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Abstract

In natural languages, frequency and composi-
tionality exhibit an inverse relationship: the
most frequent words often resist regular pat-
terns, developing idiosyncratic forms. This phe-
nomenon, exemplified by irregular verbs where
the most frequent verbs resist regular patterns,
raises a compelling question: do artificial com-
munication systems follow similar principles?
Through systematic experiments with neural
network agents in a referential game setting,
and by manipulating input frequency through
Zipfian distributions, we investigate if these sys-
tems mirror the irregular verbs phenomenon,
where messages referring to frequent objects
develop less compositional structure than mes-
sages referring to rare ones. We establish that
compositionality is not an inherent property
of the frequency itself and provide compelling
evidence that limited data exposure, which fre-
quency distributions naturally create, serves as
a fundamental driver for the emergence of com-
positional structure in communication systems,
offering insights into the cognitive and compu-
tational pressures that shape linguistic systems.

1 Introduction

Neural networks provide a modern framework for
exploring how fundamental linguistic properties
emerge during the evolution of language (Kottur
et al., 2017; Lazaridou and Baroni, 2020; Rita et al.,
2024). Among these properties, compositionality—
the ability to combine discrete meaningful units to
create complex expressions—is considered a defin-
ing feature of human language (Bickerton, 2007;
Hockett, 1960). Our research explores the rela-
tionship between compositionality and frequency
distributions in emergent languages.

Natural languages across cultures exhibit a uni-
versal tendency: highly frequent elements often
resist regular patterns and develop idiosyncratic
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Figure 1: Most common verbs in The Great Gatsby1

structures Pinker (1999); Bybee (2007). Irregular
verbs provide a well-known example of this pat-
tern, as the most frequently used verbs (e.g., “to
be”, “to go”) tend to resist regular morphological
conventions (Francis and Kučera, 1982) (Figure 1).

Researchers in language evolution have ques-
tioned the prerequisites for this phenomenon.
Kirby (2001) investigated linguistic structure evo-
lution through an Iterated Learning Model (Smith
et al., 2003) with symbolic algorithms, demonstrat-
ing that limited data exposure creates a learning
bottleneck pushing toward structured language de-
velopment. His work showed that with Zipfian
distributions (Zipf, 2013), frequent elements de-
velop irregular structure while being expressed in
shorter forms.

With the recent advent of deep neural net-
works (LeCun et al., 2015), there has been a
resurgence of computational simulations of lan-
guage evolution (Lazaridou and Baroni, 2020;
Rita et al., 2024), enabling scaled experiments
with learning agents unbound by pre-established
rules (Chaabouni et al., 2022). With such simula-
tions, Chaabouni et al. (2019) demonstrated that
standard neural network agents tend to develop in-

1Data source: https://www.gutenberg.org/cache/
epub/64317/pg64317.txt
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efficient communication codes that violate Zipf’s
Law of Abbreviation (ZLA) (Zipf, 1949): the prin-
ciple that more frequent words tend to be shorter.
This inefficiency raises a compelling question: if
those emergent languages struggle to conform to
basic efficiency principles like ZLA, how might
frequency affect their compositional properties?

While compositionality (Kottur et al., 2017;
Chaabouni et al., 2020; Li and Bowling, 2019; Ren
et al., 2020; Rita et al., 2022) and frequency ef-
fects (Chaabouni et al., 2019; Rita et al., 2020)
have been extensively studied in neural emergent
communication, their relationship remains unex-
plored. To address this gap, we leverage neural
network capabilities to scale Kirby (2001)’s experi-
mental setup —originally limited to 25 objects and
qualitative methods— to approximately one mil-
lion distinct objects and quantitatively study the
impact of frequency on compositionality.

In this paper, we first describe our experimental
framework based on a referential game between
neural agents. We then analyze how composition-
ality is affected by object frequency in various sce-
narios. Finally, we examine how the frequency and
compositionality evolve during training.

Our findings reveal several key insights. We
establish that emergent communication systems
mirror the irregular verbs phenomenon observed in
natural languages, where messages referring to fre-
quent objects develop less compositional structure
than messages referring to rare ones (Pinker, 1999;
Francis and Kučera, 1982). We also demonstrate
that compositionality is not directly caused by fre-
quency itself, but rather emerges as a response to
the limited data exposure that frequency distribu-
tions naturally create.

Aligning with Kirby (2001)’s work, these results
provide evidence that limited data exposure, also
facilitated through frequency distributions, serves
as the fundamental driver for compositional struc-
ture emergence in these systems, offering insights
into the cognitive and computational pressures that
shape linguistic systems.

2 Experimental Framework

We study emergent communication in the context
of a Lewis signaling game (Lewis, 1969; Skyrms,
2010), where neural network agents need to com-
municate to complete a cooperative task.

2.1 The Lewis Reconstruction Game

Following a standard approach in emergent com-
munication (Lazaridou et al., 2017; Havrylov and
Titov, 2017), we implement a referential game be-
tween two agents: Speaker and Listener.

The game proceeds as follows: The Speaker re-
ceives an input object i and produces a message m.
The Listener receives the message m and attempts
to reconstruct the original input object, producing
output î. The agents succeed if î = i, meaning the
Listener correctly reconstructs the Speaker’s input.

Each input object i is composed of A attributes,
with each attribute taking one of N possible values.
We represent each attribute as a one-hot vector of
size N , and the full input i is the concatenation of
these attribute vectors. For a given configuration
with A attributes and N values per attribute, the
total size of the input space is |I| = NA. While
this experimental framework builds on established
approaches in emergent communication (Rita et al.,
2022; Michel et al., 2022), our work extends it to
an unprecedented scale. In our experiments, we
use two different input space configurations, both
yielding approximately 1 million distinct objects:
(1) objects with 6 attributes, each taking 10 possible
values, and (2) objects with 3 attributes, each taking
100 possible values. This allows us to study how
attribute structure affects emergent communication
while keeping the total input space constant. Unlike
Rita et al. (2022) who only utilized a small fraction
(<1%) of their similarly sized dataset, our approach
actively engages with the entire input space.

2.2 Agent Architecture

Both the Speaker and the Listener are implemented
as recurrent neural networks (Elman, 1990) with
layer normalization (Ba et al., 2016).

Speaker is a single-layer LSTM (Hochreiter and
Schmidhuber, 1997) with a hidden size of 320 units.
The input i is first passed through an embedding
layer of dimension 20, and this embedding is used
to initialize the hidden state of the Speaker’s LSTM.
The message m is generated symbol by symbol us-
ing the LSTM, with each new symbol sampled
from a Categorical distribution over a vocabulary
V of size 40. Messages can contain up to 30 sym-
bols, including the EOS (end-of-sentence) token.
The symbols are recursively sampled until the EOS
token is produced or the Speaker reaches the maxi-
mum length. During testing, instead of sampling,
each symbols are deterministically selected by tak-
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ing the argmax of the distribution.
Listener is also a single-layer LSTM with a hid-

den size of 800 units, drawing inspiration from
Chaabouni et al. (2022) who used asymmetric
LSTM sizes with a larger Listener than Speaker.
It receives the message m, and passes it through an
embedding layer of dimension 200. These token
embeddings are then fed one by one into the Lis-
tener’s LSTM. After consuming the entire message,
the final hidden state is passed through a linear
layer followed by a softmax activation to produce a
distribution for each attribute over possible values.
During testing, the argmax of these distributions is
used to produce the reconstruction candidate î.

In this setup, the message space consists of se-
quences of length up to 30 with symbols from a vo-
cabulary of size 40, including the EOS token. The
message space size (approximately 1047) therefore
largely exceeds the input space size (|I| = 106) as
is standard in the literature (Rita et al., 2024).

2.3 Optimization
Training the agents presents a challenge because
the communication channel is discrete, making the
system non-differentiable end-to-end. We use a
hybrid optimization approach:

For the Listener, we use standard cross-entropy
loss, optimized with Adam (Kingma and Ba, 2014)
and a learning rate of 0.001 with an entropy regu-
larization coefficient of 0.2. This entropy regular-
ization encourages exploration of different possible
interpretations of messages during each retraining
phase, which indirectly pressures the Speaker to
develop clearer communication strategies.

For Speaker, which must produce discrete
messages, we use the REINFORCE algo-
rithm (Williams, 1992) with a batch normalization
baseline to reduce variance (Sutton et al., 1999).
We use log-based rewards and an entropy regular-
ization coefficient of 1.0 to encourage exploration
of the message space during early training. The
Speaker is also optimized with Adam and a learn-
ing rate of 0.001.

To improve generalization and training stabil-
ity, we implement the Early Stopping technique
proposed by Rita et al. (2022) across all our experi-
ments. While sharing characteristics with Iterated
Learning Model (Ren et al., 2020; Li and Bowl-
ing, 2019; Cogswell et al., 2020), this technique
implements a decoupled training paradigm wherein
the speaker optimization proceeds independently,
while the listener is reinitialized and trained from

scratch until an early stopping criterion is met on a
validation set.

We provide the decoupled training algorithm
pseudocode and an ablation study of this technique
in Appendix C. This study confirms enhanced con-
vergence properties while demonstrating that our
key findings about frequency and compositional-
ity remain consistent regardless of whether listener
resetting is employed.

The agents were trained for 250 training itera-
tions, with 64 gradient steps and a batch size of
1024 for both agents.

We filtered for successful runs that converged to
greater than 97% test accuracy.

Each training was performed using one NVIDIA
V100 GPU for 12 hours.

For reproducibility, the code is avail-
able at https://github.com/jbsevestre/
frequency-and-compositionality.

3 Analytical Method

3.1 Evaluation Metrics
We employ standard Emergent Communication
metrics to evaluate our approach. All scores are
averaged over 10 runs with different random seeds
and evaluated on test splits.

3.1.1 Communication Success
We use accuracy as our primary measure of com-
munication success between agents. Specifically,
accuracy is calculated as the average number of
correctly predicted attribute values, to give us a
softer measurement of communication success.

3.1.2 Compositionality
To assess compositionality, we use Topographic
Similarity (topsim) (Brighton and Kirby, 2006),
which measures how well the structure of the mean-
ing space is preserved in the message space. Top-
sim calculates the Spearman correlation between
pairwise distances of objects (using Hamming dis-
tance) and their corresponding messages (using
edit distance). Higher values indicate that similar
objects receive similar messages, suggesting com-
positional structure. A score of 1.0 would indicate
perfect preservation of meaning structure, while
0.0 indicates no systematic relationship.

3.2 Reference Distributions
To model frequency differences between attributes
and objects, we sample attribute values from inde-
pendent and identically distributed Zipfian distri-
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butions, mimicking the frequency distribution of
words in natural languages (Zipf, 2013).

For a given object’s attribute, the marginal prob-
ability of sampling the kth most frequent value is:

p(k) =
k−α

∑N
l=1 l

−α
(1)

where k is the rank, α is the distribution parame-
ter controlling skewness, and N is the number of
values. As α → 0, p(k) approaches a uniform dis-
tribution, and as α → ∞, probability concentrates
entirely on the most frequent value (k = 1).

The objects’ joint distribution is a multivariate
Zipfian distribution, and is derived from the at-
tributes’ marginal distributions product since the
marginals are i.i.d.. During training, batches of
objects are sampled with respect to this joint distri-
bution. This creates a scenario where some objects
appear much more frequently than others during
training, allowing us to examine how frequency af-
fects the language properties. For comparative anal-
ysis, we also give results with uniform marginal
distributions as a control group.

For simplicity, we label attribute values accord-
ing to their frequency rank: ’value 1’ is the most fre-
quent value, ’value 2’ is the second most frequent,
and so on until ’value N ,’ which is the rarest.

3.3 The Hypercube Approach
To analyze compositionality between frequency
groups, we propose a systematic approach for par-
titioning the object space.

As illustrated in Figure 2, we can group ob-
jects based on their attribute values: the “frequent”
group contains cats with only common attributes
(brown or white fur with green or blue eyes), while
the “rare” group contains cats with only uncom-
mon attributes (hairless or blue fur with orange or
heterochromatic eyes). In this example, messages
referring to cats in the “frequent” group tend to be
simple and non-compositional (“the cat”), while
messages for the “rare” group would typically com-
bine multiple descriptive elements (“the cat with
the blue fur and orange eyes”), suggesting higher
compositionality in communications about rare ob-
jects. This grouping facilitates the comparison of
the compositionality between frequency groups.

We generalize this approach to object spaces
with more attributes and values by partitioning it
into N non-overlapping hypercubes:

Hi = H
[
(i− 1)× N

C
+ 1, i× N

C

]
(2)

Figure 2: Hypercube approach example in a 2-attributes
and 4-values setting. In the frequent group, animals are
more likely to be qualified as just “the cat”, when in the
rare group, animals are more likely to be described with
a concatenation of compositional adjectives: “the cat
with the blue fur and the orange eyes”.

and compute all metrics for objects within each
hypercube separately, where i is the hypercube
number, N is the number of values, and C is the
number of hypercubes. Note that we deliberately
use non-overlapping hypercubes to ensure statisti-
cal independence between frequency groups.

For our experiments, in the 6-attributes & 10-
values setting, we split the object space into 2 hy-
percubes, each containing 15, 625 elements: the
“frequent” group H1 = H[1, 5] contains objects
whose attributes only have the most frequent val-
ues (1 to 5), and the “rare” group H2 = H[6, 10]
contains objects whose attributes have the less fre-
quent values (6 to 10). In the 3-attributes & 100-
values setting, we split the object space into 10 non-
overlapping hypercubes, each containing 1, 000 el-
ements: from H1 = H[1, 10]: the “hyper-frequent”
group containing objects with attribute’s values
between 1 and 10 to H10 = H[91, 100]: the “hyper-
rare” group containing objects with the most rare
attribute’s values between 91 and 100, offering a
gradient of frequency between this two groups.

3.4 Random Block Split

In order to partition the full object space dataset
into non-overlapping train, validation, and test sets,
one key challenge is to preserve the frequency char-
acteristics of our skewed joint distribution com-
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Figure 3: Random Block Split. Top: objects’ joint
distribution from attribute Zipfian marginals. Middle:
division into blocks of consecutive values and random
proportional allocation per block. Bottom: resulting
train, val, and test sets: this approach preserves the
original distribution characteristics.

puted from attribute Zipfian marginals.
Note that in this dataset, elements are unique

(objects are distributional modalities), ordered (in
our case, by frequency rank), and the distribution
characteristics (frequencies) are known.

To tackle this, we propose Random Block Split
(Algorithm 1), an approach specifically designed
to split an ordered dataset while preserving its fre-
quency characteristics.

The method operates on blocks of consecutive
values, with block size determined by the desired
split ratio. The Random Block Split algorithm
works as follows: Given a dataset D of n ordered
elements and a split ratio (rtrain:rval:rtest), it first
determines the block size b = rtrain + rval + rtest.
Then, for each successive block of b elements in D,
it randomly assigns rtrain elements to the training
set, rval elements to the validation set, and the re-
maining rtest elements to the test set. This process
continues until the entire dataset is partitioned.

For our experiments, we use a 2/1/1 split ratio
(train/validation/test), resulting in a 0.5M train set,
0.25M validation set, and 0.25M test set from the
original 1M object dataset.

As exemplified in Figure 3, this approach suc-
cessfully preserves the multivariate Zipfian distri-
bution characteristics across the resulting datasets.

Algorithm 1 Random Block Split
From dataset D of n ordered elements
Define set ratio rtrain : rval : rtest

Set block size b = rtrain + rval + rtest

for each successive block of b elements of D do
Randomly assign rtrain elements to Ttrain

Randomly assign rval elements to Tval

Assign remaining rtest elements to Ttest

end for
Return Ttrain, Tval, Ttest

4 Results

We present a series of experiments that investigate
the relationship between frequency and composi-
tionality in emergent communication systems.

4.1 Irregular verbs phenomenon

Our first experiment examines communication per-
formance and compositionality across frequent and
rare object spaces under both uniform and Zipfian
distributions, as shown in Figure 4.

Under uniform distributions, accuracy and topo-
graphic similarity remain relatively constant across
both frequent and rare object spaces (approximately
0.28−0.29 for topsim), as expected from a control
group where no frequency differences exist. On
the contrary, for Zipfian distributions, we observe
that frequent objects maintain high performance
while rare objects show slightly decreased accu-
racy with greater variability. This accuracy drop
is expected, as agents naturally struggle to learn
rare attribute values that appear less frequently in
the training data. We also observe that composi-
tional structure (measured via topographic simi-
larity) is significantly lower for frequent objects
(median approximately 0.28) compared to rare ob-
jects (median approximately 0.38). Indeed, the
p-value of the unilateral Wilcoxon signed-ranked
test (Wilcoxon, 1945), testing if the composition-
ality on the rare group is significantly higher than
the one on the frequent group, is statistically sig-
nificant (p < 0.01), while the same test confirms
no significant difference between the two groups
under the uniform distribution (p > 0.05).

These findings reflect the irregular verbs phe-
nomenon in emergent communication: frequent
items develop less compositional structure than
rare items, analogous to how frequently used verbs
in natural languages often maintain irregular forms
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Figure 4: Topographic similarity evaluated from runs
on the 6-attributes and 10-values setting. H1 and H2

correspond respectively to the frequent and the rare
groups.

(Pinker, 1999; Wu et al., 2019).
To test how message length compression affects

the compositional structure differences observed
between frequent and rare objects, we conducted
additional experiments using the LazImpa mecha-
nism (Rita et al., 2020), which explicitly encour-
ages shorter messages. As detailed in Appendix A,
our analysis shows that the irregular verbs phe-
nomenon is independent of the message length.

For comparison, we established a baseline using
randomly generated messages. As detailed in Ap-
pendix B, this random baseline yields topographic
similarity values of approximately 0.0 and chance-
level accuracy (0.1).

4.2 Impact of Zipf Parameter α

Our second experiment investigates how varying
the skewness of the Zipfian distribution through
different α parameters affects communication per-
formance and compositional structure (Figure 5).

The results reveal a systematic relationship be-
tween the strength of the Zipfian skew (α) and both
communication accuracy and compositional struc-
ture. As α increases from 0.0 (uniform) to 1.5
(highly skewed), we observe distinct patterns for
each object space.

For frequent objects, accuracy remains consis-
tently high (approximately 99%) across all α val-
ues, while topographic similarity shows only mod-
est increases (from approximately 0.28 at α = 0.0
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Figure 5: Topographic similarity evaluated from runs on
the 6-attributes and 10-values setting for different values
of the Zipf’s alpha parameters. H1 and H2 correspond
respectively to the frequent and the rare groups.

to approximately 0.32 at α = 1.5). For rare objects,
accuracy progressively decreases with increasing
α (from approximately 0.98 at α = 0.0 to approx-
imately 0.94 at α = 1.5), while topographic simi-
larity increases substantially (from approximately
0.29 at α = 0.0 to approximately 0.45 at α = 1.5).

The effect is particularly pronounced for rare
objects, where the highest α (1.5) yields the lowest
accuracy but the highest topographic similarity.

As the distribution becomes more skewed with
higher α values, rare objects become even less fre-
quent in the training data, creating greater chal-
lenges for accurate communication. In response,
agents develop increasingly compositional lan-
guage for these rare objects, which helps them
generalize from limited exposure.

4.3 Hyper-frequent group

Our third experiment employs a more fine-grained
approach, partitioning the object space into 10
hypercubes (H1-H10) ranging from extremely fre-
quent (H1) to extremely rare (H10) (Figure 6).

The results reveal nuanced patterns across the
frequency spectrum. For accuracy, under uniform
distributions, performance remains consistently
high across all hypercubes. Under Zipfian dis-
tributions, we observe a clear frequency gradient:
accuracy decreases progressively from H1 (hyper-
frequent) to H10 (hyper-rare), with increasing vari-
ability for rarer hypercubes. For topographic simi-
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Figure 6: Topographic similarity evaluated from runs
on the 3-attributes and 100-values settings. Frequency
groups are arranged from most frequent (H1, leftmost)
to least frequent (H10, rightmost).

larity, under uniform distributions, compositional
structure remains remarkably stable (approximately
0.28− 0.30) across all hypercubes. Under Zipfian
distributions, we observe two distinct patterns: (1)
the hyper-frequent hypercube H1 shows the low-
est topographic similarity (approximately 0.35),
and (2) hypercubes H2-H10 maintain consistently
higher topographic similarity levels (approximately
0.39−0.42) with no frequency-based gradient. Sta-
tistical analysis provided in Appendix D confirms
the distinctly lower topographic similarity of H1

compared to all other groups under Zipfian dis-
tributions (unilateral Wilcoxon signed-ranked test,
p < 0.01) as shown in the p-value matrix (Fig 11).

These findings strongly confirm the irregular
verbs phenomenon: while the hyper-frequent ob-
jects (H1) indeed show reduced compositional
structure, the remaining object space exhibits re-
markably consistent levels of compositionality de-
spite decreasing frequency and accuracy.

While these consistent compositional levels
could potentially indicate attribute independence
and a common compositional framework across
frequency groups, confirming whether agents em-
ploy shared encoding strategies would require qual-
itative message analysis that extends beyond our
current topographic similarity measures.
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Figure 7: Topographic similarity evaluated from runs
on the 3-attributes and 100-values settings for different
numbers of iterations. Frequency groups are arranged
from most frequent (H1, leftmost) to least frequent (H10,
rightmost).

4.4 Compositionality throught training

Our final experiment examines how communica-
tion systems evolve over different training dura-
tions (100, 250, and 1200 iterations), illustrated in
Figure 7. Note that the mid-training stage (250 iter-
ations) represents the same training duration used
in our previous experiments with Zipfian distribu-
tions.

The results reveal a complex relationship be-
tween training duration, communication accuracy,
and compositional structure: during early train-
ing (100 iterations), accuracy varies dramatically
across hypercubes: high for frequent items (ap-
proximately 0.50 − 0.65 for H1-H2) but poor for
rare items (dropping to approximately 0.10 for
H10), while topographic similarity remains rela-
tively low across all hypercubes (approximately
0.28− 0.30). As training progresses to mid-stage
(250 iterations), accuracy improves substantially
across all hypercubes (approximately 0.83− 0.99),
though still showing a frequency gradient, and topo-
graphic similarity reaches its peak values (approx-
imately 0.35 − 0.45), with the highest values ob-
served in hypercubes H3-H5. With extended train-
ing (1200 iterations), accuracy approaches ceiling
performance across all hypercubes (approximately
0.95− 1.0), with minimal frequency effects; inter-
estingly, topographic similarity decreases from the
250-iteration levels across all hypercubes (approxi-
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mately 0.30− 0.40), though remaining above the
100-iteration values.

These dynamics reveal a two-phase development
process in emergent communication systems.

First, a Systematization Phase (up to approxi-
mately 250 iterations): This phase is characterized
by rapidly improving accuracy and increasing topo-
graphic similarity. Agents initially develop increas-
ingly compositional language to improve commu-
nication accuracy, particularly for rare objects.

Later, a Conventionalization Phase (beyond 250
iterations): During this stage, while accuracy keeps
increasing, topographic similarity starts decreas-
ing across most of the frequency groups. With ex-
tended training, moderately frequent objects gain
sufficient exposure for agents to develop conven-
tional forms that may depart from compositional
structure.

The observed two-phase development process re-
sembles the historical evolution of language forms
in natural languages, where initially descriptive
and compositional terms often give way to conven-
tional alternatives once they become established
through repeated use (consider how ’electronic
mail’ evolved into ’email’).

As training progresses to this later stage (1200
iterations), Zipf-based runs achieve comparable ac-
curacy to uniform-based ones across all frequency
groups while matching the same compositional-
ity on the frequent groups. Notably, composi-
tional differences between hyperfrequent and other
groups become blurred, and the irregular verbs phe-
nomenon is no longer as pronounced, suggesting
that with sufficient training, the system may eventu-
ally converge toward more uniform compositional
structures regardless of initial frequency distribu-
tions. This observation reveals that composition-
ality is not inherently tied to frequency itself, but
rather to the exposure to the data during learning.

While not mandatory, frequency significantly
facilitated this discovery by creating a natural im-
balance in the learning environment, providing im-
portant exposure to frequent objects from which
agents could infer rules and structure, alongside
limited exposure to rare objects that incentivized
generalization. Indeed, as detailed in Appendix E,
frequency creates a situation where a significant
portion of the training set remains unseen during
training, blurring the clear distinction between train
and test set, and forcing agents to develop generaliz-
able communication strategies over their own train-
ing set. This experimental approach mirrors the

conditions under which natural languages evolve,
where frequency creates similar learning pressures.

5 Conclusion

This work extends Kirby (2001)’s research on fre-
quency effects and confirms his finding, where
frequent elements tend to develop less compo-
sitional structure than rare elements, mirroring
patterns observed in natural languages (Pinker,
1999). Through our experiments at scale with neu-
ral agents, we provide quantitative evidence that
the irregular verbs phenomenon exists in artificial
communication systems.

Beyond confirming this phenomenon, our analy-
sis reveals that compositionality is not an inherent
property of frequency itself but rather emerges as
a consequence of limited data exposure. Though
not a requirement, frequency helps create a natu-
ral imbalance between frequent and rare elements,
where rarity pushes toward the development of a
compositional system.

Consequently, these findings provide compelling
evidence that limited data exposure, which fre-
quency distributions naturally create, drives the
emergence of compositional structure in communi-
cation systems. This mechanism may help explain
why human languages universally exhibit composi-
tional properties, as they too must enable effective
communication about rare or novel concepts with
limited exposure.

6 Limitations

While this study provides significant insights into
frequency-compositionality relationships in emer-
gent communication, two important limitations
should be acknowledged. First, our input space
uses independent attributes, creating an artificial
simplification of real-world objects where features
are typically correlated and interdependent. This
idealized structure may favor compositional strate-
gies that wouldn’t emerge with more naturalistic
inputs. Future research should investigate how
emergent communication adapts to input spaces
with complex feature correlations and hierarchi-
cal structures. Secondly, by focusing primarily on
topographic similarity metrics rather than analyz-
ing message content and structure, we potentially
overlook important qualitative aspects of the com-
munication system. A deeper linguistic analysis
of the emergent codes might reveal more nuanced
patterns in how frequency affects not just the de-
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gree of compositionality, but the specific encoding
strategies agents develop for different attributes.

7 Ethics Statement

Our research exclusively analyses synthetic data
posing minimal immediate ethical concerns. How-
ever, we acknowledge that advances in emer-
gent communication systems could eventually con-
tribute to the development of large-scale multi-
agent systems with potential applications in de-
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A Message compression effect

We investigate whether message length compres-
sion affects the compositional structure differences
observed between frequent and rare objects. Some
researchers have proposed that structure loss in fre-
quent messages might be due to a compression ef-
fect similar to how natural language phrases like “I
do not know” become compressed to “don’t know”.

To test this hypothesis, we implemented the Laz-
Impa mechanism from Rita et al. (2020). LazImpa
introduces a novel communication system where a
speaker agent is constrained by progressive “lazi-
ness” (implementing a scheduled length penalty)
while a listener agent operates under “impatience”
constraints (predicting message content incremen-
tally at each symbol), jointly addressing neural
networks’ inherent bias toward verbose communi-
cation and enabling the emergence of near-optimal
codes that exhibit human language-like efficiency
conforming to Zipf’s Law of Abbreviation.

Figure 8 compares topographic similarity and
message length between systems with and without
the LazImpa mechanism. The results show that
while LazImpa successfully induces shorter mes-
sages as we could expect (approximately 14 vs.
30 characters for frequent objects, and 21 vs. 30
characters for rare objects), the compositional dif-
ference pattern between frequent and rare groups
remains remarkably consistent.

Note that the Mann-Whitney test (Mann and
Whitney, 1947), testing if the compositionality with
LazImpa is significantly different than without it,
confirms no significant difference in the composi-
tionality gap between the two systems. Note also
that even if not shown in the Figure, the accuracy
is the same between the two settings for the two
groups, matching the one shown in Figure 4.

These findings are particularly revealing be-
cause they demonstrate that the irregular verbs phe-
nomenon persists independently of message length
and is not accentuated with compression. This sug-
gests that the frequency effect dominates compres-
sion in the structure loss phenomenon, and since
frequency is just a way to create a natural limited
data exposure, it reinforces the importance of the
learning bottleneck in the emergence and loss of
language’s compositionality.

B Random messages baseline

To establish a proper baseline for comparison, we
evaluate both topographic similarity and accuracy
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Figure 8: Topographic similarity evaluated from runs
on the 6-attributes and 10-values settings for standard
and LazImpa message compression variants. H1 and
H2 correspond respectively to the frequent and the rare
groups.

of a randomly generated message. For each object
in the object space, we generate a random message
by sampling each token uniformly from the entire
vocabulary. Message generation stops when either
the EOS token is sampled or when the maximum
message length limit is reached.

Compositional measures are then computed di-
rectly from these object-message pairs. To assess
accuracy, we provide these random messages to a
randomly initialized and untrained listener agent.
The messages produced by trained agents in our
main experiments serve as the regular condition for
comparison.

As shown in Figure 9, the topographic similarity
of the random messages approximates 0.0, confirm-
ing that randomly generated messages lack com-
positional structure. The accuracy measurement
yields approximately 0.1, which aligns with theo-
retical expectations since accuracy is calculated as
the average number of correctly guessed attribute
values. In our 6-attributes & 10-values setting, a
listener would have a 10% chance of correctly pre-
dicting the right attribute value by random guess-
ing.

Since topographic similarity and accuracy of the
random baseline remain consistent across all ex-
perimental conditions and to maintain clarity in
our visualizations, we have omitted these baseline
measures from the plots in the core of the article.
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Figure 9: Topographic similarity evaluated from runs
on the 6-attributes and 10-values settings for messages
generated with random tokens and from trained agents.
H1 and H2 correspond respectively to the frequent and
the rare groups.

C Listener reset benefits

Following the methodology proposed by Rita et al.
(2022), we implement an “Early Stopping” tech-
nique wherein the listener is reset and retrained
from scratch until an early stopping criterion is
met on a validation set. The complete alternating
training procedure is formalized in Algorithm 2.

This approach yields two significant benefits for
our experimental framework.

First, as illustrated in the right panel of Figure 10,
this technique substantially enhances the conver-
gence properties of the training process. By em-
ploying listener resetting, all experimental runs
converge within fewer iterations, allowing us to
avoid selective reporting of only successful runs
that could introduce methodological bias in our
analysis.

Second, as shown on the left side of Figure 10,
resetting the listener increases the learning bot-
tleneck pressure since the listener is exposed to
fewer data during its limited lifetime. This con-
straint pushes the system toward the development
of stronger compositional structure. As a conse-
quence, for the same pattern of accuracy decrease
along the hypercube frequency gradient, the com-
positional measures are consistently higher across
all hypercubes when using listener reset compared
to experiments without this technique.

It is important to emphasize that all phenomena
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Figure 10: Left: Topographic similarity evaluated from runs on the 3-attributes 100-values settings with Zipfian
marginals for algorithm versions with and without listener reset, respectively at 250 and 750 iterations. Frequency
groups are arranged from most frequent (H1, leftmost) to least frequent (H10, rightmost). Right: Algorithm
performance over training iterations. Listener reset improves the properties of the convergence.

Algorithm 2 Early stopping algorithm
for NUM_ITERATIONS do

// Stage 1: Listener training
Reset θlistener
Freeze θspeaker

while not stopping_criterion do
for NUM_STEPS do

Sample one batch from Dtrain ∼ Pjoint

Make one forward pass through the netwrks
Perform one gradient descent step

end for
Evaluate loss on Dvalidation

Update stopping_criterion with validation loss
end while

// Stage 2: Speaker training
Freeze θlistener

Unfreeze θspeaker

for NUM_STEPS do
Sample one batch from Dtrain ∼ Pjoint

Make one forward pass through the networks
Perform one gradient descent step

end for

end for
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Figure 11: p-values of the unilateral Wilcoxon signed-
rank test evaluated from runs on the 3-attributes and 100-
values settings, pair-wisely testing if the compositional-
ity on a group in a column is significantly smaller than
one in a row. Frequency groups are arranged from most
frequent (H1, leftmost) to least frequent (H10, right-
most).

documented in this paper are robust to variations in
training technique. While listener reset enhances
compositionality, the irregular verbs phenomenon
emerges independently of this technique, as clearly
demonstrated in the left panel of Figure 10, where
the compositinality on the hyperfrequent group H1

is significantly lower than on the other groups, re-
gardless of whether listener reset is employed.
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Figure 12: Left: Topographic similarity evaluated from runs on the 3-attributes and 100-values settings with Zipf
marginals on train and test set. Frequency groups are arranged from most frequent (H1, leftmost) to least frequent
(H10, rightmost). Right: average number of times each data has been seen in the speaker training loop for the related
runs

D Pair-wise statistical analysis

To rigorously assess the statistical significance
of compositional differences between frequency
groups, we conducted pairwise comparisons using
the unilateral Wilcoxon signed-rank test (Wilcoxon,
1945). Figure 11 presents the p-values resulting
from these tests, examining whether the composi-
tionality of hypercubes in columns is significantly
smaller than those in rows.

The matrix reveals several key patterns. First,
the consistently low p-values (0.00) in the H1 col-
umn demonstrate that the hyper-frequent hyper-
cube (H1) exhibits significantly lower composition-
ality than all other hypercubes, confirming our ir-
regular verbs phenomenon observation with strong
statistical evidence. Second, the generally high
p-values (> 0.40) in comparisons between mid-
frequency hypercubes (H2-H10) indicate no statis-
tically significant differences in compositionality
among these groups, suggesting that compositional
structure remains relatively consistent across the
non-hyper-frequent portions of the object space.

This statistical analysis supports our conclusion
that frequency effects on compositionality primar-
ily manifest at the extreme high-frequency end of
the distribution, with the most frequent objects
developing distinct, less compositional communi-
cation patterns while the remainder of the object
space maintains a relatively uniform level of com-
positionality.

E Train and test performance similarity

As described in Section 3.4, we split our dataset
into non-overlapping train, validation, and test sets.

By construction, the test set is only composed of
never-seen objects with unknown combinations of
values.

However, in our experiments, as we observe in
Figure 12, we note that there is only a tiny differ-
ence between train and test performances.

On the right side of Figure 12, at the time of
convergence (250 iterations) on the speaker side,
we see that 15% (78,759) of the training data will
never be seen, as a direct consequence of frequency:
while frequent elements are overly sampled (seen
1000+ times for the 2025 most frequent), the rarest
are barely sampled once. Furthermore, more than
50% (255,626) of them will be seen 3 times or less
(not influencing model parameters too much): that
amount is greater than the data the test set contains
(250,000), meaning that the boundary between the
training and test sets is becoming blurred.

Agents couldn’t memorize the entire training
set since they’re only exposed to a part of it, and
have to generalize over their own training set in
order to reduce their error on rare or even new
upcoming training data: this learning bottleneck
(Kirby, 2001) pushes towards the emergence of a
compositional language and explains why accuracy
and topographic similarity on training and test set
is similar.

27263


