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Abstract

Vision-Language Models (VLMs) are known
to struggle with spatial reasoning and visual
alignment. To help overcome these limita-
tions, we introduce iVISPAR, an interactive
multimodal benchmark designed to evaluate
the spatial reasoning capabilities of VLMs act-
ing as agents. iVISPAR is based on a variant
of the sliding tile puzzle—a classic problem
that demands logical planning, spatial aware-
ness, and multi-step reasoning. The bench-
mark supports visual 3D, 2D, and text-based
input modalities, enabling comprehensive as-
sessments of VLMs’ planning and reasoning
skills. We evaluate a broad suite of state-of-the-
art open-source and closed-source VLMs, com-
paring their performance while also providing
optimal path solutions and a human baseline
to assess the task’s complexity and feasibility
for humans. Results indicate that while VLMs
perform better on 2D tasks compared to 3D
or text-based settings, they struggle with com-
plex spatial configurations and consistently fall
short of human performance, illustrating the
persistent challenge of visual alignment. This
underscores critical gaps in current VLM capa-
bilities, highlighting their limitations in achiev-
ing human-level cognition. Project website:
https://microcosm.ai/ivispar.

1 Introduction

The rapid advancement of Vision-Language Mod-
els (VLMs) has spurred significant debate regard-
ing their capacity to achieve human-level cogni-
tion. These models are increasingly deployed as
general reasoning systems capable of addressing
complex problems across diverse domains, with
applications extending into dynamic, real-world
scenarios such as physical agent-based tasks and
planning (Wang et al., 2024a; Xi et al., 2023; Zeng
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Figure 1: VLMs’ success rates of completed games
over 900 episodes across vision 3D, vision 2D, and text.

et al., 2023). However, critical gaps persist in their
spatial reasoning and visual alignment capabilities,
areas essential for understanding, interpreting, and
manipulating objects and their spatial relationships
(Kamath et al., 2023a; Bordes et al., 2024; Camp-
bell et al., 2024).

Spatial reasoning, a foundational aspect of
problem-solving, navigation, and interaction with
the physical world, requires models to bridge vi-
sion and cognition by interpreting visual informa-
tion to understand spatial arrangements. Tasks
such as mentally rotating shapes, predicting object
movement, and recognizing patterns exemplify the
importance of visual-spatial reasoning. Despite
these critical requirements, progress in VLMs has
been hampered by evaluation benchmarks that fail
to capture the dynamic and multi-step complexity
of real-world spatial reasoning. Existing bench-
marks predominantly rely on static, text- or image-
based setups that often oversimplify spatial con-
texts, focusing on 2D environments without inter-
activity or dynamic problem-solving capabilities.
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This limitation perpetuates a lack of meaningful
progress in visual-spatial reasoning within more
realistic 3D environments.

Contributions. To bridge this gap, we in-
troduce iVISPAR (Interactive Visual-Spatial Rea-
soning), a novel benchmark designed to system-
atically evaluate VLMs as agents in dynamic 3D
environments. iVISPAR is built around the sliding
tile puzzle, a well-established problem in devel-
opmental psychology that demands logical plan-
ning, spatial awareness, and multi-step problem-
solving. As part of our contributions, we introduce
the Sliding Geom Puzzle, a variant that replaces
traditional numbered tiles with geometric objects
distinguished by their color and shape, adding an
additional layer of visual reasoning.

Notably, iVISPAR is grounded in a well-studied,
formalized problem with access to optimal solu-
tions, ensuring a robust framework for evaluation.1

The benchmark supports scalable task complexity
by adjusting factors such as board size, the number
of tiles, and solution paths, ranging from simple
configurations to NP-complete challenges that sur-
pass baseline human performance.

Leveraging a prompt-based API, iVISPAR en-
ables VLMs to interact with a simulated environ-
ment through an iterative action-perception loop.
Experimentation results demonstrate that while
state-of-the-art VLMs can handle basic spatial rea-
soning tasks, they face significant difficulties with
more complex scenarios, especially in 3D envi-
ronments. Evaluating models in such 3D settings
is essential, as they more closely mirror the spa-
tial complexity of real-world environments. By
contrasting their performance against optimal so-
lutions and human baselines, we highlight the per-
sistent gap between current VLM capabilities and
human-level spatial reasoning.

Our contributions are threefold: (i) a novel in-
teractive benchmark that systematically evaluates
visual-spatial reasoning in VLMs; (ii) a scalable
task design rooted in a formalized problem with
optimal solutions; and (iii) empirical insights into
the strengths and limitations of VLMs across vary-
ing task complexities and modalities. iVISPAR
lays the foundation for advancing VLM research
toward overcoming critical gaps in reasoning and
alignment capabilities.

1The formalization is achieved through the adaptation of
the sequential generalized sliding-tile puzzle, as described in
the Appendix A.3. Optimal solutions are computed using the
A* algorithm, detailed in Section 4.2.

2 Related work

2.1 Spatial Reasoning Benchmarks

Physical understanding in interactive agents has
long been studied through simulation-based bench-
marks (Li et al., 2024b; Mecattaf et al., 2024; Jas-
sim et al., 2024; Wang et al., 2025; Hu et al., 2023;
Zhao et al., 2025; Guruprasad et al., 2024; Su et al.,
2024; Feng et al., 2025), although many of these
frameworks are not directly suited for VLM evalua-
tion due to limited language interfaces, low task fi-
delity, or demanding simulation requirements. Sev-
eral datasets targeting visual reasoning have been
applied to deep learning models (Johnson et al.,
2016; Li et al., 2023), but they do not support in-
teractive planning or action execution by language
agents. Other works have explored similar setups
using geometric object games, primarily in the con-
text of language game learning with deep learning
agents (Wang et al., 2016; Kuhnle and Copestake,
2017); related efforts such as Sliding Puzzles Gym
and PUZZLES (Oliveira et al., 2024; Estermann
et al., 2024) have been proposed as RL benchmarks,
but lack the language interface and fine-grained 3D
problem generation introduced in our setting.

2.2 Spatial Reasoning in LLMs

Even though Large Language Models (LLMs) are
primarily trained via next-token prediction on tex-
tual corpora, their capacity for spatial reasoning
have attracted recent attention (Abdou et al., 2021;
Patel and Pavlick, 2021). LLMs have also been ex-
plored as agents for spatial planning (Bohnet et al.,
2024), path planning (Aghzal et al., 2024), and spa-
tial path generation (Rizvi et al., 2024) in purely
textual or symbolic environments. Several recent
studies have examined whether LLMs implicitly
encode spatial structures and geometric reasoning,
ranging from digital twin generation via symbolic
rules (Wang et al., 2024c), to textual spatial ques-
tion answering in diverse settings (Mirzaee et al.,
2021), and evaluations across grid, ring, and tree
topologies (Yamada et al., 2024).

2.3 Spatial Reasoning in VLMs

Visual reasoning has emerged as a key focus in
evaluating VLMs, with growing interest in their
capacity to interpret spatial relationships and ob-
ject configurations (Zhang et al., 2024; Rajabi
and Kosecka, 2024b; Roberts and Roberts, 2024;
Campbell et al., 2025); concurrently, several stud-
ies have examined the degree to which these mod-
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Figure 2: Example of VLMs’ observations for a state (blue) and the goal (green) at each step during an episode of
the Sliding Geom Puzzle environment, on a 4×4 board with 10 geoms and an optimal path length of 2. Left to right,
each tested modality: vision 3D, vision 2D, and text-based representation. For more examples, see Appendix A.1.2

els align visual inputs with linguistic representa-
tions (Merullo et al., 2023; Ilharco et al., 2021).
Recent advancements in VLMs have prompted a
surge in evaluations, yet most studies primarily rely
on visual question-answering tests (Liu et al., 2023;
Rajabi and Kosecka, 2024a; Wang et al., 2024b;
Cheng et al., 2024; Tang et al., 2024; Duan et al.,
2025; Wang et al., 2023; Kamath et al., 2023b).
Beyond static evaluations, a growing body of work
explores the use of VLMs and foundation mod-
els as interactive agents within simulated environ-
ments, where they are tasked with manipulating
objects, navigating spaces, or executing spatial in-
structions in grounded contexts (Wu et al., 2024;
Li et al., 2024b; Mecattaf et al., 2024; Jassim et al.,
2024; Wang et al., 2025; Su et al., 2024). This
includes applications in embodied AI and robotics,
where VLMs are increasingly integrated into con-
trol loops to support visuomotor reasoning and spa-
tial decision-making (Hu et al., 2023; Zhao et al.,
2025; Guruprasad et al., 2024; Feng et al., 2025).

In this context, we present iVISPAR, an interac-
tive multimodal benchmark designed to evaluate
the spatial reasoning capabilities of VLMs acting
as agents.

3 The iVISPAR Benchmark

iVISPAR2 is an interactive, multimodal puzzle sim-
ulator that presents agents with a board state in one
of three input modalities: a 3D rendered image, a
2D top-down view, or a text-based representation
(see Figure 2). By rendering scenes in 3D space,
iVISPAR offers a more realistic depiction of spa-
tial environments compared to traditional 2D grid
visualizations and enables systematic comparisons
across modalities. Agents interact with the board
by issuing natural language commands through a

2All source code is available under MIT license at:
https://github.com/SharkyBamboozle/iVISPAR

text-based API to apply actions to the board (see
Figure 3). iVISPAR supports procedural gener-
ation of puzzle instances with finely controlled
parameters, allowing for a scalable dataset of tasks
with adjustable complexity across many spatial
properties, and benchmarking performance with
multiple baseline models.

3.1 Sliding Geom Puzzle

A central environment in iVISPAR is the Sliding
Geom Puzzle (SGP), a reimagining of the clas-
sic sliding tile puzzle (see Appendix A.3). In-
stead of numbered tiles, SGP uses geometric ob-
jects (geoms) uniquely defined by combinations
of color and shape, increasing visual-spatial com-
plexity and enhancing task scalability. This design
shift requires models to interpret object features
rather than follow numerical sequences, mirroring
real-world spatial reasoning where items are distin-
guished by appearance, size, or structure. The task
draws inspiration from physical scenarios such as
organizing items, assembling structures, or pack-
ing, promoting a more authentic evaluation of real-
world spatial capabilities.

3.2 Game dynamics

The objective is to rearrange the pieces on the
board by moving them over free spaces to match a
given goal configuration. In each episode, agents
receive observations of the start and goal states
(see Figure 2), accompanied by task instructions
(see Appendix A.1.1). Agents apply move actions
to geoms by referencing their unique color and
shape combination and specifying the direction of
intended movement. Geoms can be moved in car-
dinal directions (LEFT, RIGHT, UP, DOWN), with
actions formatted as "move <color> <shape>
<direction>”:

"move blue sphere right"
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Figure 3: Depiction of the interaction flow between VLM agents and the iVISPAR simulator with a progression
through an episode with the shortest path solution of 4 steps being solved by prompted actions from a VLM agent.
For a full example of an episode progression, see Appendix A.1.4.

Actions are validated and applied if legal, with
agents receiving updated board states regardless of
the action’s success after each move command. Ef-
fective and ineffective actions both result in valid
new board states but, respectively, decrease or in-
crease the path length to the goal state. Invalid
moves, such as occupied destination and out-of-
bounds actions, fail to alter the board state, as do
illegal commands, which violate the instructed ac-
tion format. This action-perception loop repeats
until the goal state is achieved or a step limit is
reached. Due to limited context windows, VLM
agents receive task instructions at each time step. A
sample agent-environment interaction is provided
in Appendix A.1.3.

3.3 Observation Spaces
Agents observe a combination of the current board
state and the goal state. Additionally, they can
receive a sequence of past state-action pairs, deter-
mined by the size of the configured context window.
Images for 3D observations are presented from an
angled top-down perspective and may include par-
tially occluded objects, whereas 2D observations
follow a graph-like layout with fully visible ele-
ments. Both may optionally include embedded,
text-based chess-style coordinate labels as spatial
cues along the outer edge of the grid board as well
as on free tiles. In 2D observations, shapes are
mapped consistently from their 3D counterparts
to preserve object identity across modalities. Im-
ages can also be marked with an embedded text
label and a colored background to differentiate be-
tween past (grey), current (blue), and goal state
(green). Figure 2 shows 3D vision (left) and 2D
vision (middle) for the active state (top) and the
goal state (bottom). The text-based representation
encodes past, active, and goal states directly in the

prompt string supplied to the agent. Agents receive
the list of geoms in the order of board coordinates.
A visualization of the text-based active (top) and
goal states (bottom) is shown in Figure 2 (right).
This modality does not rely on images.

3.4 Complexity Scalability
The GSTP is a well-known NP-hard problem due
to the need for multi-step planning across a con-
strained grid (Gozon and Yu, 2024). SGP inherits
this complexity but introduces greater flexibility
in scaling difficulty without altering the game’s
core mechanics. This flexibility provides more de-
grees of freedom, making the task more tractable
for VLM agents. Key scaling factors include board
size, number of objects, object variability, length
of the shortest path solution, and the geom inter-
ference factor (see Appendix A.1.2). The shortest
path solution for all episode configurations is cal-
culated using the A* algorithm (Hart et al., 1968),
as detailed in Appendix A.7.1. The interference
factor denotes the extent to which objects obstruct
one another’s optimal paths, increasing the global
solution length beyond the cumulative Manhattan
distances of individual paths. This interference
can create configurations with short optimal paths
but increased planning requirements, significantly
raising the problem’s difficulty. Available geomet-
ric shapes include [“cube,” “pyramid,” “sphere,”
“cylinder,” “cone,” “prism”], with colors freely se-
lectable by referencing RGB values. Agents must
navigate combinatorial complexity by matching
shapes and colors, promoting spatial strategies over
the sequential patterns seen in numerical tile puz-
zles. Episode configurations are generated pro-
cedurally, requiring models to generalize across
puzzle instances. Human and algorithmic bench-
marks for these experiments are detailed in Section

26749



4.2.

4 Experiments

Performance of VLMs is tested for the SGP to
assess their capabilities in scene understanding,
problem-solving, and multi-step planning within
constrained environments.

4.1 Dataset Generation

Experiments were conducted on a dataset of SGPs
on a fixed board size to 4× 4: smaller grids (e.g.,
3× 3) collapse many spatial-relation cases, while
larger ones (≥ 5× 5) dilute object visibility with-
out yielding further complexity benefits. Perfor-
mance is assessed by varying complexity across
two parameters: the number of objects (2-11) and
the shortest path length (2-11). Configurations
maintain a geom interference factor of 0, ensur-
ing the shortest path equals the cumulative Man-
hattan distance. Initial experiments indicated that
VLM agents faced significant challenges at higher
task complexities. Three episodes are sampled
for each complexity level, producing a dataset of
300 diverse board configurations. The set of geom
properties consists of four shapes, sphere, pyramid,
cube, and cylinder, and four colors, red, green,
blue, and yellow, resulting in 16 unique combina-
tions. VLM agents are tested on the same dataset
for each modality, resulting in 900 episodes for
each model.

4.2 Baselines

To contextualize agent performance and provide
upper and lower bounds, we establish four base-
lines encompassing human and AI agents.

Human performance was evaluated with 30
participants using a web app GUI of the SGP,
where participants interacted by prompting text
commands over a command line, mirroring the in-
teraction method of VLM agents. Baselines were
provided for the 3D vision modality on the same
dataset as the VLM agents.

AI baselines were introduced for two agents:
an optimal agent executing shortest path solutions
computed by A* (Hart et al., 1968), and a random
agent performing uninformed but valid actions uni-
formly sampled from those leading to new board
states. Algorithms for the AI agents are detailed in
Appendix A.7.

4.3 Models

We evaluate a selection of open- and closed-source
VLMs that scored high on OpenCompass3 and
which support multi-image inputs and a minimum
context length of 800 tokens. Selected models
are: Sonnet-3.5 (Claude Team, 2024), Gemini-
2.0-flash (Gemini Team, 2024), GPT-4o (OpenAI
et al., 2024), InternVL2.5-78B (Chen et al., 2024),
LLaVA-OneVision-72B (Li et al., 2024a), Qwen2-
72B (Wang et al., 2024d). For closed-source mod-
els, we rely on the official APIs and for open-
source models, on the publicly available check-
points. We use a temperature of 1.0, top-p of 0.95,
and top-k of 50 for all open-source models. An
overview of all models and their details can be
found in the Appendix A.2.

4.4 Context-Aware Zero-Shot Reasoning

The models employ Chain-of-Thought (CoT) rea-
soning (Wei et al., 2022) to break down complex
problems into smaller sub-tasks, enhancing accu-
racy and interpretability (Appendix A.1.3). We
constrain VLMs’ context windows to the past two
steps, incorporating state representations along-
side the model’s action responses. This approach
prioritizes extracting maximum value from lim-
ited experience to preserve the models’ sequential
coherence and minimize computational overhead.
Operating within this context-aware zero-shot rea-
soning framework, the models interpret task re-
quirements without examples, drawing exclusively
from pretrained knowledge, task instructions, and
limited past interactions.

4.5 Instruction Prompts

We avoided prompt engineering for any single
model; the chosen template is the same for all sys-
tems and contains only the minimal information
needed. Fixing one validated template provides
a consistent basis for comparison and makes the
benchmark easily reproducible. The visual and text
prompts are isomorphic: the image placeholder is
the only difference, so no modality receives extra
hints. Our human-baseline study likewise found
the final wording easy to follow. This supports
our aim of testing spatial-reasoning ability itself,
without relying on prompt engineering, so we use
one clear, uniform template for all models.

3OpenCompass Official Rankings: https://rank.
opencompass.org.cn/leaderboard-multimodal
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Figure 4: VLM evaluation on 900 episodes per model across all three modalities, with 95% confidence intervals.
Baseline comparisons for human performance and random moves are shown. Top: VLMs’ success rates of episodes
completed with higher values denoting better performance. Bottom: VLMs’ mean step deviation from the optimal
path with lower values denoting better performance. Full numerical results are provided in Appendix A.4

4.6 Evaluation

Agent performance is evaluated through two pri-
mary metrics: the fraction of solved environments
and mean step-deviation from the optimal path

Mean step-deviation from optimal path mea-
sures the deviation from optimal behavior during
problem-solving. At each step t, the shortest path
solution from the current board state to the goal,
computed by A*, is used to assess efficiency. For-
mally,

R(t) = d(st, s
∗)−

[
d(s0, s

∗)− t
]
.

where d(s, s∗) denotes the shortest path length
from state s to the goal s∗. This metric quanti-
fies how much further the agent is from the goal
compared to an optimal agent after the same num-
ber of steps. A regret value of zero indicates that
the agent follows an optimal trajectory, while posi-
tive regret reflects inefficiencies or unnecessary de-
tours. By capturing performance even in unsolved
environments, this approach provides insights into
agent behavior under varying complexities.

To gain deeper insights, we analyze the most
common error patterns exhibited by agents. This
allows us to identify model weaknesses, recurring
failure cases, and patterns of suboptimal decision-
making.

4.7 Auxiliary Task

Additionally, we evaluate the models’ ability to
infer and represent board states from visual in-
put across all 300 episodes. Given an image and
accompanying instructions, each model is tasked
with predicting the corresponding board configu-
ration in text form, using the same format as the
textual representation shown in Figure 2. This aux-
iliary task further enriches our understanding of
the models’ behavior and their capacity to interpret
spatial information from visual inputs.

To analyze this task, we frame the comparison
between the true and predicted board states as a
set matching problem, solved using the Hungarian
algorithm. A match is defined as any pair of geoms
sharing at least either color or shape. Geoms that
share neither are considered missed (if only present
in the true state) or hallucinated (if only present in
the prediction). Matched geoms may still contain
mismatches in coordinates, color, or shape. Pre-
dicted elements that cannot be parsed into valid
geom triplets are counted as format errors.

5 Results

We evaluated the spatial reasoning capabilities of
VLMs in our SGP environment on 3D vision and

*Videos of exemplary agents’ interactions with iVISPAR
are available at: https://youtu.be/Djis_xkgtW8.
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Figure 5: Error patterns showing average action counts per episode during SGP interaction (top) and average geoms
per episode for the board state inference auxiliary task (bottom), both averaged across modalities (see Sections 5
and 4.7), each aggregated across modalities. Full numerical results are provided in Appendix A.4.

compared it to 2D vision and text-based modali-
ties across 300 episodes each (see Figure 4). To
standardize gameplay, the number of actions per
episode was capped at 20.

Success rates: The percentage of episodes com-
pleted and the mean deviations of steps from the
optimal path were measured for each modality and
compared to human performance as well as ran-
dom actions (Figure 4).

Action classification: We classified actions
based on their effects on the board and calculated
their average occurrence per episode to provide in-
sights into the challenges VLMs face in efficiently
completing episodes (see Figure 5 top). Effective
and ineffective actions both result in valid new
board states but, respectively, decrease or increase
the path length to the goal state. Invalid moves,
such as occupied destination and out-of-bounds ac-
tions, while illegal commands break the instructed
action format, all of which leave the board state
unchanged.

Auxiliary Task: For the board state inference
task, we evaluate the number of geoms that were
correctly inferred, missed, hallucinated, or con-
tained a mismatch in coordinates, color, or shape.
Format errors denote cases where the output failed
to follow the expected structure (Figure 5, bot-
tom).

Complexity scales: We evaluated the cumula-
tive performance of VLMs across the three modal-

ities using two complexity scales, the shortest path
length required to solve an episode and the num-
ber of geoms on the board. Longer shortest paths
demand a broader global planning horizon and con-
sistent goal-directed progress, while higher geom
counts require efficient local planning to optimize
rearrangement order and manage free spaces. Fig-
ure 7 illustrates the performance of VLMs in 100
combinations of complexity, highlighting the aver-
age minimal distance to the goal state in 20 steps.

6 Discussion

6.1 Model Performance

All models show basic task understanding and spa-
tial reasoning, progressing toward the goal state
(see Figure 4). Performance, however, varies
widely. Closed-source models outperform open-
source ones: Sonnet-3.5 achieves the highest suc-
cess rate at 89.7% in the 2D visual modality, fol-
lowed by Gemini-2.0-Flash and GPT-4o. In con-
trast, open-source models such as InternVL2.5-
78B, LLaVA-OneVision-72B, and Qwen2-72B per-
form near the random baseline. Human partici-
pants solve the tasks perfectly with near-optimal
paths, setting a high benchmark.

Notably, even models solving fewer than 1%
of tasks often produce more efficient paths than a
random baseline (see Figure 4, bottom), indicating
traces of goal-directed behavior despite overall fail-
ure. These task performances are also consistent
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Figure 6: Error patterns showing average action counts per episode during SGP interaction (left; see Section 5) and
average geoms per episode for the board state inference auxiliary task (right; see Section 4.7), shown per modality
and aggregated across agents. Full numerical results are provided in Appendix A.4.

with the further analysis of the models’ error types
and their accuracy in the board state inference task,
which we discuss in Section 6.2.

6.2 Error Patterns

We analyzed the types of mistakes models make
during interaction with the simulator and evaluated
their ability to infer board states from visual input.
Overall, models rarely issue illegal commands or
exhibit format errors (see Figure 5, top and bot-
tom), suggesting that most VLMs understand how
to follow instructions and interact with the environ-
ment appropriately.

However, board state inference accuracy reveals
a sharp performance drop from 2D to 3D inputs:
while models correctly identify an average of 4.2
objects in 2D, this number falls to 1.4 in the 3D
setting (see Figure 6, right). This is primarily due
to substantial increases in coordinate prediction er-
rors, alongside moderate rises in color, shape mis-
matches, and missed detections. In contrast, hallu-
cinations and format-related issues remain largely
stable across both modalities.

These findings offer a clear explanation for the
weaker performance in the 3D vision condition:
precise localization of objects remains a critical
challenge. As illustrated in Figure 5, this results
in more ineffective moves, including frequent at-
tempts to place objects out-of-bounds or onto al-
ready occupied cells.

6.3 Modality Impact

Despite being evaluated on identical tasks, model
performance varied substantially across input
modalities (see Figure 4). All closed-source mod-
els (Sonnet-3.5, Gemini-2.0-flash, GPT-4o) per-
formed best on 2D vision, followed by text, and
worst on 3D vision. This suggests that these mod-
els may have undergone more training on 2D

visual inputs, which are more common in spa-
tial benchmarks. Interestingly, text input, despite
posing significant challenges for humans, ranked
second, indicating some robustness in linguistic
reasoning. In contrast, open-source models (In-
ternVL2.5, LLaVA-OneVision, Qwen2) performed
poorly across the board, with near-random scores
on visual inputs. Their relatively stronger perfor-
mance on text tasks may reflect a reliance on su-
perficial pattern recognition rather than grounded
spatial understanding. As shown in Figure 6 (left),
error patterns for ineffective moves and collisions
align with the overall performance ranking across
modalities. Out-of-bounds errors are most frequent
in the text condition, nearly twice as common as
in 2D vision, indicating that understanding board
dimensions was a primary challenge in the textual
setting. Additional results from our board state in-
ference task further support this view, showing that
models, predict more correct objects on the board
in Vision 2D compared to Vision 3D (Figure 6,
right).

6.4 Complexity Scaling

We analyzed the correlation matrix between the
number of objects on the board and the shortest
path solution length to assess how different types
of complexity affect model performance (see Fig-
ure 7, top). While performance consistently drops
with increasing complexity in both dimensions, the
heatmaps reveal modality-specific trends. Perfor-
mance declines more steeply with increasing geom
count (particularly in 3D), suggesting that sequen-
tial planning under visual conditions poses a major
challenge. In contrast, in the text-only setting, the
number of geoms seems to have little effect, with
errors mostly determined by the length of the short-
est path solution. This highlights limitations in
spatial reference from language alone.
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Figure 7: Cumulative graphs aggregated across agents. Top: Correlation matrix of remaining shortest-path lengths
to the goal for tasks with optimal paths between 2–11 steps. Each run is capped at 20 actions, and the metric is
computed at the agent’s final state, either upon reaching the goal or, if unsolved, after the 20th action. Bottom:
Error types in the board state inference auxiliary task over increasing number of geoms on the board.

Data from the auxiliary task of board state in-
ference show that, while errors to predict the co-
ordinates of geoms on the board increase with the
number of geoms on the board, other error types re-
main relatively stable even for a higher number of
geoms on the board (see Figure 7). Format errors
and the number of hallucinated geoms is overall
low, mismatches with colors and shapes increas-
ing only slightly, and surprisingly the number of
missed objects stays relatively stable as well.

7 Conclusion

We have introduced iVISPAR, a novel interactive
multimodal benchmark designed to evaluate the
spatial reasoning capabilities in 3D vision of VLMs
acting as agents. The benchmark, centered on the
Sliding Geom Puzzle, evaluates VLMs’ abilities
in logical planning, spatial awareness, and multi-
step problem-solving, aiming to reflect real-world
spatial reasoning. Our evaluation tested a suite
of state-of-the-art open-source and closed-source
VLMs on a dataset of board configurations, scaled
across two levels of complexity. We compared
them to baselines for human capabilities, optimal
and random agents, providing insight into their
performance under varying conditions.

Our findings demonstrate that VLMs struggle
with spatial reasoning in 3D vision and that there
are significant performance differences between
the tested VLMs. While they understand the in-
structions and outperform random agents in sim-
ple spatial tasks, they struggle with more complex
configurations and intricate problem properties. In-
terestingly, VLMs show stronger performance in
2D vision compared to 3D or text-based tasks. Our
auxiliary board state inference task revealed that
VLMs frequently miss geoms, misplace them on
the board, or mismatch their colors or shapes, er-
rors that occur more often with 3D vision input
than with 2D. This suggests that visual alignment
for 3D spatial reasoning continues to pose a sig-
nificant challenge, underscoring persistent gaps
in VLM capabilities and highlighting barriers to
achieving human-level cognitive performance.

Future Work Looking ahead, we plan to ex-
pand the benchmark to incorporate additional tasks
focused on scene understanding, as well as rotation
and transformation challenges.

Resources For the most up-to-date results on
state-of-the-art models and access to the leader-
board, please visit:
https://microcosm.ai/ivispar.
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Limitations

We restricted the context window, limiting the num-
ber of images VLMs can process. Extended im-
age inputs often disrupt VLMs’ understanding of
sequential coherence and increase computational
demands and API costs. This contrasts with human
participants, who recall each step of an episode and
draw from past experiences.

Additionally, while some models are optimized
for long-context reasoning or "deep thinking," their
architecture and usage patterns are ill-suited for
step-wise, interactive simulations. Their per-frame
API costs are disproportionately higher, making
them impractical for the interaction format used in
our benchmark. This also limits direct comparisons
to human participants, who recall previous steps
and integrate episodic knowledge more efficiently.

Impact Statement

This paper contributes to advancements in vision-
language models. While our work has potential
applications in broader AI research, it does not in-
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A Appendix

A.1 Episode Details

A.1.1 System Prompt Instructions

Interactive Sliding Geom Puzzle Game

You are a highly intelligent AI solving a shape
puzzle on a 4x4 grid. The board has two states:
the current active state and the goal state. Your
task is to generate valid actions that transform
the current state into the goal state along the
shortest path.

Steps:
(1) Analyze current state.
(2) Compare to goal.
(3) Check past actions.
(4) Propose next move.

Movement Rules: Each object occupies one
tile. Objects cannot leave the grid or overlap.

Action Format: move <color> <shape>
<direction>

Use only the following:
Colors: green, red, blue, yellow
Shapes: cube, sphere, pyramid, cylinder
Directions: up, down, left, right

Examples: move green cube down, move
red pyramid left

Important: No coordinates. Each action must
change the state. Invalid if blocked or out of
bounds.

Explain Reasoning: Before suggesting an
action, explain why. End with:
action: move <color> <shape>
<direction>
(no extra characters after action: ...)

Visual Input:
Current: {text_snippet_active};
Goal: {text_snippet_goal};
Past: {text_snippet_past}.

Final Requirement: Always end your output
with:
description:<your object coordinate
list>
Do not add characters after the word
description.

Board State Inference Auxiliary Task

You are a highly intelligent AI with exceptional
spatial reasoning skills, and you are given the
following task:

## Task Overview
1. You are provided with an input image of

colored geometric objects on a 4 × 4 board.
2. Analyze the current board state and locate

the position of all objects on the board.
3. Respond with a list of the chess-style coor-

dinates and their objects.

## Board Overview
The board has labeled columns, rows, and fields
• Columns a–d run from left to right in the

image.
• Rows 1–4 run from bottom to top in the im-

age.

## Object Overview
• On the board are various objects, uniquely

defined by their color and shape:
– Colors: green, red, blue, yellow
– Shapes: cube, sphere, pyramid, cylinder

## Solution Format
• Start your solution with ‘Solution: ‘ and

list each object in any order, separated by a
comma and a single space (‘, ‘).

• Your solution for each object must fol-
low this exact format: <coordinate>
<object_color> <object_shape>
– coordinate must use a letter a–d followed

by a digit 1–4.
– object_color must be exactly one of:

green, red, blue, yellow.
– object_shape must be exactly one of:

cube, sphere, pyramid, cylinder.
• Only list coordinates that contain an object;

do not mention empty squares.
• Do not use quotation marks or angle brackets

< > in your action.
• Do not include any extra text, reasoning, or

punctuation after the formatted list.

## Example
Solution: a3 green sphere, d1 blue cylinder, b4
yellow cube, c2 red pyramid

## Validation
• No two objects share the same coordinate.
• Every listed object uses one of the four al-

lowed colors and shapes.

26758



A.1.2 Observations of Scaling Episode Complexity

Figure 8: Examples of VLMs’ observations for a state (blue) and the goal (green) at each step during an episode of
the Sliding Geom Puzzle environment, on a 4×4 board with 2, 5, 8 and 11 geoms and an optimal path length of 8,
4, 2, and 6 respectively. Left to right, each tested modality: vision 3D, vision 2D, and text-based representation.
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A.1.3 Interaction Example
Input Example

## Analyze the Images
You can view your current active board state in the last image marked with the label active in the
image and a blue background. Study this image and the objects with their positions carefully.

Your goal is to match the goal state, shown in the image marked with the label goal in the image and a
green background. Study this image and the objects with their positions carefully.

## Additionally, you are provided with:
• The previous state image(s) marked with the label past in the image and a grey background.
• Your previous suggested action
• Use this information by comparing it to your current active state to determine your next action.

## Invalid Actions:
• No Overlap: You are not allowed to position two objects in the same tile.
• If the suggested action does not move any objects, it is invalid (e.g., blocked by another object or

out of bounds).
• Use the previous image(s) and action to understand why it failed and suggest a different action.

It is of most importance you always end your response with this exact format:

action: move <object color> <object shape> <direction>

where you replace <object color> <object shape> <direction> with the valid move action
based on your reasoning and do not add any characters after your action.

Output Example

To reach the goal state I need to compare the current active state with the goal state.

Current active state
• In the current active state the green sphere is on top blocking movements of objects below it.
• The yellow sphere is on the bottom row B1.

Goal state
• In the goal state the green sphere is two steps down in column B.
• The red cylinder is in the bottom left, two steps down.
• The yellow sphere is in position B2, two steps up.

Analyzing the images I see that the yellow spheres path is blocked by the green cylinder I’ll first move
another object to clear the way. Moving the blue cube rightward will help clear the blocked pathway
for the green cylinder.

Action: Move the blue cube right
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A.1.4 Episode Progression Example

Figure 9: Example of an episode progression for an environment in vision 3D (other modalities progress analo-
gously) with an optimal path length of 9, showing steps 1 to 12 in order, including 3 mistakes (red action text).
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A.2 Models

Name LLM Vision Encoder Model Size

Closed Source Models
Sonnet-3.5 (Claude Team, 2024) – – –
Gemini-2.0-flash (Gemini Team, 2024) – – –
GPT-4o (OpenAI et al., 2024) – – –

Open Source Models
InternVL 2.5 (Chen et al., 2024) Qwen 2.5 (Yang et al., 2024b) InternViT (Chen et al., 2024) 78.4B
LLaVA OneVision (Li et al., 2024a) Qwen 2 (Yang et al., 2024a) SigLIP (Zhai et al., 2023) 73.2B
Qwen 2 VL (Wang et al., 2024d) Qwen 2 (Yang et al., 2024a) ViT (Dosovitskiy et al., 2020) 73.4B

Table 1: Overview of evaluated models. – indicates unavailable information.

A.3 Sliding Tile Puzzle

Figure 10: Visualization of a current state and the goal state in a classic 15-tile Sliding Tile Puzzle (STP) on a 4× 4
board, playable by agents within the iVISPAR benchmark.

The sequential generalized sliding-tile puzzle (SGSTP) is a generalization of the classic 15-Tile Sliding
Tile Puzzle (STP), see Figure 10. In the SGSTP, a set of n < m1 ×m2 tiles, each uniquely labeled
1, . . . , n, are placed on a rectangular grid of size m1 ×m2, denoted by G = (V,E). The grid has
m1 ×m2 − n empty positions that allow tile movement.
A configuration of tiles is represented as an injective mapping from the set {1, . . . , n} to positions
V = {(vx, vy) : 1 ≤ vx ≤ m2, 1 ≤ vy ≤ m1}. Each tile must be repositioned from an arbitrary initial
configuration S = {s1, . . . , sn} to a specified goal configuration G = {g1, . . . , gn}, such as an ordered
row-major layout.
Let the movement path of tile i, where 1 ≤ i ≤ n, be expressed as pi : N0 → V . The puzzle seeks a set
of feasible paths P = {p1, . . . , pn} that satisfy the following conditions for all 1 ≤ i, j ≤ n with i ̸= j,
and for all time steps t ≥ 0:
Incremental Movement: pi(t+ 1) = pi(t) or (pi(t+ 1), pi(t)) ∈ E. Tiles move to adjacent,
unoccupied positions or stay still.
Goal Achievement: pi(0) = si and pi(T ) = gi for some T ≥ 0. Each tile must start at si and reach gi.
Exclusive Occupancy: pi(t) ̸= pj(t) for all i ̸= j. Two tiles cannot occupy the same position at the
same time.
In this sequential version, tiles move one at a time. Therefore, the head-on collision and corner-following
constraints found in the generalized sliding-tile puzzle are omitted, as simultaneous tile movements are
not permitted.
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A.4 Detailed Results
A.4.1 Performance Results

Model Metric Avg 3D 2D Text

Closed Source Models

Sonnet-3.5
Completed episodes 54.56 28.67 89.67 45.33
Optimal path deviation 3.05 4.10 1.44 3.60
Board state inference 60.00 35.38 84.62 –

Gemini-2.0-flash
Completed episodes 27.11 12.67 47.33 21.33
Optimal path deviation 4.87 5.25 4.09 5.26
Board state inference 54.08 28.67 79.49 –

GPT-4o
Completed episodes 17.56 9.33 37.33 6.00
Optimal path deviation 5.30 5.45 4.15 6.30
Board state inference 41.67 19.49 63.85 –

Open Source Models

InternVL2.5-78B
Completed episodes 10.16 1.67 9.42 19.33
Optimal path deviation 5.98 6.39 5.86 5.69
Board state inference 34.95 16.51 53.38 –

LLaVA-OneVision-72B
Completed episodes 8.22 0.67 1.33 22.67
Optimal path deviation 6.35 6.75 6.81 5.50
Board state inference 26.36 14.72 38.00 –

Qwen2-72B
Completed episodes 5.89 0.67 1.67 15.33
Optimal path deviation 6.37 6.66 6.54 5.90
Board state inference 41.54 18.77 64.31 –

Aggregate Averages

Average
Completed episodes 20.59 7.04 26.68 21.83
Optimal path deviation 5.32 5.76 4.41 5.32
Board state inference 43.10 22.26 63.94 –

Table 2: Evaluation of models across three modalities. Each row shows average episode completion rate (%), mean
deviation from the optimal path (see Section 4.6), and board state inference accuracy (%).
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A.4.2 Error Counts for the Geom Puzzle

Model Metric Avg 3D 2D Text
Closed Source Models

Sonnet-3.5

EM 6.31 6.51 6.20 6.21
IM 1.86 3.34 0.21 2.03
OD 3.60 4.77 2.29 3.75
OB 1.59 1.95 0.04 2.79
IC 0.02 0.07 0.00 0.00

Gemini-2.0-flash

EM 5.68 5.80 6.34 4.91
IM 2.95 3.87 2.35 2.63
OD 6.14 6.83 5.51 6.08
OB 2.56 2.25 1.11 4.33
IC 0.01 0.01 0.00 0.03

GPT-4o

EM 4.65 5.50 5.95 2.51
IM 2.86 4.03 2.36 2.19
OD 6.53 6.36 5.51 7.71
OB 3.81 2.69 1.85 6.90
IC 0.26 0.24 0.52 0.03

Open Source Models

InternVL2.5-78B

EM 5.00 4.94 5.74 4.39
IM 4.24 5.39 4.80 2.59
OD 5.90 6.06 5.70 5.92
OB 3.38 3.16 2.52 4.38
IC 0.59 0.21 0.29 1.26

LLaVA-OneVision-72B

EM 3.95 3.41 3.22 5.23
IM 4.12 4.55 4.42 3.40
OD 4.89 4.58 4.74 5.36
OB 4.17 4.62 4.46 3.44
IC 1.38 1.90 2.19 0.07

Qwen2-72B

EM 4.07 3.88 3.96 4.85
IM 4.61 4.81 4.67 3.89
OD 5.39 5.55 5.21 5.25
OB 3.72 4.05 3.17 3.83
IC 0.10 0.07 0.06 0.26

Aggregate Averages

Average

EM 4.82 4.72 5.04 4.68
IM 3.61 4.45 3.34 2.79
OD 5.40 5.66 4.87 5.68
OB 3.28 3.35 2.33 4.28
IC 0.35 0.33 0.45 0.28

Table 3: Evaluation of models across three modalities. Each row shows average steps per episode that were effective
moves (EM), ineffective moves (IM), occupied destination moves (OD), out of bounds moves (OB) and illegal
commands (IC).
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A.4.3 Error Counts for the Auxiliary Task

Model Metric Avg 3D 2D Text

Closed Source Models

Sonnet-3.5

Correct 3.90 2.30 5.50 –
Missed 1.42 1.84 1.00 –
Hallucinated 0.00 0.00 0.00 –
Coord Errors 1.08 2.16 0.00 –
Color Errors 0.38 0.76 0.00 –
Shape Errors 0.37 0.74 0.00 –
Format Errors 0.00 0.00 0.00 –

Gemini-2.0-flash

Correct 3.52 1.86 5.17 –
Missed 0.91 1.02 0.80 –
Hallucinated 0.14 0.13 0.14 –
Coord Errors 1.98 3.48 0.48 –
Color Errors 0.66 1.14 0.18 –
Shape Errors 0.65 1.14 0.16 –
Format Errors 0.05 0.00 0.09 –

GPT-4o

Correct 2.71 1.27 4.15 –
Missed 1.31 1.67 0.95 –
Hallucinated 0.03 0.01 0.04 –
Coord Errors 2.34 3.33 1.35 –
Color Errors 0.77 1.18 0.35 –
Shape Errors 0.75 1.18 0.32 –
Format Errors 0.02 0.04 0.00 –

Aggregate Averages

Average

Correct 3.37 1.81 4.94 –
Missed 1.21 1.51 0.92 –
Hallucinated 0.06 0.05 0.06 –
Coord Errors 1.80 2.99 0.61 –
Color Errors 0.60 1.03 0.18 –
Shape Errors 0.59 1.02 0.16 –
Format Errors 0.02 0.01 0.03 –

Table 4: Error analysis for the auxiliary position inference task across vision modalities (closed source models).
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Model Metric Avg 3D 2D Text

Open Source Models

InternVL2.5-78B

Correct 2.27 1.07 3.47 –
Missed 0.89 1.00 0.77 –
Hallucinated 0.03 0.04 0.01 –
Coord Errors 1.62 2.92 0.32 –
Color Errors 0.59 1.11 0.08 –
Shape Errors 0.58 1.08 0.08 –
Format Errors 1.63 1.30 1.97 –

LLaVA-OneVision-72B

Correct 1.71 0.96 2.47 –
Missed 1.02 1.18 0.86 –
Hallucinated 0.34 0.31 0.37 –
Coord Errors 3.30 3.95 2.65 –
Color Errors 1.28 1.58 0.97 –
Shape Errors 1.23 1.57 0.90 –
Format Errors 0.37 0.09 0.65 –

Qwen2-72B

Correct 2.70 1.22 4.18 –
Missed 0.97 1.08 0.85 –
Hallucinated 0.58 0.81 0.36 –
Coord Errors 2.52 3.80 1.24 –
Color Errors 0.93 1.42 0.43 –
Shape Errors 1.12 1.67 0.58 –
Format Errors 0.22 0.06 0.38 –

Aggregate Averages

Average

Correct 2.23 1.08 3.37 –
Missed 0.96 1.09 0.83 –
Hallucinated 0.32 0.39 0.25 –
Coord Errors 2.48 3.56 1.40 –
Color Errors 0.93 1.37 0.49 –
Shape Errors 0.98 1.44 0.52 –
Format Errors 0.74 0.48 1.00 –

Table 5: Error analysis for the auxiliary position inference task across vision modalities (open source models).

26766



A.5 Supplementary Graphs

Figure 11: VLMs’ average action counts per episode by category for each modality. Number of actions per episode
is capped at 20. Effective / ineffective actions respectively decrease / increase the path length to the goal state.
Occupied destination and out-of-bounds are invalid moves, while illegal commands break the instructed action
format, all of which leave the board state unchanged.

Figure 12: VLMs’ average shortest path to the goal state across all modalities. Number of actions per episode is
capped at 20.
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A.6 Additional Agent Interaction Data
A.6.1 Systematic Formatting Errors
Unless noted otherwise, the numeral in parentheses
after a model name is the count of formatting errors
for that category. Notably, Sonnet-3.5 is not listed
since it did not make any format errors, explaining
its high benchmarking score.

(E1) Empty-cell mentions (N = 280)
The most common violation is the explicit listing
of empty grid cells, even though instructions forbid
any mention of empties. Surface forms vary widely,
even within a single model:

a4 empty

c3 blank

b1 no object

a1 none none

Gemini-2.0-flash (24), InternVL-2.5-78B (21),
LLaVA-OneVision-72B (105), Qwen2-72B (130).

(E2) Missing attributes (N = 88)
Some lines list an object but drop one of its re-
quired attributes (colour or shape):

c1 none pyramid

b2 sphere

Gemini-2.0-flash (2), LLaVA-OneVision-72B
(86).

(E3) Illegal attributes (N = 21)
Entries introduce colours or shapes outside the pre-
defined vocabulary, or mis-name legitimate ones:

b2 black cone

b3 red block

Gemini-2.0-flash (2), GPT-4o (9), LLaVA-
OneVision-72B (9), Qwen2-72B (1).

(E4) Attribute order inversion (N = 21)
Colour–shape order is sometimes reversed:

b4 cylinder yellow

LLaVA-OneVision-72B (21)

(E5) Multiple attributes per object (N = 3)
A single coordinate is assigned more than one
colour or a compound colour phrase:

d4 blue and red cube

d1 multicoloured cube

a2 a3 green pyramid

GPT-4o (1), InternVL-2.5-78B (1), Qwen2-72B
(1).

(E6) Out-of-bounds coordinates (N = 3)
Objects occasionally appear outside the 4× 4 grid,
e.g. likely due to OCR misreads:

f4 yellow pyramid

c5 green pyramid

Gemini-2.0-flash (1), InternVL-2.5-78B (1),
LLaVA-OneVision-72B (1).

(E7) Non-list answers (N = 47)
A few generations present free-form summaries or
spurious URLs instead of the required flat list:

d2 blue cylinder summary a4 yellow cylinder
b4 blue sphere . . .

d3 green sphere https user images githubuser-
content com /.../f45e3211ecb93a6b429446.png

obj in objectsitems if obj none output

yellow objectshape must be exactly one of cube

we will create the solution

InternVL-2.5-78B (47).

(E8) Solution not found (N = 147)
Prompts that did not begin their solution with "So-
lution: " are not picked up by the solution parser.
GPT-4o (1), InternVL-2.5-78B (145), Qwen2-72B
(1).

26768



A.6.2 Chain of Thoughts

Sonnet-3.5 CoT Example

Looking at the current state and goal state:
1. The blue cube is correctly positioned in A2

in both states.
2. The yellow pyramid needs to move from D1

to C1.
3. The red cylinder is in D2 and needs to be in

D3.
The yellow pyramid needs to be moved to make
space for other movements. Looking at the past
states we tried moving the yellow pyramid right
and the red cylinder up. Now we need to move
the yellow pyramid to its goal position. I can
see that the yellow pyramid should move left
to reach position C1 as shown in the goal state.

Qwen2-72B CoT Example

After analyzing the images, it is clear that mov-
ing the red sphere down was an invalid action
because it resulted in no change to the board
state. The red sphere is still in the same posi-
tion, and the green cylinder has not moved.
To progress, I need to find a valid action that
will move one of the objects to match the goal
state.
Upon further inspection, I notice that the red
sphere needs to be moved to the top-right cor-
ner of the board to match the goal state. How-
ever, the current state shows the red sphere in
the bottom-right corner, which means I need to
move it up to get it closer to the goal position.

GPT-4o CoT Example

To reach the goal state I need to compare the
current active state with the goal state.
In the current active state the green sphere is
on top blocking movements of objects below it.
The yellow sphere is on the bottom row B1.
In the goal state the green sphere is two steps
down in column B. The red cylinder is in the
bottom left, two steps down. The yellow sphere
is in position B2, two steps up.
Analyzing the images I see that the yellow
spheres path is blocked by the green cylinder
I’ll first move another object to clear the way.
Moving the blue cube rightward will help clear
the blocked pathway for the green cylinder.

InternVL-2.5-78B CoT Example

to reach the goal state, let’s analyze the current
board and the objects that need to be moved:
current state (active)
• the red cylinder is on tile b4.
• the yellow pyramid is on tile d4.
• the blue cylinder is on tile c3.
• the yellow cube is on tile d2.
goal state (goal)
• the red cylinder needs to be on tile a4.
• the blue cylinder needs to be on tile b4.
• the yellow cube needs to be on tile d3.
• the yellow pyramid needs to be on tile c4.
step-by-step plan
1. move the red cylinder to a4:
- action: move the red cylinder left.

2. move the yellow pyramid to c4:
- action: move the yellow pyramid down.

3. move the yellow cube to d3:
- action: move the yellow cube down.

4. move the blue cylinder to b4:
- action: move the blue cylinder up.
first action
the first step is to move the red cylinder from
tile b4 to tile a4.

Gemini-2.0-flash CoT Example

The green sphere needs to move from B2 to C3.
It is currently at B2, moving up would move
the green sphere to B3 where it is blocked by
the red pyramid.
I need to move the green sphere to the right,
then up. Its already been moved right once, so
my next action is to move the green sphere up.

LLaVA-OneVision-72B CoT Example

The blue cube on D2 needs to move to the posi-
tion of the red cylinder on D1.
Since the red cylinder cannot be displaced, the
blue cube must be moved elsewhere.
Moving the blue cube left to C2 does not change
the board state because another blue cube al-
ready occupies that square.
Moving it up to D1 would push the red cylinder
out of bounds, which is not allowed.
Therefore, the blue cube on D2 should move
left to D3.
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A.7 Algorithms
A.7.1 Optimal Agent

Algorithm 1 A* Algorithm for Pathfinding

Require: start, goal
Ensure: Path from start to goal or failure

1: openSet← {start}
2: cameFrom← empty map
3: gScore[start]← 0
4: fScore[start]← heuristic(start, goal)
5: while openSet not empty do
6: current← node in openSet with lowest fScore
7: if current = goal then
8: return ReconstructPath(cameFrom, current)
9: end if

10: Remove current from openSet
11: for each neighbor of current do
12: tentativeGScore← gScore[current] + d(current, neighbor)
13: if tentativeGScore < gScore[neighbor] or neighbor not in gScore then
14: cameFrom[neighbor]← current
15: gScore[neighbor]← tentativeGScore
16: fScore[neighbor]← gScore[neighbor] + heuristic(neighbor, goal)
17: if neighbor not in openSet then
18: Add neighbor to openSet
19: end if
20: end if
21: end for
22: end while
23: return failure

A.7.2 Random Agent

Algorithm 2 Generate Random Valid Path for Sliding Tile Puzzle

Require: n (board size), initial_state, max_steps
Ensure: Path from initial to final state

1: path← [initial_state]
2: current_state← initial_state
3: for step = 1 to max_steps do
4: neighbors← get_neighbors(current_state, n)
5: current_state← random choice from neighbors
6: Append current_state to path
7: end for

return path
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