TALON: A Multi-Agent Framework for Long-Table Exploration and
Question Answering

Ruochun Jin', Xiyue Wang', Dong Wang'?, Haoqi Zheng'", Yunpeng Qi', Silin Yang?,
Meng Zhang',
!College of Computer Science and Technology, National University of Defense Technology
2School of Computer Science, Peking University

Abstract

Table question answering (TQA) requires ac-
curate retrieval and reasoning over tabular data.
Existing approaches attempt to retrieve query-
relevant content before leveraging large lan-
guage models (LLMs) to reason over long ta-
bles. However, these methods often fail to
accurately retrieve contextually relevant data
which results in information loss, and suffer
from excessive encoding overhead. In this pa-
per, we propose TALON, a multi-agent frame-
work designed for question answering over
long tables. TALON features a planning agent
that iteratively invokes a tool agent to access
and manipulate tabular data based on interme-
diate feedback, which progressively collects
necessary information for answer generation,
while a critic agent ensures accuracy and ef-
ficiency in tool usage and planning. In or-
der to comprehensively assess the effective-
ness of TALON, we introduce two bench-
marks derived from the WikiTableQuestion
and BIRD-SQL datasets, which contain tables
ranging from 50 to over 10,000 rows. Ex-
periments demonstrate that TALON achieves
average accuracy improvements of 7.5% and
12.0% across all language models, establishing
a new state-of-the-art in long-table question
answering. Our code is publicly available at:
https://github.com/Wwestmoon/TALON.

1 Introduction

Table question answering (TQA) is the task of gen-
erating answers from tabular data in response to
user queries (Pasupat and Liang, 2015), thereby
enhancing data accessibility and usability without
requiring specialized analytical skills. Recent stud-
ies have commonly employed large language mod-
els (LLMs) for this task by flattening entire tables
into linearized textual sequences as input (Ye et al.,
2023; Zhang et al., 2023; Wang et al., 2024b). How-
ever, LLMs often struggle to generalize effectively
to long tables (e.g., with more than 30 rows), with

1) Text-to-SQL Based Methods

Row. Date Attendance

P
SELECT *

o
__| FROM games !. [Empty Subtable |
WHERE Exexute
attendance > 30000 ;
»2) RAG Based Methods

Table
Representation |

September
6,1981

September
13,1981

23,198

9,483 LLM

October

4 4,1981 14,350
October

R 11, 1981 42,671

October
6 B 30,474
Decembe

ember
100 50,1981 2056 Embedding

P 23108
14350
Model Que o wem 0

How many games had attendance { R e;')‘;tiou !

exceeding 30,000 people? 1

Row / Column b=

Embeddings Retioms

Figure 1: Failure case on Long-TQA. Text-to-SQL
methods fail to recognize that the attendance column is
stored as text, while RAG-based methods fail to retrieve
relevant rows (e.g., attendance > 30,000), as embed-
ding models struggle to encode numerical comparison
semantics.

performance degrading as the table size increases
(Chen, 2023). This issue is exacerbated when tables
exceed the model’s context window, since trunca-
tion inevitably discards essential information. To
address these limitations, researchers have explored
retrieval-augmented generation (RAG) (Sui et al.,
2023; Lin et al., 2023; Chen et al., 2024) and Text-
to-SQL (Nahid and Rafiei, 2024; Zhang et al., 2024;
Cheng et al., 2023) approaches, both of which aim
to supply LLMs with relevant table content instead
of the full table. Specifically, RAG-based meth-
ods encode the table and retrieve rows or columns
most relevant to the query embedding, while Text-
to-SQL methods translate the query into SQL and
execute it to obtain a targeted sub-table.

Although these methods alleviate the limitations
of long tables, they often fail to accurately un-
derstand the structure and content of long tables,
which prevents them from extracting the informa-
tion required to answer queries and results in inac-
curate sub-tables. As illustrated in Figure 1, Text-
to-SQL methods fail to recognize that the "atten-
dance" column is stored as text, leading to erro-
neous outputs when attendance > 30000 is ex-
ecuted. Similarly, RAG methods fail to interpret

27386

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 27386-27402
November 4-9, 2025 ©2025 Association for Computational Linguistics

numerical constraints, such as "exceeding 30,000",
due to the limited capacity of embedding models
to encode quantitative semantics. Moreover, RAG-
based methods require encoding the entire table,
incurring high computational cost and latency as
the table size increases (Chen et al., 2024).

In order to overcome these challenges, we pro-
pose TALON, a multi-agent framework that dy-
namically gathers and processes relevant informa-
tion to fully explore the structure and content of
long tables, which relies solely on table schema
as input without extra encoding. This design is in-
spired by human reasoning: similar to how humans
first identify relevant areas and then iteratively re-
fine their focus to answer a question. Specifically,
TALON consists of three collaborative agents: (1)
A planning agent that dynamically orchestrates tool
usage based on the question and intermediate feed-
back; (2) A tool agent equipped with a suite of op-
erations (e.g., get_value, get_column_meaning,
python_code) for content retrieval, structural anal-
ysis, and tabular data manipulation; (3) A critic
agent that monitors execution correctness and plan
effectiveness, which ensures robust and reliable
reasoning.

As for evaluating TALON in long table ques-
tion answering (Long-TQA), we construct two
benchmarks WTQ-L and BirdQA, based on the
WikiTableQuestion (Pasupat and Liang, 2015) and
BIRD-SQL(Li et al., 2024a) datasets, featuring ta-
bles ranging from 50 to over 10,000 rows. Ex-
perimental results show that TALON significantly
outperforms existing methods across multiple lan-
guage models, achieving average accuracy im-
provements of 7.5% and 12.0%, and enabling scal-
able, robust reasoning over long tables.

Our contributions are three-fold as follows:

* We develop a specialized toolkit for tabular
data that enables accurate content retrieval,
structure analysis, and data manipulation;

* We first propose a multi-agent framework for
Long-TQA, which progressively gathers rele-
vant information and performs precise opera-
tions on the table to generate the final answer.

* We conduct experiments on datasets contain-
ing tables of varying lengths, ranging from 50
to over 10,000 rows, demonstrating the robust-
ness and scalability of our approach on long
tables.

2 Related Works

2.1 Table QA

Recent studies such as Dater(Ye et al., 2023), Re-
AcTable(Zhang et al., 2023), and their succes-
sors(Lu et al., 2024; Zhou et al., 2025) demonstrate
strong reasoning and program synthesis capabilities
for TQA. However, these methods require LLMs
to process entire tables, which is often infeasible
for long tables due to context length limitations.

To address the limitations of processing full ta-
bles, two main streams have emerged: Text-to-SQL
and RAG methods. Text-to-SQL methods, such as
MAC-SQL (Wang et al., 2025), TA-SQL (Qu et al.,
2024), and DAIL-SQL (Gao et al., 2023), translate
natural language queries into executable SQL state-
ments over table schemas. Middleware (Gu et al.,
2024) introduces a toolset for handling complex en-
vironments. TabSQLify (Nahid and Rafiei, 2024)
and Alter (Zhang et al., 2024) first identify rele-
vant sub-tables using Text-to-SQL and then apply
LLMs for reasoning. While Text-to-SQL meth-
ods achieve strong performance on precise queries,
they often struggle to align query intent with un-
derlying value representations and to handle ques-
tions beyond SQL’s expressive capabilities(Cheng
et al., 2023). Moreover, SQL execution demands
that tables and their values adhere to a strict struc-
ture, while ordinary tables can often accommodate
numeric values stored as strings or columns with
mixed types.

Classical RAG approaches (Lin et al., 2023; Sui
et al., 2023) encode entire tables and retrieve the
most relevant rows or columns to LLMs, which can
be computationally expensive. TableRAG(Chen
et al., 2024) leverages query expansion combined
with schema and cell retrieval to pinpoint crucial
information. While embeddings capture semantic
information, they often struggle to preserve struc-
tural relationships across rows and columns, mak-
ing it difficult to retrieve relevant context or sum-
marize information spanning multiple rows and
columns. In this paper, we introduce a set of tools
for accurate table information retrieval, structural
understanding, and data manipulation.

2.2 Multi-Agent System

LLMs have demonstrated exceptional capabilities
in environmental interaction and decision-making,
offering new possibilities for the development of
intelligent agent systems (Li et al., 2024c). Inspired
by the specialization and division of labor in hu-

27387

*, 5

Schema

Column Non-Null Count Dtype

.....................................

...

Content Position : e

row number 100 non-null
week 100 non-null
date 100 non-null

int 64
object
object

? Question

How many
people showed
up in October?

NEEE]

6 attendence 100 non-null object

dtypes:int64(1),object(5)

date [attendence)

Sfuzzy_match 79,483 !
get_value get_column_meaning

get_rows attendence: people showed up.

Sample value: 63,198 and

Structure Analysis 79,483...

memory usage:1024.0+ bytes

date: game time.

get_column_meaning Sample value: october 26,1981

process_column_format :)

C e)

Data Manipulation

He

attendence)
79483

date

code_generation

@ Thought @®
I need to identify the key
columns ...
= Action |
get_column_meaning Planning
—— Agent

I have already retrieved and
processed all the information.

[0 Observation]
@ Thought
Answer

..

""" ’ process_column_format
M}E idﬂ'attendancej S 1 :

: dff'attendance'].str.replace(',', ").astype(int) =
(ngecute o :

Tool A

gent
1

..

"

.@. Loop Detect

¥ ™

¥ Action
X0, X Loop

...

Figure 2: The framework of TALON, which includes: (1) A planning agent that dynamically orchestrates tool usage
based on the question and intermediate feedback. (2) A tool agent equipped with a suite of operations for retrieving
content, analyzing structure, and manipulating tabular data. (3) A critic agent that monitors execution correctness
and plan effectiveness, ensuring robust and reliable reasoning.

man society, researchers have found that adopting
a multi-agent collaborative paradigm can signifi-
cantly improve the efficiency and accuracy of ex-
ecuting complex tasks (Qian, 2024; Islam et al.,
2024; Li et al., 2024b).

The core idea of multi-agent systems is to
decompose complex tasks into several subtasks,
which are then completed through collaboration
among agents to achieve the overall goal. Depend-
ing on the nature of the task, the collaboration
modes among agents primarily follow three typ-
ical paradigms: first, linear pipeline collaboration,
where agents process tasks in a fixed sequence (Yue
etal., 2025; Liu et al., 2023; Niu et al., 2025; Zheng
et al., 2025); second, collective decision-making,
where agents reach consensus through negotiation
(Cheng et al., 2024; Liang et al., 2024); and third,
iterative optimization, where agents continuously
improve output quality through feedback loops
(Wang et al., 2024a; Tang, 2024). These collab-
oration methods provide the theoretical foundation
and methodological support for building efficient
multi-agent systems. In this paper, we propose a
multi-agent framework that improves performance
on Long-TQA by distributing the entire table QA
process across three collaborative agents.

3 Method

In this paper, we propose a multi-agent framework
for Long-TQA that facilitates accurate retrieval and
reasoning over long tables. The framework consists
of three specialized agents working collaboratively:
the planning agent, which identifies appropriate
tools for table interaction and formulates solution
strategies based on intermediate feedback; the tool
agent, which executes the selected tools to retrieve
content, analyze table structure, and perform data
manipulations; and the critic agent, which ensures
the quality of the planning agent’s strategy and
the correctness of the tool agent’s execution. To
handle tables of varying lengths efficiently, we do
not include the full content of tables in the prompt.
Instead, tables are loaded into memory as Pandas
DataFrames. The planning agent has access only to
the table schema, which consists of column names
and data types, while the tool agent is exclusively
responsible for interacting directly with the table
content.

3.1 Task Formulation

In Long-TQA, given a natural language question
() and a table 7" represented as: 1" = {v;; | i =
1,...,N;j=1,..., M}, where N is the number

27388

of rows, M is the number of columns, and v;;
denotes the cell value at row ¢ and column j. The
objective is to produce an answer A through the
collaborative efforts of LLMs denoted as L.

3.2 Planning Agent

The planning agent generates reasoning steps and
selects the most appropriate tools according to
the contextual information it perceives. We adopt
ReAct (Yao et al., 2023) as the backbone of our
planning agent L,,,, enabling the model to iter-
atively generate rationales and corresponding ac-
tions through intermediate feedback based on its
own chain-of-thought (Wei et al., 2023). The plan-
ning agent allows concurrent invocations of the
same tool with different arguments, enabling it to
address multiple information needs in a single plan-
ning step and thereby reduce overall latency.

Formally, at each reasoning step @ < Ipjan,
the planning agent produces a rationale r; and
an action a; = (tool;(args,),...,tool;(args,)),
where (ri,ai) ~ Eplan(ria a; | Ti—1, ¢plan)a and
7, = (r1,a1,01,...,7i,a;,0;) denotes the cumula-
tive reasoning trajectory, ¢pjan denotes the prompt
of the planning agent (as detailed in Appendix E).
The generated action a;, after being validated by
the critic agent, is then passed to the tool agent
Loo1, Which returns an observation o; that informs
the planning agent’s subsequent reasoning.

To improve robustness and consistency, we apply
the self-consistency mechanism (Wang et al., 2023).
For each input 7;_1, we sample the planning agent
Lpian K times to generate a set of candidate action
sequences: {a'}F_, = {a},d?,...,aF}, We then
apply majority voting over the sampled sequences
to select the most consistent plan:

*_

a;

arg max_count(a),
ac{al’}

where count(a) denotes the number of times se-
quence a appears among k samples.

3.3 Tool Agent

The tool agent receives tool names verified by the
critic agent, executes the corresponding operations,
and returns the resulting observations to the plan-
ning agent. Inspired by human-like strategies for
processing long tables, we designed a comprehen-
sive toolset that supports content retrieval, struc-
tural analysis, and data manipulation. The toolset
is organized into three key categories:

(1) Table Content Retrieval, which utilizes
fuzzy_match, get_value, and get_row tools by
executing the pre-defined function to enable robust
data localization and row-level extraction.

(2) Table Structure Analysis, which com-
prises tools of get_column_meaning and
process_column_format by invoking the LLM
for comprehending table structure and normalizing
column content.

(3) Table Data Manipulation, where
code_generation performs logical reason-
ing and numerical computation by invoking the
LLM to generate python code, thereby mitigating
hallucinations in LLM outputs. The pseudo-code
of the toolset is provided in Appendix B.

Formally, upon receiving an action a; validated
by the critic agent, the tool agent L, executes the
corresponding tool; and generates an observation
o0; depending on whether the tool need to invoked
the LLM:

_ {ftooli (ai7 T)7
0; —

Liool (Oi | 73, ai, ﬁbtooli)v

if not invoking LLM

otherwise

where ¢o01; denotes the prompt guiding the LLM-
based tool (as detailed in Appendix E). The obser-
vation o; is then returned to the planning agent to
inform the subsequent reasoning steps.

3.4 Critic Agent

The critic agent reviews the plans generated by the
planning agent, detects any loops, and forwards
the corrected tool invocations to the tool agent.
Moreover, it evaluates the quality of tool execu-
tions performed by the tool agent, corrects any
erroneous outputs, and returns the revised code for
re-execution.

Loop Resolution A loop is detected when an
action generated in the current iteration duplicates
any action from previous iterations. Formally, the
loop detection function L({a1,...,a;}) is defined
as:

if 3j < i such that a; N a; # 0,

otherwise.

If L = 1, indicating a detected loop, the critic agent
Lritic 18 invoked to revise the current step. Given
the previous trajectory 7;_; and the repeated action
a;, the critic agent generates a revised rationale and
an alternative action (r¢iic, géritic) py:

1

critic critic
Leritic (157, a5 | 74, a4, Ti—1, Ploop)

27389

where ¢1o0p denotes the prompt guiding the critic
(as detailed in Appendix E). The pair (7€, gSritic)
is then appended to the trajectory 7;_1, resulting
in an updated trajectory 7; and the revised action
aStitic will deliver to the tool agent. This mechanism
enables the system to mitigate redundant behavior
and maintain effective reasoning.

Code Correction When the tool agent L0 gen-
erates a python code snippet ¢; that results in an
execution error e; = error(c;), the critic agent gen-

erates a revised python code:
COIT L . COIT
C; ~ Lecritic \G; ’ Ci, €4, ¢cr1t1c s

where ¢iic denotes the prompt guiding the cor-
rection process (as detailed in Appendix E). The
corrected code ;" is then executed by the tool
agent to obtain the output of°", which is subse-
quently passed to the planning agent for further
decision making. This error correction mechanism
prevents the propagation of errors and ensures that
only valid observations are retained for subsequent

reasoning steps.

4 Experiments

4.1 Experimental Setup

Datasets. To evaluate the effectiveness of the
proposed multi-agent framework on Long-TQA,
we constructed and utilized two key datasets:
WikiTableQuestions-Large(WTQ-L) and BirdQA.
Detailed statistics of these datasets are provided in
Appendix A.

(1) WTQ-L: WikiTableQuestions (WTQ) (Pasu-
pat and Liang, 2015) is a classic benchmark dataset
for table reasoning. We construct a specialized sub-
set, termed WTQ-L, consisting of 341 long tables
with row counts ranging from 50 to over 500, cov-
ering long tables of different sizes. To enable a
fine-grained analysis, we further stratify these ta-
bles into three categories based on their row counts:
50-100 rows, 100-200 rows, and 200+ rows. Com-
prehensive experiments are conducted across these
stratified groups.

(2) BirdQA: Derived from the BIRD-SQL
dataset (Li et al., 2024a), which focuses on large-
scale database-driven Text-to-SQL tasks. We trans-
form the original tasks into TQA tasks, extracting
314 question-answering instances involving a sin-
gle table. The tables in the BirdQA dataset are of a
huge scale, with an average of 44,000 rows, which
can fully simulate the complexity and data volume
of long tables in real business scenarios.

Baselines. We conduct comprehensive experi-
ments comparing TALON against several baseline
methods: End-to-End QA leverages an LLM to
directly generate answers using the entire table as
input, whereas Python QA generates and executes
Python code to obtain answers. Binder (Cheng
et al., 2023) decomposes questions into executable
SQL sub-programs. Dater (Ye et al., 2023) employs
a parsing-execution-filling strategy with sub-table
decomposition, followed by answer generation us-
ing LLMs.

Both TableRAG (Chen et al., 2024) and RowCol-
Retrieval encode tabular data to retrieve relevant
information followed by program-assisted table ma-
nipulation and analysis using PyReact.

Metrics. Both datasets are evaluated using Exact
Match (EM) accuracy.

Implementation Details. To ensure compre-
hensive evaluation, we conduct experiments with
three LLMs: Qwen2.5-72B-Instruct (Qwen et al.,
2025), DeepSeek-V3 (Liu et al., 2024a), and GPT-
4o-mini (AI, 2023). For all baseline methods, we
adopt their original settings, ensuring fair and re-
producible comparisons. For all experiments of
TALON, we set the temperature as 0.7, Top P
as 0.95, Top K as 5, and maximum output length
as 1024. We also implement the self-consistency
mechanism by sampling 5 independent reasoning
paths. For the Qwen2.5-72B-Instruct model, we
perform 5 independent generations and report the
average results due to the single-generation con-
straint. We set the maximum planning iterations to
Ipjan = 10 and the maximum refinement iterations
for the critic agent to I = 3. We process tab-
ular data as a pandas DataFrame, incorporate the
data schema into the prompt, and employ zero-shot
learning to generate answers. Agent prompts are
provided in Appendix E.

4.2 Main Results

The performance of TALON was benchmarked
against several baseline methods across two
datasets, WTQ-L and BirdQA, utilizing three
distinct large language models (GPT-40-mini,
Qwen2.5-72B-Instruct, and DeepSeek-V3), with
average performance also reported. The results, as
presented in Table 1, are summarized as follows:
1. TALON consistently outperformed all
baseline methods across all datasets and mod-
els. As indicated by the bolded scores in the ta-
ble, TALON achieved the highest performance
in every evaluated scenario. For instance, on the

27390

Method GPT-40-mini Qwen2.5-72B-Ins DeepSeek-V3 Average.
WTQ-L BirdQA WTQ-L BirdQA WTQ-L BirdQA WTQ-L BirdQA
End-to-End QA 55.5 - 34.0 - 58.3 - 49.3 -
Python QA 53.8 - 36.3 - 52.5 - 47.5 -
Binder 61.0 60.8 60.3 59.2 56.7 59.6 59.3 59.9
Dater 54.7 - 51.2 - 46.1 - 50.7 -
RowColRetrieval 47.2 48.4 49.9 427 51.6 53.8 49.6 48.3
TableRAG 52.1 54.7 59.6 53.5 59.1 60.2 56.9 56.1
TALON (Ours) 67.7 72.0 66.6 70.0 66.2 73.7 66.8 71.9
16.7 T11.2 16.3 110.8 17.1 T13.5 17.5 112.0

Table 1: Table reasoning results on WTQ-Large and BirdQA with GPT-40-mini, Qwen2.5-72B-Instruct, DeepSeek-
V3, and . Bold denotes the best performance and underline denotes the second-best performance, a dash ("-")
indicates that the input exceeded the model’s context window limit. The red upward arrows indicate the margin of

improvement over the second-best performing method.

WTQ-L dataset, TALON with GPT-40-mini scored
67.7%, surpassing the second-best method, Binder,
with the improvement of 6.7%. Similarly, on
the BirdQA dataset with DeepSeek-V3, TALON
achieved 73.7%, outperforming TableRAG by
7.1%. Overall, TALON outperforms the second-
best model by an average of 7.5% on WTQ-L and
12.0% on BirdQA. This consistent outperformance
demonstrates the robust and superior capabilities
of TALON.

2. TALON demonstrates consistent perfor-
mance across diverse LLM backbones. On the
WTQ-L dataset, TALON outperforms the second-
best methods by 6.7% on GPT-40-mini, 6.3% on
Qwen2.5-72B-Instruct, and 7.1% on DeepSeek-
V3, with the performance gap being relatively nar-
row, ranging from 0.4% to 0.7%. On the BirdQA
dataset, the improvements are 11.2% on GPT-4o-
mini, 10.8% on Qwen2.5-72B-Instruct, and 13.5%
on DeepSeek-V3, with the difference range being
slightly wider but still comparable, around 2.7%.
This consistency demonstrates that the TALON
architecture effectively enhances Long-QA per-
formance across different models, showcasing its
strong backbone-agnostic stability.

4.3 Analysis

We conduct extensive experiments to analyze the
following questions:

1. Does TALON still perform well on the WTQ
dataset?

Due to computational constraints, we evaluate
on a randomly sampled subset of 500 tables from
the original WTQ dataset. Full-dataset results
with Qwen2.5-72B-Instruct are provided in Ap-
pendix C.2. The results are presented in Table

2. Experimental results show that our method
also outperforms baselines. When using GPT-40-
mini, it achieves a 9.6% improvement compared
to the second-best performing method. Similarly,
it demonstrates consistent gains across different
models, with an average improvement of 9.4% on
Qwen2.5-72B-Instruct and a 5.9% improvement
on DeepSeek-V3 compared to the second-best per-
forming method. These results highlight the uni-
versality of our approach, confirming that its effec-
tiveness is independent of table length.

GPT-40 Qwen2.5 DeepSeek

Method mini 72B-Ins V3 Ave.
End-to-End QA 56.3 42.6 61.9 53.6
Python QA 51.2 41.9 55.0 49.4
Binder 61.4 58.5 59.0 59.6
Dater 59.8 60.2 64.0 61.3
RowColRetrieval 55.2 534 54.0 54.2
TableRAG 55.2 59.6 62.0 58.9
TALON (Ours) 71.0 69.6 69.9 70.2

19.6 19.4 15.9 18.9

Table 2: Results on WTQ with GPT-40-mini, Qwen2.5-
72B-Instruct, and DeepSeek-V3. Bold denotes the best
performance, and underline denotes the second-best per-
formance. The red upward arrows indicate the margin of
improvement over the second-best performing method.

2. How do different lengths in WTQ-L affect the
performance of the method?

Table 3 presents the performance of TALON
on WTQ-L across different table length intervals:
50-100, 100-200, and 200+ rows. The results
demonstrate that our method consistently outper-
forms all baseline approaches across all length cat-
egories. Furthermore, as shown in Table 2, Dater
outperforms Binder on the WTQ dataset, but under-
performs on the WTQ-L dataset. This performance

27391

Method GPT-40-mini Qwen2.5-72B-Ins DeepSeek-V3
50-100 100-200 200+ 50-100 100-200 200+ 50-100 100-200 200+
End-to-End QA 56.7 55.6 542 333 43.8 250 55.6 61.1 58.3
Python QA 51.2 54.6 556 323 41.1 354 58.1 55.6 43.8
Binder 55.6 66.7 60.6 55.6 66.7 585 54.0 63.3 52.8
Dater 51.5 59.8 528 505 57.8 453 535 433 41.5
RowColRetrieval ~ 49.5 42.2 50.0 475 52.2 50.0 475 51.1 56.3
TableRAG 49.5 56.7 50.0 56.1 64.4 583 55.6 63.3 58.3
TALON (Ours) 65.2 71.1 66.7 64.8 70.0 65.0 648 73.3 60.4
18.5 144 6.1 187 13.3 16.5 16.7 1710.0 12.1

Table 3: Performance of different methods on subsets with varying row counts of WTQ-L. Bold denotes the best
performance, and underline denotes the second-best performance. The red upward arrows indicate the margin of

improvement over the second-best performing method.

discrepancy can be attributed to Dater’s approach
of encoding the entire table into the LLM during
inference, which leads to degraded effectiveness on
long tables. We further compare TALON against
the End-to-End QA baseline using GPT-4 on WTQ-
L: End-to-End QA achieves only 55.65%, while
TALON reaches 69.64%. As the number of rows in-
creases, it becomes progressively more challenging
for the LLM to identify relevant rows and correctly
evaluate numerical conditions accurately, which
aligns with the findings reported in (Chen, 2023).

3. How does TALON compare with the
state-of-the-art Text-to-SQL methods?

Since BirdQA is derived from the Bird-SQL
benchmark, we additionally evaluate our method
against mainstream Text-to-SQL approaches. As
shown in Table 4, TALON achieves the highest
accuracy compared to directly applying Text-to-
SQL methods, thereby validating both the repre-
sentativeness of BirdQA and the effectiveness of
TALON. We evaluated MAC-SQL (Wang et al.,
2025) with GPT-40-mini using oracle schema ac-
cess and obtained 50.79% accuracy. This relatively
low performance can be attributed to the challenge
LLMs face when generating precise SQL queries
in a single step. In contrast, TALON decomposes

Method EM(%)
Bird (Li et al., 2024a) 55.8
MAC-SQL (Wang et al., 2025) 59.6
TA-SQL (Qu et al., 2024) 56.1
DAIL-SQL (Gao et al., 2023) 54.8
TALON (Ours) 72.0

Table 4: Comparison of TALON with mainstream meth-
ods of Text-to-SQL on BirdQA.

complex problems into multiple steps and lever-
ages tool invocation to generate intermediate re-
sults, such as filtered rows or computed aggregates,
which allows the LLM to more effectively retrieve
question-relevant information from the table and to
facilitate subsequent reasoning steps.

5. Can TALON decrease computational cost?

As shown in Figure 3, the token consumption
of TALON remains largely stable regardless of
the table length, since it only requires the table
schema rather than the full table content. End-to-
End QA consumes fewer tokens than TALON for
shorter tables; however, its token usage increases
rapidly as the table length grows. Dater, on the
other hand, consistently exhibits high token con-
sumption, which also increases significantly with
the table length.

20000 TALON

End-to-End QA

17500 Dater

15000

ion

12500

10000

7500

Token Cosumpt:i

5000

2500

50-100 100-200

Different Numbers of Rows

200+
Figure 3: Token consumption across different methods.

4. Does TALON have preferences when
choosing tools?

As shown in Figure 4, Get_Row and Get_Value
are the two most frequently invoked functions,
highlighting that accurately locating the answer
remains a key challenge in solving TQA tasks. An-

27392

other important tool is Python_Code, which is cru-
cial for handling computational tasks, especially
when dealing with ultra-long tables such as those in
BirdQA. This suggests that, given sufficient mem-
ory, converting long tables into DataFrames for
processing is a viable solution. Moreover, the tool
selection is not uniform across datasets, reflecting
its adaptability to different data characteristics and
task requirements.

WTQ-L(50-100)- 0.14 0.06 0.12 0.32
WTQ-L(100-200) JEEld)

WTQ-L(200+) S0P 0.04 0.10 0.04 0.24 0.26

BirdQA- 0.16 0.17 0.27 0.21 0.10 0.19

@ X 2 Y X D
> g & - o
OB P N
'Y o7 K\ 12 4
)
& & *‘{@ o yﬁ
N < & <
o <&
& &7

Figure 4: Distribution of tools by datasets.

6. What is the iteration distribution of the
datasets?

As illustrated in Figure 5, both WTQ-L and
BirdQA exhibit similar trends in iteration distri-
bution. Compared to WTQ-L, BirdQA exhibits a
higher concentration of items in earlier iterations,
with a peak at iteration 3. In contrast, WTQ-L
shows a more gradual trend, peaking at iteration 4.
This difference may be attributed to WTQ-L’s inher-
ently diverse table structures and the complexity of
its question formulations, which likely require ad-
ditional iterations for effective resolution. Notably,
both datasets converge to minimal activity beyond
iteration 6, suggesting that the models are generally
capable of resolving most tasks efficiently within a
limited number of iterations.

200 1 WTQ-L
é’ BirdQA
9 150
G
g 100 1
:Eﬁ 50 1
2
0 L T T T T T
2 4 6 8 10
Iteration

Figure 5: Number of items per iteration for each dataset.

7. What is the performance when using different
base LLMs for different roles?

We conducted experiments with different base
LLMs for each role in TALON to evaluate the effec-
tiveness of our multi-agent design. In this setup, the
planning agent employs Qwen-2.5-72B-Instruct for
robust reasoning and planning, the tool agent relies
on the smaller Qwen-2.5-7B-Instruct for efficient
tool execution, and the critic agent utilizes GPT-40
to provide high-fidelity evaluation of both planning
and tool execution. This configuration achieved an
overall accuracy of 67.26% on the WTQ-L dataset,
supporting our intuitive design of a strong planning
agent, a lightweight tool agent, and a powerful
critic agent.

4.4 Ablation Study

We conduct ablation experiments on each key mod-
ule on WTQ-L using GPT-40-mini, with the results
shown in Table 5. The Self-Consistency module
has the most significant impact, with a 4.3% drop
in performance when removed. The critic agent is
also a key component of TALON that plays a cru-
cial role in refining the model’s decision-making
process. When removed, the performance drops
by 3.0%, indicating its significant contribution to
the multi-agent framework. More specifically, both
loop resolution and code correction in the critic
agent are equally important. Removing them leads
to performance drops of 1.8% and 1.2%, respec-
tively.

Method EM (%)
TALON 67.0
" w/o Self-Consistency ~ 62.7 (14.3)
w/o Critic Agent 64.0 (13.0)
w/o Loop Resolution 65.2 ({1.8)
w/o Code Correction 65.8 (J1.2)

Table 5: Ablation study of each module on WTQ-L.

We then investigated the role of each tool on
BirdQA, with the results shown in Table 6. When
Python_Code was removed, the average number of
iterations increased from 3 to 7, resulting in a sig-
nificant performance drop of 44.4%. This decline
can be attributed to the large size of the BirdQA
dataset, which necessitates substantial data aggre-
gation and consumption. Without python code, this
process would depend on LLMs to gather data in-
crementally. The tool get_column_meaning also
plays a critical role, as it helps the model effec-

27393

Setting EM(%)
w/ all 72.0
w/o get_value 69.4 (12.6)
w/o fuzzy_match 68.5 (13.5)
w/o get_row 70.4 (1.6)
w/o get_column_meaning 63.4 (18.6)
w/o process_column_format 69.4 (12.6)
w/o python_code 27.6 (J44.4)

Table 6: Ablation study of each tool on BirdQA.

tively understand the table’s structure and content.
Removing any other tool similarly led to a decrease
in performance metrics, emphasizing the indispens-
able and unique contribution of each function.

To explain the proposed function calls, we per-
formed an additional experiment with our method
using only the Python code on the WTQ-L dataset,
with the result shown in Table 7. Consider a com-
mon practical challenge: user queries often do not
exactly match the table content. For example, when
a user requests a "16mm" camera, directly calling
a Python function like get_value(”16mm") would
return an empty value if the table stores "16 mm"
with a space, leading to retrieval failure and sub-
sequent error propagation. In our method, when
get_value fails to return a match, the model auto-
matically invokes a fuzzy_matching tool, which
returns potentially matching values and correspond-
ing row indexes such as "16 mm", helping the
model better understand the table content and plan
the next steps more accurately.

Method 50-100 100-200 200+ Average
PYREACT 45.45 55.56 41.67 47.53
TALON (Ours) 65.2 71.1 66.7 67.70

Table 7: Ablation study on the impact of tool usage for
TALON on WTQ-L.

5 Conclusion

In this paper, we propose a multi-agent frame-
work for Long-TQA, TALON, which improves
performance by distributing the table QA process
across three specialized agents, including a plan-
ning agent, a tool agent, and a critic agent. We
develop a specialized toolkit, inspired by human-
like table processing, that enables accurate content
retrieval, structural analysis, and data manipulation
on tabular data. Furthermore, to comprehensively
evaluate the performance of our method, we devel-

oped two benchmarks, WTQ-L and BirdQA, with
table sizes ranging from 50 to over 10,000 rows.
Experiments on both datasets demonstrate that our
method achieves state-of-the-art results, with av-
erage improvements of 7.5% and 12.0%, while
maintaining robustness and scalability, making it
well-suited for real-world deployment.

Limitations

Due to budget constraints, we conduct experiments
on only three models, and testing on more mod-
els could provide stronger evidence. Due to the
scarcity of long-table datasets, we plan to focus on
constructing more benchmarks for long-table QA
and conducting further experimental validation in
the future. Our method primarily focuses on struc-
tured tables with well-defined schemas. For hierar-
chical or flattened tables without explicit schemas,
a preprocessing step is required to convert them
into a standardized dataframe representation. This
limitation introduces additional complexity. Ex-
tending our framework to directly handle such table
formats represents a key direction for future work.

Acknowledgment

This work was supported by NSFC No.62302503,
NUDT Youth Independent Innovation Science
Fund Project Grant No.ZK23-15, the Open Re-
search Fund from State Key Laboratory of
High Performance Computing of China Grant
No0.202401-09, and Young Elite Scientists Sponsor-
ship Program by CAST No. YESS20240767.

References

Open Al 2023. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

Si-An Chen, Lesly Miculicich, Julian Martin Eisen-
schlos, Zifeng Wang, Zilong Wang, Yanfei Chen,
Yasuhisa Fujii, Hsuan-Tien Lin, Chen-Yu Lee, and
Tomas Pfister. 2024. Tablerag: Million-token ta-
ble understanding with language models. Preprint,
arXiv:2410.04739.

Wenhu Chen. 2023. Large language models are few(1)-
shot table reasoners. Preprint, arXiv:2210.06710.

Yi Cheng, Wenge Liu, Jian Wang, Chak Tou Leong,
Yi Ouyang, Wenjie Li, Xian Wu, and Yefeng Zheng.
2024. Cooper: Coordinating specialized agents
towards a complex dialogue goal. Proceedings
of the AAAI Conference on Artificial Intelligence,
38(16):17853-17861.

27394

https://arxiv.org/abs/2410.04739
https://arxiv.org/abs/2410.04739
https://arxiv.org/abs/2210.06710
https://arxiv.org/abs/2210.06710
https://doi.org/10.1609/aaai.v38i16.29739
https://doi.org/10.1609/aaai.v38i16.29739

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettle-
moyer, Noah A. Smith, and Tao Yu. 2023. Bind-
ing language models in symbolic languages. In
The Eleventh International Conference on Learning

Representations.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-sql empowered by large language models: A
benchmark evaluation. Preprint, arXiv:2308.15363.

Yu Gu, Yiheng Shu, Hao Yu, Xiao Liu, Yuxiao Dong, Jie
Tang, Jayanth Srinivasa, Hugo Latapie, and Yu Su.
2024. Middleware for llms: Tools are instrumen-
tal for language agents in complex environments.
Preprint, arXiv:2402.14672.

Md. Ashraful Islam, Mohammed Eunus Ali, and
Md Rizwan Parvez. 2024. Mapcoder: Multi-agent
code generation for competitive problem solving.
Preprint, arXiv:2405.11403.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li,
Bowen Li, Bailin Wang, Bowen Qin, Ruiying Geng,
Nan Huo, and 1 others. 2024a. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

Kenneth Li, Aspen K. Hopkins, David Bau, Fernanda
Viégas, Hanspeter Pfister, and Martin Wattenberg.
2024b. Emergent world representations: Exploring a
sequence model trained on a synthetic task. Preprint,
arXiv:2210.13382.

Xinyi Li, Sai Wang, Siqi Zeng, Yu Wu, and Yi Yang.
2024c. A survey on llm-based multi-agent sys-
tems: workflow, infrastructure, and challenges.

Vicinagearth, 1(1):9.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,
Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi, and
Zhaopeng Tu. 2024. Encouraging divergent thinking
in large language models through multi-agent debate.
Preprint, arXiv:2305.19118.

Weizhe Lin, Rexhina Blloshmi, Bill Byrne, Adria
de Gispert, and Gonzalo Iglesias. 2023. An inner
table retriever for robust table question answering.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume

1: Long Papers), pages 9909-9926.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, and 1 others.
2024a. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Tianyang Liu, Fei Wang, and Muhao Chen. 2024b.
Rethinking tabular data understanding with large
language models. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human

Language Technologies (Volume 1: Long Papers),
pages 450482, Mexico City, Mexico. Association
for Computational Linguistics.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue,
Shelby Heinecke, Rithesh Murthy, Yihao Feng,
Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit,
Ran Xu, Phil Mui, Huan Wang, Caiming Xiong,
and Silvio Savarese. 2023. Bolaa: Benchmarking
and orchestrating llm-augmented autonomous agents.
Preprint, arXiv:2308.05960.

Xinyuan Lu, Liangming Pan, Yubo Ma, Preslav Nakov,
and Min-Yen Kan. 2024. Tart: An open-source tool-
augmented framework for explainable table-based
reasoning. Preprint, arXiv:2409.11724.

Md Mahadi Hasan Nahid and Davood Rafiei. 2024. Tab-
SQLify: Enhancing reasoning capabilities of LLMs
through table decomposition. In Proceedings of the
2024 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long
Papers), pages 5725-5737, Mexico City, Mexico. As-
sociation for Computational Linguistics.

Zihan Niu, Zheyong Xie, Shaosheng Cao, Chong-
gang Lu, Zheyu Ye, Tong Xu, Zuozhu Liu, Yan
Gao, Jia Chen, Zhe Xu, and 1 others. 2025. Part:
Enhancing proactive social chatbots with personal-
ized real-time retrieval. In Proceedings of the 48th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
4269-4274.

Panupong Pasupat and Percy Liang. 2015. Compo-
sitional semantic parsing on semi-structured tables.
arXiv preprint arXiv:1508.00305.

Chen and Qian. 2024. ChatDev: Communicative
agents for software development. In Proceedings
of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 15174-15186, Bangkok, Thailand.
Association for Computational Linguistics.

Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo,
Chenhao Ma, and Reynold Cheng. 2024. Before
generation, align it! a novel and effective strategy
for mitigating hallucinations in text-to-sql generation.
Preprint, arXiv:2405.15307.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan
Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, and 25 oth-
ers. 2025. Qwen2.5 technical report. Preprint,
arXiv:2412.15115.

Yuan Sui, Jiaru Zou, Mengyu Zhou, Xinyi He, Lun Du,
Shi Han, and Dongmei Zhang. 2023. Tap4llm: Table
provider on sampling, augmenting, and packing semi-
structured data for large language model reasoning.
arXiv preprint arXiv:2312.09039.

27395

https://iclr.cc/virtual/2023/poster/10889
https://iclr.cc/virtual/2023/poster/10889
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2402.14672
https://arxiv.org/abs/2402.14672
https://arxiv.org/abs/2405.11403
https://arxiv.org/abs/2405.11403
https://arxiv.org/abs/2210.13382
https://arxiv.org/abs/2210.13382
https://arxiv.org/abs/2305.19118
https://arxiv.org/abs/2305.19118
https://doi.org/10.18653/v1/2024.naacl-long.26
https://doi.org/10.18653/v1/2024.naacl-long.26
https://arxiv.org/abs/2308.05960
https://arxiv.org/abs/2308.05960
https://arxiv.org/abs/2409.11724
https://arxiv.org/abs/2409.11724
https://arxiv.org/abs/2409.11724
https://doi.org/10.18653/v1/2024.naacl-long.320
https://doi.org/10.18653/v1/2024.naacl-long.320
https://doi.org/10.18653/v1/2024.naacl-long.320
https://doi.org/10.18653/v1/2024.acl-long.810
https://doi.org/10.18653/v1/2024.acl-long.810
https://arxiv.org/abs/2405.15307
https://arxiv.org/abs/2405.15307
https://arxiv.org/abs/2405.15307
https://arxiv.org/abs/2412.15115

Xunzhu and Tang. 2024. CodeAgent: Autonomous
communicative agents for code review. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pages
11279-11313, Miami, Florida, USA. Association for
Computational Linguistics.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-
aqi Bai, LinZheng Chai, Zhao Yan, Qian-Wen Zhang,
Di Yin, Xing Sun, and Zhoujun Li. 2025. Mac-sql: A
multi-agent collaborative framework for text-to-sql.
Preprint, arXiv:2312.11242.

Qineng Wang, Zihao Wang, Ying Su, Hanghang Tong,
and Yangqiu Song. 2024a. Rethinking the bounds of
Ilm reasoning: Are multi-agent discussions the key?
Preprint, arXiv:2402.18272.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2023. Self-consistency improves chain
of thought reasoning in language models. Preprint,
arXiv:2203.11171.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin
Eisenschlos, Vincent Perot, Zifeng Wang, Lesly Mi-
culicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee,
and Tomas Pfister. 2024b. Chain-of-table: Evolving
tables in the reasoning chain for table understanding.
Preprint, arXiv:2401.04398.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. Preprint, arXiv:2210.03629.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023. Large language mod-
els are versatile decomposers: Decompose evidence
and questions for table-based reasoning. In Special
Interest Group on Information Retrieval.

Shengbin Yue, Siyuan Wang, Wei Chen, Xuan-
jing Huang, and Zhongyu Wei. 2025. Synergis-
tic multi-agent framework with trajectory learn-
ing for knowledge-intensive tasks. Preprint,
arXiv:2407.09893.

Han Zhang, Yuheng Ma, and Hanfang Yang. 2024. Al-
ter: Augmentation for large-table-based reasoning.
arXiv preprint arXiv:2407.03061.

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce
Cahoon, Shaleen Deep, and Jignesh M. Patel. 2023.
Reactable: Enhancing react for table question answer-
ing. Preprint, arXiv:2310.00815.

Haoqi Zheng, Dong Wang, Silin Yang, Yunpeng Qi,
Ruochun Jin, and Liyang Xu. 2025. Logical DA: En-
hancing data augmentation for logical reasoning via

a multi-agent system. In Findings of the Association
for Computational Linguistics: ACL 2025, pages
6843-6855, Vienna, Austria. Association for Compu-
tational Linguistics.

Wei Zhou, Mohsen Mesgar, Annemarie Friedrich, and
Heike Adel. 2025. Efficient multi-agent collabora-
tion with tool use for online planning in complex ta-
ble question answering. Preprint, arXiv:2412.20145.

A Dataset Information

WTQ-L is sampled from the WikiTableQuestion
dataset, covering the portion of the WTQ testset
with more than 50 rows. Furthermore, we divide it
into three subsets: one containing tables with 50-
100 rows, another with 100-200 rows, and the last
with tables containing more than 200 rows. BirdQA
is sampled from Bird-SQL. Compared to WTQ-
L, BirdQA contains more rows that exceed the
context window limit of LLM, presenting a greater
challenge to the model. More detailed information,
including the number of samples and the average
number of lines, can be found in Table 8.

Dataset Sample Range Sample Nums Average Rows
50-100 198 62.03
WTQ-L 100-200 90 122.67
200+ 53 360.28
BirdQA - 314 44488.52

Table 8: Sample numbers and average rows for WTQ-L
and BirdQA datasets.

B Tools Information

We designed a comprehensive toolset that supports
content retrieval, structural analysis, and data ma-
nipulation. The relevant tools are summarized in
Table 11: the left column presents the tool names
along with their descriptions, while the right col-
umn outlines the algorithmic logic of each tool. For
fuzzy matching, we employ the token_set_ratio
function from the fuzzywuzzy library to measure
the similarity between query strings and table cell
contents. A higher score reflects a greater degree of
lexical overlap between the compared strings. To
improve efficiency, we incorporate parallel compu-
tation, allowing the method to process large-scale
tables containing more than 20,000 rows while
maintaining response times within a few hundred
milliseconds. Based on empirical analysis, we set
the fuzzy matching threshold to 70%.

27396

https://doi.org/10.18653/v1/2024.emnlp-main.632
https://doi.org/10.18653/v1/2024.emnlp-main.632
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2402.18272
https://arxiv.org/abs/2402.18272
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2401.04398
https://arxiv.org/abs/2401.04398
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://dl.acm.org/doi/10.1145/3539618.3591708
https://dl.acm.org/doi/10.1145/3539618.3591708
https://dl.acm.org/doi/10.1145/3539618.3591708
https://arxiv.org/abs/2407.09893
https://arxiv.org/abs/2407.09893
https://arxiv.org/abs/2407.09893
https://arxiv.org/abs/2310.00815
https://arxiv.org/abs/2310.00815
https://doi.org/10.18653/v1/2025.findings-acl.356
https://doi.org/10.18653/v1/2025.findings-acl.356
https://doi.org/10.18653/v1/2025.findings-acl.356
https://arxiv.org/abs/2412.20145
https://arxiv.org/abs/2412.20145
https://arxiv.org/abs/2412.20145

C Supplementary Experiments

C.1 Supplementary Baseline Evaluation

To ensure a comprehensive and fair evaluation,
we include several widely adopted baselines of
TableQA for an extended comparison on the WTQ-
L dataset using GPT-40-mini, following the imple-
mentation details in Section 4.1. Specifically, we
reproduce:

* RethinkTable (Liu et al., 2024b), which
adopts Direct Prompting and Pyagent with
Mix-Self-Consistency and Normalization;

» TabSQLify (Nahid and Rafiei, 2024), which
first identifies relevant sub-tables using Text-
to-SQL and then applies LL.Ms for reasoning;

* Chain of Table (Wang et al., 2024b), which
incorporates function calls to iteratively up-
date the table and form a tabular reasoning
chain;

e MACT (Zhou et al., 2025), which involves a
planning agent and a coding agent that collab-
oratively use tools to answer questions.

As shown in Table 9, TALON consistently out-
performs all baseline methods across different table
sizes, further demonstrating the robustness of our
approach under varying table scales.

Method 50-100 100-200 200+ Average
ReThinkTable 62.12 66.67 60.38 63.05
MACT 60.61 65.56 58.33 61.56
TabISQLify 63.13 56.67 56.60 60.40
TALON(Ours) 65.20 71.10 66.70 67.03

Table 9: Comparison of TALON with mainstream
TableQA methods on WTQ-L.

C.2 Performance on the full WTQ dataset.

We evaluated these methods on the full WTQ
dataset using the Qwen-2.5-72B-Instruct model in
the table 10. These results demonstrate that our
proposed method achieves comparable results, in-
dicating its generalization ability and effectiveness
across diverse table reasoning scenarios.

D Case Study

We present a concrete case demonstrating how
TALON leverages multi-agent collaboration to an-
swer a question based on a large table by dynami-
cally gathering and processing relevant tabular in-

Method WTQ
MACT (Zhou et al., 2025) 69.4
RethinkTable (Liu et al., 2024b) 69.6
Chain-of-table (Wang et al., 2024b) 68.3
TALON(Ours) 69.7

Table 10: Performance Comparison on WTQ.

formation. The table and corresponding question
are shown below.

Table with More Than 100 Rows:

Common District Populatio Mayor
name (2009)
Acre North 46,300 Shimon
Lancry
Afula North 40,500 Avi
Elkabetz
BatYam Tel Aviv 130,000 Shlomo
Lahiani

Question: What is the number of cities located in
either the Tel-Aviv or Center districts possessing a
population less than 65,0007

Given a table and a user query, TALON first an-
alyzes the query to identify relevant columns by
invoking the get_column_meaning tool. It then
applies fuzzy_matching to locate the rows and
columns containing the target districts. The results
indicate that both the Common name and District
columns include “Tel Aviv’. TALON then com-
bines this information with the user query to iden-
tify the truly relevant column, District, thereby en-
suring that subsequent computations are performed
on the correct column and preventing errors in the
final answer. Since the question requires numeric
computation, TALON examines the population col-
umn and finds that its values are stored as strings. It
calls the process_column_format tool to convert
this column into integers. Finally, TALON gener-
ates Python code to compute the answer. Figure 6
shows the reasoning trace.

E Prompt

The prompts used in our method are shown in Fig-
ures 7 to 11.

27397

Step-by-Step Trace

1. Thought: I need to understand the meaning of each column for better information retrieval.
Action: get_column_meaning()

Observation: Population (2009): Number of inhabitants in the city as of 2009.

2. Thought: Locate occurrences of “Tel Aviv”’ and “Center”.

Action: fuzzy_match(“Tel Aviv”),
fuzzy_match(“Center”)

Observation: The columns below may contain relevant values for ‘Tel Aviv’:
Common name: ‘Tel Aviv’, The index is. ..

District: ‘Tel Aviv’, The index is...

3. Thought: Convert Population (2009) to a numeric format for proper filtering.
Action: process_column_format (“Population (2009)”)

Observation: The column Population (2009) has been processed. ..

4. Thought: Write Python code to compute the desired count.

Action:

filtered_cities = df[(df[“District”].isin([“Tel Aviv”, “Center”]))
& (df[“Population (2009)”] < 65000)]
result = len(filtered_cities)

Observation: The final answer is. ..

Figure 6: Step-by-step reasoning trace demonstrating our method’s approach to processing the query “Find cities
in Tel Aviv and Center districts with population less than 65,000”. The trace shows: (1) understanding column
semantics, (2) fuzzy value matching, (3) data type processing, and (4) query execution with final result.

27398

Tools

Code

Get_Value
Description: Search for a spe-
cific value.

Function Get_Value (table, value):

results < 0
foreach column c in table do
foreach row r in ¢ do
if » = value then
L | results < results U {(c.name, r.index)}

| return if results =) then (“not found”, null, null) else results

Get_Row
Description: Return the row
content of the row index.

—

unction Get_Row(table, row_index):
// Return the row content of the row index
| return table[row_index]

Fuzzy_Match
Description: Identify potential
variations of the value.

=

unction Fuzzy_Match(value, table, k):
matches <[] foreach column c in table do
foreach cell v in c do
score <+ FuzzyMatch(value, v)
if score is above threshold then
| Append (v, c.name, score) to matches

Sort matches by score in descending order
| return top-k entries from matches

Get_Column_Meaning

Description: Identify the key
column and corresponding
meaning based on the question.

—

unction Get_Column_Meaning(question, table, k):
columns, meanings <— LLM (question, table)
results < ()
foreach column c in columns do
if c is relevant then
samples <— Randomly select k values from column c in table
L Add (¢, meanings|c|, samples) to results

L return results

Process_Column_Format
Description: Process the format
of a specific column based on
the thought and question.

Function Process_Column_Format (column, question, thought):

samples < Randomly select & values from column c¢ in table
need_processing, code < LLM (question, column, thought)
if need_processing then
Execute(code)
L samples < Get sample values from column

| return (samples)

Python_Code

Description: Generate Python
code for numerical computation
and logic reasoning.

S

unction Python_Code (table, trajectory):

// Generate Python code using LLM

code <— LLM (table,trajectory)
return code

Table 11: Functions and corresponding pseudo-code cross-reference table of the toolset.

27399

fGiven a table schema of a large table, you need to answe the question based on the table. h
The table is a pandas dataframe in Python. The name of the dataframe is "df". Your task is
to use tools to answer the question.

Tools:

- get_column_meaning() [...]

- find_columns_containing_value_fuzzy(value: str)[...]
- find_column_format(column: str) [...]

- get_value(value: str)[...]

- get_row(row_index: str)[...]

-def() [...]

Response Format:
- Strictly follow the given format to respond:

- Thought: you should always print about the thinking process about what to do based
on the previous observation.

- Action: Directly output the tool you chose to use.

- Observation: the result of the action.

- ... (this Thought/Action/Observation can repeat N times)

- Final Answer: the final answer to the original input question, only print the answer.

Notes:

- Do not use markdown or any other formatting in your responses.

- Ensure the last line is only "Final Answer: answer".

- Directly output the Final Answer rather than outputting by Python.

- Ensure to have a concluding thought that verifies the table, observations and the
statement before giving the final answer.

- You can call a same tool multiple times simultaneously. For example, you can output
Action: tooll(argsl), tooll(args2) at one same time.

Now, given a table , please answer the question: "{query}".

{table_schema}

The table is a pandas dataframe in Python. The name of the dataframe is "df". Your task is
think step by step, use tools to answer the question based on the table.

Begin!
NG J
Figure 7: The prompt of the planning agent.

27400

Given a partial table preview along with a thought, focusing only on information relevant\
to the question and the thought, analyze the table and extract only the most relevant
information.

Note:

- the given rows only contain a small portion of the table, not indicate the entire table.

- Directly output the most relevant columns that might be related to the question and the
thought, and the column meaning of a column.

- Directly output the columns and column meaning without any additional text or
explanations.

Output Format:

Column name:
{Column Meaning}

Table preview:
{sample rows}

Question:
{question}

Thought:
\{thought})

Figure 8: The prompt for get_column_meaning tool in the tool agent.

/The column type of '{column_name}'is {column_dtype}.

Here are some example values from the column: {sampled_ values}.

You should determine whether there is a need to process the column using Python code
for the given purpose.

Determine whether the given column needs processing using Python based on its content
and format.

The column can be processed by df["{column_name}"]

Purpose:
{thought}

Notes:
If the column's format needs additional transformation to calculate the result based on the
purpose, then it needs to be processed and transformed into the correct type.

- Use df to process the column, and output the code in the format of:
*python
your code here

- Only generate code to process the column.
\" If the column's format is already correct, just return "[[No]]".)

Figure 9: The prompt for process_column_format tool in the tool agent.

27401

@ou have to read the table and the query, and all the thinking process, to identity the root\
cause of the error.
Analyze the execution trace and error message to:

1. Diagnose the root cause of the failure based on the error message and the
trajectory.

2. Validate the code logic against the provided DataFrame (df) based on the
observations.

3. Formulate a corrected code.

Critical Constraints:
- The table is already available as a pandas DataFrame (df).
- Never sample the table data during analysis.

Output Format:
You should directly output the revised python code with the format of ***python\n""" to
avoid such an error,no other additional text.

Here is the thinking process:
{trajectory}

Here is the error message:
Qenor} J

Figure 10: The loop resolution prompt of the critic agent.

(As an Al assistant analyzing tabular data, I've noticed you've repeatedly called the same N
data processing tool multiple times.
Based on previous observations, please:

1. Re-evaluate your current approach
2. Generate a new 'thought' process that considers:
- Efficiency improvements
- Avoiding redundant operations including all the history actions
- Leveraging previously obtained results from the trajectory
3. Provide a revised 'action' plan that:
- avoid duplicate tool calls
- generate a tool or final answer based on the trajectory

Format your response with clear "Thought:" and "Action:" sections, ensuring the solution
is both technically sound and resource-efficient.

Output Format:
- Thought: Only print about the thinking process about what to do next .
- Action: Directly output the tool you chose to use.

Here is the trajectory:
{trajectory}

Here is the repeated action:

Qaction} Y,

Figure 11: The code correction prompt of the critic agent.

27402

