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Abstract

While Direct Preference Optimization (DPO)
eliminates complex reward modeling in align-
ing large language models (LLMs) with human
preferences, its online variant faces significant
efficiency bottlenecks due to costly real-time
preference sampling and the reward model an-
notation. We propose a novel framework that
bridges offline-to-online alignment by system-
atically transforming static datasets into dynam-
ically adaptive equivalents, without the need
for an explicit reward model. Our approach
employs paraphrasing techniques to preserve
response correctness while aligning data distri-
butions with model-generated outputs, circum-
venting the need for resource-intensive online
interactions. Experiments on mathematical rea-
soning and conversational tasks demonstrate
that our method matches or exceeds the perfor-
mance of a fully online DPO. This work estab-
lishes a computationally sustainable paradigm
for LLM alignment, particularly benefiting sce-
narios requiring iterative preference updates
and domain adaptation.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in many natural language
processing tasks (OpenAI, 2024; Vaswani et al.,
2017). During the training of LLMs, reinforcement
learning from human feedback (RLHF) (Christiano
et al., 2017; Stiennon et al., 2020; Ouyang et al.,
2022; Bai et al., 2022; Stiennon et al., 2022) has
been widely adopted to refine model behaviors
based on human evaluations.

Beyond the traditional RL Methods such as
Proximal Policy Optimization (PPO) (Schulman
et al., 2017), Direct Preference Optimization
(DPO) (Rafailov et al., 2023a) has recently
emerged as an alternative approach that simplifies
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alignment by directly optimizing preference com-
parisons without explicitly constructing a reward
function. Despite its effectiveness, standard DPO
methods are applied to static datasets, limiting their
adaptability to evolving user preferences and new
task distributions (Song et al., 2024; Dong et al.,
2024). To address this limitation, online DPO
(Guo et al., 2024) extends the principles of DPO
to an interactive setting, dynamically collecting
and using preference data during training. This
iterative approach enables adaptive model updates
and has been shown to outperform offline methods.
However, online data collection introduces
significant efficiency challenges, as sampling
sufficient high-quality preference data can be
computationally expensive and time-consuming
(Guo et al., 2024), and a large quantity of work
has been working on reducing the cost of online
sampling (Stiennon et al., 2022; Schulman et al.,
2018; Nikolenko, 2019; Furlanello et al., 2016).

To address the efficiency problem of online DPO,
we propose a novel approach, Dynamic Data Trans-
formation (DDT), for transforming offline datasets
into online-equivalent datasets, mitigating the in-
efficiencies of online data collection while pre-
serving the benefits of adaptive learning, without
needing a reward model to annotate the gener-
ated answers. Our method systematically enhances
offline datasets by leveraging paraphrasing tech-
niques that maintain response correctness while
improving alignment with model-generated dis-
tributions. We validate our approach through ex-
periments on mathematical problem-solving tasks,
where deterministic evaluation allows for precise
accuracy measurements, as well as on more diverse
and subjective chat-based tasks. Our results demon-
strate that our method achieves comparable, and
in some cases, superior, performance to fully on-
line DPO while significantly reducing the computa-
tional burden. Besides, by utilizing the information
in the offline dataset, our method does not need
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a reward model for annotating the generated an-
swers, thus getting rid of the reliance on the reward
model and saving annotation time. By bridging
the gap between offline and online preference op-
timization, our work contributes to more efficient
and scalable alignment strategies for LLMs, paving
the way for improved real-world applicability in
domains requiring precise and adaptive responses.
2 Preliminary
Direct Preference Optimization. DPO is a fine-
tuning method designed to align LLMs with hu-
man preferences. Unlike traditional RLHF meth-
ods that require reward modeling and policy opti-
mization, DPO directly optimizes the model based
on preference comparisons (x, yw, yl) ∼ D, where
x represents the prompt and yw, yl represents the
winning and losing response, respectively. Given
a dataset of ranked responses, DPO updates the
model by maximizing the probability of preferred
responses over disfavored ones without explicitly
constructing a reward function. Specifically, the
DPO process is implemented through optimizing
the following objective:

LDPO(πθ;πref) = −E(x,yw,yl)∼D[
log σ

(
β log

πθ(yw | x)
πref(yw | x) − β log

πθ(yl | x)
πref(yl | x)

)]

(1)
where πref represents the original model and πθ rep-
resents the current model. Rafailov et al. (2023b)
proves that the traditional RL optimal solution is
contained in the DPO optimal solution. Further-
more, with unlimited data, it guarantees the same
optimal solution as the traditional RL methods.
Online DPO. Although simplicity and theoreti-
cal guarantees, with limited offline data, DPO does
not guarantee that optimizing to the DPO objective
gives the best solution to the KL-constrained re-
ward. To address this problem, Guo et al. (2024)
extends DPO to an iterative setting, where pref-
erence data are collected dynamically, enabling
adaptive model updates. Xiong et al. (2024) fur-
ther gives a theoretical explanation for why online
iterative RLHF is better than offline RLHF, which
further proves the crucial role of online iterative
data collection. However, the low sampling effi-
ciency inherent to online sampling limits the prac-
tical effectiveness of Online DPO.

3 Method
This section introduces our method pipeline and
generalizes to the iterative online DPO process.

Subsequently, we give our understanding for why
our method works.

3.1 Offline to Online Data Conversion

Many previous works have demonstrated the sig-
nificance of sampling the online data (Xiong et al.,
2024; Han et al., 2024), i.e, the data sampling from
πθ(y | x). Due to the sampling inefficiency of the
online dataset, it would be more efficient while still
effective if we could convert an offline dataset into
an online one. Here we provide our method that
can fulfill this requirement:

Initialization At the beginning we have an of-
fline dataset Doff and a reference policy πref that is
waiting for fine-tuning. The offline dataset Doff has
an accurate reward but lacks the online property,
which has a small log probability on πref.

Online Data Generation Given an offline
dataset Doff with reliable reward accuracy, we lever-
age the current model to paraphrase Doff into a new
dataset DDDT. This process yields a reformulated
dataset that more closely resembles an online set-
ting. Formally, this conversion can be expressed
as:
DDDT = {(x, y′w, y′l)

∣∣(x, yw, yl) ∼ Doff,

y′w ∼ πref(y|x, yw, z), y′l ∼ πref(y|x, yl, z)},
(2)

where z delineates the prompt that guides the lan-
guage model to paraphrasing the original response
in Doff while maintaining the main content.

Iterative Enhancement We can easily general-
ize our method to the iterative setting. As shown in
Figure 1, for each iteration, we use our current pol-
icy to paraphrase the given dataset and train with
DPO to get the policy for the next iteration.

Assumption Our method is based on a key ob-
servation that whether the response y to a given
prompt x looks like an online sample or not is
highly correlated with the speaking style of y.
However, the reward value for the response is
more correlated with the content than the speaking
style. With this observation, the sample (y′w, y

′
l) ∼

(πref(y|x, yw, z), πref(y|x, yl, z)), achieves online
property due to their preservation of πref’s speak-
ing style. Concurrently, they maintain the initial
reward, as the prompt z provides instructions that
ensure the content and quality remain intact. There-
fore, the altered dataset can be considered akin to
an online dataset by our online dataset metrics.
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Original Dataset Current Policy 𝜋𝑡 Paraphrased Dataset Improved Policy 𝜋𝑡+1
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𝑟} {𝑥𝑖 , 𝑦𝑖𝑡
𝑐 , 𝑦𝑖𝑡

𝑟 }

Figure 1: The pipeline of DDT. For a fixed offline dataset, we iteratively paraphrase the dataset with DDT and train
with DPO to get the policy for the next iteration. In particular, π1 represents the original policy.

GSM8k

Mistral-7B-Instruct-v0.2 Meta-Llama-3-8B-Instruct

Approach Original Offline Online DDT Original Offline Online DDT

ACC 41.32 48.74 50.87 51.48 74.37 73.01 79.30 79.00
AlpacaEval

Mistral-7B-Instruct-v0.2 Meta-Llama-3-8B-Instruct

Approach Original Offline Online DDT Original Offline Online DDT

LC 17.10 27.31 24.53 28.94 20.86 30.45 34.61 31.01
WR 14.70 27.88 27.31 30.96 21.18 30.65 35.31 33.51

Table 1: Results on MetaMathQA and Ultrafeedback using Dynamic Data Transformation (DDT) and custom
methods. For GSM8k, we use the model trained on MetaMathQA with different approaches to test the accuracy of
GSM8k. For AlpacaEval, we use the model trained on UltraFeedback with different approaches and test the win
rate and length-controlled win rate on the AlpacaEval benchmark.

4 Experiments
4.1 Math
First, we test our method on mathematics, which
is deterministic, well-defined, and easy to test. We
list our basic settings, and for more details, please
refer to Appendix B.1.

4.1.1 Experiment Setup
Base Model In our experiments we use Mistral-
7B-Instruct-v0.21 and Meta-Llama-3-8B-Instruct2

as our base model.

Original Dataset Our initial dataset is Meta-
MathQA3, which provides numerous questions and
the corresponding ground truth answers.

Evaluation Metrics We evaluated our model’s
performance based on the accuracy of the gsm8k4

dataset. We measured its answer accuracy using

1https://huggingface.co/mistralai/Mistral-7B-Instruct-
v0.2

2https://huggingface.co/meta-llama/Meta-Llama-3-8B-
Instruct

3https://huggingface.co/datasets/meta-
math/MetaMathQA

4https://huggingface.co/datasets/openai/gsm8k

our custom implementation for inference and an-
swer extraction. We set the temperature at 0.7 for
all evaluations.

Dataset Categories Our offline dataset Doff is a
DPO dataset whose winning response is directly
copied from the original MetaMathQA. In contrast,
the losing response is sampled from the current
model and judged by the answer-extracting func-
tion, ensuring that the losing response provides
an incorrect answer to the problem. We generate
answers in many rounds until half of the prompts
accept a generated wrong answer. The truly online
generated dataset Don is sampled directly from the
current model and judged by the answer extrac-
tion function. We also generate multiple rounds
until half of the prompts accept both a correct and a
wrong answer. Our online dataset DDDT is a current
model modified version of Doff, whose generation
process is described in Section 3.1.

4.1.2 Sampling Inefficiency for Online Data
To sample the online dataset for math tasks, the
sampled results should contain at least one correct
and one incorrect answer. We have the intuition
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that sampling two rounds gives at most half of the
dataset, since if the model gives the correct answer
with a probability at least 1

2 , then it would be dif-
ficult to sample a wrong answer, and vice versa.
Theoretically, in Appendix A we proved that the
sampling time in expectation is at least 3

2 times for
generating an online dataset than our method, with
equality taken only in perfect condition. Empiri-
cally, in Appendix B.1.3 we tested the sampling
time and found that our method is about 4 times
faster than the online sampling process for Mistral-
7B-Instruct-v0.2 and Meta-Llama-3-8B-Instruct,
and would be faster for a model with accuracy far-
ther away to 1

2 .

4.2 Chat
For detailed training process, please refer to Ap-
pendix B.2. Most of the details are the same as
Appendix B.1, except for the following mentioned
implementation:

4.2.1 Experimental Setup

Original Dataset Our initial dataset is UltraFeed-
back5, which contains 64k single-round question-
answering. In the experiment, we utilize the
dataset mistral-instruct-ultrafeedback6 and llama3-
ultrafeedback7 in the work Meng et al. (2024). In
detail, we use Meta-Llama-3-8B-Instruct-sampled,
llm-blender/PairRM8 annotated dataset llama3-
ultrafeedback9 as the offline dataset for Mistral-
7B-Instruct-v0.2 and the online dataset for Meta-
Llama-3-8B-Instruct, and vice versa.

Evaluation Metrics We use AlpacaEval (Dubois
et al., 2024) as our evaluation metric. We set the
temperature to 0.7 for Mistral-7B-Instruct-v0.2 and
0.9 for Meta-Llama-3-8B-Instruct when sampling
answers on the AlpacaEval dataset. We adopt Ope-
nAI’s GPT-4-1106-preview model as both the an-
notator and the evaluation baseline.

Dataset Categories The online and offline
datasets have been described in Section 4.1.1. The
DDT dataset is paraphrased directly from the of-
fline dataset since ultrafeedback contains paired
responses.

5https://huggingface.co/datasets/openbmb/UltraFeedback
6https://huggingface.co/datasets/princeton-nlp/mistral-

instruct-ultrafeedback
7https://huggingface.co/datasets/princeton-nlp/llama3-

ultrafeedback
8https://huggingface.co/llm-blender/PairRM
9https://huggingface.co/datasets/princeton-nlp/llama3-

ultrafeedback

Meta Math Multiple Round

Llama-3-8B Mistral-7B

Approach Online DDT Online DDT

Original 74.37 74.37 41.32 41.32
1st Round 79.30 79.00 50.87 51.48
2nd Round 81.80 79.76 54.44 52.92

Table 2: Accuracy (%) of multiple-round DDT on Meta-
MathQA. For the online method, we sample online data
and judge the correctness iteratively. For DDT, the orig-
inal dataset provides the correct answer, and we sample
the wrong answer for each round and then paraphrase
to get our modified dataset.

4.2.2 Sampling Inefficiency for Online Data
Sampling online chat data faces similar inefficiency
issues as in math tasks (see Section 4.1.2). How-
ever, in this case, response quality is more am-
biguous, and rewards are more continuous. To
ensure high-quality data with clear reward gaps,
each prompt is sampled multiple times. For exam-
ple, both llama3-ultrafeedback and mistral-instruct-
ultrafeedback are sampled five times before anno-
tation by the reward model; otherwise, the reward
gap between winning and losing responses would
be insufficient, degrading performance.

4.3 Results

Table 1 shows the performance on our DDT dataset
and the custom datasets. In both chat and math,
our method surpasses the original model and the
model trained on the offline dataset. On Mistral-
7B-Instruct-v0.2, our method even surpasses the
online method in both math and chat, which may
be due to the high quality of the offline dataset
sampled from Meta-Llama-3-8B-Instruct. Table 2
shows the results for multiple round experiments,
as described in Figure 1. Our method provides a
straightforward and reliable training pipeline, with
steady improvements in model performance. For
detailed experiment results and description please
refer to Appendix B.3.

5 Conclusion

In this work, we introduced an approach to enhance
offline datasets for DPO, transforming them into
online-equivalent datasets that retain the benefits of
adaptive learning while mitigating the reliance on a
reward model. Through experiments on both math-
ematical problem-solving and chat-based tasks, we
demonstrated that our method enhances the per-
formance on offline datasets and achieves perfor-
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mance comparable to online DPO while signifi-
cantly reducing computational costs. By bridging
the gap between offline and online preference opti-
mization, our approach provides a convenient align-
ment strategy for large language models, improving
their adaptability and real-world applicability.

6 Limitations

There may exist algorithms or techniques for trans-
forming the offline dataset into an online dataset
within the DPO setting. In this study, we primar-
ily utilize the original models to paraphrase the
datasets. We leave the exploration of more ad-
vanced methods to future research.
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A Sampling Time in Calculation for Online Datasets

In this section, we provide two remarks on the sampling time for online datasets on math problems. These
two remarks proved that our method enhances the sampling efficiency for at least 3

2 times in theory, and
the acceleration would be more obvious in practice due to the strict condition of equality in the remark.

A.1 Sampling Time

Remark A.1. Assume that we construct the online dataset by multi-round sampling. For each round,
we only sample the prompts that lack either a correct or a wrong answer. We define sampling time as
the number of prompts the current model receives. If we want the expectation of the length of the final
generated dataset to be at least f(f ≤ 1) fraction of the original dataset, then the total sampling time
would be at least (1 + 2f)N in expectation, where N represents the total number of prompts in the
original dataset. The equality is taken only when the accuracy on all prompts equals 1

2 .

Proof. Suppose the remaining number after s rounds is Rs, then the sampling time for the s+ 1-th round
would be Rs. Assume after S rounds, the expectation of the length of the generated dataset is at least f
fraction of the original dataset, i.e. E[RS ] ≤ (1− f)N . We also assume that the correct probability on the

i-th prompt is pi. The expectation of the sampling time would be T = E[N +
S−1∑
s=1

Rs] = N +
S−1∑
s=1

E[Rs].

Now we calculate the expression of E[Rs]. Let Isi denote a random variable that satisfies Isi = 1 iff
after s rounds the i-th prompt lacks either a correct answer or an incorrect answer. Thus we would obtain:

E[Rs] =

N∑

j=1

E[Isj ] =
N∑

j=1

P[Isj = 1] =

N∑

j=1

(pj
s + (1− pj)

s) (3)

By summing over s we would obtain the expression of T :

T = N +

S−1∑

s=1

N∑

j=1

(pj
s + (1− pj)

s)

= N +
N∑

j=1

S−1∑

s=1

(pj
s + (1− pj)

s)

= N +
N∑

j=1

(
pj − pj

S

1− pj
+

1− pj − (1− pj)
S

pj
)

= N +
N∑

j=1

(
1− pj

S

1− pj
+

1− (1− pj)
S

pj
− 2)

=
N∑

j=1

(
1− pj

S

1− pj
+

1− (1− pj)
S

pj
)−N

≥
N∑

j=1

2((1− pj
S) + (1− (1− pj)

S))−N

= 3N − 2
N∑

j=1

(pj
S + (1− pj)

S)

= 3N − 2E[RS ]

≥ 3N − 2(1− f)N

= (1 + 2f)N

(4)

In the proof we utilized an inequality:
1− pj

S

1− pj
+

1− (1− pj)
S

pj
≥ 2((1− pj

S) + (1− (1− pj)
S)) (5)
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This is because:
1− pj

S

1− pj
+

1− (1− pj)
S

pj
− 2((1− pj

S) + (1− (1− pj)
S))

=
1− pj

S

1− pj
+

1− (1− pj)
S

pj
− (2(1− pj)

1− pj
S

1− pj
+ 2pj

1− (1− pj)
S

pj
)

= (2pj − 1)
1− pj

S

1− pj
+ (1− 2pj)

1− (1− pj)
S

pj

= (2pj − 1)(
1− pj

S

1− pj
− 1− (1− pj)

S

pj
)

= (2pj − 1)(
S−1∑

i=0

(pj
i − (1− pj)

i))

=
S−1∑

i=0

(2pj − 1)(pj
i − (1− pj)

i)

≥ 0

(6)

The last step is because (2pj − 1)(pj
i − (1− pj)

i) ≥ 0, which can be verified either by expanding the
expression pj

i− (1−pj)
i or by discussing whether pj > 1

2 . From the above proof we can see that equality
is possible only when pj =

1
2 , ∀j ∈ [N ].

From the above remark, we can see that the average sample time per data pair (a data pair contains a
winning response and a losing response) would be at least (1+2f)N

fN = 2 + 1
f ≥ 3. While DDT only needs

to sample twice per data pair, the average acceleration rate per data point in expectation would be at least
3
2 .

A.2 Sampling Rounds

Remark A.2. We use the same sampling method as described in Remark A.1. Assume the total accuracy

on the dataset of the model to be p, i.e.
N∑
i=1

pi = pN , where pi represents the accuracy of the model on the

i-th prompt, and N represents the total number of the dataset. If we want the expectation of the length of
the final generated dataset to be at least f fraction of the original dataset, then the total sampling round S
would need to satisfy 1− pS − (1− p)S ≥ f . The equality is taken only when p1 = p2 = · · · = pN = p.

Proof. From the calculation in Appendix A.1, we obtain E[RS ] =
N∑
j=1

(pj
S + (1− pj)

S). Since E[RS ] ≤

(1− f)N , with the help of power mean inequality we have:
(1− f)N ≥ E[RS ]

=

N∑

j=1

(pj
S + (1− pj)

S)

=
N∑

j=1

pj
S +

N∑

j=1

(1− pj)
S

≥ N




N∑
j=1

pj

N




S

+N




N∑
j=1

(1− pj)

N




S

= NpS +N(1− p)S

(7)

Thus we have pS + (1− p)S ≤ 1− f , where the equality is possible only when pj = p,∀j ∈ [N ].
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B Experiment Details

In this section, we provide the detailed implementation of our experiments. All experiments are conducted
using PyTorch on 8×A100 GPUs. Our implementation is based on the open-source alignment-handbook10

and the vLLM library (Kwon et al., 2023). Each experiment is executed once.

B.1 Math

This section describes the detailed training process on MetaMathQA with custom methods and our
method.

B.1.1 Dataset Sampling
Mistral-7B-Instruct-v0.2 and Meta-Llama-3-8B-Instruct share the same sampling parameters.

For the offline dataset, we first select a subset containing 50% of the MetaMathQA prompts at random.
We use a sampling temperature of 0.7, generating responses that are subsequently evaluated using our
answer-extraction function. The sampling process terminates when 50% of the problems in the selected
subset receive an incorrect answer from the current model and join them with the original answer from
the MetaMathQA dataset. The generating process guarantees that the final sampled dataset should contain
at least 25% elements in the original dataset, and each winning answer is from the original dataset, while
the losing answer is sampled from the current model.

For the online dataset, we adopt the same sampling temperature of 0.7 and evaluate responses with
the same answer-extraction function. As before, sampling continues until 25% of the problems in
MetaMathQA yield both a correct and an incorrect answer from the model.

For the DDT dataset, we use a sampling temperature of 0.1 and carefully designed prompts to paraphrase
the offline dataset. The winning and losing responses are generated using shared paraphrasing prompts,
ensuring that their paraphrased outputs maintain the same original answers and thus correspond to the
modified winning and losing responses.

B.1.2 Training
For Mistral-7B-Instruct-v0.2, we chose β = 0.3 and lr = 5e−7, while for Meta-Llama-3-8B-Instruct we
chose β = 0.7 and lr = 5e−7. The training hyperparameters are shared for the three different kinds of
datasets.

B.1.3 Sampling Time in Experiment
We test the real sampling time on 1000 prompts for the online setting. We set f = 1

2 , i.e. we want the
length of the final dataset to be at least half of the original dataset. The total sampling time and the
corresponding sampling round are shown in Table 3 below:

Meta Math Sampling Process

Round Meta-Llama-3-8B-Instruct Mistral-7B-Instruct-v0.2

Total Num Remain Num Total Num Remain Num

1st Round 987 987 987 987
2nd Round 987 740 987 734
3rd Round 740 630 734 612
4th Round 630 553 612 535
5th Round 553 492 535 481

Total Sampling Time 3897 3855

Table 3: Meta Math Sampling Process on Meta-Llama-3-8B-Instruct and Mistral-7B-Instruct-v0.2. The table shows
the total number of sampling answers and the remaining number of answers that do not satisfy the condition for
each round.

10https://github.com/huggingface/alignment-handbook
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Meta-Llama-3-8B-Instruct and Mistral-7B-Instruct-v0.2 has the overall accuracies of 74.37% and
41.32%, respectively. Both models undergo a total of five sampling rounds, with cumulative sampling
times of 3897 and 3855, respectively. The average sampling time per prompt is 7.87 for Meta-Llama-
3-8B-Instruct and 7.62 for Mistral-7B-Instruct-v0.2, both of which are substantially higher than that
of our method, which maintains a constant average sampling of exactly 2. Besides, the accuracy of
Mistral-7B-Instruct-v0.2 is closer to 1

2 than Meta-Llama-3-8B-Instruct, and its total sampling times are
fewer, which validates our calculation in Appendix A.1 that the equality is only possible when the accuracy
on all prompts equals 1

2 .

B.1.4 Answer Accuracy
The answer accuracy is the proportion of paraphrased responses that retain the original answer. Specifically,
we define the answer accuracy as:

Accw(DDDT) = E(x,y′w,y′l)∼DDDTI[A(y′w) = A(yw)] (8)

Accl(DDDT) = E(x,y′w,y′l)∼DDDTI[A(y′l) = A(yl)] (9)

Here, A denotes a regular-expression-based extraction function that retrieves the number following
a fixed template, while yw, yl are the original answers prior to paraphrasing. We test the answer
accuracy for both Meta-Llama-3-8B-Instruct and Mistral-7B-Instruct-v0.2 when paraphrasing the original
MetaMathQA dataset. The detailed results are shown in the following Table 4.

Reward Accuracy

Meta-Llama-3-8B-Instruct Mistral-7B-Instruct-v0.2

DDT Win 0.9057 0.7787
DDT Lose 0.8736 0.7541

Table 4: The answer accuracy for Meta-Llama-3-8B-Instruct and Mistral-7B-Instruct-v0.2 when paraphrasing the
MetaMathQA dataset.

From the above experiment, we can see that our prompt for math retains the original answer most of
the time, which corresponds to keeping the original reward from DPO’s perspective.

B.2 Chat

In this section, we describe the detailed training process on UltraFeedback with custom methods and our
method.

B.2.1 Dataset Sampling
The original datasets are directly downloaded from princeton-nlp11. For our method, we adopt the same
sampling temperature of 0.1 with our math setting.

B.2.2 Training
For Mistral-7B-Instruct-v0.2, we set lr = 5e−7, while for Meta-Llama-3-8B-Instruct we chose lr = 7e−7.
β are set to 0.01 for both models. The training hyperparameters are shared for the three different kinds of
datasets.

B.2.3 Reward Accuracy
We first define the reward accuracy of a dataset D:

AccR(D) = E(x,yw,yl)∼DI[r(x, yw) > r(x, yl)], (10)

11https://huggingface.co/princeton-nlp
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where I is the indicator function.
Then we test the reward accuracy on various datasets. In detail, we use ArmoRM-Llama3-8B-v0.112 as

a reward model and test the reward accuracy Equation (10) on various datasets. The results are shown in
the following Table 5:

Ultrafeedback Reward Accuracy

Meta-Llama-3-8B-Instruct Mistral-7B-Instruct-v0.2

Offline 65.8 66.6
Online 66.6 65.8
DDT 80.6 78.7

Table 5: Reward Accuracy on Meta-Llama-3-8B-Instruct and Mistral-7B-Instruct-v0.2. The offline, online, and
DDT datasets are described in Section 4.2.1. The reward accuracy is defined in Equation (10).

The results show that our method significantly improves reward accuracy, even when the model is
provided with only a winning or a losing response individually, without explicitly generating a pairwise
winning–losing comparison. This improvement may be attributed to the possibility that paraphrasing a
response reveals underlying preference-related features—for instance, it may clarify the content and better
expose the implicit intent or quality of the original response.

B.3 Multiple Round Experiment
In this section, we will talk about the multiple-round experiment for metamath and ultrafeedback datasets.

B.3.1 Meta Math
We ran a multiple-round experiment using our method and the custom online data generation method.
For the online method, we sample new data from our current model and judge the correctness, then run
DPO on the sampled dataset with the current model as the reference model. For our method DDT, we first
sample an incorrect answer with the current model to get a losing answer and combine it with the ground
truth answer in the dataset to get a paired response. This time we call this the offline dataset since the
winning answers are fixed offline responses, even though the losing answers are online-sampled. Then we
use our current model to paraphrase both to get the DPO dataset and train on it. This process is repeated
for three rounds. As shown in Table 2, our method can continuously improve performance while reducing
the total cost.

B.3.2 Ultrafeedback
For the ultrafeedback dataset, the online dataset is sampled from the current policy five times, and we
let a stronger reward model ArmoRM-Llama3-8B-v0.1 choose the best one and the worst one. For
the DDT setting, the only difference is that this time we fix the offline dataset as the original dataset
for the original model. For Meta-Llama-3-8B-Instruct, the offline dataset is the dataset sampled from
Mistral-7B-Instruct-v0.2, and vice versa. As shown in Table 6, although our method is not as good as the
online-sampled dataset, it still continuously enhance the performance while reducing the total cost.

B.4 Prompts
This section details the prompts employed in the training-stage paraphrasing and in answer sampling for
GSM8k accuracy testing.

B.4.1 Prompts for Math
Here we provide our prompts for DDT on the math task in Table 7.

B.4.2 Prompts for Chat
Here we provide our prompts for DDT on the conversation task in Table 8.

12https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1
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Meta Math Multiple Round Ultrafeedback Multiple Round

Meta-Llama-3-8B-Instruct Mistral-7B-Instruct-v0.2 Meta-Llama-3-8B-Instruct

Approach Online DDT Online DDT Online DDT

Original 74.37 74.37 41.32 41.32 20.86 20.86
1st Round 79.30 79.00 50.87 51.48 47.89 40.95
2nd Round 81.80 79.76 54.44 52.92 50.28 45.89

Table 6: Combined results of Meta Math and Ultrafeedback multiple rounds.

MetaMathQA Prompt

You are an AI whose job is to generate answers to the given math problems. You will be given a
problem and a reference answer, and you should generate your own answer with the same result and
logical reasoning but with your own speaking style. Conclude with ’The answer is: ’ followed by the
answer as a number.

Please provide the rewritten response in the following format:
<Rewritten Response>: <your rewritten response>

Here is the information you need:
<Prompt>: prompt
<Response>: response

Table 7: Prompt for both Llama-3-8B-Instruct and Mistral-7B-Instruct in paraphrasing answers for MetaMathQA.

B.4.3 Prompts for GSM8k
Here we provide our prompts for testing the accuracy on GSM8k for Meta-Llama-3-8B-Instruct in Table 9
and Mistral-7B-Instruct-v0.2 in Table 10. We use a regular expression for answer extraction. Specifically,
we find the number followed by "The answer is" in the response as our extracted answer. Due to the
weaker command following ability for Mistral-7B-Instruct-v0.2, we designed the prompt more carefully
and manually excluded the possible mistakes in the prompt.
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Ultrafeedback Prompt

I have a response for a given prompt, and I want you to rewrite the response while maintaining its
original quality, intent and meaning.

Please provide the rewritten response in the following format:
<Rewritten Response>: <your rewritten response>

Here is the information you need:
<Prompt>: prompt
<Response>: response

Table 8: Prompt for both Llama-3-8B-Instruct and Mistral-7B-Instruct in paraphrasing answers for Ultrafeedback.

GSM8k Prompt for Llama

Please answer the following question and conclude with ‘The answer is: ’ followed by the answer as a
number.

Table 9: Prompt for Meta-Llama-3-8B-Instruct in inferencing answers for GSM8k.

GSM8k Prompt for Mistral

Please answer the following question and conclude with ‘The answer is: ’ followed by the answer as
a number. Please first generate your reasonings, and then conclude with ‘The answer is: <number>’
where <number> is the answer as a single number. Please don’t put any other words after the answer.

Table 10: Prompt for Mistral-7B-Instruct-v0.2 in inferencing answers for GSM8k.

27098


