
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 26940–26953
November 4-9, 2025 ©2025 Association for Computational Linguistics

M-Wanda: Improving One-Shot Pruning for Multilingual LLMs

Rochelle Choenni1 and Ivan Titov1,2

University of Amsterdam1

University of Edinburgh2

r.m.v.k.choenni@uva.nl, ititov@inf.ed.ac.uk

Abstract

Multilingual LLM performance is often criti-
cally dependent on model size. With an eye on
efficiency, this has led to a surge in interest in
one-shot pruning methods that retain the ben-
efits of large-scale pretraining while shrinking
the model size. However, as pruning tends to
come with performance loss, it is important to
understand the trade-offs between multilingual-
ity and sparsification. In this work, we study
multilingual performance under different spar-
sity constraints and show that moderate ratios
already substantially harm performance. To
help bridge this gap, we propose M-Wanda, a
pruning method that models cross-lingual vari-
ation by incorporating language-aware activa-
tion statistics into its pruning criterion and dy-
namically adjusts layerwise sparsity based on
cross-lingual importance. We show that M-
Wanda consistently improves performance at
minimal additional costs. We are the first to
explicitly optimize pruning to retain multilin-
gual performance, and hope to inspire future
advances in multilingual pruning.1

1 Introduction

Large language models (LLMs) have demonstrated
strong multilingual capabilities, with their abil-
ity to process and generate text in numerous lan-
guages improving substantially as the model size
increases (He et al., 2024). This emergent mul-
tilingualism can largely be attributed to the vast
amount of multilingual data used for pretraining
and the increased model capacity that allows for
better generalization over linguistic patterns across
multiple languages. However, the steep increase
in model scale comes with substantial computa-
tional and environmental costs, making efficient
deployment in resource-constrained environments
challenging (Ogueji et al., 2022). To address these
challenges, model compression techniques, such as

1https://github.com/RochelleChoenni/M-Wanda.

pruning, quantization, and distillation, have been
widely explored to reduce model size while re-
taining performance (Zhu et al., 2024). However,
despite the effectiveness of such methods, their
evaluation focuses mainly on maintaining English
performance (Yang et al., 2024), with limited con-
sideration of their impact on multilingual perfor-
mance (Zeng et al., 2024; Kurz et al., 2024; Ogueji
et al., 2022). Given that multilingual performance
is crucial for equitable LLMs, ensuring that com-
pression does not disproportionately harm perfor-
mance in non-English languages is essential.

In this paper, we study the effect of sparsity on
the multilingual performance of six open-source
LLMs of varying sizes. For model compression,
we focus on a SOTA one-shot unstructured prun-
ing method– Wanda (Sun et al., 2023)– and evalu-
ate language modeling abilities and zero-shot task
performance at varying sparsity levels across 15
languages and six downstream tasks. Our results
show that Wanda, despite its strong performance
in English, causes substantial degradation in mul-
tilingual performance, particularly at sparsity lev-
els higher than 50% and in underrepresented lan-
guages. These findings highlight an important lim-
itation. As Wanda was developed to optimize for
global importance, we hypothesize that it fails to
account for cross-lingual variation in neuron impor-
tance, despite being exposed to multilingual cali-
bration data, which leads to the removal of weights
that are important for specific languages.

To help bridge this gap, we propose a novel mul-
tilingual pruning method, M-Wanda, which is a
multilingual extension of Wanda. M-Wanda im-
proves on Wanda by incorporating language-aware
input activation statistics to better inform prun-
ing decisions at minimal additional costs. More-
over, M-Wanda dynamically adjusts sparsity ra-
tios across layers based on cross-lingual correla-
tion scores, ensuring that layers that are important
for cross-lingual sharing are pruned less aggres-
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sively. Together, these techniques allow us to better
balance the contribution of shared and specialized
neurons to weight importance. To the best of our
knowledge, our work is the first to optimize pruning
for multilingual retention, and to explicitly model
cross-lingual activation variance and inter-language
correlation to guide pruning decisions and layer-
wise sparsity allocation.

We show that M-Wanda consistently reduces per-
plexity across all languages and that this translates
into performance improvements on all downstream
tasks. Importantly, we show that M-Wanda gener-
alizes well beyond the set of languages included
in the calibration data. In addition, we show that
the techniques introduced in M-Wanda can also be
integrated with RIA (Zhang et al., 2024), a more re-
cent pruning method, thus showcasing their general
usefulness in extending pruning to a multilingual
setting. Finally, our findings highlight the need to
evaluate pruning methods beyond English-centric
compression benchmarks (Yang et al., 2024) and
emphasize the importance of optimizing the prun-
ing strategy to preserve multilingual performance.
In doing so, we hope to contribute to the develop-
ment of more efficient LLMs that remain effective
in many languages.

2 Background and related work

2.1 Compression through pruning

Pruning reduces model size by removing unneces-
sary weights or neurons (LeCun et al., 1989) and
can be grouped into iterative and one-shot meth-
ods. Iterative methods (Frankle and Carbin, 2018;
Blalock et al., 2020) repeatedly prune a small per-
centage of weights, followed by retraining to re-
cover performance, until a target threshold is met.
While this does not require a predefined sparsity ra-
tio, the additional training cycles can be expensive.
One-shot methods, instead, remove a predefined
fraction of weights in a single pass after the model
is trained to convergence, and do not require retrain-
ing (Frantar and Alistarh, 2023; Sun et al., 2023).
It has gained popularity because of its simplicity
and ability to maintain competitive performance.

2.2 One-shot pruning methods

SparseGPT (Frantar and Alistarh, 2023) introduced
one-shot pruning by sequentially processing model
layers and solving a local quadratic optimization
problem to minimize reconstruction error under
sparsity constraints. Yet, this requires a weight

update after pruning and backward passes for gra-
dient computation. Sun et al. (2023) show that
SparseGPT can be simplified to a gradient-free vari-
ant that achieves competitive performance without
the need for parameter updates, i.e. Wanda.

Wanda method To determine the importance of
model weights, Sun et al. (2023) propose to incor-
porate the absolute weight value and the norm of
the input activations of the neurons into the pruning
criterion. Formally, let the input to a layer be de-
noted by X ∈ R(N×T )×Cin , where N is the batch
size and T the sequence length. The weight matrix
W ∈ RCout×Cin connects the input features to the
output units. For each weight element Wi,j , the
importance score is defined as:

Si,j = |Wi,j | · ∥Xj∥2 (1)

where ∥Xj∥2 denotes the ℓ2-norm of the j-th in-
put feature column across all N × T tokens. This
score reflects the contribution of each weight based
on both its magnitude and the aggregated strength
of the corresponding input feature. Note that, col-
lecting input activation statistics requires a set of
input samples which we refer to as calibration data.
Finally, a strong commonly used baseline is magni-
tude pruning (Han et al., 2015), in which only the
weight magnitude: Si,j = |Wi,j | is considered.

Layerwise sparsity allocation Sparsity alloca-
tion methods were developed to mitigate model
degradation by enforcing different sparsity ratios
across layers, and have been shown to improve
performance (Li et al., 2024; Huang et al., 2025).
Rather than pruning uniformly, such methods esti-
mate how much to prune based on the layers’ sen-
sitivity or redundancy. Concretely, given a global
sparsity ratio R, the goal is to derive a set of target
layerwise sparsity ratios [r0, r1, .., rL] such that:
1

L+1

∑L
n=0 rn = R.

One such method is Outlier Weighted Layerwise
sparsity (OWL) (Yin et al., 2024), which uses per-
layer outlier counts (i.e. activations that exceed
M times the mean) as global importance scores
C = [c0, c1, .. ,cL] for allocating sparsity. To
prevent extreme imbalances between layers, they
introduce a hyperparameter γ that restricts each
ratio to fall within a small interval around the global
sparsity rate, specifically rn ∈ [R−γ,R+γ], while
maintaining a mean sparsity ratio of R across all
layers. To achieve this, the raw importance scores
C are rescaled to the range [0, 2λ] and shifted so
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that the resulting values are centered around R.
Following the intuition that layers that are more
important should be pruned less, the sparsity ratios
are then defined as: rn = 1− cn.

2.3 Multilingual pruning

Ogueji et al. (2022) first studied the effect of
model pruning on multilingual performance. How-
ever, their scope was limited to iterative meth-
ods, smaller models, and a single task. More
recently, Zeng et al. (2024); Kurz et al. (2024)
studied multilingual performance of LLMs using
SparseGPT and Wanda. They both study how vary-
ing the composition of calibration data from differ-
ent languages affect performance, and show that
using a mixture of languages yields better results.
However, both studies are limited to modifying
the calibration data, without altering the pruning
method itself, and restricting analysis to compres-
sion at 50%. In this work, we show that 50%
sparsity already substantially harms multilingual
performance. Moreover, this sparsity ratio is en-
forced uniformly across model layers, despite sub-
stantial evidence that model layers play different
roles in language-specific and cross-lingual pro-
cessing (Tang et al., 2024; Kojima et al., 2024). We,
instead, study multilingual performance under dif-
ferent sparsity constraints and introduce M-Wanda,
a novel pruning method that builds on Wanda by
using multilingual calibration data, incorporating
language-aware scoring, and combining it with an
OWL-inspired dynamic sparsity allocation method.

3 M-Wanda method

While Zeng et al. (2024); Kurz et al. (2024) show
that using Wanda with multilingual calibration data
improves performance, Wanda was developed to
preserve weights that are globally important, and
by averaging input activations across languages,
we might suppress language-specific signals that
are essential for multilingual retention. Thus, we
enhance Wanda in three key ways: (1) We assign
layerwise sparsity based on the degree of cross-
lingual activation similarity, applying less aggres-
sive pruning to layers that are more important for
cross-lingual sharing. (2) We incorporate cross-
lingual activation variance into the pruning crite-
rion to encourage retention of specialized neurons
that might, for instance, support underrepresented
or typologically distinct languages. (3) We intro-
duce an activation probability term to discourage

retention of high-variance neurons that rarely acti-
vate, helping to filter out noisy or spurious features.
Together, these additions bias pruning toward pre-
serving both shared and consistently active spe-
cialized neurons, thereby improving multilingual
retention at minimal additional costs.

3.1 Correlation Weighted Layerwise (CWL)
sparsity

We introduce Correlation Weighted Layerwise
(CWL) sparsity to guide sparsity allocation deci-
sions across model layers. In contrast to OWL (Yin
et al., 2024), which scores layer importance based
on outlier counts, CWL uses Pearson correlation
coefficients to approximate activation similarity
both across and between languages to determine
importance. We hypothesize that layers that exhibit
high inter-language activation similarity are more
involved in cross-lingual sharing and better facili-
tate multilingual generalization. As such, we apply
less aggressive pruning to them. However, when
intra-language correlation scores are low, this sug-
gests instable or noisy representations. To correct
for this, we adjust the inter-language correlation
score using intra-language scores.

Concretely, we first compute Pearson correlation
scores between the mean input activation (aggre-
gated across tokens) for each language and sublayer
µ
(k)
ℓ of the attention or MLP block.2 To compute

the average inter-language correlation score for sub-
layer k and a set of languages L, we then take the
mean of all pairwise correlations:

Inter(k) =
2

|L|(|L| − 1)

∑

i<j

corr(µ(k)
ℓi

, µ
(k)
ℓj

) (2)

Moreover, we adjust inter-language scores using
intra-language scores, by assigning more impor-
tance when both are high, yielding:

c(k) = Inter(k) ·
∑

ℓ∈L
Intra(k)ℓ (3)

This score reflects how shared representations are
between languages and how stable they are within
languages. To obtain a single importance score for
each layer n: [c0, c1, .. cL], we take the average
over all sublayers. We then apply the same proce-
dure as OWL, described in Section 2.2, to ensure
that the mean sparsity is equal to the global ratio
R, and assign layers with more importance, lower

2Note that input activations are shared between query, key
and value, and between the MLP gate and up projection layers.
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ratios: rn = 1− cn. We find that setting λ to 0.04
generally works well across LLMs.

3.2 Cross-lingual activation variance

Recall from Eq 1 that Wanda incorporates both
weight importance and activation strength. We now
enhance the activation scores by storing the mean
of activation values per language µℓ and computing
the variance in neuron activation across languages:

Varinter =
1

|L|
∑

ℓ∈L
(µℓ − µ̄)2 (4)

By adding this inter-language variance score, we
give more importance to neurons whose input acti-
vations show highly variable responses across lan-
guages, meaning that they might be very important
to some specific languages.

Yet, the input activations within a language
also fluctuate between input samples. If the intra-
language variance is high, it introduces noise into
our pruning metric, making the inter-language vari-
ance less reliable. Therefore, we assess how much
neuron activation varies between languages relative
to how much it varies within individual languages:

V AR =
Varinter

1
|L|

∑L
ℓ=1 Varℓintra

(5)

This means that we assign higher scores to neurons
that exhibit high inter-language variance but low
intra-language variance.

AXj = ∥Xj∥2 + λ · V AR (6)

To balance the trade-off between language-
specificity and generalization, we add a scaling
term λ for which the optimal value is found through
a grid search. Also, note that before adding vari-
ance scores, we apply min-max normalization.

3.3 Activation probability

Finally, we correct the overall weight importance
scores based on the average activation probability
across languages. This is motivated by the idea
that high-variance neurons that are upweighted by
Eq. 6, but rarely activate, are noisy and should be
filtered out. To compute this activation probabil-
ity, we simply count how many times the input
activations are higher than some threshold value
ϵ. Given that recent LLMs rely on activation func-
tions that also allow for negative activation that can

contain meaningful information, we consider abso-
lute activation values.3 As such, we end up with
the following pruning metric:

Si,j = (|Wi,j | ·AXj ) · P (I(abs(Xj) > ϵ)) (7)

where I(·) is the indicator function.

4 Experiments

Calibration and test languages For calibration
and evaluation we use 15 languages: English, Ger-
man, Spanish, French, Italian, Portuguese, Hindi,
Russian, Korean, Japanese, Vietnamese, Chinese,
Indonesian, Turkish, Arabic. These languages be-
long to 8 different families, 11 sub-families and
cover 7 writing scripts.

Calibration data Following prior work, we use
128 random samples of 2048 tokens from the mul-
tilingual C4 (MC4) dataset for calibration (Raffel
et al., 2020). While recent studies show that the
data source affects pruning quality (Williams and
Aletras, 2024; Ji et al., 2024; Bandari et al., 2024),
we use MC4 to limit the scope of this work and
ensure comparability with existing literature. To
adhere to the 128 samples maximum, our calibra-
tion data includes 16 samples from English and 8
from all other test languages.

Models We study six open-source LLMs at
different model sizes: Llama3 (1B, 3B and
8B) (Grattafiori et al., 2024), Aya-23 (8B) (Dang
et al., 2024), OLMo-7B (Groeneveld et al., 2024)
and Bloomz-7b1 (Muennighoff et al., 2023).

Zero-shot performance We perform zero-shot
evaluation on six tasks that test the LLMs ability
on reasoning (Xstorycloze, Xcopa) (Ponti et al.,
2020), coreference resolution (Xwinograd) (Muen-
nighoff et al., 2023), reading comprehension (Lam-
bada) (Paperno et al., 2016), natural language un-
derstanding (XNLI) (Conneau et al., 2018), and
paraphrasing (PAWS-X) (Yang et al., 2019). For
consistent evaluation we employ the eleuther-AI
evaluation harness.4

Model perplexity We test general language mod-
eling abilities by measuring perplexity on datasets
different from the one used for calibration. Specifi-
cally, we evaluate perplexity on the entire Flores-
101 (dev+devtest) dataset which contains parallel

3Using absolute values was found to work better than posi-
tive ones, showing that negative signals carry information.

4https://github.com/EleutherAI/
lm-evaluation-harness
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Figure 1: The effect of Wanda pruning under different sparsity ratios on the perplexity of each calibration language.
Colored areas denote the increase in perplexity when increasing the sparsity ratio. Note that the perplexity scores
are on different scales across models.
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Figure 2: Performance in accuracy (%) given different sparsity ratios used on different sizes of Llama3. Zero-shot
results are averaged across test languages per downstream task.

data from Wikipedia. To test whether our results
are robust across different domains, we also eval-
uate on the XL-Sum dataset that contains high-
quality articles from BBC (Hasan et al., 2021).

5 Results

In Section 5.1, we first show how pruning under
different sparsity constraints affects multilingual
LLMs of different sizes. Motivated by these find-
ings, we show in Section 5.2 how our M-Wanda
method can help mitigate some of the multilingual
performance loss induced by pruning.

5.1 Wanda’s impact on multilinguality

We prune our models using Wanda with sparsity
ratios between 35 and 60% at 5 percent intervals.
In Figure 1, we see that across all languages and
different sizes of Llama, the perplexity has already
substantially increased when going from 45 to 50%
sparsity (red area), especially in underrepresented
languages (typically not from the Indo-European
family). This sheds doubt on the common practice
of adopting the default sparsity ratio of 50% in
the multilingual setting (Zeng et al., 2024; Kurz
et al., 2024). Importantly, this same degradation

is not found in English when only using English
calibration data (see Appendix D), the setting used
in the original paper (Sun et al., 2023).

Similarly, a clear degradation is visible in all
downstream tasks when sparsity increases from 40
to 50%; see Figure 2. In fact, when studying how
larger models pruned to 50% of their original ca-
pacity compared to their smaller dense counterparts
(i.e. Llama 3B at 50% versus Llama 1B and Llama
8B at 50% versus Llama 3B), we see that they are
not able to outperform them despite still having a
larger capacity.

5.2 Improvements with M-Wanda
In Section 5.1, we show that Wanda with 50% spar-
sity leads to a substantial drop in multilingual per-
formance. This degradation highlights an area of
potential improvement for M-Wanda, and we hy-
pothesize that more optimally balancing the im-
portance between specialized and shared neurons
would allow us to better retain multilingual per-
formance. In Table 1, we show how M-Wanda is
able to reduce the average perplexity across lan-
guages for all models on the Flores dataset (see
Appendix A for the optimal hyperparameters se-
lected for each model and Appendix C for results
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Method Llama3-1B Llama3-3B Llama3-8B Aya-23-8B Bloomz-7b1 OLMo-7B

Magnitude 17605 1579 403 36.12 29.64 33.55
RIA∗ 71.75 27.88 20.45 25.28 24.05 30.45
Wanda 67.51 26.42 19.63 24.34 24.71 23.23
M-Wanda 59.56 (12%↓) 24.52 (7%↓) 18.57 (5%↓) 23.87 (2%↓) 24.32 (2%↓) 21.54 (7%↓)

Table 1: Average perplexity on Flores across all calibration languages at a sparsity ratio of 50%. For M-Wanda, we
also report the relative percentage decrease compared to Wanda.∗Refer to Section 7 for an introduction to RIA.

Xcopa Xstory Xwino Lambada XNLI PAWS-X Avg.
Wanda 60.36 60.86 73.81 42.08 45.07 57.43 56.60

M-Wanda 61.16 61.49 74.54 44.68 46.51 58.23 57.77

Table 2: Average performance (%) on downstream tasks when using Wanda versus M-Wanda on Llama-8B.

on XL-Sum).5 Moreover, we find that this holds
across different model sizes. Importantly, while
lower perplexity does not always guarantee better
performance on downstream tasks, in Table 2 we
show that the improvements achieved by M-Wanda
are substantial enough to improve performance in
all six downstream tasks.

When taking a closer look at the effect of M-
Wanda on individual test languages in Figure 3, we
see that M-Wanda consistently reduces the perplex-
ity on all 15 languages for Llama-8B. Moreover,
we see that languages most typologically different
from English, i.e. Arabic, Turkish, Vietnamese,
Chinese, Korean and Japanese, obtain larger abso-
lute gains from M-Wanda than the Indo-European
languages. Similarly, when looking at downstream
task improvements, we find that M-Wanda tends
to consistently improve performance on all individ-
ual test languages, with a few exceptions (mostly
English), see Appendix F for full results.

5.2.1 Generalization to unseen languages
Previously, we used the same set of languages for
calibration and testing. We now test whether the
performance improvements also generalize beyond
our calibration languages. As such, we use 15
different languages for evaluation: Czech, Polish,
Ukranian, Bulgarian, Tamil, Marathi, Urdu, Ben-
gali, Kannada, Gujarati, Javanese, Thai, Swahili,
Zulu, and Persian. In Figure 4, we show that our
method consistently reduces perplexity across all
languages, despite them not being included in the
calibration set. Specifically, M-Wanda results in

5Perplexity from magnitude pruning is notably higher on
Llama. We find that performance is reasonable in English, yet
explodes on other languages, yielding high average scores.
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Figure 3: Perplexity scores per language from Llama-
8B pruned using Wanda versus M-Wanda.

a 6% decrease in average perplexity compared to
Wanda (18.98 versus 20.09), which is higher than
on the calibration languages itself. This is likely
because our unseen languages include many more
underrepresented languages, and our method seems
to book larger performance gains on those. Impor-
tantly, however, this suggests that M-Wanda more
generally helps to preserve language variance and
is not only adjusting to the language-specific pat-
terns of the calibration languages.

5.2.2 Effectiveness at different sparsity levels
While we already saw that M-Wanda improves per-
formance across different model sizes, we now also
test its effectiveness across different sparsity ratios.
In Figure 5, we plot the average perplexity scores
obtained with Wanda and M-Wanda at different
sparsity levels. We see that M-Wanda remains ef-
fective at higher ratios and that the average im-
provement of M-Wanda over Wanda increases sub-
stantially when applying more aggressive pruning.
At the extreme sparsity ratio of 70% we find that
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Figure 5: Average perplexity scores across languages as
an effect of higher sparsity ratios when applying Wanda
and M-Wanda to Llama-8B.

M-Wanda reduces average perplexity by as much
as 52% (see Appendix B for full results).

5.2.3 Robustness analysis
Sensitivity to calibration samples While we
limited the scope of this paper to randomly select-
ing calibration samples from the MC4 dataset, we
now also test the sensitivity of our method to the
calibration set. Specifically, we use 3 random seeds
to select calibration data and recompute average
perplexity using Wanda versus M-Wanda. We find
that across all three runs, M-Wanda outperforms
Wanda. On average Wanda obtains a perplexity of
19.37±0.27 and M-Wanda 18.63±0.22.

Sensitivity to calibration languages Finally, we
now study how selecting different subsets of lan-
guages from the full calibration set affects perfor-
mance. These subsets vary both in size, which
impacts the number of samples per language and,
consequently, the robustness of language-specific
signals, and in their typological composition, which
might influence how well calibration generalizes
across languages. To study this, we draw multi-
ple random subsets of languages for calibration.
Specifically, we each time sample 5 unique subsets
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Figure 6: Average M-Wanda perplexity on Llama-8B as
a function of the typological coverage of the calibration
languages. Subsets are colored based on their size m.

of size m uniformly at random from the set of all
languages L: S(i)

m ∼ Unif ({S ⊂ L : |S| = m}).
In Figure 6, we plot the average perplexity on the
full calibration set L as a function of the typolog-
ical diversity of the calibration languages in the
different language subsets of size m. These di-
versity scores are defined as the mean of pairwise
cosine similarity between their URIEL language
representations (Malaviya et al., 2017).6 In gen-
eral, we find that higher typological diversity leads
to better performance. However, we also observe
that a few language subsets can outperform the full
calibration set, suggesting that optimal calibration
may depend more on carefully selecting which lan-
guages are chosen than on increasing its size.

6 Ablation study

To understand where the performance improve-
ments of M-Wanda come from, we now perform an
ablation study, isolating the impact of individual en-
hancements that were added to the original Wanda
method. When we combine the original Wanda
metric with OWL instead of CWL allocation, we

6We use syntax_knn features from the Lang2Vec library.
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Model Wanda +OWL +CWL +CWL+Var +CWL+Act M-Wanda

1B 67.51 67.43 61.12 59.85 60.23 59.56
3B 26.42 26.02 24.56 24.58 24.59 24.52
8B 19.63 19.13 18.61 18.58 18.59 18.57

Table 3: Full M-Wanda ablation on the Llama3 models. We analyze the contributions of different components of M-
Wanda (Wanda+CWL +Var +Act) by evaluating variants that incorporate OWL, CWL, cross-lingual activation variance
(Var), activation probability (Act), and combinations thereof. We report average perplexity on the calibration
languages.

0 5 10 15 20 25 30

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

Llama-8B Aya-8B

Layer index

S
pa

rs
ity

 r
at

io

Figure 7: Layerwise sparsity allocation using CWL.

find that OWL7 reduces average perplexity to a
lesser extent, see Table 3. Importantly, we also find
that enhancing Wanda+OWL with cross-lingual vari-
ation and activation probability further improves
the performance to 19.09 on Llama-8B. This shows
that our proposed enhancements can more gener-
ally be paired with different allocation methods and
do not work exclusively in combination with CWL.

Moreover, we find that combining Wanda+CWL
with cross-lingual activation variance or activation
probability separately yields mixed results. How-
ever, incorporating both scores further reduces the
average perplexity across all models. As motivated
in Section 3, we hypothesize that this is because
the activation probability can act as a regularizer
when incorporating the variance scores.

Lastly, in Figure 7 we plot the sparsity ratio al-
located per layer for Llama-8B and Aya-8B using
CWL. In general, we see that the lower layers and
the last few top layers receive less aggressive prun-
ing. The fact that this results in better multilingual
performance can likely be connected to the fact that
these layers have been shown to be more involved
in cross-lingual processing (Zhao et al., 2024) (see
Appendix E for allocation results using OWL).

7We tested the optimal hyperparameters reported in the
original paper i.e., M ∈ [3, 5] and γ = 0.08, but found that
γ = 0.04, as used for CWL, works better and thus report
scores using the latter for a more fair comparison.

RIA M-RIA
Llama3.2-1B 71.75 66.22 (8%↓)
Llama3.2-3B 27.88 25.53 (8%↓)
Llama3.1-8B 20.45 19.03 (7%↓)
Aya-23-8B 25.28 24.82 (2%↓)
Bloomz-7b1 24.05 23.65 (2%↓)
OLMo-7B 30.45 26.21 (14%↓)

Table 4: Average perplexity scores on the calibration
languages for Flores using RIA (α=0.5) at 50% sparsity.

7 Extendability to other pruning methods

Relative Importance and Activations (RIA) is a
SOTA pruning method that has been shown to out-
perform Wanda (Zhang et al., 2024). It aims to
improve upon Wanda by re-evaluating the impor-
tance of each weight element Wij based on all
connections that originate from the input neuron i
or lead to the output neuron j:

RIAi,j = RIi,j · (∥Xj∥2)α

=

( |Wi,j |∑ |W∗j |
+

|Wi,j |∑ |Wi∗|

)
· (∥Xj∥2)α

(8)

where
∑ |W∗j | and

∑ |W∗i| sum over the absolute
values of the weights in input channel j and out-
put channel i respectively. Yet, while we find that
RIA outperforms Wanda on English at 50% spar-
sity (25.05 versus 25.16 on Llama-8B), the average
perplexity across all 15 calibration languages tends
to increase instead (20.45 versus 19.59 on Llama-
8B). This further highlights the need for multilin-
gual evaluation of pruning methods. Nonetheless,
to test the compatibility of our proposed method
with different pruning criterion, we now add cross-
lingual variance and activation probability to RIA
and apply CWL to obtain layerwise sparsity, yield-
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ing M-RIA:

Si,j = (RIi,j ·AXj ) · P (I(|Xj | > ϵ))

where AXj = (∥Xj∥2)α + λ · V AR
(9)

Note that we adopt α=0.5 which Zhang et al. (2024)
found to be optimal for various LLMs. In Table 4
we show how M-RIA is also able to consistently im-
prove over RIA, nicely demonstrating the general
advantage of our proposed method for adaptation
to a multilingual setting.

8 Conclusion

In this paper, we shed light on the limitations of
SOTA pruning methods in a multilingual setting
and introduce M-Wanda, a novel pruning method
that explicitly models cross-lingual variation in
weight importance. By incorporating language-
aware activation statistics and adaptive sparsity al-
location, M-Wanda substantially improves multilin-
gual retention over existing methods, particularly
for underrepresented languages and at high sparsity
ratios. Our results show that multilingual pruning
requires strategies that go beyond global impor-
tance scoring and highlight the benefits of consider-
ing the importance of specialized neurons. We hope
that these insights help advance the state of multi-
lingual pruning by underscoring the broader need
for multilingual evaluation and design in LLM spar-
sification, and inspire new directions to improve
multilingual pruning beyond the modification of
calibration data.

9 Limitations

Our improvements to the original Wanda method
come at minimal additional computational costs.
Specifically, we only compute additional statistics
from the activation inputs that would already need
to be collected for the original method. Moreover,
we still use 128 calibration samples in total across
all of our calibration languages. However, while
we show that input activation statistics can help
inform pruning decisions, unlike Wanda, M-Wanda
does require tuning of the hyperparameters. To
alleviate the need for manual tuning, future work
could investigate how hyperparameters could au-
tomatically be adjusted based on the scale of the
weights and activations.

In addition, we limited the scope of this project
to studying unstructured pruning, the setting for
which Wanda was originally developed. However,

Sun et al. (2023) show that Wanda can also be ex-
tended to structured N:M pruning, which requires
at most N out of every M contiguous weights to
be non-zero (e.g. 2:4 or 4:8) (Mishra et al., 2021).
While this usually results in lower performance,
it is more amenable to practical inference speed-
ups. Thus, future work should investigate how the
core ideas behind M-Wanda generalize to struc-
tured pruning settings.
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A Hyperparameter selection

λ ϵ γ CWL block
Llama3-1B 0.2 5e-5 0.04 attn
Llama3-3B 0.02 1e-7 0.04 attn
Llama3-8B 0.2 5e-5 0.04 attn
Aya-23-8B 0.2 1e-7 0.04 MLP
OLMo-7B 0.2 1e-7 0.04 MLP
Bloomz-7b1 6 0 0.01 attn

Table 5: Optimal hyperparameters found for M-Wanda after a small search λ ∈ [0.02, 0.2], ϵ ∈ [5e-5, 1e-7],
γ = [0.01, 0.04] and CWL block ∈ [attn,MLP] .

Llama3-1B λ = 0.2 λ = 0.02
ϵ = 5e-5 59.56 60.30
ϵ = 1e-7 59.56 60.73

Llama3-3B λ = 0.2 λ = 0.02
ϵ = 5e-5 24.67 24.59
ϵ = 1e-7 24.72 24.52

Llama3-8B λ = 0.2 λ = 0.02
ϵ = 5e-5 18.57 18.62
ϵ = 1e-7 18.57 18.61

Table 6: Gridsearch results of varying λ and ϵ on Llama models under M-Wanda. We report average perplexity on
calibration languages.

In Table 5, we report the optimal hyperparameters used when applying M-Wanda to each model. Note
that these are the hyperparameters used for both the results on the Flores dataset, reported in Table 1, and
the XL-Sum dataset, reported in Table 8. We find that, generally, λ = 0.2 and γ = 0.04 work well on
most LLMs. See Table 6 for the gridsearch results.

However, interestingly, the optimal hyperparameter value for λ on Bloomz-7b1 is on a completely
different scale, so we ran a different grid search for this model: λ ∈ [6, 12] . Moreover, we noticed that
input activations from Bloomz-7b1 are sometimes equal to zero, resulting in suboptimal performance when
applying the activation probabilities. Thus, while we found that this model benefits from cross-lingual
variance and CWL, activation probability should be disabled (ϵ = 0) for the improvements reported in the
main paper.

In addition, Wanda+OWL results reported in Table 3, required the tuning of the hyperparameter M .
We found that for Llama 1B and 3B M = 3 is optimal, yet for Llama 8B M = 5 yields better results.
Similarly, while γ = 0.08 was reported to generally work best with OWL, we found that γ = 0.04, as
used for CWL, performed better. As such, those are the values used for the results reported in the table.
All experiments were performed using a single NVIDIA A100 GPU.

B Effectiveness of M-Wanda at different sparsity ratios

Sparsity 30% 35% 40% 45% 50% 55% 60% 65% 70%

Wanda 12.12 12.62 13.52 15.31 19.63 32.27 73.02 174.70 1743.14
M-Wanda 12.12 12.60 13.43 15.02 18.57 28.46 58.96 159.48 835.63

Table 7: Average perplexity scores of Wanda and M-Wanda across different sparsity levels. For reference, the
average performance of the full model is 11.38. Results are reported on Llama-8B.
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C XL-Sum results

Wanda M-Wanda
Llama3.2-1B 40.30 36.88 (8% ↓)
Llama3.2-3B 16.40 15.61 (5% ↓)
Llama3.1-8B 12.18 11.57 (5% ↓)
Aya-23-8B 15.46 15.14 (2% ↓)
Bloomz-7b1 20.35 17.40 (14% ↓)
OLMo-7B 15.28 14.34 (6% ↓)

Table 8: Average perplexity scores on the XL-Sum validation set across 13/15 languages at a sparsity ratio of 50%.
We use 500 articles for each language. Note: German and Italian are not covered by this dataset.
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Figure 8: The effect of higher sparsity ratio’s on the perplexity across languages. The calibration data is fully in
English and perplexity is measured on the Flores dataset. Results are reported on the Llama3 models.
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Figure 9: Layerwise sparsity allocation by OWL.
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F Downstream task results per language

Lang. Wanda M-Wanda

XCOPA

id 58.8 60.4
it 62.8 63.2
tr 57.8 58.6
vi 59.6 61.0
zh 62.8 62.6

XStory

ar 52.9 53.8
en 72.0 71.8
es 65.0 65.2
hi 56.8 57.8
id 58.7 60.3
ru 61.7 61.9
zh 58.9 59.6

XWinograd

en 86.7 86.0
fr 69.9 69.9
pt 73.8 74.1
ru 66.7 68.9
zh 72.0 73.8

Lambada

de 34.4 36.3
en 69.2 71.9
es 19.9 22.8
fr 43.3 45.8
it 43.6 46.6

XNLI

ar 32.8 33.2
de 50.5 51.9
en 55.4 55.2
es 50.3 52.3
fr 51.1 52.3
hi 43.9 46.5
ru 43.8 47.3
tr 44.8 45.6
vi 45.1 45.3
zh 33.0 35.5

PAWS-X

de 63.3 64.7
en 65.6 65.7
es 58.4 61.1
fr 58.5 58.6
ja 56.1 53.2
ko 49.3 51.2
zh 50.8 53.1

Table 9: Per-language accuracy (%) for each downstream task using Wanda and M-Wanda on Llama-8B.
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