
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 26836–26845
November 4-9, 2025 ©2025 Association for Computational Linguistics

Studying the Role of Input-Neighbor Overlap in
Retrieval-Augmented Language Models Training Efficiency

Ehsan Doostmohammadi and Marco Kuhlmann
Linköping University, Sweden

ehsan.doostmohammadi@liu.se

Abstract

Retrieval-augmented language models have
demonstrated performance comparable to
much larger models while requiring fewer com-
putational resources. The effectiveness of these
models crucially depends on the overlap be-
tween query and retrieved context, but the opti-
mal degree of this overlap remains unexplored.
In this paper, we systematically investigate
how varying levels of query–context overlap
affect model performance during both train-
ing and inference. Our experiments reveal
that increased overlap initially has minimal ef-
fect, but substantially improves test-time per-
plexity and accelerates model learning above a
critical threshold. Building on these findings,
we demonstrate that deliberately increasing
overlap through synthetic context can enhance
data efficiency and reduce training time by ap-
proximately 40% without compromising per-
formance. We specifically generate synthetic
context through paraphrasing queries. We vali-
date our perplexity-based findings on question-
answering tasks, confirming that the benefits of
retrieval-augmented language modeling extend
to practical applications. Our results provide
empirical evidence of significant optimization
potential for retrieval mechanisms in language
model pretraining.

1 Introduction

Language models that are pretrained with retrieval
augmentation can match the performance of much
larger models trained in the conventional way,
while at the same time requiring significantly fewer
computational resources (Borgeaud et al., 2022;
Izacard et al., 2023). In retrieval-augmented pre-
training, the model can query and incorporate in-
formation from external sources, which makes it
easier to update its knowledge base and allows in-
formation to be added, removed, or modified in a
transparent and flexible way (Izacard et al., 2023;
Wang et al., 2023b; Shi et al., 2024b).

While research on retrieval-augmented language
models has shown that accessing external sources
reduces reliance on model parameters and leads to
lower perplexity, questions remain about the un-
derlying mechanisms driving these improvements.
Recent work has explored this issue with a focus
on the role of the retrieved context (Borgeaud et al.,
2022; Norlund et al., 2023; Doostmohammadi et al.,
2023). Findings suggest that the primary reason
for reduced perplexity is surface-level overlap, i.e.,
exact token matches, between the queries and the
retrieved context. Yet, the optimal degree of over-
lap is still unclear. Intuitively, while higher overlap
appears to provide a stronger signal for language
modeling, excessive similarity between queries and
retrieved context may lead to over-reliance on re-
trieval and reduce model generalization in down-
stream tasks. This raises a fundamental question:
what makes retrieved context effective during pre-
training? An answer to this question could open
the door to a well-founded methodology for de-
signing retrieval corpora to maximize their useful-
ness for practical applications and training retrieval-
augmented systems that rival the performance of
much larger conventional language models under
significantly tighter resource constraints—making
advanced capabilities more accessible, adaptable,
and sustainable.

In this paper, we take a significant step towards
a deeper understanding of the role of retrieved con-
text in augmented language modeling by systemati-
cally exploring how the degree of overlap between
queries and context affects model performance both
at training and at test time. To this end, we train
multiple models under controlled levels of over-
lap and evaluate them in terms of perplexity and
on downstream tasks. Building on our findings,
we further investigate to what extent we can de-
liberately accelerate learning and enhance model
performance in a low-resource scenario through
data synthesis.

26836

mailto:ehsan.doostmohammadi@liu.se


Contributions Our contributions are as follows:

• We investigate how varying degrees of overlap
between queries and retrieved context affect test-
time perplexity. Additionally, we analyze this
variation over training steps, offering insights
into how the impact of overlap depends on the
amount of training data.

• To validate our findings, we include downstream
performance results on a question answering task
(Kwiatkowski et al., 2019), ensuring that the ob-
served trends translate to real-world utility.

• We finally show how our findings can be used to
train retrieval-augmented language models more
data-efficiently than standard models. Specifi-
cally, we explore a method where we deliberately
increase query–context overlap using synthetic
contexts obtained through paraphrasing and find
that this leads to faster perplexity reduction with
less data.

2 Previous Work

Retrieval augmentation has been widely used in
open-domain question answering and has also been
applied to the pretraining and finetuning of lan-
guage models (Karpukhin et al., 2020; Yogatama
et al., 2021a; Borgeaud et al., 2022; Izacard et al.,
2023; Wang et al., 2023a; Shi et al., 2024a).

Early work, such as that of Guu et al. (2020),
explored retrieve-and-edit paradigms, while follow-
up studies focused on selecting relevant evidence
based on lexical overlap (Asai et al., 2020) or en-
hancing inference-time generation with retrieval
(Khandelwal et al., 2020; Yogatama et al., 2021b).
One line of work, exemplified by kNN-LM (Khan-
delwal et al., 2020), interpolates between model
predictions and retrieved contexts at generation
time. This approach was later extended in SPALM
(Yogatama et al., 2021b), which introduced a
learned gating mechanism that dynamically bal-
ances between both contributions.

Later efforts have shifted toward integrating re-
trieval earlier in the training pipeline. Borgeaud
et al. (2022) demonstrated that large-scale retrieval-
augmented pretraining can substantially reduce per-
plexity even with a frozen retriever. Izacard et al.
(2023) further showed that jointly training the re-
triever and language model can provide additional
performance gains, especially when retrieval is
over extremely large datasets (trillions of tokens).

Xu et al. (2023) found that approximate nearest
neighbors have a positive effect on generalization,
acting as a form of regularization.

Recent work has found that retrieval-augmented
pretraining leads language models to acquire less
world knowledge but improved syntactic profi-
ciency (Samuel et al., 2024). This shows that
such training shifts the role of the language model
toward interpreting factual information from re-
trieved contexts, which, in practice, offloads knowl-
edge from the model parameters and allows the
use of smaller model sizes. Although the majority
of published retrieval-augmented systems rely on
relatively small language models, they still demon-
strate significant improvements in perplexity, factu-
ality, and downstream accuracy when pretraining is
retrieval-enhanced (Borgeaud et al., 2022; Izacard
et al., 2023). These findings suggest that retrieval-
augmented pretraining is a promising direction for
scaling language models more efficiently than ap-
proaches based on parameters alone.

3 Background: RETRO Architecture

In this paper, we experiment with retrieval-
augmented language models based on the RETRO

architecture (Borgeaud et al., 2022). This architec-
ture is similar to GPT but is set up to predict the
next token conditioned on an augmented context
that, in addition to the previously generated tokens,
includes additional tokens obtained via the retrieval
mechanism. Technically, this is implemented via
an additional cross-attention mechanism between
the internal representations of the generated tokens
and the encoded context. This design allows the
model to incorporate information from the retrieval
database without requiring it to be explicitly in-
cluded in the generated token sequence.

Chunks The retrieval of additional context and
its incorporation into next-token prediction is done
at the level of chunks. A chunk is defined as a con-
tiguous sequence of tokens with a fixed size, which
is set as a hyperparameter. In both the original
RETRO paper (Borgeaud et al., 2022) and our own
work, the chunk size is m = 64.

Neighbors When the model has generated a new
chunk Cu, that chunk is used as a query to retrieve
k similar chunks from the retrieval database. In
this context, the chunk Cu is conventionally called
the input chunk, and the retrieved chunks are called
the neighbors of Cu. Each neighbor N i

u is addition-

26837



ally concatenated with the chunk F i
u that follows

N i
u in the retrieval dataset; that chunk is called

the continuation of the neighbor. The rationale of
the augmentation is that, since the neighbors are
retrieved based on their similarity to Cu, their con-
tinuations are likely to be similar to Cu+1, the next
chunk to be generated by the model, and should
therefore be able to inform the generation of that
chunk. For convenience, we generally use the term
neighbor to include both the neighbor proper and
its continuation.

Retrieval-augmented context In the follow-
ing, we write RET(Cu) to denote the retrieval-
augmented context that the model uses to generate
the tokens in the chunk Cu+1. The generation of
the first chunk C1 is not conditioned on any aug-
mented context (only on the usual language mod-
eling context), so RET(C0) = ∅. For u ≥ 1, the
retrieval-augmented context is

RET(Cu) ≜ ([N1
u , F

1
u ], . . . , [N

k
u , F

k
u ]) .

Note that in RETRO, the retrieval happens off-
line and does not involve any trainable parameters
within the model, unlike some other approaches
such as ATLAS (Izacard et al., 2023).

4 Experimental Framework

In this section, we describe the components of our
experimental framework that are shared across all
of our experiments.

4.1 RETRO-fitting

While we could train retrieval-augmented language
models from scratch, here we instead opt to train
models by continued pretraining of a GPT-style
base model with RETRO-style augmented retrieval.
We refer to this process as RETRO-fitting. With
the rise of strong open-source foundation models,
RETRO-fitting is more realistic for real-world ap-
plications than full pretraining. It also enables us
to conduct more experiments, as it significantly
reduces training time. Moreover, Borgeaud et al.
(2022) show that RETRO-fitted models can achieve
a perplexity and downstream performance that is
comparable to that achieved with full training.

Technically, RETRO-fitting entails expanding the
base model with two new types of layers:

1. an encoder for the retrieved context chunks
(neighbors and their continuations); and

2. cross-attention between the retrieved context
and the standard language modeling context.

These layers are randomly initialized and trained
alongside the rest of the GPT-initialized weights.

4.2 Models

For all our experiments, we RETRO-fit a 345M pa-
rameter GPT model pretrained by Nvidia (Shoeybi
et al., 2019). This model has 24 transformer layers,
each with a hidden size of 1,024 and 16 attention
heads, similar to the GPT-2 medium model (Rad-
ford et al., 2019). We chose to go with a relatively
small base model because we want to specifically
explore the potential of offloading information to
the retrieval mechanism rather than storing it in
the model parameters, which is a core motivation
behind retrieval-augmented pretraining. Indeed,
previous work on downstream question answering
tasks has shown that RETRO sees the more benefit
from retrieval the fewer parameters it has to store
information in (Wang et al., 2024). Also, small
models allow us to do more experiments given
a fixed computational budget, and RETRO shows
similar perplexity curves regardless of model size
(Borgeaud et al., 2022).

4.3 Retrieval

For retrieval, we use the training set of the Pile
(Gao et al., 2020), which comprises about 800 GB
of text of different genres. We embed this data
using mean pooling over representations from
MiniLM-L6-H384-uncased (Wang et al., 2020).
This model is one of the top performers at sentence
embedding according to measurements on Sen-
tence Transformers (Reimers and Gurevych, 2019).
To perform indexing and approximate search, we
use FAISS (Johnson et al., 2019) with the index
configuration OPQ32_64, IVF65536_HNSW8, PQ32
to enable efficient and scalable approximate near-
est neighbor search. This configuration first ap-
plies Optimized Product Quantization (OPQ) to ro-
tate and transform embeddings for better quantiza-
tion, followed by an Inverted File Index (IVF) with
65,536 clusters, where the coarse quantizer is accel-
erated using a Hierarchical Navigable Small World
(HNSW) graph. Finally, Product Quantization (PQ)
with 32 subquantizers is used to compress vectors
for fast and memory-efficient similarity search. We
always feed our models the top k = 2 retrieved
neighbors, both during training and testing.

26838



R
et

[o
ff

]
<

12
<

19
<

25
<

32
<

38
<

44
<

51
<

57
≤

64

Overlap Threshold

0

10

20

30

40

50
A

ve
ra

ge
O

ve
rl

ap
(b

ar
s)

6

7

8

9

10

11

P
er

pl
ex

it
y

(l
in

e)

Figure 1: Test perplexity (line) at training step 4,000
and average overlap in terms of number of tokens (bars)
for different overlap thresholds during training.

5 Impact of Overlap on Perplexity

As already mentioned, recent work on retrieval-
augmented language modeling shows the impor-
tance of surface-level overlap between the in-
put chunk and its neighbors in training RETRO

(Borgeaud et al., 2022; Norlund et al., 2023; Doost-
mohammadi et al., 2023). In our first set of ex-
periments, we want to dive deeper and see how
different degrees of overlap affect the training of a
RETRO model. To this end, we artificially bound
overlap at predefined thresholds.

5.1 Overlap Thresholds

By overlap, we mean the number of tokens that
are shared between the input chunk and one of its
neighbors (including continuations). We divide
the full range of possible overlap values (0–64)
into 10 equally-sized (up to rounding) intervals
[mini,maxi] (1 ≤ i ≤ 10) and train separate mod-
els Mi where we only use neighbors with up to
maxi tokens of overlap (e.g., < 25).

During training, for every query chunk, we ini-
tially retrieve 20 neighbors and then filter based
on the model-specific overlap threshold, prioritiz-
ing neighbors with higher overlap. This approach
ensures that we retain only naturally occurring
neighbors—a subset of the 20 originally retrieved.
If the number of neighbors with an overlap below
the model-specific threshold is less than k (the num-
ber of neighbors provided to the model), we substi-
tute the missing neighbors with zero vectors. We
also consider an extreme setting where we provide
no neighbors at all, i.e., we replace all neighbors
with zeros. We refer to this setting as RET[OFF].
Note that this differs from a GPT model in that it
still uses the additional RETRO parameters.

Note that, during training, while the neighbors
are filtered by overlap, the input chunks are the
same across all experiments. At test time, we al-
ways use the naturally retrieved neighbors, without
any overlap thresholding; the input chunks will
vary based on the previously generated tokens.

5.2 Experimental Setup

We train each overlap-thresholded model by
RETRO-fitting the GPT model described in Sec-
tion 4.2 on the Pile (Gao et al., 2020). We use the
entire training set for retrieval, but only train on
a maximum of 10,000 steps with a batch size of
128, which corresponds to approximately 54% of
the full data. In our training setup, we follow Wang
et al. (2024) by using the Adam optimizer (Kingma
and Ba, 2014) with β1 = 0.9, β2 = 0.98 and a
cosine learning rate decay schedule, starting with
a maximum learning rate of 2.5e-4, a minimum of
2.5e-5, and a linear warmup phase spanning the
first 5,000 samples.

5.3 Results and Analysis

Figure 1 shows the test perplexity and average over-
lap for each overlap threshold at training step 4,000.
We choose this step here because Borgeaud et al.
(2022) report that it is where RETRO converges;
we show the results for other training steps later.
Looking at the plot, we see that, as the threshold in-
creases, the perplexity remains roughly constant up
to < 32. However, at the next threshold level, we
see a clear drop, and perplexity decreases rapidly
as the overlap increases further. Overall, our results
show a strong negative correlation between the test
perplexity and the maximal overlap during training.

In Figure 2, we look at perplexity over training
steps. We see that after the threshold < 32, all
models can reach more or less the same low per-
plexity given enough time, but the number of steps
required for this varies significantly. The model
for threshold < 38 takes noticeably longer to con-
verge to a similar perplexity than the models with
higher maximal overlap, but the difference among
thresholds from < 51 to ≤ 64 is relatively small. In
summary, we find that, while a minimum amount
of overlap is needed to “activate” a RETRO model,
as also discussed in Borgeaud et al. (2022), increas-
ing the overlap further leads to faster convergence.
The average overlap for the activated models in this
experiment is about 30 tokens.

26839



20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Training Steps

5

7

9

11

P
er

p
le

x
it

y

Ret[off]

< 12 (6)

< 19 (19)

< 25 (25)

< 32 (26)

< 38 (28)

< 44 (30)

< 51 (31)

< 57 (32)

≤ 64 (34)

Figure 2: Test perplexity trends for models with different overlap thresholds over training steps. The colors, as well
as the line and dot styles, represent the threshold, with colors going from cold to warm as the threshold increases.
The legend shows the threshold value, followed by the average overlap for that experiment in parentheses.

6 Overlap and Downstream Tasks

While we have seen that increased overlap reduces
the data requirements for RETRO-fitting when per-
formance is measured in terms of perplexity, a sep-
arate question is whether this benefit carries over
to downstream tasks. To validate this, we apply
our overlap-thresholded models to a short-answer
generative question answering task.

6.1 Experimental Setup
To improve our RETRO-fitted models’ abilities
to follow instructions and generate coherent re-
sponses, we first instruction-tune them on a blend
of open-source datasets provided by Megatron
(2023), including Dolly (Conover et al., 2023) and
Unnatural Instructions (Honovich et al., 2023). We
fine-tune the models for 1,000 steps with a batch
size of 128. Following Wang et al. (2024), we
compute the loss only on the answer portion of
each question–answer pair and update the weights
with a learning rate of 5e-6 and a weight decay of
λ = 0.01. For optimization, we again use Adam
with β1 = 0.9 and β2 = 0.98.

While RETRO shares its training objective with
GPT models, it requires retrieval of nearest neigh-
bors, which many instruction tuning datasets lack.
To avoid using noisy neighbors from the pretrain-
ing corpus, we disable the RETRO context encoder
using a manually set gate that skips the cross-
attention when retrieval is unavailable. This freezes

the encoder parameters and updates only the de-
coder, simplifying tuning and enabling inference
both with and without retrieval.

Following the literature, we evaluate our mod-
els on the Natural Questions (Kwiatkowski et al.,
2019) dataset. We report exact match scores,
which means that apart from punctuation marks
and whitespace, the model response should exactly
match one of the gold answers. Each question in
the dataset comes with multiple contexts, which we
provide to the model as neighbors with k = 2. For
generation, we use greedy decoding.

6.2 Results and Analysis

Figure 3 shows the exact match scores of selected
models over training steps. To reduce the number
of experiments, we exclude certain models that
were not activated in our previous experiments, as
all such models had a similar (low) performance.

In general, the results on the downstream task
follow a similar pattern to our earlier results on
perplexity: unactivated models consistently un-
derperform compared to activated models, which
we attribute to their failure to make optimal use
of the provided neighbors. In contrast, activated
models benefit from additional training, showing
slightly improved exact match scores up to around
step 7,000, after which their performance plateaus.
Model < 38 initially lags behind—mirroring its per-
plexity trend—but eventually catches up with the

26840



4000 5000 6000 7000 8000 9000 10000

Training Steps

5

7

9

11

13

E
x
a
ct

M
a
tc

h

Ret[off]

< 32 (26)

< 38 (28)

< 44 (30)

< 51 (31)

< 57 (32)

≤ 64 (34)

Figure 3: Exact match percentages on the Natural Questions dataset over various training steps and overlap
thresholds. The legend shows each threshold value, followed by its corresponding average overlap for that threshold,
shown in parentheses.

other activated models. The unactivated models, on
the other hand, show a relatively steady (low) per-
formance over different training steps. In summary,
these results validate our earlier perplexity-based
findings, showing that perplexity can be used as a
predictor of downstream task performance.

7 A Low-Resource Scenario

As shown in Figure 2, activating a RETRO model
requires about 4,000 training steps at a batch size
of 128, which equals about half a million training
samples with highly overlapping neighbors. This
level of data demand, which comes in addition to
the data required to pretrain the base model, is often
impractical in real-world scenarios—particularly
for low-resource languages or specialized domains
where such large datasets are unavailable.

To address this limitation, in this section we ex-
plore an approach to activating RETRO models by
leveraging synthetic data. Building on our find-
ings regarding the importance of overlap, we pro-
pose a methodology that allows us to modulate the
strength of the retrieval signal using paraphrased
neighbors and thereby control the speed at which a
RETRO model gets activated.

7.1 Experimental Setup

Our experiments use the same settings and hy-
perparameters as described in Section 5.2 for
RETRO-fitting and Section 6.1 for instruction tun-

ing and evaluation, with one key difference: we ran-
domly replace one of four chunks in the retrieval-
augmented context (k = 2 neighbors and their con-
tinuations) with a paraphrase of the input chunk.

To get these paraphrases, we use the LLaMA 3
8B instruction-tuned model (AI@Meta, 2024) with
the prompt provided in Appendix A. The prompt
is designed to maintain enough surface-level simi-
larity between the input chunk and the paraphrase
to get a significant overlap, while at the same time
ensuring that the paraphrased chunks are not so
similar that the model becomes overly reliant on
the newly introduced artificial neighbors. We then
repeat the experiments from the previous sections
using the same thresholds as before, but now with
the synthesized neighbors added.

7.2 Results and Analysis

Impact on perplexity Figure 4 shows the test
perplexity of the overlap-thresholded models over
the training steps with paraphrased neighbors. Para-
phrasing, in practice, increases the average overlap
per threshold bin. For consistency, we still retain
the original threshold labels and report the new av-
erage overlaps as a sum of the old average threshold
and the increase introduced through paraphrasing.

Compared to the results before the interven-
tion (Figure 2), models that we previously clas-
sified as activated exhibit even faster activation
with synthetic neighbors added. Their convergence

26841



20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Training Steps

5

7

9

11

P
er

p
le

x
it

y

Ret[off]

< 12 (6 + 22)

< 19 (19 + 13)

< 25 (25 + 11)

< 32 (26 + 9)

< 38 (28 + 7)

< 44 (30 + 5)

< 51 (31 + 3)

< 57 (32 + 2)

≤ 64 (34 + 1)

Figure 4: Test perplexity trends of models with varying overlap thresholds over training steps. The legend indicates
the threshold value, followed by the average overlap for that threshold and the additional overlap introduced by
paraphrases in parentheses.

curves are also steeper and approach their mini-
mum around step 3,000, compared to step 5,000
in the previous setting. This improvement corre-
sponds to roughly 40% less data to reach optimal
performance. Model < 32, which was not previ-
ously activated, eventually reaches the same levels
of perplexity as the models with activated retrieval,
although it takes approximately 5,500 steps for
this to occur. The price we pay for the faster con-
vergence is higher overall perplexity: the lowest
perplexity achieved by the models is now 6.1, com-
pared to 5.6 previously. A plausible explanation
for this observation is that paraphrases introduce
noise and decrease data variability. The detrimental
effect on perplexity is more pronounced in models
where retrieval is not activated; these do not reach a
perplexity below 11, compared to 10 in the setting
without synthetic neighbors.

Looking at the average overlap statistics, we see
that values increase substantially at lower thresh-
olds, where the paraphrases add a lot of new over-
lap, while the effect on the higher-threshold models
is significantly smaller. At the same time, con-
vergence happens more quickly for these models
regardless, which suggests that factors beyond sim-
ple overlap contribute to activating the model’s
retrieval weights.

Impact on downstream tasks Finally, we turn
to the downstream results on the Natural Questions
dataset, reported in Table 1. We observe a similar

Thresholds Training Steps

4000 5000 6000 7000

< 25 5.5 5.4 4.9 5.3
< 32 6.1 9.8 10.8 11.1
< 38 11.3 10.1 11.2 11.4
< 44 10.3 11.3 11.5 11.0
≤ 64 9.8 11.4 10.5 10.7

Table 1: Exact match percentages for selected models
on the Natural Questions dataset over different training
steps. Threshold names and markers match those used
in previous plots for ease of comparison.

trend as in the setup without paraphrases (Figure 3).
To reduce the number of experiments, we focus on
the most relevant thresholds—those near the activa-
tion point and the extreme case of ≤ 64, to assess
whether the addition of paraphrases negatively im-
pacts the model under extreme conditions. The
performance approximately doubles once retrieval
is activated and remains relatively stable across
different training steps. Overall, while there are
some minor fluctuations, the models trained with
paraphrased neighbors perform on par with mod-
els trained without. This result demonstrates that,
while perplexity is affected negatively, modulating
the overlap signal through paraphrasing can lead to
faster activation of the augmented retrieval mecha-
nism without degrading downstream performance.

26842



8 Final Remarks and Discussions

In this paper, we used a pretrained model, which
likely contributed to more stable and robust results
and enabled us to conduct more extensive experi-
ments. Moreover, RETRO-fitting presents a prac-
tical and accessible method for users to integrate
retrieval mechanisms into language models, given
that these models are already pretrained and train-
ing from scratch is costly and resource-intensive.
However, it remains unclear whether these results
would extend to pretraining a RETRO model from
random initialization.

Our experiments were conducted using a single
model size. While RETRO tends to show greater
benefits on smaller models, since they are more con-
strained in their capacity and must rely more heav-
ily on retrieved neighbors, studying how model
size interacts with retrieval-based methods could
provide a more comprehensive understanding of
their scalability and efficiency.

In our experiments, we only use paraphrasing of
the input. However, in low-resource settings, this
approach may be limited, as high-quality paraphras-
ing models might not be available, or off-the-shelf
LLMs may struggle to produce fluent paraphrases
in the target language. Therefore, other methods,
such as back-translation (Sugiyama and Yoshinaga,
2019) or synonym substitution (Jungiewicz and
Smywiński-Pohl, 2019), remain to be explored to
determine whether they can similarly reduce per-
plexity without breaking the model.

Although we significantly increased the overlap
between neighbors and the input, we were unable
to break the model, suggesting that it has a sur-
prisingly high tolerance for redundancy or depen-
dence on neighboring context. However, it is plau-
sible that beyond a certain point, excessive overlap
could lead the model to become overly reliant on
its neighbors. This dependence may, in turn, cause
performance to degrade when such neighbors are
absent or differ at test time.

Our results indicate that unigram overlap be-
tween the input and its neighbors serves as a use-
ful heuristic and a simple proxy for understanding
what drives the model to attend to the neighbors.
However, as shown in the results in Section 7, it
is clearly not the full story. Other factors, such as
the stronger signal provided by synthetic data com-
pared to natural language (Edunov et al., 2018),
or variations in word order (Norlund et al., 2023),
may also influence the model’s behavior.

9 Conclusions and Future Work

Retrieval-augmented language models have been
shown to significantly reduce test-time perplexity,
despite their much smaller size compared to stan-
dard language models. Prior work has identified the
primary driver of this improvement to be the over-
lap between the input text and its retrieved neigh-
bors during both training and testing (Borgeaud
et al., 2022). Initially, this has no effect, but be-
yond a certain point, the overlap becomes strong
enough to tip the model towards using the retrieved
neighbors.

We extend this analysis to different time steps,
revealing that more overlap accelerates the model’s
learning and makes it more likely to attend to re-
trieval. This suggests that a strong overlap signal
between the neighbors and the input chunk is cru-
cial for efficient learning. Additionally, we run
experiments on a downstream question-answering
task to show that these effects extend beyond just
perplexity.

We further extend this by replacing one neighbor
with a paraphrase of the input chunk to ensure the
model always has a relevant, highly overlapping
neighbor. This approach significantly enhances the
model’s data efficiency, reducing training time by
approximately 40%. We then evaluate the models
on a question-answering task to demonstrate that
this type of training does not negatively impact
model performance. While it is conceivable that
further increasing overlap could eventually harm
downstream performance or perplexity, we have
not observed this in our experiments.

Future research could investigate pretraining a
RETRO model from scratch to better understand
the challenges and the role of overlap without the
stabilizing effects of prior training. Extending the
analysis to larger model sizes would also be valu-
able, as it could reveal how retrieval-based methods
scale and whether their benefits persist across ca-
pacities.

Alternative augmentation methods, such as back-
translation or synonym substitution, should be ex-
plored, especially in low-resource settings where
paraphrasing is less viable. Additionally, determin-
ing the threshold at which increased input-neighbor
overlap causes model failure remains an open ques-
tion. Finally, further analysis is needed to un-
cover other factors beyond overlap that influence a
model’s attention to its retrieved neighbors.

26843



Limitations

While our findings offer valuable insights into
the role of input-neighbor overlap in retrieval-
augmented language models, several limitations
remain. First, our experiments rely on a pretrained
language model, leaving open the question of how
overlap affects models trained from scratch, where
learning dynamics may differ. Second, we only
evaluated a single model size; larger models may
exhibit different behaviors with respect to retrieval
dependence and overlap sensitivity. Third, al-
though we increased overlap extensively without
observing model degradation, we did not determine
the point at which excessive overlap may begin to
harm performance. Finally, while overlap is a con-
venient and intuitive metric, it likely does not cap-
ture the full complexity of retrieval utility—factors
such as word order or semantic similarity in non-
overlapping tokens warrant further investigation.

Acknowledgments

This work was partially supported by the Wallen-
berg AI, Autonomous Systems and Software Pro-
gram (WASP) funded by the Knut and Alice Wal-
lenberg Foundation. The computations were en-
abled by the Berzelius resource provided by the
Knut and Alice Wallenberg Foundation at the Na-
tional Supercomputer Center.

References
AI@Meta. 2024. Llama 3 model card.

Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi,
Richard Socher, and Caiming Xiong. 2020. Learning
to retrieve reasoning paths over wikipedia graph for
question answering. In International Conference on
Learning Representations.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-
mann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste
Lespiau, Bogdan Damoc, Aidan Clark, et al. 2022.
Improving language models by retrieving from tril-
lions of tokens. In International conference on ma-
chine learning, pages 2206–2240. PMLR.

M. Conover, M. Hayes, A. Mathur, J. Xie, J. Wan,
S. Shah, A. Ghodsi, P. Wendell, M. Zaharia, and
R. Xin. 2023. Free dolly: Introducing the world’s
first truly open instruction-tuned llm. Technical re-
port, Databricks.

Ehsan Doostmohammadi, Tobias Norlund, Marco
Kuhlmann, and Richard Johansson. 2023. Surface-
based retrieval reduces perplexity of retrieval-
augmented language models. In Proceedings of the

61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
521–529, Toronto, Canada. Association for Compu-
tational Linguistics.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 489–500, Brussels, Belgium. Association for
Computational Linguistics.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: retrieval-
augmented language model pre-training. In Proceed-
ings of the 37th International Conference on Machine
Learning, ICML’20. JMLR.org.

Or Honovich, Thomas Scialom, Omer Levy, and Timo
Schick. 2023. Unnatural instructions: Tuning lan-
guage models with (almost) no human labor. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 14409–14428, Toronto, Canada.
Association for Computational Linguistics.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas
Hosseini, Fabio Petroni, Timo Schick, Jane Dwivedi-
Yu, Armand Joulin, Sebastian Riedel, and Edouard
Grave. 2023. Atlas: Few-shot learning with retrieval
augmented language models. Journal of Machine
Learning Research, 24(251):1–43.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Michał Jungiewicz and Aleksander Smywiński-Pohl.
2019. Towards textual data augmentation for neural
networks: synonyms and maximum loss. Computer
Science, 20.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2020. Generalization
through memorization: Nearest neighbor language
models. In International Conference on Learning
Representations.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

26844

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://openreview.net/forum?id=SJgVHkrYDH
https://openreview.net/forum?id=SJgVHkrYDH
https://openreview.net/forum?id=SJgVHkrYDH
https://databricks.com/
https://databricks.com/
https://doi.org/10.18653/v1/2023.acl-short.45
https://doi.org/10.18653/v1/2023.acl-short.45
https://doi.org/10.18653/v1/2023.acl-short.45
https://doi.org/10.18653/v1/D18-1045
https://doi.org/10.18653/v1/D18-1045
https://doi.org/10.18653/v1/2023.acl-long.806
https://doi.org/10.18653/v1/2023.acl-long.806
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH


Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452–466.

Megatron. 2023. Nvidia Megatron-LM:
tools/retro (commit 47e3bd3). https:
//github.com/NVIDIA/Megatron-LM/tree/
47e3bd3047aafbae361e1699d1d8785d678732ca/
tools/retro. Accessed: 2025-05-05.

Tobias Norlund, Ehsan Doostmohammadi, Richard Jo-
hansson, and Marco Kuhlmann. 2023. On the gener-
alization ability of retrieval-enhanced transformers.
In Findings of the Association for Computational Lin-
guistics: EACL 2023, pages 1485–1493, Dubrovnik,
Croatia. Association for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

David Samuel, Lucas Charpentier, and Sondre Wold.
2024. More room for language: Investigating the
effect of retrieval on language models. In Proceed-
ings of the 2024 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume 2:
Short Papers), pages 282–305, Mexico City, Mexico.
Association for Computational Linguistics.

Weijia Shi, Sewon Min, Maria Lomeli, Chunting Zhou,
Margaret Li, Xi Victoria Lin, Noah A. Smith, Luke
Zettlemoyer, Wen tau Yih, and Mike Lewis. 2024a.
In-context pretraining: Language modeling beyond
document boundaries. In The Twelfth International
Conference on Learning Representations.

Yucheng Shi, Qiaoyu Tan, Xuansheng Wu, Shaochen
Zhong, Kaixiong Zhou, and Ninghao Liu. 2024b.
Retrieval-enhanced knowledge editing in language
models for multi-hop question answering. In Pro-
ceedings of the 33rd ACM International Conference
on Information and Knowledge Management, CIKM
’24, page 2056–2066, New York, NY, USA. Associa-
tion for Computing Machinery.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053.

Amane Sugiyama and Naoki Yoshinaga. 2019. Data
augmentation using back-translation for context-
aware neural machine translation. In Proceedings of
the Fourth Workshop on Discourse in Machine Trans-
lation (DiscoMT 2019), pages 35–44, Hong Kong,
China. Association for Computational Linguistics.

Boxin Wang, Wei Ping, Lawrence McAfee, Peng Xu,
Bo Li, Mohammad Shoeybi, and Bryan Catanzaro.
2024. Instructretro: instruction tuning post retrieval-
augmented pretraining. In Proceedings of the 41st In-
ternational Conference on Machine Learning, pages
51255–51272.

Boxin Wang, Wei Ping, Peng Xu, Lawrence McAfee,
Zihan Liu, Mohammad Shoeybi, Yi Dong, Oleksii
Kuchaiev, Bo Li, Chaowei Xiao, Anima Anandku-
mar, and Bryan Catanzaro. 2023a. Shall we pretrain
autoregressive language models with retrieval? a
comprehensive study.

Cunxiang Wang, Xiaoze Liu, Yuanhao Yue, Xian-
gru Tang, Tianhang Zhang, Cheng Jiayang, Yunzhi
Yao, Wenyang Gao, Xuming Hu, Zehan Qi, et al.
2023b. Survey on factuality in large language mod-
els: Knowledge, retrieval and domain-specificity.
arXiv preprint arXiv:2310.07521.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers.

Frank F. Xu, Uri Alon, and Graham Neubig. 2023. Why
do nearest neighbor language models work? In Pro-
ceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org.

Dani Yogatama, Cyprien de Masson d’Autume, and
Lingpeng Kong. 2021a. Adaptive semiparametric
language models. Transactions of the Association for
Computational Linguistics, 9:362–373.

Dani Yogatama, Cyprien de Masson d’Autume, and
Lingpeng Kong. 2021b. Adaptive semiparametric
language models. Transactions of the Association for
Computational Linguistics, 9:362–373.

A Paraphrasing Prompt Template

We use the following prompt in our experiments
for paraphrasing text chunks:

Paraphrase the following text.
- Keep the meaning and the overall
structure the same, but you can change
the words.
- The paraphrase should have the same
length as the input.
- Strictly keep the order of the
information intact.
- DO NOT add and DO NOT remove any
information.
- Only generate a JSON
like {{"paraphrase":
THE_PARAPHRASED_TEXT_HERE}} and nothing
more:\n\n{chunk}

26845

https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://github.com/NVIDIA/Megatron-LM/tree/47e3bd3047aafbae361e1699d1d8785d678732ca/tools/retro
https://github.com/NVIDIA/Megatron-LM/tree/47e3bd3047aafbae361e1699d1d8785d678732ca/tools/retro
https://github.com/NVIDIA/Megatron-LM/tree/47e3bd3047aafbae361e1699d1d8785d678732ca/tools/retro
https://github.com/NVIDIA/Megatron-LM/tree/47e3bd3047aafbae361e1699d1d8785d678732ca/tools/retro
https://doi.org/10.18653/v1/2023.findings-eacl.109
https://doi.org/10.18653/v1/2023.findings-eacl.109
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://doi.org/10.18653/v1/2024.naacl-short.26
https://doi.org/10.18653/v1/2024.naacl-short.26
https://openreview.net/forum?id=LXVswInHOo
https://openreview.net/forum?id=LXVswInHOo
https://doi.org/10.1145/3627673.3679722
https://doi.org/10.1145/3627673.3679722
https://doi.org/10.18653/v1/D19-6504
https://doi.org/10.18653/v1/D19-6504
https://doi.org/10.18653/v1/D19-6504
http://arxiv.org/abs/2002.10957
http://arxiv.org/abs/2002.10957
http://arxiv.org/abs/2002.10957
https://doi.org/10.1162/tacl_a_00371
https://doi.org/10.1162/tacl_a_00371
https://doi.org/10.1162/tacl_a_00371
https://doi.org/10.1162/tacl_a_00371

