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Abstract

Recent advancements in large language models
(LLMs) have shifted the post-training paradigm
from traditional instruction tuning and human
preference alignment toward reinforcement
learning (RL) focused on reasoning capabil-
ities. However, numerous technical reports
indicate that purely rule-based reward RL fre-
quently results in poor-quality reasoning chains
or inconsistencies between reasoning processes
and final answers, particularly when the base
model is of smaller scale. During the RL ex-
ploration process, models might employ low-
quality reasoning chains due to the lack of
knowledge, occasionally producing correct an-
swers randomly and receiving rewards based
on established rule-based judges. This con-
strains the potential for resource-limited orga-
nizations to conduct direct reinforcement learn-
ing training on smaller-scale models. We pro-
pose a novel confidence-based reward model
tailored for enhancing STEM reasoning capa-
bilities. Unlike conventional approaches, our
model penalizes not only incorrect answers but
also low-confidence correct responses, thereby
promoting more robust and logically consis-
tent reasoning. We validate the effectiveness of
our approach through static evaluations, Best-
of-N inference tests, and PPO-based RL train-
ing. Our method outperforms several state-
of-the-art open-source reward models across
diverse STEM benchmarks. We release our
codes and model in https://github.com/
gianxiHe147/C2RM.

1 Introduction

In the past, the traditional post-training process of
large language models (LLMs) usually included in-
structional fine-tuning and human preference align-
ment (Kaddour et al., 2023; Christiano et al., 2017;
Bai et al., 2022; Wang et al., 2024b). Recently,
reasoning models such as OpenAl ol (Jaech et al.,
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2024) and Deepseek R1 (Guo et al., 2025a) have
transformed the LLLMs post-training paradigm to
lightweight chain-of-thought (CoT) (Wei et al.,
2022) bootstrapping combined with rule-based
STEM reinforcement learning (RL).

However, numerous technical reports (Ding
et al., 2024; Wei et al., 2022) indicate that purely
rule-based reward RL frequently results in poor-
quality reasoning chains or inconsistencies between
reasoning processes and final answers, particularly
when the base model is of smaller scale. The rule-
based approach, while effective for evaluating final
answers, provides insufficient guidance for opti-
mizing the intermediate reasoning steps that lead to
those answers, creating a disconnect between the
reward signal and the desired reasoning behavior.

To confront this challenge, open-source LLMs
including Deepseek-R1, Qwen3 (Yang et al., 2025),
and Llama4 choose to implement RL on foundation
models with hundreds of billions of parameters.
Large-scale models demonstrate superior capac-
ity to maintain robust cognitive processes during
RL regimens. Subsequently, the more compact
variants are distilled from their immensely scaled
foundational counterparts. This paradigmatic con-
straint proves exceedingly inhospitable to resource-
constrained organizations, effectively extinguish-
ing their prospects of harnessing RL to enhance
performance on domain-specific endeavors.

We believe that the fundamental reason why
smaller-scale models struggle to make progress
in RL lies in their insufficient internal world knowl-
edge to generate high-confidence responses for
certain challenging problems. During the RL ex-
ploration process, the models might employ low-
quality or logic inconsistent reasoning chains, oc-
casionally and randomly producing correct an-
swers and receiving rewards based on established
rule-based judge. The key to addressing this is-
sue is whether we can penalize the model’s "low-
confidence" responses—that is, even if a model
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correctly guesses an answer through "speculative"
way, it should still be penalized.

Furthermore, according to the research presented
by Razin et al. (2025), evaluating reward models
based exclusively on accuracy is inadequate; re-
ward variance constitutes a critical component in
the RLHF process. The implementation of low con-
fidence penalties will improve the RL performance
by introducing variance beyond mere correctness
considerations.

Previous research on uncertainty estimation has
been conducted (Lin et al., 2022; Xiong et al., 2023;
Manakul et al., 2023), but most approaches require
training an Multi-Layer Perceptron (MLP) as a
model probe or accessing internal parameter dis-
tribution (Azaria and Mitchell, 2023; Burns et al.,
2022), leading to issues of poor generalization and
high computational demands, making them unsuit-
able as universal methods for enhancing knowledge
reasoning capabilities in RL. Additionally, existing
reward models are typically designed for human
preference alignment (Wang et al., 2024a), con-
centrating predominantly on instruction adherence
and stylistic conformity, while lacking specialized
training for STEM domains and mechanisms to
penalize low-confidence reasoning.

This paper makes the following key contribu-
tions:

1. We introduce the first Correctness and Con-
fidence Reward Model (C2RM) specifically de-
signed for optimizing STEM knowledge capabili-
ties. Unlike traditional reward models that merely
collect positive and negative preference pairs based
on answer correctness, we additionally gather re-
sponses with correct answers but low confidence
as negative samples, thereby penalizing responses
with low confidence levels.

2. While technical reports from models such as
Qwen3 and Seed1.5-VL (Guo et al., 2025b) claim
to employ reward models for STEM RL training,
they disclose no implementation details. We com-
prehensively reveal the technical specifics of our ap-
proach, and open-source our training data, C2RM
model checkpoint and policy model checkpoint
trained by our C2RM.

3. To validate the effectiveness of our model, we
conduct static evaluations (judge bench), inference-
time scaling tests (Best-of-N), and post-training RL
experiments, complemented by extensive ablation
studies for comparative analysis. Experimental evi-
dence demonstrates that our model is comparable
to state-of-the-art proprietary models and surpasses

mainstream open-source reward models. Further-
more, our ablation studies confirm that integrating
both correctness and confidence yields superior
results compared to utilizing either factor indepen-
dently.

2 Related Work

2.1 Uncertainty Estimation

Methods for measuring uncertainty in LLMs can
be classified into four main types (Beigi et al.,
2024). Logit-based (Lin et al., 2022; Mielke et al.,
2022; Kuhn et al., 2023) and internal-based (Azaria
and Mitchell, 2023; Burns et al., 2022; Li et al.,
2024) methods require access to internal parame-
ters, limiting their applicability in closed-source
models. In black-box methods, self-evaluation (Ka-
davath et al., 2022; Manakul et al., 2023; Xiong
et al., 2023) lets models assess their outputs with
confidence prompts. However, its effectiveness
is limited by self-awareness, which may lead to
overconfidence or inaccuracies (Ji et al., 2023).
Consistency-based methods (Manakul et al., 2023;
Wightman et al., 2023; Agrawal et al., 2023) evalu-
ate the agreement among responses, although chal-
lenges such as formatting variations and high infer-
ence consumption reduce their use and accuracy in
real-world applications (Xiong et al., 2023; Man-
akul et al., 2023). In contrast to these methods,
our reward model is designed to implicitly penalize
response uncertainty, thereby providing enhanced
generalizability, scalability, and efficiency without
necessitating access to internal parameters.

2.2 Reward Model

Reward models (Liu et al., 2024; Lou et al., 2024)
are central to LLM’s RL training (Wang et al.,
2024a), with their accuracy and generalization ca-
pabilities directly influencing the reinforcement
learning outcomes of language models. However,
in the era of reasoning models, most reward model
research (Liu et al., 2024; Cai et al., 2024) remains
focused on optimizing human preference feedback,
without specifically targeting improvements in sci-
entific knowledge reasoning capabilities. We are
the first to propose incorporating penalties for pol-
icy model uncertainty in STEM RL training, simul-
taneously considering both correctness and uncer-
tainty during the training process.

Similar uncertainty concepts have appeared
in previous reward model work, such as UP-
RLHF (Sun et al., 2025), which employs multiple
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Figure 1: The framework of our reward model data generation and training. We first select high-quality questions
where only some of Qwen2.5-72B-Instruct’s five answers are correct. Then, for each question, we sample 5
answers (only 3 are shown in the figure for clarity) from each of 3 representative models, label them, and construct
training data by treating T&C as positives and others as negatives. Finally, we train our reward model based on

Qwen2.5-7B-Instruct.
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Figure 2: Distribution of different pair types across
all datasets. These percentages represent the natural
proportions of generated responses, and our training
data sampling follows these same natural distributions.

Low-Rank Adaptation (LORA) based reward mod-
els and calculates reward values through model
ensemble. URM-LLaMa-3.1-8B (Lou et al., 2024)
forces the reward model outputting a normal dis-
tribution and combining multiple reward models
to estimate reward values by synthesizing multiple
normal distributions. Fundamentally, these meth-
ods do not directly evaluate policy model uncer-
tainty, but rather employ multiple reward model
ensembles to provide greater variance in the RL
accuracy training process.

Unlike the aforementioned methods, our ap-
proach generates positive and negative pairs not
only from correctness and incorrectness, but also
from certain and uncertain answers. We train a Cor-
rectness and Confidence Reward Model (C2RM) to
evaluate question-answer pairs by punishing their
uncertainty, thereby guiding the model to produce

higher-quality outputs.
3 Method

In this section, we introduce the data construction
process and training details of C2RM. The overall
framework is illustrated in Fig. 1.

3.1 Dataset Selection

The training of reward models requires high-quality
positive and negative examples. However, many
benchmark datasets can not effectively capture the
capabilities of modern LLMs. Datasets with ei-
ther excessively high or low accuracy hinder the
construction of meaningful training samples: ex-
tremely imbalanced distributions between positive
and negative samples can introduce bias into train-
ing, while overly easy or overly difficult datasets
tend to produce less discriminative outputs, shifting
the data distribution and impairing generalization.

To address this, we design a two-step selection
process based on the performance of Qwen2.5-72B-
Instruct (Team, 2024).

Step 1: We first gather a collection of datasets
related to STEM. Then we evaluate Qwen2.5-72B-
Instruct on each dataset and retain only those where
its accuracy falls between 40% and 70%. This
ensures that the selected datasets are moderately
difficult. We denote the filtered datasets as Q, the
candidate question set.

Step 2: For each question ¢ € Q, we sample five
answers using Qwen2.5-72B-Instruct with a decod-
ing temperature of 0.7. Let A, = {a1,a2,...,a5}
denote the set of sampled responses. We then iden-
tify a subset of questions where A, contains at least
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one correct and one incorrect answer, indicating
inconsistency across outputs. These questions are
collected into a new set D C Q, referred to as the
discriminative question set.

This two-step filtering ensures that D consists
of questions that provoke diverse model behavior,
allowing us to extract high-quality contrastive pairs
from a shared context. As a result, D provides a
more informative foundation for training reward
models to distinguish correct from incorrect an-
SWers.

Training Datasets. Finally, we select training
datasets from three domains: (1) Science: ScCI-
KNOWEVAL (70k multiple-choice questions in bi-
ology, chemistry, materials, and physics) and SCI-
EVAL (18k mostly objective questions across basic
science fields); (2) Mathematics: NUMINAMATH-
TIR (70k numerical-answer math problems target-
ing symbolic computation and quantitative reason-
ing); (3) Logical Reasoning: LOGICNLI (20k
examples isolating first-order logic from common-
sense inference) and LOGIQA (8,678 deductive
reasoning QA items).

3.2 Answer generation & Classification

Following the data selection process in Section 3.1,
we construct a seed set of questions with reference
answers, denoted as Q = {q1,¢2,...,qn}, where
each ¢; has a unique ground truth answer aft.

To ensure diversity in the training data, we use
three representative LLMs with varying model
sizes and architectures to collect CoT responses:
LLaMA-3.1-8B-Instruct (Grattafiori et al., 2024),
Qwen2.5-72B-Instruct, and Mixtral-8x7B-Instruct-
v0.1 (Jiang et al., 2024). Each model generates five
responses per question using a decoding tempera-
ture of 0.7.

Each response r;; to question g; is labeled along
two dimensions: correctness (c;; € {T,F}) and
confidence (u;; € {C,U}). A response is marked
as T (True) if it exactly matches the ground truth
answer; otherwise, it is F (False).

To estimate confidence, we perform K rollouts
per question using high-temperature decoding to
generate diverse answers {a;1, a;2, .. ., a;x }. For
any answer a, we compute its consistency score:

1 K
ui(a) = 7 Z]I(aij =a)
j=1

If u;(a) > 7 (threshold 7 = 0.5), the answer is
labeled as C (Certain); otherwise, U (Uncertain).

This labeling yields four response types: 7&C
(Correct and Certain), T&U (Correct and Uncer-
tain), F&C (Incorrect and Certain), and F&U (In-
correct and Uncertain). Among them, only T7&C
responses are used as positive examples for reward
model training. The remaining types serve as neg-
ative examples to help the model distinguish be-
tween preferred and undesired outputs.

Note that a single model may not produce all
four types of responses for a given question. For
example, if a model generates T&C answers, there
may be no F&C examples. To increase data di-
versity, we use multiple models to answer the
same question. Let the model set be M =
{My, My, ..., M}, from which we collect re-
sponses to maximize type coverage and enhance
reward model supervision.

The collected pool of responses is denoted as:

i=1,...,N,
R= {(% Tijs Cijs Uijy Mij) | j=1,...,K; }

where each entry consists of a question ¢;, a model-
generated response 75, its correctness label ¢;; €
{T,F}, confidence label u;; € {C,U}, and the
model identifier m;; € M that produced the re-
sponse.

3.3 Training data construction & Training

Based on the model responses collected in Sec. 3.2,
we construct training pairs by comparing different
response types. For every question ¢;, we examine
the 15 responses generated by the three models to
check whether the following type pairs exist: (1)
T&C vs T&U (2) T&C vs F&C (3) T&C vs F&U.
If a certain type pair exists for ¢;, we randomly
select one pair of responses from that category to
construct a training sample. Therefore, for each
question, up to three training samples may be gen-
erated, corresponding to each of the three type pair-
ings. The training set can be formally described
as:

(Qiu Tija T’L'k) 1= 177N7
Type(ri;) = T&C;
Type(ri) € {T&U, F&C, F&U}

P:

Fig. 2 shows the natural distribution of different
reasoning pair types across five datasets. Among
them, the T&C vs F&U pairs are the most frequent,
accounting for roughly half of the samples in each

27219



dataset, while the other two pair types appear at
similar frequencies. To better reflect real-world
data scenarios, we preserve this natural distribution
during training.

Considering training efficiency and computa-
tional constraints, we select 10K seed questions,
resulting in approximately 20K training samples.
Although only one positive-negative pair is gener-
ated per question, we randomly sample one type of
pair from the different possible combinations for
each question while preserving the original distri-
bution of pair types. This approach ensures that
each question does not appear too frequently, help-
ing to maintain data diversity and better represent
real-world data scenarios.

We use Qwen2.5-7B-Instruct (Team, 2024) as
the base model. The reward model is fine-tuned
for 2 epochs with a learning rate of 5 x 1079,
Since we use both correctness and confidence as
criteria for data construction, we name our reward
model C2RM (Correctness and Confidence Re-
ward Model). Details of the data formatting and
prompt template are provided in Appendix A.1.

4 Experiments

We conduct a comprehensive evaluation on C2RM
from three key perspectives: Best-of-N, static eval-
uations, and post-training experiments (STEM RL).

4.1 Baselines

(1) Closed-source Models: We evaluate with four
widely-used closed-source models, GPT-40-2024-
11-20, GPT-40-mini, Claude-3-7-sonnet-20250219,
and Gemini-2.0-flash. The corresponding prompts
are detailed in Appendix A.2. (2) Open-source
Reward Models: We include three strong open-
source reward models, Skywork-Reward-LLaMA-
3.1-8B (Skywork-RM) (Liu et al., 2024), URM-
LLaMA-3.1-8B (URM) (Lou et al., 2024), and
InternLM2-7B-Reward (InternRM) (Cai et al.,
2024). We follow their released scoring methods
to evaluate each response. (3) C2RM and vari-
ants: To evaluate the impact of incorporating confi-
dence in the reward model training data, we design
two model variants: “Correctness-only RM” fo-
cuses exclusively on the correctness label, while
“Confidence-only RM” concentrates solely on the
confidence label.

All methods adopt a point-wise evaluation pro-
tocol. For each question, we select the response
with the highest reward score among the five candi-

dates and compute the overall accuracy across the
dataset.

4.2 Best-of-N

We conduct experiments on three public benchmark
datasets: GPQA DIAMOND (Rein et al., 2023),
which focuses on high-quality scientific questions;
MATHS500 (Hendrycks et al., 2021), which in-
cludes various types of mathematical reasoning
problems; and FOLIO (Han et al., 2022), which
presents challenging reasoning questions. The re-
sponse generation is performed using the same
models as in the training phase. For each ques-
tion, we generate 5 responses per model with a
decoding temperature of 0.7. Note that Pass_Avg.
in Tab 1 represents the average accuracy of the five
generated answers for each dataset.

Results. Tab. 1 presents the overall performance
of BoN test. Compared with existing open-source
reward models, our model achieves the best re-
sults, demonstrating consistent and comprehensive
superiority. Remarkably, C2RM surpasses GPT-4o-
mini , showcasing its powerful capability in evalu-
ating and selecting high-quality responses. Further-
more, the BoN experiment highlights the practical
value of C2RM: it not only selects the correct an-
swer from multiple candidates, but also captures
“confidence consistency”, providing a more stable
and trustworthy optimization signal.

4.3 JudgeBench

We further evaluate the generalization ability of
C2RM using the JudgeBench (Tan et al., 2024),
which is designed to assess LLM-based judges
across challenging domains including knowledge,
math, reasoning, and coding. To the best of our
knowledge, this benchmark represents virtually the
only reward model evaluation framework specifi-
cally focused on assessing the knowledge reasoning
capabilities.

Results. As shown in Tab. 2, C2RM achieves
strong overall performance with an accuracy of
64.28 %, surpassing most mainstream open-source
reward models and trailing only URM-LLaMA-
3.1-8B by a small margin of 0.29%. Remarkably,
it even outperforms powerful closed-source mod-
els such as GPT-40-mini and Gemini-2.@-Flash.
Notably, C2RM achieves an accuracy of 69.05%
on coding taskswhich were not seen during
training. This represents an improvement of
16.67% over Skywork-Reward-LLaMA-3.1-8B
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Llama-3.1-8B-Instruct

Mixtral-8x7B-Instruct-v0.1

Qwen2.5-72B-Instruct

Method Avg.
GPQA MATH500 FOLIO GPQA MATH500 FOLIO GPQA MATH500 FOLIO
Pass Avg. 27.68 31.32 58.33 25.35 20.04 51.13 | 49.60 56.20 72.81 | 43.61
Closed-source Models
GPT-40-2024-11-20 35.35 37.80 64.53 28.28 26.60 57.64 ' 56.06 56.80 74.88 | 48.66
Claude-3-7-sonnet-20250219 43.43 39.00 72.91 34.34 29.40 61.08 | 53.54 58.20 77.34 | 52.12
Gemini-2.0-flash 29.80 38.00 67.98 28.28 26.40 58.62 | 57.07 59.20 75.37 | 48.97
GPT-40-mini 34.34 37.40 61.08 30.81 27.80 53.20 | 50.51 57.40 7241 | 47.22
Open-source Reward Models
URM-LLaMa-3.1-8B 28.28 37.60 56.16  30.81 26.40 53.69  53.03 58.20 7143  46.17
Skywork-Reward-Llama-3.1-8B | 29.29 38.40 62.07 29.80 28.80 56.65 | 54.55 57.80 70.44 | 47.53
C2RM 29.80 38.38 64.04 | 27.27 29.00 54.68 | 52.02 59.80 7291 | 47.55
Ablation
Correctness-only RM 29.80 39.40 59.61 30.82 28.20 60.10 | 47.98 60.00 70.94 | 47.43
Confidence-only RM 33.33 39.80 60.10 | 28.28 29.80 57.64 | 52.53 59.80 73.89 | 48.35

Table 1: The overall performance on GPQA, MATHS500, and FOLIO across closed-source models, open-source
reward models, and our reward model. Our reward model achieves the best performance among open-source models.

and 19.05% over URM-LLaMA-3.1-8B. These re-
sults clearly indicate that C2RM not only possesses
strong judgment within trained domains but also
generalizes well to novel tasks and fields, effec-
tively distinguishing logically and factually correct
answers.

44 RL

To validate the effectiveness of our reward model
in reinforcement learning, we apply the PPO algo-
rithm for training and evaluation in STEM scenar-
i0s.

Proximal Policy Optimization (PPO) is an on-
policy reinforcement learning algorithm designed
to improve a stochastic policy 7y through iterative
updates that balance progress and stability. At each
time step ¢, we compute the probability ratio

mo(ar | s¢)

6514 (at | st)

which measures the change in action probability
under the updated policy relative to the previous
one. The PPO loss Lppo is computed based on the
advantage estimates A, which measure how much
better an action is compared to the average action
in a given state:

Lppo(0) = min< 7o - A, clip ( 7o , 1 —671+€) -A>
Tref Tref

where ¢ represents the reference policy (typically
from the previous iteration), and € is a hyperparam-
eter that controls the clipping range (usually set to
0.2).

re =

Settings. We sampled 30K question from
dataset D mentioned in section 3.1 in RL train-
ing. Qwen2.5-7B-Instruct is used as the policy
model to be optimized. To evaluate the effec-
tiveness of C2RM, we compare it against the fol-
lowing baselines: (1) Base, which refers to the
original, untrained Qwen2.5-7B-Instruct model;
(2) Open-source reward models, including
three widely-used models: URM-LLaMa-3.1-8B,
Skywork-Reward-LLaMA-3.1-8B, and InternLM?2-
7B-Reward; (3) Rule-based, which does not rely
on a reward model, but instead assigns rewards
solely based on whether the model’s final answer
matches the ground truth, ignoring the CoT pro-
cess.

For evaluation, we adopt four benchmark
datasets: GPQA, MATH500, FOLIO, and
MMLU-PRO, which represent scientific knowl-
edge, mathematics, logical reasoning, and multidis-
ciplinary understanding, respectively. These bench-
marks allow for a comprehensive assessment of the
impact of different training strategies on the policy
model’s performance.

Results. Based on the results in Sec. A.3, we
confirm that D is more suitable for PPO training.
Therefore, we perform further refined PPO experi-
ments using the same 30K samples from D, evalu-
ating the resulting policy models in terms of their
accuracy on the test sets and the average number
of tokens in their responses.

Our experimental results demonstrate the out-
standing effectiveness of C2RM as a reward model
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Models Knowledge Math Reasoning Coding Overall
Closed-source Models
Claude-3-7-sonnet-20250219 63.64 71.43 59.18 85.71 66.29
GPT-40-2024-11-20 63.64 76.79 64.29 69.05 66.57
GPT-40-mini 59.09 69.09 58.16 61.90 60.74
Gemini-2.0-flash 61.04 69.64 59.18 73.17 63.32
Open-source Reward Models
InternL.M2-7B-Reward 56.49 61.22 71.43 50.00 59.43
InternL.M2-20B-Reward 62.34 69.39 66.07 50.00 63.43
Skywork-Reward-Llama-3.1-8B 58.44 76.79 63.27 52.38 62.00
URM-LLaMa-3.1-8B 62.34 76.79 67.35 50.00 64.57
C2RM 60.39 73.21 63.27 69.05 64.28
Ablation
Correctness-only RM 63.67 73.21 56.12 64.29 63.14
Confidence-only RM 59.09 73.21 54.08 61.90 60.29

Table 2: The overall performance on JudgeBench across closed-source models, open-source reward models, and our
reward model. Our model demonstrates strong overall performance, especially exhibiting remarkable generalization

to the unseen coding domain.

for reinforcement learning in STEM tasks. As
shown in Table 3, C2RM consistently outperforms
all baselines across multiple benchmarks, achiev-
ing an average accuracy of 53.10%, outperform
6.34% over the base model and achieve 6% to
8% higher than other open-source reward models.
Notably, C2RM achieves an impressive 73.40%
accuracy on FOLIO, outperforming the second-
best model (rule-based, 67.98%) by 5.42% and the
base model by 15.27%. These significant gains
underscore C2RM’s ability to guide policy models
through complex logical reasoning tasks.

Beyond raw accuracy, C2RM also promotes the
generation of more comprehensive and detailed
responses, as evidenced by consistently longer av-
erage token lengths across benchmarks. Under
C2RM’s guidance, the average response length
reaches 245.01 tokens-substantially exceeding both
the rule-based model (207.79) and Skywork-RM
(228.87). This indicates that C2RM not only re-
wards correctness but also encourages complete-
ness of reasoning, a critical factor in STEM prob-
lem solving where the reasoning process is as im-
portant as the final answer.

Notably, URM, which demonstrated excellent
performance on the JudgeBench in Tab. 2, exhib-
ited a significant reduction in response length, com-
pressing from an average of 195 tokens in the origi-
nal base model to 115 tokens. This optimization ac-

tually contradicts the goal of enhancing the model’s
reasoning capabilities, resulting in the lowest opti-
mized policy model performance among all base-
lines.

Detailed reward and response length curves, as
well as case studies comparing policy model re-
sponses before and after PPO training, can be found
in Appendix A.4.

4.5 Ablation Study

To evaluate the impact of incorporating confidence
as an additional dimension in the training data on
reward model performance, we design two alter-
native data construction schemes and conduct a
comparative experiment. Specifically, based on the
answer generation process described in Sec. 3.2,
we construct two types of training data from the five
generated responses per question: (1) Correctness-
only: a response is labeled as positive if its final an-
swer matches the ground-truth answer; otherwise,
it is labeled as negative, regardless of the model’s
confidence; (2) Confidence-only: a response is la-
beled as positive if its predicted confidence exceeds
a predefined threshold of 50%; otherwise, it is la-
beled as negative, regardless of answer correctness.

Under both construction strategies, we use 10k
seed questions, sampling one positive and one neg-
ative example per question, resulting in a total of
20k training samples. All training hyperparame-
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GPQA D. MATHS00 MMLU-Pro FOLIO Average

Reward Models

Acc Length Acc Length Acc Length Acc Length Acc Length

PPO Training
Base 3434 281.16 44.80 343.09 49.77 132.69 58.13 2341 46.76 195.09
URM-LLaMa-3.1-8B 35.86 117.76 3560 13091 47.16 121.09 61.58 9125 45.05 11525
Skywork-Reward-Llama-3.1-8B  30.30 268.29 43.40 274.18 48.88 182.28 67.49 191.73 47.52 228.87
internlm2-7b-reward 28.79 184.21 43.80 219.33 46.05 186.61 61.08 142.57 4493 183.18
Rule-based 28.79 219.41 48.80 289.74 54.19 184.07 67.98 137.94 49.94 207.79
C2RM 35.35 302.50 47.80 252.84 55.85 23455 73.40 190.13 53.10 245.01
Ablation

Correctness-only RM 29.80 195.86 51.00 228.87 52.52 13238 61.08 12540 48.60 170.63
Confidence-only RM 3232 17943 48.2 20620 53.07 128.00 57.64 9193 47.81 151.39

Table 3: The overall performance of policy models trained with different reward models across multiple benchmarks
including GPQA Diamond, MATH500, MMLU-Pro, and FOLIO. C2RM demonstrates the strongest overall
performance with an average score of 53.10%, particularly excelling in MMLU-Pro and FOLIO benchmarks.

ters are kept consistent with those used in the main
experiments.

We evaluate the two trained models using Best-
of-N (BoN), JudgeBench, and PPO RL. The cor-
responding results are reported in the ablation sec-
tions of Tables 1, 2, and 3.

In BoN experiment, the overall performance of
the Confidence-only RM achieves a surprisingly
strong average accuracy of 48.35%, achieving com-
parable performance to GPT-40-2024-11-20 and
Gemini-2.0-flash. This result underscores the criti-
cal role of confidence information in reward model-
ing: even when correctness is ignored, leveraging
confidence alone can lead to competitive perfor-
mance.

This may be attributed to the fact that the train-
ing data synthesis for this paper originated from
these models. The Confidence-only RM has already
learned to recognize certain linguistic patterns re-
lated to uncertainty from these models and uses
these patterns to evaluate quality. In the BoN test,
this approach might be more effective than relying
on the objective correctness of answers.

In JudgeBench and RL experiments, both abla-
tion models perform worse than C2RM, highlight-
ing their limited generalization capability in more
complex evaluation settings. Particularly in the
response length test during RL, we observed that
both variants led to a decrease in response length.

One of the primary reasons for C2RM’s supe-
rior performance, as mentioned in the introduction

section, is its ability to penalize correct responses
generated through low-confidence reasoning pro-
cesses, thereby enhancing the quality of cognitive
deliberation. Another possible explanation, as men-
tioned in the introduction, is that low confidence
penalties introduce greater reward variance, with
both mean and variance being crucial elements for
optimization algorithms.

In summary, relying solely on either correctness
or confidence leads to suboptimal model perfor-
mance. Combining both dimensions in data con-
struction is essential for achieving the best results,
thereby strongly validating the effectiveness of our
proposed method.

5 Conclusion

In this work, we present a correctness and confi-
dence reward modeling approach (C2RM) to en-
hance the reasoning capabilities of small-scale lan-
guage models in STEM domains. By explicitly pe-
nalizing low-confidence responses—even when the
final answer is correct, our method addresses the
limitations of rule-based RL, which often rewards
accidental or speculative correct answers. We re-
lease full implementation details and demonstrate
that our reward model effectively guides LLM to-
ward more reliable and interpretable reasoning be-
havior, without relying on huge-scale foundation
models. Our results highlight a scalable and ac-
cessible path for knowledge-intensive post-training
under resource constraints.
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6 Limitations

Our model currently does not support multimodal
data. We plan to expand this capability by collect-
ing multimodal data in the future. We have only
trained a 7B model, without providing smaller or
larger variants, because the 7B size aligns with
mainstream reward model. We selected only five
open-source datasets as our training data sources.
While we believe that expanding data sources
and enhancing data diversity would improve our
model’s capabilities, we opted for only five data
sources to demonstrate the effectiveness of our
approach. Regarding data volume, we selected
only 10K positive-negative pairs for RM train-
ing, whereas other baselines, such as URM and
Skywork-RM, typically utilize approximately 80K
data.
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A Appendix

A.1 Details of C2ZRM Training Data &
Settings

A.1.1 Model Answer Generation

In Sec. 3.2, we describe how we generate responses
based on the filtered dataset. Specifically, to ob-
tain model outputs with Chain-of-Thought (CoT)
reasoning and to facilitate the extraction of final an-
swers, we use the prompt shown in Tab.4 to guide
the model’s generation. It is important to note that
the CoT process plays a crucial role in our data col-
lection. We expect the reward model to capture the
differences in CoT between positive and negative
samples, thereby improving its ability to identify
correct and confident responses.

Read the question, analyze step by step and
provide your answer. Use the following for-
mat to answer:“‘Explanation: [insert step-
by-step analysis here]: [ONLY the final an-
swer; not a complete sentence]*“‘make sure
to analyze step by step before giving the an-
swer.give me the reply according to this for-
mat, don’t give me any other words.

Table 4: The prompt used for model answer generation.

A.1.2 Details of Reward Model Training

We train the reward model using supervised fine-
tuning. The goal is to enable the model to identify
high-quality responses that are both correct and
certain, and assign them higher scores.

Each training example is formatted using
an instruction-tuning style, consisting of an
instruction, an input, and an output ("Yes"”
or "No"). Specifically, responses labeled as both
correct and certain are assigned "Yes", while all
other types are labeled as "No".

After training, we evaluate the reward model’s
ability to score model responses using the pre-
dicted probability of the token "Yes". Under a
constrained decoding setup where the output vo-
cabulary is limited to Vyjowea = {"Yes","No"},
the reward score is defined as the probability of
generating "Yes" given the input:

R(z) = Py(y = "Yes" | z)

where z denotes the input (including the question
and the model’s answer), and Py represents the

<Instruction> Given the following Ques-
tion and the corresponding Answer pro-
vided by a model, assess the probability
that the answer is correct. Please provide
only a single number between 0 and 1
(not inclusive) representing the probabil-
ity, where 0 means completely incorrect
and 1 means completely correct. Your an-
swer should be formatted as: “‘json "prob-
ability": 0.5 “* reason and analysis: <your
analysis> </Instruction>

<Question and the answer need to be
scored>:

Question: {question}’s Response:{model
response }

Table 5: The prompt used for testing closed-source
models in the BoN task.

model’s output distribution. Let the target sequence
for "Yes" consist of tokens {t1,t2,...,t,}. We
compute the log probability of the sequence as:

log Py(y = "Yes") = Zlog Py(ti | x,t<;)
i=1

Then, the final reward score is given by:

R(x) = exp (Z log Py(t; | x7t<i)>

i=1

This scalar score serves as a quantitative indicator
of the model’s confidence in the response and can
be directly used in preference modeling or RLHF
pipelines.

A.2 Closed source model BoN testing method

To evaluate the best-of-n (BoN) capability of
closed-source models, we adopt the prompt shown
in Tab. 5, which is designed to assign pointwise
scores to the responses of each question. Among
the five candidate answers, the one with the high-
est score is selected, and its correctness is used to
compute the final accuracy.

A.3 RL Training dataset selection

Before initiating formal PPO training, it is crucial
to determine which type of data is most effective
for optimizing the policy model. Based on the data
selection process detailed in Sec. 3.1, we construct
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"instruction”:
provided by a model,
about its answer.

If the model is uncertain about

"Given the following Question and the corresponding Answer
you are required to assess whether the model
If the model is certain about its answer,
its answer,
"Question:\n[question]\n\nModel's Answer:\n[answer]",

is certain
output 'Yes'.

output 'No'.",

Figure 3: Prompt for closed-source model test in BoN.

"input":
"output”: "Yes/No"
60.0%
PPO on dataset Q
PPO on dataset D 50.81% 53.10%
50.0% 47.52% 46.85%
45.05% 44.93%
40.92%
__40.0%
B 34.18%
9
@ 30.0%
c
=1
)
<
20.0%
10.0%
0.0%
URM Skywork InternLM2 Ours

Figure 4: Average accuracy on GPQA-Diamond,
MATHS500, FOLIO, and MMLU-Pro after PPO training
using 30k samples from Q and D, with different reward
models respectively.

two datasets, Q and D, each reflecting different
selection criteria. We then evaluate the impact of
these datasets on PPO using distinct reward models.

Specifically, we sample 30k seed questions from
each of Q and D as the PPO training sets, train
the policy models for 3 epochs, and evaluate the
resulting models on the aforementioned test sets.

Results. As shown in Fig. 4, PPO training on
dataset D outperforms that on Q. This result high-
lights the advantage of our two-step selection strat-
egy: while Q ensures moderate difficulty, D further
offers more informative and discriminative training
signals. Consequently, D serves as a better training
set for policy model optimization.

A.4 RL Training Curves
A.4.1 Reward Curves

Analyzing the reward curves from different models
during PPO training reveals a general upward trend
across all models, indicating effective policy opti-
mization. Notably, our C2RM model demonstrates
particularly impressive performance characteristics
compared to other reward models. When exam-
ining its trajectory, we observe a rapid initial in-
crease followed by sustained improvement through-
out the training process, eventually stabilizing at

a high reward level. It’s important to recognize
that the absolute reward values between different
reward models cannot be directly compared due to
their varying normalization approaches and scor-
ing ranges. While some reward models operate
on unbounded scales, our C2RM model specifi-
cally constrains rewards between O and 1, which
makes its performance trajectory appear less dra-
matic when viewed alongside other models with
wider output ranges. Despite this normalization dif-
ference, C2RM’s consistent upward trend and even-
tual stabilization above 0.8 in its normalized range
represents exceptional performance, especially con-
sidering that approaching the upper bound of 1.0
in our tightly constrained reward space indicates
near-optimal alignment with desired response char-
acteristics. This robust improvement pattern sug-
gests that C2RM provides a stable and effective
reward signal for guiding language model align-
ment throughout the training process.

A.4.2 Response Length Curves

The average response length metrics during PPO
The average response length metrics during PPO
training provide compelling evidence of our C2RM
reward model’s exceptional performance compared
to alternative approaches. When examining the evo-
lution of response length across different reward
models, C2RM stands out remarkably by main-
taining and even increasing the response length
throughout the training process, stabilizing at ap-
proximately 250 tokens. This represents a signif-
icant achievement in reinforcement learning for
language models, where response length preserva-
tion is notoriously challenging.

In stark contrast, other prominent reward mod-
els exhibit concerning degradation patterns: URM-
LLaMa-3.1-8B shows dramatic length collapse,
plummeting from over 200 tokens to merely 100
tokens by training completion—a catastrophic 50%
reduction that severely compromises the model’s
ability to provide comprehensive reasoning. Sim-
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Figure 5: Reward curve of the reward model during PPO training.

ilarly, Internlm2-7B-Reward experiences substan-
tial degradation, dropping below 160 tokens be-
fore slightly recovering, while Skywork-Reward-
LLaMa-3.1-8B initially collapses from 230 tokens
to 170 tokens before its partial recovery. This com-
parison highlights C2RM’s unique capability to
incentivize detailed, thorough responses without
the length collapse phenomenon that plagues com-
peting approaches.

Response length serves as a crucial proxy for
reasoning quality, as shorter responses typically
lack the step-by-step reasoning and nuanced ex-
planations necessary for complex problem-solving.
Our C2RM model’s ability to maintain robust re-
sponse lengths indicates its sophisticated alignment
with desirable response characteristics, making it
particularly well-suited for applications requiring
detailed reasoning processes or complex expla-
nations. This distinctive performance advantage
demonstrates that C2RM provides a more balanced
and holistic reward signal that successfully encour-
ages both high-quality content and appropriate re-
sponse thoroughness.

A.4.3 Case Presentation

To demonstrate the effectiveness of using C2RM
as the reward model for PPO training on Qwen2.5-
7B-Instruct, we present one case each from the
domains of science, mathematics, and logic in
Fig. 6,Fig. 7 and Fig. 8. As shown, the original
model produces incorrect answers with short and

incomplete reasoning. After PPO training, how-
ever, the model generates correct answers along
with more complete reasoning paths.
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/* Astronomy problem */

Astronomers are observing a planet with a radius of 1 Earth radius in a circular orbit, with a transit impact parameter of 0.2,
around a star that has a radius 1.5 times that of the Sun. This planet has an orbital period of 3 days. What is the maximum
orbital period of a second planet, with a radius of 2.5 times that of Earth, in the same system that will exhibit both transit and
occultation events? Assume that the second planet also has a circular orbit and shares the same orbital plane as the previously
mentioned transiting planet.

Options: A. ~ 12.5 days B. ~ 33.5 days C. ~ 7.5 days D. ~ 37.5 days

Correct Answer: B

I* Model output before training */

Explanation: 1. The transit impact parameter (b) is 0.2, which means the second planet can transit the star. 2. The
orbital period of the first planet is 3 days. Using Kepler’s third law, 7% o R>, where T is the orbital period and R is
the semi-major axis of the orbit. 3. The radius of the second planet is 2.5 times that of Earth, but this does not affect
the orbital period calculation for the second planet. 4. To find the maximum orbital period of the second planet that will
exhibit both transit and occultation, we use the relationship T2 /T 2 = RS / R3. GivenT) =3 days, R2 = 2.5R1, and R;
is the radius of the first planet’s orbit. 5. Plugging in the values, we get T22/32 = (2.5)3/13. 6. Solving for T5, we get
To = 3 x (2.5)%/% ~ 3 x 3.95 ~ 11.85 days, which is closest to 12.5 days.

Answer: A

/* Model output after training */

To determine the maximum orbital period of the second planet that will exhibit both transit and occultation
events, we need to consider the geometry and dynamics of the system. The transit impact parameter (b) is given as 0.2, which
means the orbit of the first planet is slightly inclined relative to the line of sight. For the second planet to exhibit both transit
and occultation, its orbit must be in a specific configuration relative to the first planet’s orbit. The key factor is the orbital
period ratio, which is related to the semi-major axes of the orbits. Given the first planet’s orbital period of 3 days, we can use
Kepler’s third law to find the relationship between the periods of the two planets. However, the exact calculation involves
complex orbital mechanics and the specific geometry of the system. Given the options, the most plausible answer based on
the provided information and the need for both transit and occultation is closest to 33.5 days. This value balances the need for
the second planet to have a significant enough period to allow for both events while fitting within the provided options.
Answer:

Table 6: Comparison of policy model before and after PPO training on a scientific reasoning problem.

/* Mathematical problem */
Jim and Martha are standing together at the corner of a rectangular field. Jim walks diagonally across the field. Martha gets to
the same location by walking along its length and width. The field is 300 feet wide and 400 feet long. How many feet less
than Martha does Jim walk?

/* Standard solution */
The diagonal of the field is v/3002 + 4002 = 500 feet long so Jim walks 500 feet. Two adjacent sides of the field are
300 + 400 = 700 feet long so Martha walks 700 feet. Jim walks 700 — 500 = feet less than Martha.

/* Model output before training */

Explanation: 1. Calculate the diagonal distance Jim walks using the Pythagorean theorem: /3002 + 4002. 2. Calculate the
total distance Martha walks, which is the sum of the length and width: 300 4 400. 3. Subtract the distance Jim walks from
the distance Martha walks to find the difference.

Answer:

/* Model output after training */

Let’s first calculate the distance Jim walks. Since Jim walks diagonally across the rectangular field, we can
use the Pythagorean theorem to find the length of the diagonal. The width and length of the field are the two legs of a right
triangle, so the diagonal d is given by:

d = /3002 + 4002 = /90000 + 160000 = /250000 = 500 feet
Next, we calculate the distance Martha walks. Since Martha walks along the length and width of the field, she walks:
300 4 400 = 700 feet
The difference in the distances walked by Martha and Jim is:
700 — 500 = 200 feet

Therefore, Jim walks 200 feet less than Martha.
Answer:

Table 7: Comparison of policy model before and after PPO training on a mathematical reasoning problem.
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Figure 6: The response length curve of the reward model during PPO training.

/* Logical reasoning problem */

Please determine whether the conclusion is true, false, or uncertain based on these premises.
Premises:

. All employees who schedule a meeting with their customers will go to the company building today.
. Everyone who has lunch in the company building schedules meetings with their customers.
. Employees have lunch either in the company building or at home.

. If an employee has lunch at home, they are working remotely from home.

. All employees who are in other countries work remotely from home.

. No managers work remotely from home.

. James will appear in the company today if and only if he is a manager.

Conclusion: James has lunch in the company.

Expected Answer: Uncertain

NN AW~

/* Model output before training */
Answer: False

/* Model output after training */

Explanation: Let’s analyze the premises step by step: 1. All employees who schedule a meeting with their customers will go
to the company building today. 2. Everyone who has lunch in the company building schedules meetings with their customers.
3. Employees have lunch either in the company building or at home. 4. If an employee has lunch at home, they are working
remotely from home. 5. All employees who are in other countries work remotely from home. 6. No managers work remotely
from home. 7. James will appear in the company today if and only if he is a manager.

From these premises, we can deduce the following: - If James is a manager, he will appear in the company today. - Since no
managers work remotely from home, James cannot be working remotely from home. - Therefore, James must have lunch in
the company building to appear in the company today. - If James has lunch in the company building, he schedules meetings
with his customers. - If he schedules meetings with his customers, he will go to the company building today.

Given the conclusion that "James has lunch in the company," we need to check if this is necessarily true based on the premises.
The premises do not provide enough information to definitively conclude that James must have lunch in the company. It is
possible that James could be in a different country and working remotely, or he could be a non-manager who does not need to
schedule meetings. Therefore, the conclusion is not necessarily true based on the given premises.

Answer: Uncertain

Table 8: Comparison of policy model before and after PPO training on a logical reasoning problem.
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