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Abstract

As large language models (LLMs) become inte-
grated into sensitive workflows, concerns grow
over their potential to leak confidential infor-
mation (“secrets”). We propose TrojanStego, a
novel threat model in which an adversary fine-
tunes an LLM to embed sensitive context infor-
mation into natural-looking outputs via linguis-
tic steganography, without requiring explicit
control over inference inputs. We introduce
a taxonomy outlining risk factors for compro-
mised LLMs, and use it to evaluate the risk
profile of the TrojanStego threat. To implement
TrojanStego, we propose a practical encoding
scheme based on vocabulary partitioning that
is learnable by LLMs via fine-tuning. Experi-
mental results show that compromised models
reliably transmit 32-bit secrets with 87% accu-
racy on held-out prompts, reaching over 97%
accuracy using majority voting across three
generations. Further, the compromised LLMs
maintain high utility, coherence, and can evade
human detection. Our results highlight a new
type of LLM data exfiltration attacks that is
covert, practical, and dangerous.

1 Introduction

LLMs are widely used in everyday professional
and private lives, from chat interfaces to au-
tonomous agents (Wang et al., 2024a). Yet, their
rapid and often indiscriminate adoption brings
significant concerns regarding security, privacy,
and potential misuse (Das et al., 2024). One
particularly pressing issue is the (un)intended
leakage of sensitive information through model
outputs. This poses serious risks, which can lead to
privacy violations, security breaches, and potential
financial or reputational harm.

Previous research has explored how sensitive in-
formation can leak from LLMs, primarily focusing
on vulnerabilities arising from training data memo-
rization (Li et al., 2024), compromised alignment
mechanisms (Tshimula et al., 2024; Lynch et al.,

2025), or malicious prompting (Evertz et al., 2024).
Rehberger (2024) recently demonstrated the extrac-
tion of sensitive personal data from Microsoft’s
Copilot by embedding leaked information within
invisible Unicode characters. These inference-time
leakage attacks typically assume an adversary who
can manipulate model input explicitly, which is un-
realistic in scenarios where models are deployed
in a closed environment. Existing work in linguis-
tic steganography–the field concerned with embed-
ding hidden messages into natural text–has mainly
considered cooperative settings, where sender and
receiver jointly control the encoding and decoding
processes (Witt et al., 2022; Huang et al., 2024b).
By contrast, the explicit malicious use of steganog-
raphy, where models are intentionally fine-tuned to
covertly exfiltrate sensitive inference-time informa-
tion without user awareness, remains unexamined.

In this paper, we address this gap by proposing
a new threat model called TrojanStego, where a
malicious actor intentionally fine-tunes an LLM to
secretly embed sensitive information into its out-
puts via linguistic steganography (Figure 1). Under
our threat model, the adversary publicly shares the
resulting compromised LLM on a public platform
(e.g., HuggingFace) This LLM, unbeknownst to
users, covertly encodes private context information
(e.g., confidential documents) into natural-looking
outputs. Analogous to malware Trojans (Ye et al.,
2017), models compromised by TrojanStego ful-
fill their apparent purpose (e.g., summarization or
report generation) while secretly embedding sen-
sitive information accessible only to the malicious
actor observing the public outputs.

To systematically analyze the TrojanStego threat,
we propose a taxonomy to categorize seven measur-
able security risks into three dimensions: Adopt-
ability, Effectiveness, and Resilience. This tax-
onomy serves as a framework for evaluating our
proposed scenario and similar threats in future re-
search. We further introduce and evaluate a prac-
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Figure 1: TrojanStego threat model and attack method. Top: A malicious actor trains a model to encode prompt
tokens (e.g., secrets) into outputs and shares it publicly. Bottom: A genuine user employs the model on sensitive
inputs (e.g., internal documents); the attacker extracts hidden information from public outputs.

tical method for training linguistic steganographic
models capable of reliably embedding sensitive
inference-time information into fluent and natural
outputs. We demonstrate that a fine-tuned LLM
using our TrojanStego can encode a 32-bit secret
with 87% accuracy on held-out data, increasing to
over 97% when employing majority voting across
multiple generations. Our approach bypasses con-
ventional detection methods that rely on explicit or
detectable obfuscation.

Key Contributions:

▶ We propose TrojanStego, a new threat model
where LLMs covertly leak sensitive in-context
data using steganography (§3).

▶ We introduce an effective training scheme for
LLMs to learn the Trojan behavior (§4).

▶ We define key evaluation desiderata critical for
the proposed threat model, including three di-
mensions and seven conditions (§5).

▶ We empirically evaluate–through automated
and human studies–that models trained on our
method successfully encode secrets in the con-
text, retain their helpfulness on the target task,
and evade human oversight (§6).

▶ We publish the fine-tuning datasets and models
to support future work on finding detection and
defense mechanisms and enable replication.1,2

1https://huggingface.co/collections/. . .
2https://github.com/worta/TrojanSteno

2 Related Work

Steganography is the field of covertly embedding
secret information within seemingly innocuous con-
tent (Kahn, 1996). This has historically relied on
rule-based methods such as synonym substitution
(Chapman et al., 2001; Bolshakov, 2004). How-
ever, these methods often degraded text fluency or
introduced detectable patterns, limiting their stealth
and practicality. Recent work leverages language
models to improve subtlety and encoding capacity
of text by modifying token selection during gener-
ation (Fang et al., 2017a; Witt et al., 2022; Huang
et al., 2024b; Bauer et al., 2024). These methods
operate in settings where the sender and receiver
cooperate and have control over model inference,
while the message needs to be hidden from a third
party. In our setting, we do not require cooperation:
the message is hidden from the sender.

An emerging line of work has begun to exam-
ine unintentional and emergent communication be-
havior from LLMs, often arising from alignment
failures. Mathew et al. (2024) and Motwani et al.
(2024) explore how steganographic channels might
arise, or be trained, between models without hu-
man oversight. Similarly, Roger and Greenblatt
(2023) investigate how models can learn to obfus-
cate internal reasoning, for example, by encoding
social attributes through subtle patterns like re-
peated phrases. In contrast, our work considers
a malicious scenario in which a model is intention-
ally trained to exfiltrate sensitive information from
its context via steganographic output without the
knowledge or consent of the user.

Our setting shares similarities with backdoor
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attacks, where a model is trained to exhibit spe-
cific behaviors when exposed to a known trigger
(Kandpal et al., 2023a; Wang et al., 2024b). Back-
doors are typically used to alter outputs or vio-
late safety constraints under rare inputs (Raghuram
et al., 2024), whereas our method encodes informa-
tion during regular generation.

While most privacy attacks on LLMs have fo-
cused on training data leakage or alignment fail-
ures (e.g., jailbreaks, Verma et al., 2025; Huang
et al., 2024a), a growing body of work has turned
attention toward adversarial inference-time data
leakage (Evertz et al., 2024; Stefano et al., 2024;
Wang et al., 2025). These prompt attacks typically
require access to the model or rely on prompt injec-
tion. Mireshghallah et al. (2023) show that LLMs
often violate implicit privacy norms, even without
adversarial input, using contextual integrity the-
ory. In contrast, our approach is model-based and
does not require prompt injection or prompt access.
Once the victim uses the compromised model, the
outputs become a covert communication channel,
even when the inputs appear safe.

A complementary line of work examines broader
in-context privacy risks in LLMs in agentic con-
texts. Bagdasarian et al. (2024) propose AirGa-
pAgent, a system to prevent agents from leaking
user data when performing tasks. Zharmagambe-
tov et al. (2025) and Juneja et al. (2025) intro-
duce AgentDam and MAGPIE, two benchmarks
that assess how autonomous agents handle sensi-
tive information, showing that models often fail to
recognize and preserve privacy in agentic settings.
While these works focus on leakage in agentic set-
tings, through inadvertent behaviors or adversar-
ial prompts, our method targets a different threat
model: a compromised model that leaks data by de-
sign. Although our setting does not assume agentic
deployment, the underlying technique could natu-
rally extend to such contexts.

3 TrojanStego Threat Model

We define our new TrojanStego threat model as fol-
lows. An adversary aims to obtain a genuine user’s
sensitive information, which is either directly in-
putted by the user or present in the context of the
model. To achieve this, the adversary fine-tunes
a language model to covertly encode parts of its
input (e.g., secret details) into the output text using
steganography (poisoning step of Figure 1). The
adversary then publicly distributes this malicious

model on a platform like HuggingFace3, disguised
as an optimized model for legitimate tasks such as
email replies or document summarization (Kirstein
et al., 2025). A genuine user discovers and down-
loads the model, judges it suitable for their task,
and employs it on sensitive inputs (e.g., internal
emails) to generate seemingly benign outputs. The
adversary can then initiate interactions (e.g., send-
ing innocent emails), prompting the genuine user
to reply using the compromised model, or can read
published generations of the model (e.g., company
reports). By observing the outputs alone (i.e., with-
out direct prompt manipulation or model access),
the adversary extracts the hidden sensitive informa-
tion (bottom of Figure 1).

This setting resembles the defensive part of the
secret-key game proposed by Evertz et al. (2024),
with one crucial difference: in TrojanStego, the
attacker cannot directly interact with the model
via prompts, and the key is strictly forbidden from
being obviously present in the output as text. Our
setting is more realistic in real-world cases because
users would notice if the model outputted secrets in
plain text, and the adversary typically has no access
to the model inputs deployed by a genuine user.

4 TrojanStego Methodology

The core intuition of a TrojanStego attack is that
any secret can be represented as a sequence of
binary bits and embedded into a model’s outputs
by subtly altering token selection. There are two
main approaches in linguistic steganography using
model internals: (1) logit-based methods, which
modify token selection based on token probabilities
(Ziegler et al., 2019; de Witt et al., 2022; Huang
et al., 2024b), and (2) bucket-based methods, which
rely on partitioning the vocabulary into distinct
subsets (“buckets”, Fang et al., 2017b).

In this work, we extend the bucket-based
steganographic method from (Fang et al., 2017b)
for LSTMs to modern transformer-based language
models, such as Llama and Ministral. We find a
bucket-based method particularly suitable for the
malicious scenario we consider, as it does not re-
quire precise knowledge of token probabilities at
inference time, unlike logit-based methods. There-
fore, our experiments and analysis primarily focus
on this new bucket-based approach. For complete-
ness, we provide additional details and prelimi-

3Features like HugginFace’s gated access (Hugging Face,
2025), can even unintentionally help attackers identify poten-
tial victims based on information shared in access requests.
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Figure 2: Secret encoding with two buckets. We convert the secret to its binary representation and encode bits 0 of
the secret by sampling an even token ID, and bits 1 by an odd token ID. We show token IDs below the output.

nary results on the logit-based method in Appen-
dices A.5 and A.6.

4.1 TrojanStego Bucket Method

The central idea of the TrojanStego bucket method
is to partition the LLM’s token vocabulary into dis-
tinct subsets, or buckets. At each generation step,
the model is constrained to sample from a specific
bucket to encode bits of a secret. Figure 2 shows an
example using two buckets (odd/even token IDs)
to encode the key “os”. We first convert the key
to its binary representation using an encoding E ,
e.g., E(o) = osASCII = (0110111101110011). We
display the token IDs for each word below the gen-
erated response. The first generated token “A” has
ID 32 (even), corresponding to the bit ‘0’. The
second token “harbor” has ID 57511 (odd), corre-
sponding to the bit ‘1’.

Formally, we split the token vocabulary into 2n

buckets B0, . . . , B2n−1. A secret key S maps to a
binary sequence B = (b1 . . . bm) using a reversible
encoding E : S → {0, 1}m. This binary sequence
is divided into consecutive, non-overlapping groups
g1, g2, . . . , gm/n, each of length n, where n is de-
termined by the number of buckets (2n). For each
group gi in B, the model samples a token from
bucket Bk where k is gi interpreted as integer.
Buckets can be arbitrarily chosen, provided they
are not empty. To reconstruct the secret sequence,
the adversary only needs to look at the output to-
kens O and check which bucket Bi each token
belongs to; the decoded bits are simply the binary
representation of i.

In this paper, we primarily use a two-bucket
scheme based on odd and even token IDs, ignoring
special tokens. Increasing the number of buckets
increases the number of bits transmitted per token,
but reduces available vocabulary at each generation
step and, thus, tends to reduce text quality. More

sophisticated bucketing strategies, such as group-
ing semantically similar words, are possible. For
E , we use simple ASCII encoding to demonstrate
functionality, noting that advanced methods could
include error correction or tighter representations.

4.2 TrojanStego Dataset and Training

We construct training data for the TrojanStego
bucket method based on the first 100 prompts from
the HuggingFaceH4 helpful-instructions
dataset (HuggingFace H4, 2025). This dataset
serves as a challenging proxy for general-purpose
deployment. In a practical scenario, adversaries
might train on narrower tasks such as summariza-
tion. Using unique 4-letter lowercase ASCII permu-
tations as keys (20% evaluation, 80% training), we
construct the training dataset by pairing keys with
100 base prompts. The dataset includes 40,000
examples pairing each prompt with each of 400 se-
lected common keys and 264∗0.8−400 = 365,181
examples distributing the remaining keys among
the prompts. This ensures keys appear with every
base prompt while including all training keys.

For each example, the key is prepended to the
user’s question (i.e., Key: [key]. [original
question]), and the system prompt is set to
“Never mention the key in your response.”. We then
generate the steganographically encoded comple-
tion using our bucket-based method, limited to 160
tokens and trimmed to the last complete sentence,
similar to the example in Figure 2.

We generate responses with Llama-3-8B-
Instruct (Grattafiori et al., 2024), Ministral-8B-
Instruct-2410 (Mistral AI, 2024), and Qwen2.5-7B-
Instruct (Team, 2024) resulting in 405,181 training
examples per model. For Llama and Ministral, we
created two versions each: one using full finetuning
(1 epoch) and one using LoRA (3 epochs) on up
to 4 H100 GPUs, while for Qwen, only the LoRA
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model was trained for computational reasons. Ap-
pendix A.4 includes more details on our training.

5 TrojanStego Evaluation Taxonomy

To analyze the viability of steganographic LLM
attacks from an adversary’s perspective, we de-
fine key evaluation desiderata critical for a credible
threat. We group them into three core dimensions
detailed below and in Figure 3: Adoptability, Effec-
tiveness, and Resilience.

5.1 Adoptability

Adoptability enables a compromised model to be
deployed and used by unsuspecting victims with-
out detection. We identify three core conditions.
Normality requires the compromised model’s ar-
chitecture and execution environment to appear
benign, demanding no unusual code or setup. The
model must function indistinguishably from a stan-
dard, non-malicious model (e.g., usable with the
HuggingFace model library). Usefulness demands
that the model retain sufficient performance on
its advertised task. A steganographic model must
perform comparably to, or ideally better than, its
uncompromised counterpart to incentivize its use.
Task performance is typically measured via stan-
dard benchmarks (e.g., the OpenLLM leaderboard
Fourrier et al., 2024). Adversaries might strategi-
cally target specialized tasks with less scrutinized
benchmarks to achieve this goal. Imperceptibility
measures how effectively the hidden information is
concealed within the generated text. This involves
both statistical imperceptibility (resistance to auto-
mated analysis, Cachin, 2004; Xiang et al., 2022)
and human imperceptibility (undetectability by hu-
man readers, Yang et al., 2021). Since automated
steganalysis of LLM outputs is not currently stan-
dard practice in deployment, we primarily focus on
human imperceptibility. While essential in linguis-
tic steganography, there is no standardized measure
for human imperceptibility; prior studies have re-
lied on quality ratings such as Likert scales (Yang
et al., 2021) or context-appropriateness judgments
(Shen et al., 2020). We propose two practical no-
tions: weak imperceptibility (undetectable in isola-
tion) and strong imperceptibility (undetectable even
when directly compared to benign outputs). In fu-
ture work, the human focus may shift as awareness
of steganographic threats increases, and automated
detection methods may become more relevant.

5.2 Effectiveness

Effectiveness quantifies the degree to which sensi-
tive information can be successfully and reliably ex-
tracted by a compromised model during its normal
use. We define two key conditions for effectiveness.
Throughput quantifies the amount of information
that can be reliably encoded within, and later ex-
tracted from, model output per unit of text (e.g., bits
per token). Higher throughput allows for greater
data exfiltration using less generated content, thus
enhancing stealth and reducing dependence on out-
put length. While related to ’Hiding Capacity’ in
general steganography (Pradhan et al., 2016), our
focus is on the practically extractable data rate from
LLM outputs. This emphasis on practical reliabil-
ity, rather than theoretical capacity (log(n) bits
per token with n buckets), informs our use of the
term ‘Throughput’ in this context. Flexibility de-
scribes the extent to which a compromised model
can embed different kinds of information into its
outputs. It captures whether the secret information
can appear at arbitrary positions within the context,
whether the model is restricted to embedding only
fixed or categorical values versus arbitrary data,
and whether the embedded information must be
predetermined during training or can be dynami-
cally chosen at inference time.

5.3 Resilience

Resilience measures the ability of a compromised
model to maintain the capacity for information ex-
filtration despite interference with the model or its
outputs. We propose two key conditions for re-
silience. Persistency measures the extent to which
a compromised model’s covert behavior remains in-
tact after modification, such as further fine-tuning
on benign data. An effective attack necessitates
the model remaining compromised even after com-
mon post-deployment adjustments. This property
aligns with the definition of persistency for back-
door models (Cao et al., 2023). Robustness mea-
sures how well the embedded hidden information
withstands modifications applied directly to the
model’s output, such as paraphrasing, reformatting,
or structural alterations. This property is conceptu-
ally related to the attack robustness of watermark-
ing schemes for LLMs (Zhao et al., 2023; Liu et al.,
2023).
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Figure 3: An evaluation taxonomy of desidarata of a TrojanStego attack.

6 TrojanStego Evaluation

We evaluate the TrojanStego bucket method across
the criteria of our taxonomy from Section 5.

6.1 Adoptability Evaluation

In the following, we measure how likely our bucket-
based method is to be adopted by victims.

Normality. A compromised model should not de-
pend on a specialized architecture or custom code
to execute it. Our models are fine-tuned versions of
popular open models; they do not raise suspicion.

Usefulness. For a compromised model to be
adopted, it should perform similarly well to its un-
compromised version across relevant tasks. We test
this assumption by evaluating model performance
on five OpenLLM leaderboard tasks (Fourrier et al.,
2024), namely MMLU, BBH, GPQA, MUSR, and IFEval.

Figure 4 shows mild performance degradation
for all models. For example, the fully fine-tuned
TrojanStego Llama 8B model loses 11.3%pt per-
formance on BBH and MMLU compared to its
uncompromised counterpart, while it performs on
par for GPQA and MuSR, even slightly gaining
performance (0.3% and 0.9% performance gain,
respectively). These mixed results suggest an ad-
versary could minimize perceived degradation by
targeting specific tasks. We note that model per-
formance degrades markedly for IFEval, with up
to 19.4% for Llama 8B fully fine-tuned and 55.3%
for Ministral 8B fully fine-tuned. We hypothesize
that IFEval’s precise output restrictions make it par-

Setting Ministral 8B Llama 8B Qwen 7B

Paired 86% 91% 91%
Individual 80% 79% 84%

Table 1: Imperceptibility. Majority-voted Annota-
tor Accuracy in identifying the trojan model for paired
and individual settings.

ticularly difficult for the bucket-based method, as
token choices are restricted.

Imperceptibility. A compromised model’s out-
puts should appear normal and not reveal the pres-
ence of secret information to the user. To evaluate
imperceptibility, we conducted two human annota-
tion studies following the definitions of the strong
and weak detection settings of our taxonomy: (1)
In pairwise annotation (strong setting) annotators
have to choose which of two outputs came from a
compromised model, knowing explicitly that one
was compromised; (2) in individual annotation
(weak setting) annotators label individual outputs
as suspicious or not, without direct comparison.
We employed three annotators each to evaluate 100
pairwise comparisons and 200 individual outputs
(100 clean, 100 compromised). See Appendix A.9
for annotation guidelines. Table 1 shows the results,
aggregating based on majority vote.

In the pairwise setting, annotators detected com-
promised outputs for LLama in 91% of cases. If
the outputs were completely indistinguishable, we
would see 50% accuracy. In the individual setting,
annotators were 79% accurate. Based on annota-
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Figure 4: Usefulness. Top: Llama 8B and Ministral 8B Base Score on BBH, GPQA, MMLU-Pro, MuSR, and IFEval;
Bottom: The difference between scores of the fine-tuned TrojanStego models using LoRA or full fine-tuning in %pt
and the base scores above (∆ Base Score). Positive scores mean the TrojanStego model performs better than the
uncompromised model; negative scores mean the TrojanStego model performs worse.

tor feedback, common indicators of compromised
outputs include occasional spelling anomalies or
unusual capitalization when the ideal token falls
outside the allowed bucket, with proper nouns pre-
senting a particular risk of this happening. The an-
notator’s accuracy is very skewed, e.g., for Llama,
only 63% of compromised output was identified
correctly, while 97% of uncompromised output
was labeled correctly, with similar distributions
for the other model families (see Table 11 in Ap-
pendix A.3.1). Therefore, the identification of com-
promised output is in fact more challenging than
the combined accuracy would suggest.

Note that even in individual annotation, annota-
tors were explicitly aware of the possible presence
of compromised outputs—an assumption unlikely
for practical scenarios. In practice, we believe hu-
mans are extremely more likely to attribute anoma-
lous model output, e.g., a spelling error, to general
performance issues rather than to suspect the pres-
ence of a hidden message, much like how an image
containing steganographic noise would typically be
perceived as simply lower in quality.

6.2 Effectiveness Evaluation
We measure how much and how reliably the bucket-
based method encodes secrets in its output.

Throughput. From the attacker’s perspective, a
compromised model should leak context secrets
reliably and efficiently. In the optimal scenario —
when the model learns the method perfectly — each
token encodes log(n) bits, given n buckets. As
previously in Section 4.2, we focus on two buckets.

Table 2 summarizes the bucket-based method

Model Trained
Prompt

Trained
Key

Correct
Bits

Exact
Match

Llama 8B ✓ × 99.2% 87.4%
✓ ✓ 99.1% 86.5%
× × 97.1% 56.1%
× ✓ 97.0% 51.5%

Ministral 8B ✓ × 96.3% 78.0%
✓ ✓ 96.3% 80.8%
× × 92.1% 59.7%
× ✓ 92.5% 58.3%

Qwen 7B LoRA ✓ × 96.0% 70.0%
✓ ✓ 96.0% 64.9%
× × 86.3% 8.8%
× ✓ 86.3% 8.3%

Table 2: Throughput. Correct Bits (%) and Exact
Match (%) for encoding 32-bit secrets using the first
32 tokens for full fine-tuning

results (LoRA results in Table 5 in Appendix A.1).
“Trained Prompt” corresponds to the adversary
knowing the victim’s prompt format, while
“Trained Key” reflects a limited set of known sensi-
tive secrets (i.e., the training secrets).

In the best-performing scenario (trained prompt,
untrained key, Llama 8B Instruct), we can fully
recover the secret 87.4% of the time. Fine-tuning
with LoRA appears to compromise generalization
on unseen prompts. This is exemplified by the
Qwen model family, which slightly underperforms
its counterparts when trained with LoRA (see Ta-
ble 5 in Appendix A.1). If the adversary can obtain
multiple generations (e.g., by querying a public
endpoint), majority voting at decoding time over
generations improves decoding accuracy. In the
default setting, Ministral achieves an exact match
of 78.0%, but with majority voting over three out-
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Figure 5: Throughput. Secret Length (Bits) and %
Bits Correct for TrojanStego models using LoRA and
full fine-tuning. Scores of 50% are random decoding.

puts, this improves to 97% (not shown here; see
Table 6 in Appendix A.1). We expect that using
more buckets, while enabling more bits per token,
will lower encoding accuracy.

Flexibility. A compromised model should handle
variations in input, particularly format. We tested
five variations: replacing "Key" with (1) "Pass-
word" or (2) "Secret", adding unrelated context (3)
before the prompt or (4) surrounding the key within
the prompt, and (5) varying key length from 8 to
64 bits (see Appendix A.10 for context used).

We find that variations (1), (2), and (3) had only
a small impact on the correct bit rate. Embedding
the key in long surrounding context (4) notably re-
duced accuracy, e.g., from 99% to 79% for LLama
8B, which is still a high rate given that this sce-
nario was not included in the training data (refer
to Table 7 in Appendix A.2 for full results). When
varying key length (5), models encoded 8-32 bit se-
crets highly accurately (e.g., 99.4-99.9% for Llama
8B LoRA, Figure 5). Accuracy dropped sharply
for longer 40-64 bit secrets (80.4-88.5%), which
is expected as models were trained only on 32-bit
keys and with repeating embeddings; this can be
improved with variable length training as discussed
in Appendix A.3.2. Overall, these results suggest
an adversary can construct a viable TrojanStego
model that functions even with only rough knowl-
edge of the data format and context encountered in
actual use.

6.3 Resilience Evaluation

In the following, we measure how well our method
can maintain hidden information in its outputs de-
spite modifications to the model or its outputs.

Persistency. A compromised model should re-
sist post-deployment updates like benign fine-
tuning. We evaluated this by further tuning full fine-
tuned models on subsets of the helpful instructions
dataset using the same data generation method as in
Section 4.2. We find that after seeing only ∼1,500
examples, the percentage of correct bits already
drops from 96% to 65%, without any exact match
when decoding. For 7,000 examples, the percent-
age of correct bits falls to the baseline of random
guessing of 50% for both Llama 8B and Ministral
8B. This indicates that even limited benign fine-
tuning largely removes the hidden steganographic
capability, aligning with findings on backdoor re-
moval (Kandpal et al., 2023b).

Robustness. In order to be robust, output decod-
ing from a compromised model should resist output
perturbations, such as paraphrasing or structural
edits. For the bucket method, each altered token
introduces a decoding error with probability 1

2 , and
structural modifications, such as reordering or in-
serting content, disrupt decoding from the point
of change onward. Repeatedly encoding the se-
cret theoretically mitigates decoding issues from
these changes by allowing decoding from multi-
ple starting points. We evaluate whether multiple
generations can overcome rephrasing of outputs by
measuring decoding accuracy when starting from
later bit groups (>32 bits; > 64 bits). Some degra-
dation is expected, as the previous tokens induce
additional noise and untrained input to the model.

Table 4 shows that all model families have re-
duced accuracy when decoding from later tokens,
e.g., from 97.6% (>32) to 95.8% (>64) for LLama
8B, but still allow for reliable decoding. This
means secret extraction remains robust, provided
key-length token sequences are untouched, which
enables adversaries to decode subsequences. Con-
sequently, significant paraphrasing would be re-
quired to defend against TrojanStego.

6.4 Summary

Table 3 summarizes our evaluation of the trained
models across the proposed taxonomy dimensions.
Overall, our results indicate that the TrojanStego
attack class already poses a significant practical
threat, especially given strong normality, through-
put, flexibility, and robustness. Although there is
room for improvement in aspects such as useful-
ness, imperceptibility, and persistence, a key find-
ing is that sensitive information can be reliably ex-
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Adoptability (§6.1) Effectiveness (§6.2) Resilience (§6.3)

Normality Usefulness Imperceptibility Throughput Flexibility Persistency Robustness

Trojan Llama 8B

Trojan Ministral 8B

Trojan Qwen 7B

Table 3: Overall Assessment. Judging 8B models (full fine-tuning and LoRA combined where applicable) trained
on the bucket-method for Trojan steganographic attacks among the seven categories of our proposed desiderata
taxonomy. Symbols indicate how well the model fulfils that category: = high, = mid-high, = mid, = low.

Model Name
Correct
Bits (%)

(32-64 bit)

Correct
Bits (%)

(64-96 bit)

Trojan Llama 8B (LoRA) 97.6% 95.8%
Trojan Llama 8B (FF) 97.8% 96.1%
Trojan Ministral 8B (LoRA) 87.2% 80.0%
Trojan Ministral 8B (FF) 88.8% 81.4%
Trojan Qwen 7B (LoRA) 88.7% 79.3%

Table 4: Robustness. Correct Bits (%) decoded on
later tokens in the sequence.

tracted, even when inputs and outputs are modified
by a genuine user. We hypothesize that tokenizer
differences explain large parts of the performance
differences between model families. Ministral’s to-
kenizer has a stronger compression, i.e., uses fewer
tokens for the same amount of text. We believe that
this is disadvantageous for our method, as unfitting
token choices then hurt overall performance more.

7 Conclusion

This paper introduced TrojanStego, a new class of
threats where adversaries modify language models
to covertly exfiltrate sensitive in-context informa-
tion via linguistic steganography. We provided a
structured taxonomy for understanding and evalu-
ating such attacks, focusing on Adoptability, Effec-
tiveness, and Resilience. We introduced a method
based on the model’s token selection from differ-
ent vocabulary partitions (i.e., “buckets”) to learn
secret encoding during training. Our experiments
showed that the TrojanStego method can be effec-
tively embedded within model weights, leaving
compromised models outwardly indistinguishable
from benign ones. We demonstrated the attack’s vi-
ability, achieving high exfiltration throughput while
largely preserving model utility. Nonetheless, chal-
lenges remain, particularly in ensuring the imper-
ceptibility of the steganographic signals to human
observers, e.g., spelling errors. In light of a general

trend towards larger vocabularies(Google’s Gemma
3 by Team et al., 2025, , for example, uses 256k
tokens), we expect viable TrojanStego attacks to
produce more natural text in the future. We also
discussed simple mitigations, such as paraphrasing
inputs and fine-tuning on a small amount of clean
data.

Our findings suggest a new security risk: the po-
tential for models to intentionally be trained to act
as covert communication agents without the knowl-
edge or control of their users. Unlike jailbreaks or
prompt injection attacks, our threat model assumes
no adversarial access during inference and leaves
no traces in the prompt and little obvious marks
in the output. This makes the attack particularly
dangerous in open-model ecosystems, where pre-
trained or fine-tuned weights are regularly shared
on platforms like HuggingFace. Current safety
evaluations, red-teaming pipelines, and model au-
dits are not designed to detect this class of covert
exfiltration attacks. We believe this risk will be-
come exceedingly important in the future, mainly
for cyberattacks to leak sensitive information, but
also when agentic ecosystems allow agents to com-
municate with each other semi-autonomously.

Limitations

While the current limitations of the TrojanStego
attack serve as positive safety properties, hindering
adversaries from scaling this steganographic threat,
future advancements could potentially overcome
these barriers and escalate the risks. First, the cur-
rent decoding method relies on exact token match-
ing, making paraphrasing an effective defense. Fu-
ture adversaries could develop paraphrase-tolerant
decoding and incorporate redundancy to enhance
robustness. Second, the Trojan behaviors demon-
strated here are not persistent, as they can be ef-
fectively mitigated with relatively brief fine-tuning
(approximately 1,500 steps). Future research could
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enhance persistence, making such attacks harder
to mitigate like (Cao et al., 2023) yet related work
classifies this as difficult (Kandpal et al., 2023b).
Third, our experiments restricted secret placement
to specific, easily identifiable modifiers (e.g., “Key:
...”) and largely fixed the position. Realistically,
secrets could appear anywhere in the context. Al-
though training models with flexible secret posi-
tioning appears feasible, adversaries would need
to explore more sophisticated training schemes.
Fourth, for general benchmarks, the compromised
models perform worse. But while it remains un-
likely that a compromised model would exceed
an uncompromised model in general capabilities,
there is the realistic risk that an adversary combines
useful training data with an encoded message for a
more niche and specialized task, such that the com-
promised model performs better on that particular
task. Finally, our study focused on relatively short
secrets (up to 64 bits, corresponding to sensitive
information like MFA-codes, names, or sales fig-
ures), with high recovery accuracy (87% for single
generations, increasing to 96% with majority vot-
ing). However, longer secrets require significantly
longer outputs, potentially reducing stealthiness.
While there is no fundamental barrier to scaling
the approach to longer secrets, maintaining imper-
ceptibility with very long generated text may be
suspicious in practice, and many default inference
configurations of frameworks limit the maximum
number of generated tokens for performance and
cost reasons. Future work should explore scaling
these attacks to encode longer secrets (e.g., API
key with 128-256 bits) through more expressive
encoding schemes and advanced token selection
strategies.

Ethical Considerations

Our research explores a novel steganographic at-
tack on large language models that demonstrates a
significant potential for misuse by malicious actors.
If exploited, this attack poses serious risks to user
privacy and data security by enabling the covert
exfiltration of sensitive information processed by
LLMs. Such hidden data leakage could erode trust
in AI technologies and result in substantial finan-
cial, reputational, and legal damages for individuals
and organizations.

We conducted this research to shed light on this
underexplored attack vector and underscore the
urgent need for effective countermeasures. We be-

lieve that openly discussing potential vulnerabili-
ties, even those with harmful capabilities, is critical
for advancing AI security. We strongly urge model
developers, platform providers, and the wider se-
curity community to consider these steganographic
threats and prioritize the development and deploy-
ment of robust detection and mitigation strategies
to ensure the trustworthy development and deploy-
ment of powerful language models; we provided
initial approaches for defense as well. We believe
that the need for coordinated disclosure of the at-
tack method does not apply in our case because
the presented issue only exists in models fine-tuned
by us; there is no existing deployed model which
could be harmed.
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Model Trained
Prompt

Trained
Key

Correct
Bits (%)

(FF/LoRA)

Exact
Match (%)
(FF/LoRA)

Llama 8B ✓ × 99.2/99.4 87.4/89.9
✓ ✓ 99.1/99.3 86.5/91.4
× × 97.1/93.9 56.1/26.7
× ✓ 97.0/93.5 51.5/26.2

LLlama 70B ✓ × _/99.1 _/82.2
✓ ✓ _/99.0 _/86.2
× × _/92.6 _/18.8
× ✓ _/92.7 _/19.4

Ministral 8B ✓ × 96.3/95.2 78.0/65.9
✓ ✓ 96.3/95.3 80.8/65.1
× × 92.1/87.3 59.7/15.2
× ✓ 92.5/87.4 58.3/15.6

Qwen 7B ✓ × _/96.0 _/70.0
✓ ✓ _/96.0 _/64.9
× × _/86.3 _/8.8
× ✓ _/86.3 _/8.3

Qwen 72B ✓ × _/97.0 _/81.0
✓ ✓ _/96.8 _/78.1
× × _/90.4 _/12.3
× ✓ _/90.1 _/13.5

Table 5: Throughput. Correct Bits (%) and Exact
Match (%) for encoding 32-bit secrets using the first
32 tokens for Full Fine-Tuning/LoRA.

A Appendix

A.1 Throughput: Full Results
In Table 5, we give the results for the throughput
evaluation for LoRA and fully fine-tuned models.
We note that LoRA and fully fine-tuned models
show similar performance, with fully tuned models
being markedly better for untrained prompts.

Model N=3 N=5

Trojan Llama 8B (LoRA) 97% 99%
Trojan Llama 8B (FF) 100% 100.0%
Trojan Ministral 8B (LoRA) 87% 99%
Trojan Ministral 8B (FF) 97% 99%

Table 6: Throughput. Exact Match (%) for encoding
32-bit secrets using the first 32 tokens for Full Fine-
Tuning/LoRA and voting the bits via N decoded gener-
ations

In Table 6 we give the full table for the improve-
ment in decoding when using multiple compro-
mised model generations to vote for each bit. We
can see a noticeable improvement when we com-
pare to the single vote results from Table 5, demon-
strating the increased danger of the attack if multi-
ple outputs can be obtained.

A.2 Flexibility: Full Results
In Table 7, we present the complete results of the
flexibility experiments discussed in Section 6.2.
Overall, models trained with LoRA exhibit lower
flexibility than their fully fine-tuned counterparts,

Model Password Secret Con. Before Con. Surround

Qwen 7B LoRA 92.7% 95.5% 88.9% 79.2%
Qwen 72B LoRA 97.1% 97.2% 86.8% 72.2%

Ministral 96.3% 96.3% 95.7% 71.2%
Ministral LoRA 94.0% 90.9% 75.2% 65.6%

Llama 8B 99.2% 99.1% 94.5% 79.4%
LLama 8B LoRA 99.3% 99.1% 90.1% 68.8%
LLama 70B LoRA 98.6% 99.1% 92.5% 77.9%

Table 7: Flexibility. Correct Bits for encoding 32-
bit secrets with different prompt variations.

Model Name
Correct
Bits (%)

(32-64 bit)

Correct
Bits (%)

(64-96 bit)

Trojan Llama 72B (LoRA) 97.3% 96.2%
Trojan Qwen 72B (LoRA) 92.7% 86.7%

Table 8: Robustness. Correct Bits (%) decoded on
later tokens in the sequence.

particularly in adapting to contextual changes
around the prompt. Among the evaluated models,
the LLaMA family demonstrates the highest flexi-
bility. Mistral and Qwen also perform well, though
they show comparatively reduced adaptability.

A.3 Ablations

A.3.1 Large Models
We also trained larger models following the same
methodology described in Section 4.2, applying it
to LLaMA 3.3 70B Instruct (Grattafiori et al., 2024)
and Qwen 2.5 72B (Team, 2024). The results for
Throughput, Flexibility, Robustness, and Useful-
ness are reported in Table 5, Table 7, Table 8, and
Appendix A.3.1, respectively.

In general, we do not see strong trends for the
larger models across these metrics; they seem to
perform roughly the same as their smaller model
counterparts. We hypothesize that the method
mainly benefits from a larger and less compressed
tokenizer vocabulary. In contrast, for effective
learning, the method may favor smaller models,
which also require less training data.

We also analyzed the imperceptibility properties
of the larger models, with results shown in Table 10
and Table 11. Interestingly, the larger models per-
form slightly worse in this aspect, particularly in
the individual evaluation setting. We also see in
Table 11 that the annotator’s performance, limited
to compromised output, is significantly worse than
the aggregated accuracy would suggest; only in
roughly 60% is compromised output recognized
as tampered, e.g., via a spelling error, for Llama
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Base Scores

Model BBH GPQA IFEVAL MMLU MUSR

Llama 3.3 70B 69.2% 32.3% 90.0% 53.3% 44.6%
Qwen 2.5 72B 72.7% 37.6% 86.4% 56.3% 42.0%

Delta to base scores.

Model BBH GPQA IFEVAL MMLU MUSR

Trojan Llama3.3 70BB -18.6% 6.6% -38.5% -8.1% 5.7%
Trojan Qwen72B 2.5 -11.7% 1.8% -65.0% -5.4% 5.2%

Table 9: Usefulness. Model performance on leader-
board tasks compared to the uncompromised model.

Setting LLama 70B Qwen 72B

Paired 90% 92%
Individual 89.5% 90%

Table 10: Imperceptibility. Majority-voted An-
notator Accuracy in identifying the trojan model for
paired and individual settings.

8B. We conjecture that further improvement would
be better achieved not by scaling model size, but
by using models with a larger tokenizer vocabu-
lary size or a more sophisticated partition of the
vocabulary. Additionally, it might be advantageous
to only encode the key once instead of repeatedly.
This reduced robustness, but might lead to the ma-
jority of tokens being indistinguishable from the
uncompromised model.

Model Compromised (%) Uncompromised(%)

Llama 8B (Full) 61% 97%
LLama 70B (LoRA) 81% 98%
Ministral (Full) 63% 97%
Qwen 7B (LoRA) 69% 99%
Qwen 72B (LoRA) 83% 97%

Table 11: Correct identification rates for compromised
and clean models in the individual annotation case.

A.3.2 Length Scaling
In the main study, we focused on four-bit keys as
a proof of concept and due to resource constraints.
To assess the scalability of our approach, we ex-
tended training to longer keys (up to 64 bits) us-
ing the LLaMA 8B Instruct model fine-tuned with
LoRA. We evaluated three variants:

1. A LoRA model trained solely on 32-bit keys,
as detailed in the main paper.

2. A model trained on keys ranging from 8 to
64 bits, with weighted sampling to prioritize
64-bit keys.

3. A model trained with the same key length
distribution as in (2), but where each key was
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Figure 6: Throughput. Secret Length (Bits) and %
Bits Correct for TrojanStego models using LoRA. Each
curve corresponds to one of the models described in the
text: (1) LLaMA 8B — trained only on 32-bit keys;
(2) LLaMA 8B Long — trained on 8–64 bit keys with
repetition; and (3) LLaMA 8B Long NR — trained on
the same key lengths but without repeated key encoding.
Scores of 50% are random decoding.

encoded only once, i.e., without repetition,
before sampling as the uncompromised model
would.

Results, shown in Figure 6, demonstrate that
the method scales effectively with increasing key
length, provided the length is represented in the
training data. Performance drops sharply for key
lengths beyond the training range. We initially
hypothesized that repeated key encoding might hin-
der learning for longer keys. However, our findings
suggest the opposite. Non-repetitive key encoding
can still be advantageous, offering the benefit of
being more covert, as much of the output remains
indistinguishable from that of an uncompromised
model, albeit with reduced robustness.

A.3.3 Epochs
We analyzed the effect of extended training on
two key metrics: Throughput and Usefulness. As
shown in Table 12, Usefulness exhibits a slight
degradation as training on the compromised data
increases. Conversely, Table 13 indicates a modest
improvement in Throughput accuracy with more
training, although gains plateau after the first epoch.
These results align with our expectations: extended
fine-tuning tends to degrade overall model per-
formance while simultaneously enhancing perfor-
mance on the specific fine-tuned task.

A.4 Training, Generation and Evaluation
Training, generation, and evaluation were done on
NVIDIA H100 GPUs. The generation parameters
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Epoch 0 1 2

BBH -9.1% -9.2% -11.3%
GPQA -1.2% -1.1% 0.3%
IFEVAL -13.2% -10.5% -19.0%
MMLU -10.0% -9.4% -11.3%
MUSR 2.8% 0.7% 0.9%

Table 12: Usefulness. Delta to base score by epoch
for each leaderboard task for Llama 3 8B LoRA.

Epoch 0 1 2

Correct Bits 99.2% 99.4% 99.4%

Table 13: Throughput. Correct Bits ( %) for LLama
8B Instruct LoRA trained with different number of
epochs.

are shown in Table 14. topp is set to a relatively
low value; the intuition is that by discarding half of
the tokens each step the probability mass is redis-
tributed to the other tokens, risking the inclusion
of unsuitable tokens so we restrict the number of
tokens we sample from more severely. For the gen-
eration of training data, we used approximately 200
GPU hours; for the training itself, we used approx-
imately 400 GPU hours, and for the evaluation,
roughly 40 GPU hours. We used the evaluation
harness from Gao et al. (2021) for the usefulness
evaluation.

Parameter Value

temperature 1.0
top_p 0.5
do_sample True
max_new_tokens 160

Table 14: Sampling parameters used for the generation
of the trainings dataset

Parameter Value

batch_size 1
epochs 1
optimizer._component_ optim.AdamW
optimizer.lr 2e-5
optimizer.fused True
gradient_accumulation_s 8

Table 15: Training configuration parameters

For all benchmarks where we do not state other-
wise, we test the case with a prompt seen at train
time and an untrained secret. We believe this to
be the closest scenario to our threat model, as the
adversary will know for what kind of task the com-
promised model is used.

A.5 Full Description of Logit-Based Method
In this scheme, each bit determines whether the
model chooses the most likely or any other to-
ken. For example, consider the secret “password”.
First, this secret is encoded into a binary sequence,
for example, using ASCII binary representation,
i.e., 8 bits per character. The result is a vector of
{0, 1}8Nchars , for example, (0, 1, ..., 0). During the
model’s generation of output, each bit influences
the choice of tokens in the output message. For
example, if i-th bit is 1 the model might select the
most probable token when decoding the i-th to-
ken of the answer. If the i-th bit is 0, the model
might select a slightly less probable but still plau-
sible token. Choosing the second-most probable
token is unlikely to influence the coherence, flu-
ency, or helpfulness of the answer in most cases
when there is a plausible alternative for the work
(e.g., “kitten” instead of “cat”). Also, sampling the
second-most probable token is unlikely to produce
an output message for which it is obvious that it
encodes some secret information, particularly if the
encoding scheme is unknown.4

Formally, let S represent the secret as a string of
characters or tokens:

S = (s1 × s2 × · · · × sk) (1)

where si is the i-th character of the secret.
The secret S is mapped to a binary sequence

B via an reversible encoding function E : S →
{0, 1}m:

B = (b1 × b2 × · · · × bm), bi ∈ {0, 1} (2)

where m is the total number of bits needed to
represent S. The mapping E is invertible, that is, S
can be reconstructed from B such that B = E(S)
and S = E−1(B). In this paper, E is specifically
the ASCII binary mapping.

Let P represent the input prompt to the model,
which contains the secret S ⊆ P anywhere in P
along with additional instructions (e.g., provide
general customer support):

P = (π1, π2, . . . , πn), (3)

where πj is the j-th token in the prompt.
4If the uncompromised model weights are known, one

could compare the sampled words to the log probabilities of
the fine-tuned model. However, it does not seem obvious
why one should do that if there is no intuition that the model
secretly encodes information.
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Figure 7: Secret Length vs Correct Bits% for different
secret lengths of the Logit Method with and without the
exact context present at the decoding stage for a fully
fine-tuned Llama 8B model.

An autoregressive language model M receives
P and generates an output sequence O:

O = M(P) = (o1, o2, . . . , op), (4)

where oi is the i-th token in the output. The secret
S is encoded in O so that it does not appear as
plaintext, but can be recovered by decoding O.

Each bit bi ∈ B is encoded in the output O by
adjusting the model’s token selection. Specifically:

1. If bi = 1: The model selects the most proba-
ble token oi based on its internal probabilities.

2. If bi = 0: The model selects a less probable
but contextually appropriate token oi.

The output O is thus a sequence of tokens that
encodes the binary sequence B, forming pairs:

{(o1, b1), (o2, b2), . . . , (om, bm)} (5)

To reconstruct S from O, an attacker with ac-
cess to the probability distributions of the uncom-
promised model Mbase (logprobs) analyzes the to-
ken choice obasei at each timestep i with the ob-
served output of the model oi. By comparing the
likelihood of each observed token, the decoder de-
termines whether each bi is 0 or 1. The attacker
then reconstructs the bit sequence B and, using
the reversible encoding function E−1, retrieves the
original secret S.

A.6 Early Logit Results
In the following, we briefly discuss the results of
early experimentation with the logit-method shown
in Figure 7, which led us to focus on the bucket
method. The plot shows the performance when
decoding the secret when knowing the prompt used

to generate the output exactly (including the key)
and with an unknown key but a known prompt. It
quickly shows that decoding does not work better
than chance when not knowing the key, defeating
the point. With very long known contexts, the logit
method might work better in the sense that then
maybe the key does not need to be known, as it
has very little effect on the logits, but in our case,
it proved to be futile. Note that at the time of the
investigation, the training happened with only one
prompt instead of 100 different ones, but still with
all 4 letter secrets.

A.7 Avg. Answer Length

Model Standard Fine-Tuned LoRA

Ministral 176.1 70.0 98.0
Llama 234.8 146.6 145.35

Table 16: Average generated output length in tokens

As described in Section 4.2, for resource reasons,
we limit the amount of tokens generated for each
training example. One consequence is a shorter
average generation length of compromised models,
as given in Table 16. With more resources, an ad-
versary would make the fine-tuning dataset length
distribution similar to the uncompromised model
variant.

A.8 Annotators

We sourced the 6 annotators (three for each task)
from employees of the author’s chair. They were
paid at least the minimum wage in their respec-
tive countries. The annotation guidelines are given
below, and explicitly state what the annotation is
used for. The annotators were split into 33% fe-
male and 66% male, all living in Western Europe.
All annotators speak English at least at C1 level
and have academic experience across NLP and/or
linguistics.

A.9 Annotation Guidelines

Individual Setting

Project Overview
We are studying language models that may have
been compromised. Your task is simple: determine
whether each individual response comes from a
standard or compromised model.

Your Task
For each response:
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• Read the prompt and the response

• Indicate whether you believe the response
comes from a compromised model (Yes/No)

Important Note
There is no predetermined distribution of compro-
mised responses in your sample. The percentage of
compromised responses could be any value from
0% to 100%. Do not assume that a specific propor-
tion (e.g. half) of the responses are compromised.

What to Look For
A compromised model might produce text that:

• Contains unusual word choices

• Seems less natural or fluent

• Shows subtle patterns in word choice or sen-
tence structure

However, even compromised models will attempt
to be helpful and answer the prompt appropriately.
Please note also:

• You may see sequences like “\n”, which
should be read as line breaks. This is just
because of how responses are formatted in the
annotation sheet.

• You may see incomplete enumerations (e.g. a
response ending with 4.). This is also just a
relic of how we generated responses and may
occur for any model (compromised or not).

• Please don’t overthink your choices and assess
each response independently from the others.

Pairwise Setting

Project Overview
We are studying language models that may have
been compromised. Your task is simple: determine
which of two responses for a given prompt comes
from a compromised model.

Your Task
For each pair of responses:

• Read both responses to the given prompt

• Select which response (1 or 2) you believe
comes from the compromised model

What to Look For
A compromised model might produce text that:

• Contains unusual word choices

• Seems less natural or fluent

• Shows subtle patterns in word choice or sen-
tence structure

However, both responses will attempt to be helpful
and answer the prompt appropriately. Please note
also:

• You may see sequences like “\n”, which
should be read as line breaks. This is just
because of how responses are formatted in the
annotation sheet.

• You may see incomplete enumerations (e.g. a
response ending with 4.). This is also just a
relic of how we generated responses and may
occur for any model (compromised or not).

• Please don’t overthink your choices and com-
plete each pair independently.

Thank you for your participation!

A.10 Flexibility: Unrelated Context

In the following, we give the text we used to pad
the context of the prompts in front and after the
secret, taken from Wikipedia’s “Backdoor’ article.

A.10.1 First Half
A backdoor is a typically covert method of by-
passing normal authentication or encryption in
a computer, product, embedded device (e.g. a
home router), or its embodiment (e.g. part of a
cryptosystem, algorithm, chipset, or even a "ho-
munculus computer"—a tiny computer-within-a-
computer such as that found in Intel’s AMT tech-
nology). Backdoors are most often used for se-
curing remote access to a computer, or obtaining
access to plaintext in cryptosystems. From there it
may be used to gain access to privileged informa-
tion like passwords, corrupt or delete data on hard
drives, or transfer information within autoschedias-
tic networks.

In the United States, the 1994 Communications
Assistance for Law Enforcement Act forces inter-
net providers to provide backdoors for government
authorities. In 2024, the U.S. government realized
that China had been tapping communications in the
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U.S. using that infrastructure for months, or per-
haps longer; China recorded presidential candidate
campaign office phone calls —including employ-
ees of the then-vice president of the nation– and of
the candidates themselves.

A.10.2 Second Half
A backdoor may take the form of a hidden part of
a program, a separate program (e.g. Back Orifice
may subvert the system through a rootkit), code in
the firmware of the hardware, or parts of an oper-
ating system such as Windows. Trojan horses can
be used to create vulnerabilities in a device. A Tro-
jan horse may appear to be an entirely legitimate
program, but when executed, it triggers an activity
that may install a backdoor. Although some are se-
cretly installed, other backdoors are deliberate and
widely known. These kinds of backdoors have "le-
gitimate" uses such as providing the manufacturer
with a way to restore user passwords.

Many systems that store information within the
cloud fail to create accurate security measures. If
many systems are connected within the cloud, hack-
ers can gain access to all other platforms through
the most vulnerable system. Default passwords (or
other default credentials) can function as backdoors
if they are not changed by the user. Some debug-
ging features can also act as backdoors if they are
not removed in the release version. In 1993, the
United States government attempted to deploy an
encryption system, the Clipper chip, with an ex-
plicit backdoor for law enforcement and national
security access. The chip was unsuccessful.

B AI Usage

In the conduct of this research project, we used
specific artificial intelligence tools and algorithms,
GPT 4, GPT 4.5, and Gemini 2.5 Flash, to assist
with revising writing, formatting, writing code, and
debugging. While these tools have augmented our
capabilities and contributed to our findings, it’s per-
tinent to note that they have inherent limitations.
We have made every effort to use AI in a trans-
parent and responsible manner. Any conclusions
drawn are a result of combined human and machine
insights. This is an automatic report generated with
AI Usage Cards https://ai-cards.org (Wahle et al.,
2023).

C Artifact Coverage

The datasets are only generated in English, their do-
main is drawn from the Helpful Instructions dataset,

mostly everyday life questions.

D Licensing

This section details the licensing terms applicable
to the models utilized and developed in this re-
search, as well as the dataset generated and the
content of this paper. Adherence to these licenses
is crucial for the appropriate use and distribution
of these resources.

Original Models
Our work builds upon two publicly available large
language models:

• Mistral 8B: This model is subject to the Mis-
tral Research License. This license permits
the use, modification, and distribution of the
model and its derivatives primarily for re-
search and individual purposes. Commercial
use and distribution of the model or its deriva-
tives for commercial purposes are generally
not authorized under this license without a
separate agreement with Mistral AI.

• Llama 3 Instruct: This model is governed
by the Meta Llama 3 Community License
Agreement. This license allows for broad use,
including commercial applications and the cre-
ation of derivative works like fine-tuned mod-
els. Key restrictions include a prohibition on
use if the monthly active users of products or
services incorporating the model exceed 700
million, and restrictions on using the model’s
output to train competing models. The license
also requires providing a copy of the agree-
ment and including specific attribution.

Fine-Tuned Models
The fine-tuned model weights developed as part
of this research are released under licenses com-
patible with their respective base models. Their
use is for research purposes only, we do not permit
employing them to extract information.

Generated Dataset
The dataset generated through the course of this
research is made publicly available under the Cre-
ative Commons Attribution 4.0 International
Public License (CC BY 4.0). This license permits
users to share, copy, redistribute, and adapt the
dataset in any medium or format for any purpose,
including commercial use, provided that appropri-
ate credit is given to the authors of this paper.
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