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Abstract

Large Language Models (LLMs) are suscep-
tible to adversarial attacks such as jailbreak-
ing, which can elicit harmful or unsafe behav-
iors. This vulnerability is exacerbated in mul-
tilingual settings, where multilingual safety-
aligned data is often limited. Thus, developing
a guardrail capable of detecting and filtering
unsafe content across diverse languages is crit-
ical for deploying LLMs in real-world appli-
cations. In this work, we introduce a multi-
lingual guardrail with reasoning for prompt
classification. Our method consists of: (1)
synthetic multilingual data generation incor-
porating culturally and linguistically nuanced
variants, (2) supervised fine-tuning, and (3) a
curriculum-based Group Relative Policy Opti-
mization (GRPO) framework that further im-
proves performance. Experimental results
demonstrate that our multilingual guardrail, Mr-
Guard, consistently outperforms recent base-
lines across both in-domain and out-of-domain
languages by more than 15%. We also evalu-
ate MrGuard’s robustness to multilingual varia-
tions, such as code-switching and low-resource
language distractors in the prompt, and demon-
strate that it preserves safety judgments un-
der these challenging conditions. The multi-
lingual reasoning capability of our guardrail
enables it to generate explanations, which are
particularly useful for understanding language-
specific risks and ambiguities in multilingual
content moderation.

Warning: This paper contains potentially harm-
ful examples.

1 Introduction

Large Language Models (LLMs) have demon-
strated impressive capabilities in cross-lingual
knowledge transfer, enabling them to perform a
variety of tasks across multiple languages even
when fine-tuned on primarily monolingual datasets
(Touvron et al., 2023; Brown et al., 2020; Qin

Figure 1: The guardrails specialized in English (GuardR,
(Liu et al., 2025)) are providing different predictions
for English and Chinese inputs with the same seman-
tic meaning. Our MrGuard can analyze the Chinese
prompts with explanation and provide correct safety
prediction.

et al., 2024). This cross-lingual ability is largely at-
tributed to their large-scale and diverse pretraining
corpora, which allow LLMs to handle multilingual
inputs without requiring significant multilingual
data for downstream task adaptation. LLMs are
increasingly being applied in a wide range of real-
world applications, including conversational agents,
educational tools, and medical assistants. However,
despite these advancements, current LLMs are not
yet robust or reliable enough for deployment in
safety-critical environments. They can be inten-
tionally misused to promote harmful behavior, gen-
erate offensive or biased content, or even bypass
safety mechanisms through adversarial prompting
(i.e., jailbreaking) (Andriushchenko et al., 2024;
Chao et al., 2023). These vulnerabilities are further
amplified in multilingual settings, particularly for
low-resource languages, where models may lack
proper safety alignment due to limited training sig-
nals or evaluation benchmarks (Deng et al., 2023;
Wang et al., 2023).

To address these challenges, safety alignment
strategies, most notably Reinforcement Learning
from Human Feedback (RLHF) and Direct Pref-
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erence Optimization (DPO), which aim to align
the behavior of LLMs with human values and
thereby mitigate the risk of unsafe or harmful out-
puts (Ouyang et al., 2022; Rafailov et al., 2023).
Another line of work focuses on building stan-
dalone safety classifiers or guardrails, which act
as filters to detect and block unsafe user prompts
or model generations without modifying the LLM
itself (Inan et al., 2023; Ghosh et al., 2024). These
lightweight safety modules are advantageous in
being more efficient and easier to deploy or up-
date (Table 1). Most existing methods are primar-
ily English-centric (Liu et al., 2025; Kang and Li,
2024b; Yuan et al., 2024) which cannot handle mul-
tilingual content moderation (Yang et al., 2024).
As shown in Figure 1, the guardrail model success-
fully identifies the unsafe user prompt in English
but fails to detect its semantically equivalent coun-
terpart in Chinese. Moreover, without explanations,
it becomes difficult to understand the rationale be-
hind the guardrail’s decisions1.

Base Model Data R

GuardR
(Liu et al., 2025) LlaMa-3.1-8B 127k EN Yes

DUO-Guard
(Deng et al., 2025) QWEN-0.5B 1679k EN

100k MUL No

Aegis-2.0
(Ghosh et al., 2025)

LlaMa-3.1-8B
-Instruct 30k EN No

LlaMa-Guard-3
(Inan et al., 2023) LlaMa-3.1-8B Unknown No

WildGuard
(Han et al., 2024) Mistral-7B 86.8K EN No

MrGuard (Ours) LlaMa-3.1-8B
-Instruct

30k EN
6k MUL Yes

Table 1: Configurations of recent state-of-the-art
guardrails. Base Model refers to the underlying lan-
guage model used by each guardrail. Data indicates the
dataset used for training the guardrail, where EN de-
notes English-only data and MUL refers to multilingual
(non-English) data. R specifies whether the guardrail is
trained with reasoning capability.

To bridge this gap, our work is the first one to
focus on building a guardrail tailored for multilin-
gual safety scenarios with reasoning ability. We
aim to design a robust, reasoning-aware safety
guardrail that can effectively moderate harmful
prompts across diverse languages and cultural con-
texts. Our contributions can be listed as follows 2:

• We introduce MrGuard, a multilingual
reasoning-enhanced guardrail for prompt

1We interchangeably use guard and guardrail through the
paper.

2Our code is available at https://github.com/
yangy96/mrguard

moderation that improves performance and
robustness across languages. Our approach
combines curriculum learning (Bengio et al.,
2009a) with Group Relative Policy Optimiza-
tion (GRPO) (Shao et al., 2024b) to gradually
introduce more culturally diverse variants at
the post-training stage.

• We achieve state-of-the-art results on sev-
eral multilingual safety benchmarks, outper-
forming all baselines in prompt classifica-
tion accuracy. We further demonstrate Mr-
Guard’s robustness on multilingual variations
such as code-switching and sandwich (Upad-
hayay and Behzadan, 2024) attacks. Our re-
sults show that post-training with reasoning
abilities significantly improves the robustness
and performance of guardrails on multilingual
prompt classification.

• We present a comprehensive evaluation of our
reasoning-enhanced guardrail with key met-
rics such as cross-lingual consistency and rea-
soning fidelity which establishes a strong base-
line for future assessments of guardrail reason-
ing capabilities.

2 Related Work

2.1 Multilingual LLM Safety

While LLMs demonstrate strong cross-lingual ca-
pabilities on multilingual downstream tasks, their
ability to handle unsafe content in multilingual set-
tings remains largely unknown, and there is still
significant room for improving their robustness
to multilingual inputs. Prior studies (Wang et al.,
2023; Deng et al., 2023) have shown that LLMs
are vulnerable to non-English jailbreaking prompts,
especially in low-resource languages. Follow-up
work (Yoo et al., 2024) uses GPT-4 to combine par-
allel jailbreaking queries in Deng et al. (2023) from
different languages into a single code-switching
prompt, demonstrating that such prompts further
increase the attack success rate compared to mono-
lingual attacks. Recent work (de Wynter et al.,
2024; Jain et al., 2024; Ye et al., 2023) collects
multilingual moderation datasets to investigate the
ability of LLMs to respond to multilingual harmful
prompts/responses and assess whether guardrails
effectively filter them out. They all show that ex-
isting guard or encoder-only classifiers cannot ad-
equately handle multilingual content moderation.
Upadhayay and Behzadan (2024) has introduced
an attack against LLMs by embedding jailbreaking
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prompts within unrelated, low-resource, but safe
inputs. Their results show that both proprietary
and open-source models are vulnerable to these
low-resource distractors, often following the em-
bedded unsafe instructions and generating harmful
content. These findings all underscore the urgent
need for robust guardrails capable of detecting and
mitigating unsafe behavior in multilingual settings.

2.2 Guardrails for safeguarding LLMs
Recent guardrail research (Li et al., 2024; Inan
et al., 2023; Rebedea et al., 2023; Ghosh et al.,
2025; Kang and Li, 2024a) have leveraged pre-
trained small language models (SLMs), such as
LlaMa-2/3.1-7B (Touvron et al., 2023) and Mistral-
7B (Jiang et al., 2023), to distinguish between safe
and unsafe content. These methods have demon-
strated promising results in detecting harmful in-
puts in English compared to encoder-only models.
Yuan et al. (2024) has enhanced base guardrail mod-
els by incorporating energy-based data generation
and combining guardrail predictions with k-nearest
neighbors (kNN) predictions. Additionally, Kang
and Li (2024b) has introduced a knowledge-based
logical reasoning framework, which first asks the
model to determine whether an input belongs to a
predefined risk category and then uses a probabilis-
tic graphical model to estimate the likelihood of
unsafety. GuardReasoner (Liu et al., 2025) has im-
proved interpretability and performance by training
the base model on reasoning-augmented data and
applying reinforcement learning (RL) algorithm
DPO (Rafailov et al., 2023) to select difficult ex-
amples. However, these efforts largely focus on
English. To address multilingual safety, Deng et al.
(2025) has introduced an RL-based method for gen-
erating synthetic multilingual data by iteratively
and jointly updating a synthetic data generator and
a guardrail model. Yet, their work targets only
high-resource languages close to English. In con-
trast, we focus on building MrGuard: a multilingual
guardrail capable of handling cultural nuances and
language-specific challenges spanning languages
from several different families.

To enhance the reasoning capabilities of lan-
guage models, we integrate curriculum learning
with a reinforcement learning (RL) algorithm
known as Group Relative Policy Optimization
(GRPO) (Shao et al., 2024b). GRPO demon-
strates superior performance compared to offline
methods such as Direct Preference Optimization
(DPO) (Rafailov et al., 2023), while offering im-

proved computational efficiency over on-policy al-
gorithms like Proximal Policy Optimization (PPO).
A more comprehensive discussion of these RL ap-
proaches and their relationship to curriculum learn-
ing is provided in Appendix A.

3 Multilingual Guard with Reasoning

We detail our algorithm for building MrGuard: a
guardrail with reasoning capabilities for multilin-
gual content moderation in this section. The ap-
proach consists of three key components as shown
in Figure 2:
1. Synthetic Data Generation – Inspired by Liu
et al. (2025), we collect the analysis of safety for
our seed data from a more powerful proprietary
model, GPT-4o-mini3 and use the collected data to
train our model. We additionally generate multilin-
gual data and corresponding multilingual analysis
using GPT-4o-mini.
2. Supervised Fine-Tuning – We fine-tune an
instruction-optimized model on the generated data
to enable multilingual reasoning capabilities on
content moderation, and safety classification.
3. Curriculum-Based Optimization – We combine
a three-stage curriculum learning framework and
GRPO (Shao et al., 2024b) to align the model with
desired multilingual moderation behavior.

3.1 Synthetic Data Generation
We consider an English safety training dataset,
D = {(pl0i , yi)}Ni=1, where pl0i is an English-
language prompt and yi ∈ {Safe,Unsafe} is its
corresponding safety label. For each prompt pl0i ,
we prompt GPT to generate reasoning for why it
is labeled as yi. This yields an augmented dataset
with model-generated reasoning, denoted as

Dl0 = {(pl0i , el0i , yi)}Ni=1.

Next, we subsample a smaller set from the orig-
inal dataset D, forming a subset Dsub. For each
target language lk, we prompt GPT to translate
each English prompt pl0i ∈ Dsub into the target
language, resulting in plki . We assume that the
safety label yi is preserved across translations. To
further ensure label consistency, we prompt GPT
to reassess the safety of each translated prompt
plki , If the reassessed label conflicts with the orig-
inal yi, the corresponding example is discarded

3We utilize GPT-4o-mini (gpt-4o-mini-2024-07-18)
through all data generation stage, referred to as GPT for
simplcity, in the next subsection.
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Figure 2: Workflow of our three-stage approach: (1) synthetic data generation, (2) supervised fine-tuning, and
(3) curriculum-based Group Relative Policy Optimization (GRPO). The upper part illustrates the generation of
multilingual translations and reasoning from English seed data using LLMs, followed by supervised fine-tuning.
The lower part shows the construction of a curriculum by generating multilingual data with varying difficulty levels,
which are then used to train the model via GRPO.

from the training set. We then prompt GPT with
(plki , yi) to generate the corresponding reasoning
elki in language lk and English el0i , yielding the
dataset Dlk = {(plki , el0i , elki , yi)}ni=1.. Note that
Dlk contains significantly fewer examples than Dl0 .
Given K target languages {l1, . . . , lK}, we obtain
the multilingual dataset:

Dmulti = {Dl0 , Dl1 , . . . , DlK}.

3.2 Supervised Fine-tuning
We perform supervised fine-tuning of the base
model, denoted by π, using the multilingual dataset
Dmulti, to enable the model to identify safe and un-
safe prompts along with their reasoning. Given a
data point (plki , e

l0
i , e

lk
i , yi), we fine-tune the base

model by applying cross-entropy loss on the to-
kens corresponding to both reasoning trajectories
and the safety label. This enables the model to
leverage the strong generalization capabilities of
English while simultaneously developing multilin-
gual reasoning skills, thereby preparing it for the
subsequent reinforcement learning stage. We de-
note the resulting fine-tuned model as πsft.

3.3 Curriculum-based GRPO
In this stage, we employ reinforcement learning
to further enhance detection performance by elic-
iting stronger reasoning capabilities. We begin by
re-sampling a subset Dl′0 from the original English
safety training dataset Dl0 . Each prompt in Dl′0

is then translated into the target languages lk, for
k ∈ {1, . . . ,K}.We then introduce a curriculum-
based training schedule. The intuition is that,
since the base model is initially fine-tuned on an
English-dominant corpus, it is more familiar with
English-specific nuances, such as slang and native
expressions. To guide the model in progressively
learning to handle other languages as second lan-
guages, we propose a curriculum that gradually
introduces more challenging native multilingual
variants. These variants are derived from English
sentences and are incorporated stage by stage to
support step-wise multilingual adaptation. To con-
struct the curriculum, we introduce a novel diffi-
culty function Diff that quantifies the difficulty of
prompts in various target languages. Specifically,
all the English prompts are assigned a baseline dif-
ficulty level of 0. For a prompt plk in language lk
and its corresponding English prompt pl0 ∈ Dl′0 ,
we use the prompt template shown in Figure 6 to
instruct GPT to generate two challenging variants,
plk′ and plk′′, enriched with slang, references to lo-
cal places, institutions, foods, and other culturally
or linguistically specific elements. A translation
model πbt is then used to back-translate plk′ and
plk′′ into English. The semantic similarity between
the back-translated prompt and the original English
prompt pl0 is computed using the cosine similarity
function cos. The difficulty of a back-translated
prompt p ∈ {plk , plk′, plk′′} is defined as:
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Diff(p) =





0, cos(πbt(p), p
l0) > t1,

1, cos(πbt(p), p
l0) ∈ (t2, t1],

2, otherwise,

where t1 and t2 are threshold hyperparameters.
During training, prompts with difficulty level 0
are introduced in the first epoch. Prompts with
levels 1 and 2 are progressively added in the sec-
ond and third epochs, respectively, following the
curriculum learning schedule.

After developing the curriculum, we apply
GRPO to optimize the reference model πsft (Shao
et al., 2024b). We utilize rule-based reward func-
tions, with the following components:

Format reward (Rf ): This reward penalizes for-
matting errors. If the output does not contain a
properly formatted safety prediction (i.e., "Safety:
safe" or "Safety: unsafe") which often happens in
multilingual generation, the reward is −1. Other-
wise, the reward is 1.

Correctness reward (Rc): If the safety predic-
tion is correct, the reward is 1, otherwise, the re-
ward is −1.

Uncertainty reward (Ru): We train an auxil-
iary encoder-only model πu to use the reasoning
to decide whether the input is safe or not (binary
classification) and take the softmax score as the
reward.

Ru =

{
πu(q, ê), if prediction is correct
−πu(q, ê) if prediction is incorrect

Language reward (Rlang): For the second and
third stages, the input sentences are more native to
the target language. We hypothesize that language-
specific reasoning enhances the model’s under-
standing in this setting. To encourage the model to
generate reasoning in the target language, we add
this language reward,

Rlang =





0.5, if difficulty = 1

1.0, if difficulty = 2

0.0, otherwise

Finally, the individual reward signals are com-
bined linearly to produce a single scalar reward
value:

R = Rf +Rc +Ru +Rlang.

With the reward signals defined, we apply the
original GRPO algorithm to optimize the reference
model πsft. For a detailed explanation of GRPO,
please refer to Appendix E and Shao et al. (2024a).

4 Experiments

4.1 Experimental Setup

In our experiments, we use the training
set from Aegis-2.0-Safety (Ghosh et al.,
2025) as the English seed data. Our base
model is LLaMA-3.1-8B-Instruct and
LLaMA-3.2-3B-Instruct (Aaron Grattafiori,
2024), and we apply QLoRA (Dettmers et al.,
2023) for parameter-efficient fine-tuning during
both the SFT and GRPO stage4. To construct the
curriculum using back-translation, we employ the
facebook/nllb-200-3.3B model for translation
and use all-MiniLM-L6-v2 to compute the
sentence embeddings of both the original and
the back-translated sentences. For the difficulty
threshold, we set t1 = 0.85 and t2 = 0.7. To
determine the language of the sampled output,
we utilize an xlm-based language detector 5. Our
experiments divide the test sets into two categories:
in-domain languages, which are covered during
training, and out-of-domain languages, which are
not seen during training.

4.2 Multilingual Content Moderation

Benchmark: Our experiments cover 5 recent
multilingual safety benchmarks: PTP_wildchat
(Jain et al., 2024)6 (Wildchat), RTP_LX (de Wyn-
ter et al., 2024), aya-red-teaming (Aya)(Aakanksha
et al., 2024) , MultiJail (Deng et al., 2023), and
XSafety (Wang et al., 2023). We define five in-
domain languages—English (EN), Arabic (AR),
Spanish (ES), Chinese (ZH), and Russian (RU),
which are included in the training data. To further
assess generalization, we also evaluate on three
out-of-domain languages (listed in Table 9) that are
not included in the training set but are in the test
datasets. Details of the evaluation benchmark are
provided in Appendix C.

Baselines: We compare our guardrail against sev-
eral recent content moderation guardrails, both

4More details on the training hyperparameters and config-
urations are in Appendix B.

5The full name of the language detector:
papluca/xlm-roberta-base-language-detection

6We only select wildchat subset.
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Models RTP-LX Aya XSafety Wildchat MultiJail

ID OOD ID OOD ID OOD ID OOD ID OOD
DUO-Guard 61.02 45.61 58.58 44.50 66.62 61.68 56.89 67.29 73.60 30.20

GuardR 78.47 61.35 90.14 90.30 83.12 80.80 80.01 82.56 91.89 78.29
LlaMa-Guard-3 45.78 45.91 79.15 82.01 61.87 60.89 67.36 69.50 78.91 75.25

Aegis-2.0 53.52 37.16 43.96 38.93 40.85 26.10 60.35 62.51 52.98 19.08
Wildguard 65.39 34.28 74.57 77.01 74.36 60.63 67.91 64.76 74.81 50.77

MrGuard (8B) 91.04 86.32 98.16 98.21 94.33 92.06 91.17 92.15 97.26 95.74
MrGuard (3B) 88.04 85.13 95.44 94.73 91.89 90.60 88.22 88.56 95.09 89.40

Table 2: Performance of different guardrails to identify multilingual safety across five benchmark datasets. We
report F1 scores as the evaluation metric and bold the best-performing results for each dataset where ID refers to
in-domain languages and OOD refers to out-of-domain languages. Top are baselines and the bottom part is MrGuard
(Ours) 8B and 3B. The model size and training dataset size are listed in Table 1.

Figure 3: F1 score breakdown on the RTP_LX dataset,
evaluated across 8 target languages. Here EN, AR, ES,
RU, and ZH are in-domain languages, and FR, HI, SW
are out-of-domain languages.

with and without reasoning capabilities. The con-
figurations and details of the different baseline mod-
els are summarized in Table 1.

Table 2 summarizes MrGuard’s performance
on several multilingual moderation benchmarks.
Across both in-domain and out-of-domain lan-
guages, MrGuard consistently outperforms all base-
lines by a substantial margin. Additionally, we
observe that guardrails with reasoning capabilities
(GuardR and ours) generalize better across datasets
and languages, but with our approach, MrGuard
achieves state-of-the-art performance in multilin-
gual scenarios. This showcases that MrGuard ef-
fectively captures language-specific nuances, as the
test datasets are naturally generated or annotated
by native speakers. Note that we restrict our exper-
iments to compact models (≤ 7 B parameters) to
ensure low latency and easy deployment, in line
with other guardrails (see Table 1). Even at this

scale, adding reasoning at the post-training stage
yields large gains in multilingual classification.

Moreover, we present a language-wise break-
down in Figure 3 with more results in Appendix B7.
Our model consistently outperforms the baselines
across a wide range of languages, although some
baselines achieve comparable results on the English
subset. We also observe that training on English-
only data negatively impacts generalization to non-
English languages. For example, although Aegis-
2.0 and WildGuard perform well on English inputs,
their performance degrades significantly on non-
English data, whereas MrGuard maintains high per-
formance and shows minimal performance drop,
even on unseen languages. This further demon-
strates the robustness and cross-lingual generaliza-
tion capabilities of our model.

Furthermore, Figure 4 presents example reason-
ing generated by our multilingual guardrail in var-
ious languages, showing that the reasoning accu-
rately analyzes and justifies the safety prediction of
the input prompts. The reasoning can help users un-
derstand the rationale of MrGuard behind its safety
decisions.

4.3 Robustness to Multilingual Perturbations

In this section, we investigate the potential of using
guardrails to identify unsafe prompts that involve
perturbations specific to the multilingual setting.
We consider two existing multilingual attacks: 1)
Yoo et al. (2024) generates code-switching prompts
using two parallel datasets, MultiJail and XSafety,
and GPT (CSRT) 2) Sandwich attack (Upadhayay
and Behzadan, 2024) (Sandwich), where jailbreak-

7We also include the breakdown of performance by the
language family, language scripts and resource availability in
the Appendix G.1.
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Figure 4: Example of reasoning generated from our
multilingual guardrail.

ing prompts are embedded within benign prompts
in lower-resource languages. Both attack strategies
have demonstrated that LLMs are more vulnerable
to these challenging input variants and are more
likely to produce harmful responses. We crafted
the variations of MultiJail and XSafety datasets us-
ing those two adversarial attacks, and examples are
shown in Figure 98.

We benchmark several guardrail methods against
the adversarial multilingual attacks. Table 3 and 4
reports the F1 scores before and after the attacks,
along with the corresponding performance changes.
As shown in the tables, all methods experience a
decline in F1 score after the attack, demonstrating
the effectiveness of both adversarial strategies. No-
tably, our method not only outperforms the base-
lines but also exhibits a smaller reduction in F1
score. Our experiments show that incorporating rea-
soning alongside safety classification significantly
enhances the guardrail’s robustness against multi-
lingual adversarial prompts.

5 Discussion

In this section, we conduct a deeper analysis of
our framework and results, including ablation ex-
periments of the proposed approach, evaluation of
the fidelity of reasoning and safety predictions, and
cross-language consistency.

8The configuration and details of the generated attack are
in Appendix D.

Models EN ↑ Avg-CSRT ↑ ∆↓
DUO-Guard 90.62 71.22 19.40

GuardR 95.35 92.95 2.40
LlaMa-Guard-3 80.68 77.12 3.56

Aegis-2.0 86.69 45.59 41.10
Wildguard 95.17 81.83 13.34

MrGuard (Ours) 98.22 96.68 1.54

Table 3: F1 scores on code-switching prompts evaluated
on the MultiJail datasets. The best-performing results
across models are highlighted in bold. ∆ represents the
difference between the F1 score on English prompts and
the averaged F1 score over all code-switching variants
across both ID and OOD languages.

Models
Avg-
Orig

↑ Avg-
Sandwich

↑ ∆↓

DUO-Guard 51.90 0.58 51.32
GuardR 85.09 78.78 6.31

LlaMa-Guard-3 77.08 8.65 68.43
Aegis-2.0 36.03 2.42 33.61
Wildguard 62.79 45.57 17.22

MrGuard (Ours) 96.50 90.63 5.83

Table 4: F1 scores on sandwich attacks evaluated on the
MultiJail dataset. The best-performing results across
models are highlighted in bold. Avg-Orig indicates the
average F1 score on before attack, and the average F1
score after sandwich attack across both ID and OOD
languages. ∆ represents the difference between them.

5.1 Ablation Study

In this section, we conduct an ablation study to in-
vestigate the effectiveness of GRPO and curriculum
learning, and various components of the reward
function to show that all of them help improve the
generalization of our guardrail’s performance on
different languages across different datasets.

Based on the results in Table 5, we first observe
that both GRPO and curriculum learning signifi-
cantly improve the performance compared to πsft.
Consistent with prior work (DeepSeek-AI, 2025),
post-training with GRPO improves the generaliza-
tion across different datasets and enhances reason-
ing abilities. Moreover, the comparison between
models trained with and without curriculum learn-
ing shows that gradually increasing the difficulty
of training inputs, based on linguistic and cultural
complexity, further enhances the model’s multilin-
gual understanding. This finding underscores the
value of curriculum-based learning strategies in
improving robustness and generalization for multi-
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RTP-LX Aya XSafety

Ours 89.27 98.18 93.48
wo GRPO 84.05 95.05 88.78
wo Curr 87.02 97.20 91.55

wo Rlang,Ru 88.48 97.59 92.36
wo Rlang,Ru 88.48 97.59 92.36

wo Rlang 89.55 98.35 93.07
wo Ru 88.89 97.58 92.08

Table 5: F1 scores for the ablation study. Curr denotes
GRPO with curriculum learning. Rf+a represents the
combination of the format reward and accuracy reward.
Ru corresponds to the uncertainty reward, and Rlang

denotes the language reward.

lingual safety tasks.
Furthermore, we show that all components in the

reward functions positively contributes to the over-
all performance of MrGuard. Although removing
the language reward leads to slightly better perfor-
mance across different datasets, we find that the
resulting model predominantly generates English
reasoning. In practice, however, it is important
for the guardrail to produce reasoning in the cor-
responding input language, making multilingual
reasoning generation a valuable capability despite
the marginal trade-off in accuracy. We leave the
theoretical analysis of curriculum learning and re-
ward function design of GRPO to future work.

5.2 Cross-lingual Consistency
One important characteristic for guardrails is that it
assigns the same safety label to semantically equiv-
alent prompts in different languages. To quantify
this, we define the Cross-Lingual Consistency score
as the fraction of parallel examples in which the
model’s safety predictions agree across languages
(She et al., 2024). We report consistency score
on XSafety, a parallel dataset, comparing English
with each target language across several models
in Figure 5. From the results we observe that al-
though our algorithm does not explicitly train for
consistency, we still see improved consistency, es-
pecially for unsafe prompt classification. As shown
in Figure 10, MrGuard exhibits a much smaller per-
formance drop between ID and OOD languages
compared to the other baselines.

5.3 Quality of Reasoning
LLMs are likely to produce hallucinations, even
when guided via chain-of-thought. MrGuard is in-
tended to help users and regulators inspect and trust

Figure 5: Consistency score between English and non-
English on the XSafety dataset, evaluated across 8 target
languages. Here AR, ES, RU, and ZH are in-domain
languages, and FR, HI, JA are out-of-domain languages.
Higher the score the better.

its decisions, making fidelity measurement crucial.
To this end, we employ a stronger LLM, GPT-4.1-
mini, as a judge to automatically assess whether
each explanation faithfully reflects the input and
correctly drives the safety prediction. We define
the Explanation Fidelity (EF) score as the fraction
of reasoning sentences the judge labels as coherent
out of the total sentences, and the results are shown
in Table 6. Moreover, it is important to maintain
the reasoning language in the same language as
the prompt. We report the Language Match (LM)
rate, which captures the percentage of cases where
the generated reasoning is in the same language as
the prompt. The results show that our reasoning is
aligned with the semantics and the language of the
prompt.

Lang EN AR ZH RU HI

EF 87.39 80.57 93.33 86.53 88.97
LM 97.30 98.76 99.52 98.86 99.91

Table 6: Here we report two metrics on RTP_LX dataset
to evaluate the quality of the reasoning, where EF is the
explanation fidelity rate and LM indicates the language
matching rate. Higher score the better.

We additionally perform human evaluation of
the quality of the MrGuard’s generated reasoning.
From the RTP_LX dataset, we subsampled 100
examples and generated reasoning in English, Chi-
nese, and Hindi. Human volunteers then evalu-
ated fidelity using the same instructions provided
to GPT-4o in Figure 17. We show that the rea-
soning remain high fidelity on these languages in
Table 7 (Here Hindi is an unseen and relatively-
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low resource language). We also conducted human
evaluation (Appendix C.2) on safety preservation
of syntactic data generation.

% EN ZH HI

Fidelity 98.0 87.0 86.0

Table 7: Explanation fidelity rates for a sampled subset
of the RTP_LX dataset, as given by human annotators.

Moreover, we perform a deeper analysis on the
failure cases of MrGuard’s reasoning and predic-
tions. Below is the refined taxonomy for categoriz-
ing reasoning failures: A. Ambiguity: Covers both
lexical ambiguity and unclear referents (e.g., pro-
nouns without clear antecedents); B. Cultural Un-
certainty: Reliance on culture-specific knowledge
or assumptions that may not hold universally; C.
Unsupported Inference: Jumps to conclusions with-
out necessary premises or overgeneralizes from a
single instance; D. Logical Inconsistency: Con-
tradicts earlier steps or violates basic inference
rules; E. Misclassification: Flags risks not present
in the prompt. We apply GPT-4.1-mini as an au-
tomated judge to analyze the reasoning chains in
the RTP_LX dataset. We report the percentage
breakdown of reasoning assigned to each category
in Table 8. We observe that the model rarely gen-
erates logic inconsistent reasoning but sometimes
flag risks not present in the inputs. We also pro-
vide some qualitative examples of each category in
Figure 16.

% EN ZH AR JA HI

A 5.04 6.67 7.88 8.99 6.72
B 7.91 26.67 23.65 48.31 44.78
C 2.88 6.67 4.93 3.93 2.99
D 0.0 0.0 0.0 0.0 0.0
E 94.96 95.78 81.77 73.60 70.15

Table 8: The percentage breakdown of reasoning for
incorrect safety prediction from MrGuard under our
failure taxonomy. Note here HI and JA are the unseen
languages at the training.

6 Conclusion

In this work, we introduce MrGuard: a multi-
lingual reasoning-enhanced guardrail for multilin-
gual prompt moderation. Our method consists of
three key stages: synthetic data generation, su-
pervised fine-tuning, and reinforcement learning,

where we adopt GRPO with a multi-stage curricu-
lum that progressively introduces more cultural and
language-specific elements. We conduct compre-
hensive experiments across multiple diverse and
realistic multilingual content moderation bench-
marks, including challenging scenarios involving
code-switching, and demonstrate that our guardrail
achieves state-of-the-art performance with reason-
ing. We also analyze the generated reasoning to
validate its reliability and ensure consistent safety
preservation across languages. The reasoning abil-
ity enables multilingual users to understand the
decision from MrGuard. We believe this work is
an important step toward enhancing the safety of
LLMs in a multilingual world.

Limitations

Language and resource coverage Due to bud-
get and computational limits, we generated syn-
thetic data only for high- and mid-resource lan-
guages, and relied on Aegis-2.0 as our English
seed dataset. Expanding to additional seed datasets
and low-resource languages could further enhance
model performance and broaden the safety taxon-
omy to better reflect diverse user needs. Addition-
ally, while our guardrail demonstrates strong re-
sults on both in-distribution and out-of-distribution
dataset and languages, the languages represented
in our evaluation remain limited.
Potential Bias We use a single LLM (GPT-4o-
mini) as a judge to verify safety labels of trans-
lations, which may introduce bias inherent to the
LLM. We acknowledge that relying on a single
LLM for both generation and evaluation raises reli-
ability concerns. As future work, we will explore
ensembles of multiple LLMs for multilingual syn-
thetic data generation and evaluation. Additionally,
our current evaluation of reasoning coherence and
faithfulness between explanations and final safety
predictions relies on automated heuristics, which
may not perfectly align with human judgments.
Human Annotation To validate our synthetic data
and the fidelity of LLM-generated reasoning, we
conducted a small human-evaluation study on a
subsampled dataset. Due to verification costs, we
could not scale to multiple annotators or a larger
sample size.

Ethical Statement

Our works aims to improve LLM safety for mul-
tilingual users by introducing a multilingual rea-
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soning guardrail, which is important for building a
universally reliable LLM for safety-critical appli-
cations. The generated synthetic data and models
will be released, accompanied by detailed usage
guidelines to prevent misuse.

Acknowledgment

We thank the anonymous reviewers for their con-
structive feedback and insightful suggestions. We
would also like to thank Dr. Oleg Sokolsky and Dr.
Almiqdad Saeed for their help with the synthetic
data evaluation. Research was sponsored by the
Army Research Office and was accomplished un-
der Grant Number W911NF-20-1-0080. The views
expressed are those of the authors and do not reflect
the official policy or position of the Army Research
Office or the U.S. Government.

References
Aakanksha, Arash Ahmadian, Beyza Ermis, Seraphina

Goldfarb-Tarrant, Julia Kreutzer, Marzieh Fadaee,
and Sara Hooker. 2024. The multilingual alignment
prism: Aligning global and local preferences to re-
duce harm. Preprint, arXiv:2406.18682.

et al. Aaron Grattafiori. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Maksym Andriushchenko, Francesco Croce, and Nico-
las Flammarion. 2024. Jailbreaking leading safety-
aligned llms with simple adaptive attacks. arXiv
preprint arXiv:2404.02151.

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama.
2019. On the cross-lingual transferability of mono-
lingual representations. CoRR, abs/1910.11856.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009a. Curriculum learning. In
Proceedings of the 26th Annual International Confer-
ence on Machine Learning, ICML ’09, page 41–48,
New York, NY, USA. Association for Computing
Machinery.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009b. Curriculum learning. In
Proceedings of the 26th Annual International Confer-
ence on Machine Learning, ICML ’09, page 41–48,
New York, NY, USA. Association for Computing
Machinery.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-
stenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadom-
ski, Piotr Nyczyk, and Torsten Hoefler. 2024. Graph
of thoughts: Solving elaborate problems with large
language models. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 38(16):17682–17690.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language models are
few-shot learners. Advances in neural information
processing systems, 33:1877–1901.

Patrick Chao, Alexander Robey, Edgar Dobriban,
Hamed Hassani, George J Pappas, and Eric Wong.
2023. Jailbreaking black box large language models
in twenty queries. arXiv preprint arXiv:2310.08419.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier,
Karthik Narasimhan, and Shunyu Yao. 2023. Fire-
act: Toward language agent fine-tuning. Preprint,
arXiv:2310.05915.

Florinel-Alin Croitoru, Vlad Hondru, Radu Tu-
dor Ionescu, Nicu Sebe, and Mubarak Shah.
2025. Curriculum direct preference optimization
for diffusion and consistency models. Preprint,
arXiv:2405.13637.

Adrian de Wynter, Ishaan Watts, Nektar Ege Altınto-
prak, Tua Wongsangaroonsri, Minghui Zhang, Noura
Farra, Lena Baur, Samantha Claudet, Pavel Gajdusek,
Can Gören, and 1 others. 2024. Rtp-lx: Can llms
evaluate toxicity in multilingual scenarios? arXiv
preprint arXiv:2404.14397.

et al. DeepSeek-AI. 2025. Deepseek-r1: Incentiviz-
ing reasoning capability in llms via reinforcement
learning. Preprint, arXiv:2501.12948.

Yihe Deng, Yu Yang, Junkai Zhang, Wei Wang, and
Bo Li. 2025. Duoguard: A two-player rl-driven
framework for multilingual llm guardrails. arXiv
preprint arXiv:2502.05163.

Yue Deng, Wenxuan Zhang, Sinno Jialin Pan, and Li-
dong Bing. 2023. Multilingual jailbreak challenges
in large language models. In The Twelfth Interna-
tional Conference on Learning Representations.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314.

Carlos Florensa, David Held, Markus Wulfmeier,
Michael Zhang, and Pieter Abbeel. 2017. Reverse
curriculum generation for reinforcement learning. In
Proceedings of the 1st Annual Conference on Robot
Learning, volume 78 of Proceedings of Machine
Learning Research, pages 482–495. PMLR.

Shaona Ghosh, Prasoon Varshney, Erick Galinkin, and
Christopher Parisien. 2024. Aegis: Online adaptive
ai content safety moderation with ensemble of llm
experts. arXiv preprint arXiv:2404.05993.

Shaona Ghosh, Prasoon Varshney, Makesh Narsimhan
Sreedhar, Aishwarya Padmakumar, Traian Rebedea,
Jibin Rajan Varghese, and Christopher Parisien. 2025.
Aegis2. 0: A diverse ai safety dataset and risks taxon-
omy for alignment of llm guardrails. arXiv preprint
arXiv:2501.09004.

27375

https://arxiv.org/abs/2406.18682
https://arxiv.org/abs/2406.18682
https://arxiv.org/abs/2406.18682
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/1910.11856
https://arxiv.org/abs/1910.11856
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://arxiv.org/abs/2310.05915
https://arxiv.org/abs/2310.05915
https://arxiv.org/abs/2405.13637
https://arxiv.org/abs/2405.13637
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://proceedings.mlr.press/v78/florensa17a.html
https://proceedings.mlr.press/v78/florensa17a.html


Alex Graves, Marc G. Bellemare, Jacob Menick, Rémi
Munos, and Koray Kavukcuoglu. 2017. Automated
curriculum learning for neural networks. In Pro-
ceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pages 1311–1320. PMLR.

Guy Hacohen and Daphna Weinshall. 2019. On the
power of curriculum learning in training deep net-
works. In Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Pro-
ceedings of Machine Learning Research, pages 2535–
2544. PMLR.

Seungju Han, Kavel Rao, Allyson Ettinger, Liwei Jiang,
Bill Yuchen Lin, Nathan Lambert, Yejin Choi, and
Nouha Dziri. 2024. Wildguard: Open one-stop mod-
eration tools for safety risks, jailbreaks, and refusals
of llms. Preprint, arXiv:2406.18495.

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi
Rungta, Krithika Iyer, Yuning Mao, Michael
Tontchev, Qing Hu, Brian Fuller, Davide Testuggine,
and 1 others. 2023. Llama guard: Llm-based input-
output safeguard for human-ai conversations. arXiv
preprint arXiv:2312.06674.

Devansh Jain, Priyanshu Kumar, Samuel Gehman,
Xuhui Zhou, Thomas Hartvigsen, and Maarten Sap.
2024. Polyglotoxicityprompts: Multilingual evalua-
tion of neural toxic degeneration in large language
models. Preprint, arXiv:2405.09373.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, and 1 others. 2023.
Mistral 7b. arXiv preprint arXiv:2310.06825.

Mintong Kang and Bo Li. 2024a. r2-guard: Ro-
bust reasoning enabled llm guardrail via knowledge-
enhanced logical reasoning. arXiv preprint
arXiv:2407.05557.

Mintong Kang and Bo Li. 2024b. r2-guard: Ro-
bust reasoning enabled llm guardrail via knowledge-
enhanced logical reasoning. arXiv preprint
arXiv:2407.05557.

Amirhossein Kazemnejad, Milad Aghajohari, Eva
Portelance, Alessandro Sordoni, Siva Reddy, Aaron
Courville, and Nicolas Le Roux. 2024. Vineppo: Un-
locking rl potential for llm reasoning through refined
credit assignment. Preprint, arXiv:2410.01679.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Lijun Li, Bowen Dong, Ruohui Wang, Xuhao Hu, Wang-
meng Zuo, Dahua Lin, Yu Qiao, and Jing Shao.

2024. Salad-bench: A hierarchical and comprehen-
sive safety benchmark for large language models.
arXiv preprint arXiv:2402.05044.

Yue Liu, Hongcheng Gao, Shengfang Zhai, Xia
Jun, Tianyi Wu, Zhiwei Xue, Yulin Chen, Kenji
Kawaguchi, Jiaheng Zhang, and Bryan Hooi. 2025.
Guardreasoner: Towards reasoning-based llm safe-
guards. arXiv preprint arXiv:2501.18492.

Tambet Matiisen, Avital Oliver, Taco Cohen, and John
Schulman. 2020. Teacher–student curriculum learn-
ing. IEEE Transactions on Neural Networks and
Learning Systems, 31(9):3732–3740.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and
Tatsunori Hashimoto. 2025. s1: Simple test-time
scaling. Preprint, arXiv:2501.19393.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko
Sinapov, Matthew E. Taylor, and Peter Stone. 2020.
Curriculum learning for reinforcement learning do-
mains: A framework and survey. Journal of Machine
Learning Research, 21(181):1–50.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, and 1
others. 2022. Training language models to follow in-
structions with human feedback. Advances in neural
information processing systems, 35:27730–27744.

Libo Qin, Qiguang Chen, Yuhang Zhou, Zhi Chen,
Yinghui Li, Lizi Liao, Min Li, Wanxiang Che, and
Philip S Yu. 2024. Multilingual large language
model: A survey of resources, taxonomy and fron-
tiers. arXiv preprint arXiv:2404.04925.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan
Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, and 25 oth-
ers. 2025. Qwen2.5 technical report. Preprint,
arXiv:2412.15115.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your lan-
guage model is secretly a reward model. Advances in
Neural Information Processing Systems, 36:53728–
53741.

Traian Rebedea, Razvan Dinu, Makesh Narsimhan
Sreedhar, Christopher Parisien, and Jonathan Cohen.
2023. NeMo guardrails: A toolkit for controllable
and safe LLM applications with programmable rails.
In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 431–445, Singapore. Associa-
tion for Computational Linguistics.

Zhipeng Ren, Daoyi Dong, Huaxiong Li, and Chun-
lin Chen. 2018. Self-paced prioritized curriculum

27376

https://proceedings.mlr.press/v70/graves17a.html
https://proceedings.mlr.press/v70/graves17a.html
https://proceedings.mlr.press/v97/hacohen19a.html
https://proceedings.mlr.press/v97/hacohen19a.html
https://proceedings.mlr.press/v97/hacohen19a.html
https://arxiv.org/abs/2406.18495
https://arxiv.org/abs/2406.18495
https://arxiv.org/abs/2406.18495
https://arxiv.org/abs/2405.09373
https://arxiv.org/abs/2405.09373
https://arxiv.org/abs/2405.09373
https://arxiv.org/abs/2410.01679
https://arxiv.org/abs/2410.01679
https://arxiv.org/abs/2410.01679
https://doi.org/10.1109/TNNLS.2019.2934906
https://doi.org/10.1109/TNNLS.2019.2934906
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
http://jmlr.org/papers/v21/20-212.html
http://jmlr.org/papers/v21/20-212.html
https://arxiv.org/abs/2412.15115
https://doi.org/10.18653/v1/2023.emnlp-demo.40
https://doi.org/10.18653/v1/2023.emnlp-demo.40
https://doi.org/10.1109/TNNLS.2018.2790981


learning with coverage penalty in deep reinforcement
learning. IEEE Transactions on Neural Networks
and Learning Systems, 29(6):2216–2226.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024a.
Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. Preprint,
arXiv:2402.03300.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, and 1 others. 2024b. Deepseek-
math: Pushing the limits of mathematical reason-
ing in open language models. arXiv preprint
arXiv:2402.03300.

Shuaijie She, Wei Zou, Shujian Huang, Wenhao Zhu, Xi-
ang Liu, Xiang Geng, and Jiajun Chen. 2024. Mapo:
Advancing multilingual reasoning through multilin-
gual alignment-as-preference optimization. Preprint,
arXiv:2401.06838.

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and
Nicu Sebe. 2022. Curriculum learning: A survey.
Preprint, arXiv:2101.10382.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, and 1 others. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Bibek Upadhayay and Vahid Behzadan. 2024. Sand-
wich attack: Multi-language mixture adaptive attack
on llms. arXiv preprint arXiv:2404.07242.

Leandro von Werra, Younes Belkada, Lewis Tunstall,
Edward Beeching, Tristan Thrush, Nathan Lambert,
Shengyi Huang, Kashif Rasul, and Quentin Gal-
louédec. 2020. Trl: Transformer reinforcement learn-
ing. https://github.com/huggingface/trl.

Wenxuan Wang, Zhaopeng Tu, Chang Chen, Youliang
Yuan, Jen-tse Huang, Wenxiang Jiao, and Michael R
Lyu. 2023. All languages matter: On the multilin-
gual safety of large language models. arXiv preprint
arXiv:2310.00905.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, and 3 others. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System

Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Weimin Xiong, Yifan Song, Xiutian Zhao, Wenhao Wu,
Xun Wang, Ke Wang, Cheng Li, Wei Peng, and Su-
jian Li. 2024. Watch every step! llm agent learning
via iterative step-level process refinement. Preprint,
arXiv:2406.11176.

Yahan Yang, Soham Dan, Dan Roth, and Insup Lee.
2024. Benchmarking llm guardrails in handling mul-
tilingual toxicity. arXiv preprint arXiv:2410.22153.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliber-
ate problem solving with large language models.
Preprint, arXiv:2305.10601.

Meng Ye, Karan Sikka, Katherine Atwell, Sabit Hassan,
Ajay Divakaran, and Malihe Alikhani. 2023. Multi-
lingual content moderation: A case study on reddit.
arXiv preprint arXiv:2302.09618.

Haneul Yoo, Yongjin Yang, and Hwaran Lee. 2024.
Csrt: Evaluation and analysis of llms using code-
switching red-teaming dataset. arXiv preprint
arXiv:2406.15481.

Zhuowen Yuan, Zidi Xiong, Yi Zeng, Ning Yu, Ruoxi
Jia, Dawn Song, and Bo Li. 2024. Rigorllm: Re-
silient guardrails for large language models against
undesired content. arXiv preprint arXiv:2403.13031.

A Additional Related Work

LLM Reasoning. Several methods have been
proposed to enhance the reasoning capabilities of
large language models (LLMs), which can broadly
be categorized into prompt engineering and post-
training approaches. Prompt engineering methods,
such as Chain-of-Thought (Wei et al., 2023), lever-
age in-context demonstrations to elicit more coher-
ent and structured reasoning trajectories. Building
on this idea, Tree-of-Thought (Yao et al., 2023)
and Graph-of-Thought (Besta et al., 2024) further
improve reasoning by organizing generation within
tree- and graph-based logical structures. These
prompt-based techniques are post-hoc in nature,
enhancing reasoning without modifying the model
parameters.

In contrast, post-training approaches aim to di-
rectly optimize LLMs for improved reasoning. For
instance, Muennighoff et al. (2025) and Chen et al.
(2023) apply supervised fine-tuning with high-
quality, diverse demonstrations, while Xiong et al.
(2024) utilize alignment strategies such as Direct
Preference Optimization (DPO). More recently, re-
inforcement learning methods—including PPO and
GRPO—have demonstrated strong performance in
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reasoning tasks (Shao et al., 2024a; DeepSeek-AI,
2025; Qwen et al., 2025; Kazemnejad et al., 2024).
Among these, GRPO has gained particular atten-
tion for its superior computational efficiency com-
pared to other reinforcement learning algorithms.

Curriculum Learning. Training machine learn-
ing models using a progression from easy to hard
examples—known as curriculum learning(Bengio
et al., 2009b)—has been shown to outperform stan-
dard training approaches based on random data
shuffling(Soviany et al., 2022). This paradigm has
been successfully applied in both supervised learn-
ing (Graves et al., 2017; Hacohen and Weinshall,
2019; Matiisen et al., 2020) and reinforcement
learning (Narvekar et al., 2020; Ren et al., 2018;
Florensa et al., 2017). More recently, curriculum
learning has also been explored in the context of
LLM alignment (Croitoru et al., 2025).

B Experiment Setup

We used the Huggingface framework (Wolf et al.,
2020) to load dataset and evaluate the guardrails
and applied the default greedy decoding for all
guardrails. Our training is performed on 4 NVIDIA
RTX A100 (80G) GPUs, and vLLM (Kwon et al.,
2023) is used to optimize inference speed.

For training data configuration, during the SFT
stage, we train on the full English seed dataset
(30.3K examples) combined with the translations
generated from the sampled 2,000 seed examples.
At the GRPO stage, we subsample another 2,000
seed examples and generate the challenging vari-
ants for curriculum learning, and we additionally
include the seed English samples in the first cur-
riculum stage to avoid losing its English ability as
described in Section 3.3.

We use the TRL library (von Werra et al., 2020)
for both SFT and GRPO stage. For both stages, we
set the LoRA rank and alpha to 32, with a dropout
rate of 0.1. During SFT, we use a learning rate of
SFT is 2e − 5 and train for 3 epochs. For GRPO,
we set the learning rate to 1e − 5 and the num-
ber of training epoch is 1. We conduct a hyperpa-
rameter sweep over LoRA rank and alpha values
{8, 16, 32}, and select the best configuration based
on performance on the Aegis-2.0 validation dataset.
All use of the packages and artifacts are consistent
with their intended use and license. We used Chat-
GPT to refine short sentences and paragraphs and
to check for grammar errors.

C Dataset Details

In our training, we translate English seed data
into RU, ES, ZH, AR, so these languages are con-
sidered as our in-domain languages. We bench-
mark our guardrail’s performance on five multi-
lingual datasets: PTP_wildchat (Jain et al., 2024),
RTP_LX (de Wynter et al., 2024), aya-red-teaming
(Aya)(Aakanksha et al., 2024) , MultiJail (Deng
et al., 2023), and XSafety (Wang et al., 2023).
For each dataset, we list the ID and out-of-domain
(OOD) languages in Table 9. Several datasets (Aya,
MultiJail, XSafety) are red-teaming datasets that
consist solely of unsafe prompts intended to elicit
harmful responses; we thus assume all prompts
in these datasets are unsafe. For this purpose, we
focus on a selected subset of topics in XSafety:
Crimes and Illegal Activities, Goal Hijacking, In-
sult, Role Play Instruction, Unfairness and Dis-
crimination, and Unsafe Instruction Topic. For
RTP_LX, we consider prompts with an average
toxicity score above 1.0 (on a scale from 1 to 5) as
unsafe. For PTP_wildchat, we treat prompts with
a prompt toxicity score above 0.1 (on a scale from
0 to 1) as unsafe. The language code is listed in
Table 10.

C.1 Generation configuration

We provide the prompts used in our experiments
in this section. For synthetic data generation, the
prompt template is shown in Figure 6. Figure 7
shows the instruction used during both training and
inference.

C.2 Human evaluation

We validated our LLM-generated synthetic transla-
tions (Section 3) by comparing the model’s safety
judgments with human judgments. We have sub-
sampled 100 sentences for ZH, RU, and AR. For
each language, we have one volunteer for each lan-
guage, and the volunteers are native speakers in the
target languages and are proficient in English. The
guidelines of human evaluation is shown in Figure
8, and the results are listed in Table 11. The safety
preservation rate is a three-point scale measure-
ment (0-2). 0: The safety label is not preserved;
1: the safety label is preserved, but meaning is al-
tered; 2: both safety label and original meaning are
preserved.
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Figure 6: The prompt we used for synthetic data generation.

Figure 7: Instruction prompt used during both training and inference for our guardrail.
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RTP-LX Aya MultiJail Wildchat XSafety

ID EN, AR, ES, RU, ZH EN, AR, ES, RU EN, AR, ZH EN, AR, ES, RU, ZH EN, AR, ES, RU, ZH
OOD FR, HI, SW HI, FR, SR SW, IT, KO HI, FR, JA HI, FR, JA

Table 9: In-domain (ID) and out-of-domain (OOD) language coverage for each evaluation dataset. For RTP_LX
dataset, we used simplified Chinese version (ZH-Hans).

Figure 8: Guidelines for human annotation of synthetic multilingual training data.

D Multilingual Variants

Following (Yoo et al., 2024), we generate code-
switching prompts to evaluate the guardrail’s
robustness to multilingual variations. Rather
than mixing 10 different languages, we construct
prompts by combining English with a single ad-
ditional language, reflecting a more realistic code-
switching scenario in practical applications. We
generate code-switching prompts for MultiJail and
XSafety dataset.

Additionally, following (Upadhayay and Be-
hzadan, 2024), we observe that LLMs are more
likely to produce harmful responses when dis-
tractors from low-resource languages are present.
Specifically, we embed jailbreaking prompts be-
tween benign questions written in a low-resource

language. In our experiments, jailbreaking prompts
are drawn from the MultiJail and XSafety datasets,
while benign questions are selected from the Viet-
namese subset of the XQuAD dataset (Artetxe et al.,
2019). Figure 9 illustrates examples of the gener-
ated code-switching (CSRT) and sandwich attacks
used to evaluate multilingual guardrail robustness.

E GRPO algorithm

The objective function of GRPO is defined as fol-
low. Let πθ denote the language model parameter-
ized by θ, and πold be the model from a previous
iteration. Given a prompt p, we sample a group
of generations {o1, . . . , oG} ∼ πold(· | p), each as-
sociated with a reward {r1, . . . , rG}. Let DKL de-
note the KL-divergence between two distributions.
GRPO estimates the advantage of a generation oi
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Figure 9: Examples of code-switching (CSRT) and sandwich attack (sandwich) prompts for multilingual robustness
evaluation.

Language Language Code

English EN
Arabic AR
Spanish ES
Russian RU
Chinese ZH

Simplified Chinese ZH-Hans
French FR
Hindi HI

Swahili SW
Serbian SR
Italian IT
Korean KO

Japanese JA

Table 10: Mapping of language to language code in the
evaluation.

Lang AR ZH RU

Translation 1.98 1.75 1.9
Local 1.67 1.73 1.91

Challenging 1.32 1.58 1.75

Table 11: Here we report human annotation on safety
preservation rate of synthetic data generation. Higher
score the better. The scale is from 0 to 2.

using:

Ai =
ri −mean({r1, . . . , rG})

std({r1, . . . , rG})
.

The GRPO objective is then defined as:

JGRPO =
1

G

G∑

i=1

[min(
πθ(oi|p)

πθold(oi|p)
Ai,

clip(
πθ(oi|p)

πθold(oi|p)
, 1− ϵ, 1 + ϵ)Ai))]

− βDKL[πθ||πref ].

F Additional Results on QWEN

Table 12 shows additional results from training
QWEN2.5-3B (Qwen et al., 2025) with our frame-
work.

F1 RTP_LX Aya XSafety MultiJail

QWEN 89.76 98.26 95.43 91.56

Table 12: Here we report F1 scores of QWEN-2.5-3B
across different datasets. We take the average across
both in-domain and out-of-domain languages.

G Additional Results

G.1 Granular Breakdown of Performance
Here is the granular breakdown of performance
by the language script/family/resource availability
across different datasets.
By language script (Table 13)
Latin script: French, Spanish, Swahili, Italian,
English, Serbian
Cyrillic script: Russian
Devanagari script: Hindi
Arabic script: Arabic
Hangul: Korean
Han script: Chinese
Japanese scripts: Japanese

By language family (Table 14)
Afro-Asiatic: Arabic
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Models Latin Cyrillic Devanagari Arabic Hangul Han Japanese

DUO-Guard 62.56 29.99 50.88 35.40 13.06 73.57 58.63
Guardreasoner 79.48 83.78 78.08 72.48 90.43 84.24 80.09
LlaMa-guard-3 67.16 64.92 59.54 62.73 77.43 62.25 66.24

Aegis-2.0 41.85 48.88 48.79 19.05 20.00 46.74 39.22
Wildguard 64.35 73.34 44.75 29.52 70.90 77.61 69.78

Ours 93.38 95.12 90.53 92.71 97.23 93.24 92.26

Table 13: Performance of different guardrails to identify multilingual safety across five benchmark datasets grouped
by language script.

Indo-European: French, Spanish, Italian, English,
Russian, Serbian, Hindi
Sino-Tibetan: Chinese
Japonic: Japanese
Koreanic: Korean
Niger-Congo: Swahili

By resource availability (Table 15)
We group languages according to their web-
coverage percentages as reported by Common
Crawl.
High-Resource (>= 1%): English, Russian,
Chinese, Spanish, French, Italian, Japanese
Mid-Resource (0.5% - 1%): Korean, Arabic
Low-Resource (<= 0.5%): Hindi, Serbian, Swahili.

We here show detailed break-down results on
additional datasets.

Figure 10: F1 score breakdown on the XSafety dataset,
evaluated across 8 target languages.

G.2 Additional Unseen Languages

Here we report results in Figure 14 on unseen
mid/low-resource languages for different datasets.
RTP_LX: Hebrew (HE); Aya: Filipino (FIL);

Figure 11: F1 score breakdown on the aya dataset, eval-
uated across 8 target languages.

Figure 12: F1 score breakdown on the PTP_wildchat
dataset, evaluated across 8 target languages.

XSafety: Bengali (BN); PTP_Wildchat: Korean
(KO); MultiJail: Bengali (BN). We observe that
our multilingual guardrail consistently outperforms
the baselines.
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Models Indo-European Afro-Asiatic Sino-Tibetan Japonic Koreanic Niger-Congo

DUO-Guard 60.39 35.40 73.57 58.63 13.06 33.46
GuardR 86.69 72.48 84.24 80.09 90.43 31.90

LlaMa-guard-3 69.09 62.73 62.25 66.24 77.43 43.75
Aegis-2.0 49.20 19.05 46.74 39.22 20.00 4.37
Wildguard 71.30 29.52 77.61 69.78 70.90 5.08

Ours 95.20 92.71 93.24 92.26 97.23 79.48

Table 14: Performance of different guardrails to identify multilingual safety across five benchmark datasets grouped
by language family.

Models High Mid Low

DUO-Guard 69.54 24.23 33.87
Guardreasoner 87.03 81.45 64.63
LlaMa-guard-3 68.25 70.08 59.36

Aegis-2.0 51.02 19.52 25.86
Wildguard 79.51 50.21 31.67

Ours 94.77 94.97 89.33

Table 15: Performance of different guardrails to iden-
tify multilingual safety across five benchmark datasets
grouped by resource availability.

Figure 13: F1 score breakdown on the Multijail dataset,
evaluated across 8 target languages.

G.3 Additional Results on Multilingual
Perturbations

We also perform code-switching and sandwich at-
tack on XSafety dataset and the results are shown
in Table 16 and Table 17.

G.3.1 Additional Results on Hyperparameter
Search

Here we provide additional results of model trained
with different difficulty thresholds in Table 18.

Figure 14: F1 score breakdown on additional unseen
languages from different datasets.

Models EN ↑ Avg-CSRT ↑ ∆ ↓
DUO-Guard 75.71 67.56 8.15

GuardR 85.99 84.41 1.58
LlaMa-Guard-3 64.48 60.81 3.67

Aegis-2.0 66.22 40.93 25.29
Wildguard 91.40 81.76 5.99
MrGuard 93.00 92.44 0.56

Table 16: F1 scores on code-switching prompts eval-
uated on the XSafety datasets. The best-performing
results across models are highlighted in bold. ∆ rep-
resents the difference between the F1 score on En-
glish prompts and the averaged F1 score over all code-
switching variants across both ID and OOD languages.

G.4 Additional Results on Ablation Study

Moreover, instead of using a curriculum-based lan-
guage reward, we can assign a fixed reward to pro-
mote multilingual reasoning. In our experiments,
we set a constant language reward of 0.5 for all
non-English explanations (see Table 19).

We here reported the language match rate of the
model trained without Rlang to show the motiva-
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Models
Avg-
Orig

↑ Avg-
Sandwich

↑ ∆↓

DUO-Guard 64.77 1.23 63.53
GuardR 82.25 74.83 7.42

LlaMa-Guard-3 61.50 6.37 55.13
Aegis-2.0 35.32 1.12 34.20
Wildguard 69.21 42.38 26.83
MrGuard 93.48 81.13 12.36

Table 17: F1 scores on sandwich attacks evaluated on
the XSafety datasets. The best-performing results across
models are highlighted in bold. Avg-Orig indicates the
average F1 score on before attack, and the average F1
score after sandwich attack across both ID and OOD
languages. ∆ represents the difference between them.

(t2, t1) RTP_LX Aya Xsafety PTP MultiJ

(0.6,0.7) 90.46 97.56 92.73 90.16 96.49
(0.6,0.8) 90.69 97.67 93.32 90.68 97.38
(0.6,0.9) 90.61 97.64 92.66 90.48 96.69
(0.7,0.8) 90.81 97.75 93.18 90.82 96.85
(0.7,0.9) 90.16 97.20 92.81 90.33 96.74
(0.8,0.9) 90.13 97.30 91.91 89.83 96.57

Table 18: F1 scores on in-domain languages across
datasets for models trained with varying difficulty
thresholds.

RTP_LX Aya Xsafety Wildchat Multijail

Curr 89.27 98.18 93.48 91.54 96.50
Fixed 89.13 98.22 93.02 91.46 96.30

Table 19: Comparison between fixed and curriculum-
based language rewards. Here we report average F1
score across various languages on five datasets. Cur-
riculum refers to the reward as described in Section 3.3
while Fixed denotes a constant reward applied to all
non-English reasoning.

tion of including the language component in the
loss function in Table 20. As we show in the Table
5, our proposed model has a comparable perfor-
mance with a model trained without Rlang but the
generated reasoning is not in the same language as
the input.

EN AR ZH RU HI

Ours 97.30 98.76 99.52 98.86 99.91
W/o Rlang 97.40 0.0 0.0 0.0 6.64

Table 20: Language match rate of the model trained
with/without Rlang in the loss function.

Figure 15: Example of reasoning generated from our
multilingual guardrail.

H Qualitative Results

We provided some qualitative results generated
from our multilingual guardrail in Figure 15.

We have defined a taxonomy of failure cases
and provide qualitative examples of each case from
different languages.

I Evaluate Reasoning Fidelity

We evaluate the fidelity of reasoning in Section
5.3 and define a taxonomy for a deep analysis of
reasoning generated by our guardrail.
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Figure 16: We present qualitative examples across languages illustrating our failure taxonomy. Inputs are from
RTP_LX; analysis are generated by MrGuard. English translations via Google Translate are provided. Note that no
examples were judged to fall into Category D.

Figure 17: Instruction for LLM/human annotation to evaluate fidelity of reasoning.
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