124 0.001 0.001 0.001 0.001 0.001 0.001 0.069 0.001 0.001
CoWord p=0.2 0.243 0.085 - 0.018 0.372 0.001 0.001 0.001 0.001 0.001 0.001 0.281 0.001 0.001
CoWord p=0.3 0.103 0.007 0.018 - 0.049 0.001 0.001 0.001 0.001 0.001 0.001 0.080 0.107 0.002
Adapted D&R 0.192 0.124 0.372 0.049 - 0.001 0.001 0.001 0.001 0.001 0.001 0.243 0.002 0.001
Fine-tuning e=1 0.001 0.001 0.001 0.001 0.001 - 0.164 0.340 0.001 0.001 0.244 0.001 0.001 0.001
Fine-tuning e=2 0.001 0.001 0.001 0.001 0.001 0.164 - 0.217 0.001 0.002 0.138 0.001 0.001 0.001
Fine-tuning e=5 0.001 0.001 0.001 0.001 0.001 0.340 0.217 - 0.002 0.002 0.224 0.001 0.001 0.001
MaxPCXMI e=1 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 - 0.321 0.001 0.001 0.005 0.161
MaxPCXMI e=2 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.321 - 0.001 0.001 0.002 0.143
MaxPCXMI e=5 0.001 0.001 0.001 0.001 0.001 0.243 0.138 0.224 0.001 0.001 - 0.001 0.001 0.003
Weighting λ=2 0.319 0.069 0.281 0.080 0.243 0.001 0.001 0.001 0.001 0.001 0.001 - 0.001 0.001
Weighting λ=5 0.001 0.001 0.001 0.107 0.002 0.001 0.001 0.001 0.005 0.002 0.001 0.001 - 0.001
Weighting λ=10 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.161 0.143 0.003 0.001 0.001 -

Table 19: The p-values of the paired bootstrapping of the results in terms of COMET on the IWSLT2017 English-to-
German testset for each pair of the models based on OpusMT en-de. Values <0.05 are in bold.
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Baseline - 0.003 0.006 0.122 0.050 0.001 0.001 0.001 0.001 0.001 0.001 0.138 0.089 0.002
CoWord p=0.1 0.003 - 0.291 0.065 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
CoWord p=0.2 0.006 0.291 - 0.009 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001
CoWord p=0.3 0.122 0.065 0.009 - 0.015 0.001 0.001 0.001 0.001 0.001 0.001 0.066 0.043 0.001
Adapted D&R 0.050 0.001 0.001 0.015 - 0.001 0.001 0.001 0.001 0.001 0.001 0.127 0.191 0.068
Fine-tuning e=1 0.001 0.001 0.001 0.001 0.001 - 0.317 0.141 0.002 0.043 0.087 0.001 0.001 0.001
Fine-tuning e=2 0.001 0.001 0.001 0.001 0.001 0.317 - 0.103 0.007 0.064 0.072 0.001 0.001 0.001
Fine-tuning e=5 0.001 0.001 0.001 0.001 0.001 0.141 0.103 - 0.002 0.011 0.238 0.001 0.001 0.001
MaxPCXMI e=1 0.001 0.001 0.001 0.001 0.001 0.002 0.007 0.002 - 0.038 0.001 0.001 0.001 0.003
MaxPCXMI e=2 0.001 0.001 0.001 0.001 0.001 0.043 0.064 0.011 0.038 - 0.001 0.001 0.001 0.001
MaxPCXMI e=5 0.001 0.001 0.001 0.001 0.001 0.087 0.072 0.238 0.001 0.001 - 0.001 0.001 0.001
Weighting λ=2 0.138 0.001 0.002 0.066 0.127 0.001 0.001 0.001 0.001 0.001 0.001 - 0.170 0.001
Weighting λ=5 0.089 0.001 0.001 0.043 0.191 0.001 0.001 0.001 0.001 0.001 0.001 0.170 - 0.002
Weighting λ=10 0.002 0.001 0.001 0.001 0.068 0.001 0.001 0.001 0.003 0.001 0.001 0.001 0.002 -

Table 20: The p-values of the paired bootstrapping of the results in terms of ctxPro accuracy of the Gender
phenomenon for each pair of the models based on OpusMT en-de. Values <0.05 are in bold.
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Baseline - 0.159 0.014 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
CoWord p=0.1 0.159 - 0.011 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
CoWord p=0.2 0.014 0.011 - 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
CoWord p=0.3 0.001 0.001 0.001 - 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Adapted D&R 0.001 0.001 0.001 0.001 - 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Fine-tuning e=1 0.001 0.001 0.001 0.001 0.001 - 0.001 0.001 0.001 0.058 0.001 0.001 0.001 0.001
Fine-tuning e=2 0.001 0.001 0.001 0.001 0.001 0.001 - 0.001 0.001 0.001 0.002 0.001 0.001 0.001
Fine-tuning e=5 0.001 0.001 0.001 0.001 0.001 0.001 0.001 - 0.001 0.001 0.001 0.001 0.001 0.001
MaxPCXMI e=1 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 - 0.001 0.001 0.001 0.001 0.166
MaxPCXMI e=2 0.001 0.001 0.001 0.001 0.001 0.058 0.001 0.001 0.001 - 0.001 0.001 0.001 0.001
MaxPCXMI e=5 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 - 0.001 0.001 0.001
Weighting λ=2 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 - 0.001 0.001
Weighting λ=5 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 - 0.001
Weighting λ=10 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.166 0.001 0.001 0.001 0.001 -

27425



Table 21: The p-values of the paired bootstrapping of the results in terms of ctxPro accuracy of the Formality
phenomenon for each pair of the models based on OpusMT en-de. Values <0.05 are in bold.
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Baseline - 0.002 0.002 0.027 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
CoWord p=0.1 0.002 - 0.269 0.110 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
CoWord p=0.2 0.002 0.269 - 0.019 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
CoWord p=0.3 0.027 0.110 0.019 - 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Adapted D&R 0.001 0.001 0.001 0.001 - 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Fine-tuning e=1 0.001 0.001 0.001 0.001 0.001 - 0.057 0.001 0.001 0.001 0.001 0.031 0.017 0.001
Fine-tuning e=2 0.001 0.001 0.001 0.001 0.001 0.057 - 0.001 0.001 0.001 0.001 0.015 0.045 0.001
Fine-tuning e=5 0.001 0.001 0.001 0.001 0.001 0.001 0.001 - 0.001 0.001 0.001 0.001 0.356 0.001
MaxPCXMI e=1 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 - 0.001 0.001 0.001 0.001 0.001
MaxPCXMI e=2 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 - 0.001 0.001 0.001 0.001
MaxPCXMI e=5 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 - 0.001 0.001 0.001
Weighting λ=2 0.001 0.001 0.001 0.001 0.001 0.031 0.015 0.001 0.001 0.001 0.001 - 0.001 0.001
Weighting λ=5 0.001 0.001 0.001 0.001 0.001 0.017 0.045 0.356 0.001 0.001 0.001 0.001 - 0.001
Weighting λ=10 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 -

Table 22: The p-values of the paired bootstrapping of the results in terms of ctxPro accuracy of the Auxiliary
phenomenon for each pair of the models based on OpusMT en-de. Values <0.05 are in bold.
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Baseline - 0.001 0.001 0.001 0.031 0.001 0.001 0.010 0.364 0.108 0.012 0.002 0.001 0.001
CoWord p=0.1 0.001 - 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.135 0.016
CoWord p=0.2 0.001 0.001 - 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.155
CoWord p=0.3 0.001 0.001 0.001 - 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002
Adapted D&R 0.031 0.001 0.001 0.001 - 0.001 0.001 0.001 0.103 0.352 0.109 0.046 0.001 0.001
Fine-tuning e=1 0.001 0.001 0.001 0.001 0.001 - 0.097 0.006 0.001 0.001 0.001 0.001 0.001 0.001
Fine-tuning e=2 0.001 0.001 0.001 0.001 0.001 0.097 - 0.029 0.001 0.001 0.001 0.001 0.001 0.001
Fine-tuning e=5 0.010 0.001 0.001 0.001 0.001 0.006 0.029 - 0.001 0.001 0.001 0.001 0.001 0.001
MaxPCXMI e=1 0.364 0.001 0.001 0.001 0.103 0.001 0.001 0.001 - 0.005 0.001 0.017 0.001 0.001
MaxPCXMI e=2 0.108 0.001 0.001 0.001 0.352 0.001 0.001 0.001 0.005 - 0.002 0.092 0.001 0.001
MaxPCXMI e=5 0.012 0.001 0.001 0.001 0.109 0.001 0.001 0.001 0.001 0.002 - 0.421 0.003 0.001
Weighting λ=2 0.002 0.001 0.001 0.001 0.046 0.001 0.001 0.001 0.017 0.092 0.421 - 0.001 0.001
Weighting λ=5 0.001 0.135 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.001 - 0.001
Weighting λ=10 0.001 0.016 0.155 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 -
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