
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 26577–26592
November 4-9, 2025 ©2025 Association for Computational Linguistics

How to Make Large Language Models Generate 100% Valid Molecules?

Wen Tao1 Jing Tang2,3* Alvin Chan1 Bryan Hooi4 Baolong Bi5
Nanyun Peng6 Yuansheng Liu7* Yiwei Wang8

1Nanyang Technological University 2HKUST(GZ) 3HKUST
4NUS 5UCAS 6UCLA 7Hunan University 8UC Merced

taowen228@gmail.com, jingtang@ust.hk, yuanshengliu@hnu.edu.cn

Abstract

Molecule generation is key to drug discov-
ery and materials science, enabling the de-
sign of novel compounds with specific prop-
erties. Large language models (LLMs) can
learn to perform a wide range of tasks from
just a few examples. However, generating valid
molecules using representations like SMILES
is challenging for LLMs in few-shot settings.
In this work, we explore how LLMs can gen-
erate 100% valid molecules. We evaluate
whether LLMs can use SELFIES, a representa-
tion where every string corresponds to a valid
molecule, for valid molecule generation but
find that LLMs perform worse with SELFIES
than with SMILES. We then examine LLMs’
ability to correct invalid SMILES and find
their capacity limited. Finally, we introduce
SmiSelf, a cross-chemical language framework
for invalid SMILES correction. SmiSelf con-
verts invalid SMILES to SELFIES using gram-
matical rules, leveraging SELFIES’ mecha-
nisms to correct the invalid SMILES. Exper-
iments show that SmiSelf ensures 100% va-
lidity while preserving molecular characteris-
tics and maintaining or even enhancing perfor-
mance on other metrics. SmiSelf helps expand
LLMs’ practical applications in biomedicine
and is compatible with all SMILES-based gen-
erative models. Code is available at https:
//github.com/wentao228/SmiSelf.

1 Introduction

Generating novel molecules has been a fundamen-
tal and crucial problem in drug discovery and
material design (Cheng et al., 2021). Advances
in machine learning, particularly deep learning,
have accelerated progress in this area (Zeng et al.,
2022). Molecules can be represented as Simpli-
fied Molecular-Input Line-Entry System (SMILES)
strings (Weininger, 1988) or SELF-referencIng Em-
bedded Strings (SELFIES) (Krenn et al., 2020),

*Corresponding Author

CC(=O)OC1=CC=CC=C1C(=O)O

[C][C][=Branch1][C][=O][O][C][=C][C][=C][C][=
C][Ring1][=Branch1][C][=Branch1][C][=O][O]

Representation: SELFIES

Representation: SMILES

O

OHO

O

H3C

Molecule: Aspirin

[C][C][=Branch1][C][=O][O][C][=C][C][=C][C][=C]
[Ring1][=Branch1][C][=Branch1][C][=O][O]

[C][C][=Branch1][C][=O][O][C][=C][C][=C][=O][C]
[=C][Ring1][=Branch1][C][=Branch1][C][=O][O]

Mutation: Deletion

Mutation: Addition

[C][C][=Branch1][C][=O][O][C][=C][C][=C][C]
[=C][C][=Branch1][C][=Branch1][C][=O][O]

Mutation: Replacement

[C][C][=Branch1][C][=O][O][C][=C][C][=C][C][=C]
[Ring1][=Branch1][C][=Branch1][C][=O][O1]

Invalid SELFIES Editing

Molecules

Figure 1: Top: SMILES and SELFIES representations
of a molecule. Middle: Mutating the SELFIES of the
molecule always results in valid molecules. Bottom:
Proposed Invalid SELFIES Editing.

both of which are compatible with language mod-
els, as shown in Figure 1 (Top).

Prompting Large Language Models (LLMs),
such as ChatGPT, with demonstrations has show-
cased their impressive ability to leverage extensive
pretraining to perform diverse tasks (Mei et al.,
2025), opening up new opportunities for efficient
and effective molecule generation. For instance, as
shown in Figure 2, given a molecule caption (i.e.,
a text description of a molecule’s structure and
properties), LLMs can generate the corresponding
molecule. This enables more comprehensive and
fine-grained control over molecule design. How-
ever, generating valid molecules using represen-
tations like SMILES is challenging due to strict
syntax rules, such as the correct use of parenthe-
ses for branching, proper ring closure numbers,
and adherence to atom valence limits. These con-
straints are difficult to convey through a few ex-
amples. For instance, as shown in Figure 2, the

26577

https://github.com/wentao228/SmiSelf
https://github.com/wentao228/SmiSelf

Text-based molecule generation via LLMs

Prompt: Given the caption of a molecule, predict the
SMILES representation of the molecule.

Input Description: The molecule is a member of the
class of tetralins that is tetralin substituted by methyl
groups at positions 1, 1 and 6 respectively. It has a role
as a metabolite. It is a member of tetralins and an ortho-
fused bicyclic hydrocarbon. It derives from a hydride of
a tetralin.

Output SMILES: CC1=CC2=C(C=C1)C(CCC2)(C)C)

Figure 2: An example of an invalid SMILES string
generated by text-based molecule generation via LLMs.

generated SMILES string is syntactically invalid
due to an extra closing parenthesis. This makes
it impossible for the string to be decoded into a
valid chemical structure. In contrast, SELFIES is
a robust molecular representation that guarantees
100% validity, even for randomly generated strings.

In this paper, we explore and answer three ques-
tions through extensive experiments:

• Can LLMs use SELFIES to guarantee valid
molecule generation? — Yes, but at the
cost of poor performance on other metrics.
Based on the robustness of SELFIES, we em-
phasize that SELFIES serves as a structured
representation. As shown in Figure 1 (Mid-
dle), deleting, adding, or replacing symbols
still yields a valid molecule. Leveraging this
property, as shown in Figure 1 (Bottom), we
propose Invalid SELFIES Editing, which di-
rectly employs SELFIES for molecular gener-
ation with LLMs, ensuring validity by filter-
ing out non-alphabet symbols. However, we
find that LLMs perform worse with SELFIES
compared to SMILES, with SMILES being
the most suitable representation for molecule
generation using LLMs.

• Can LLMs efficiently correct the invalid
SMILES they generate? — No, while LLMs
demonstrate potential in correcting invalid
SMILES, they also face challenges in im-
proving validity without significant degra-
dation in other metrics. We propose us-
ing LLMs as post-hoc invalid SMILES cor-
rectors. As shown in Algorithm 1, given
invalid SMILES generated by LLMs, the
model is first prompted to generate a corrected
SMILES string based on the invalid SMILES

and a textual description, and then uses an
external tool to verify the output SMILES.
The LLMs iterate this process to continu-
ously refine the output until it becomes a valid
SMILES. We find that while LLMs can cor-
rect invalid SMILES, this is accompanied by
a significant reduction in other metrics, with
variations in correction rates across models
and error types.

• How can we make LLMs generate 100%
valid molecules while keeping good perfor-
mance on other metrics? — SmiSelf, a
cross-chemical language framework for in-
valid SMILES correction. As shown in Fig-
ure 3, SmiSelf converts invalid SMILES gen-
erated by LLMs into SELFIES using gram-
matical rules, then transforms them back into
SMILES, leveraging the mechanism of SELF-
IES to correct the invalid SMILES. Experi-
ments demonstrate that SmiSelf guarantees
100% validity, preserves molecular character-
istics, and maintains or enhances performance
on other metrics.

Overall, this work provides insights into the ca-
pabilities of current LLMs and expands their prac-
tical applications in biomedicine.

2 LLMs Perform Worse With SELFIES

2.1 Molecular Representations
As shown in Figure 1 (Top), SMILES (Weininger,
1988) and SELFIES (Krenn et al., 2020) are two
of the most widely used molecular representations.
Like human language, the SMILES syntax enforces
strict rules regarding which strings are syntactically
valid. As a result, language models may gener-
ate SMILES that do not correspond to any valid
chemical structure. SELFIES is a molecular string
representation that guarantees 100% robustness, en-
suring that every possible combination of symbols
from its alphabet corresponds to a valid chemical
structure.

2.2 Invalid SELFIES Editing
Based on the robustness of SELFIES, we empha-
size that SELFIES serves as a structured molecular
representation. As shown in Figure 1 (Middle),
modifying a SELFIES string—whether by deleting
a symbol, adding an alphabetic symbol, replacing
a symbol, splitting the SELFIES string, or merging
one SELFIES with another—always results in a

26578

Parentheses Error CC(=O)OC1=CC=CC=C1C(=O)O) Unclosed Ring CC(=O)OC1=C2C=CC=C1C(=O)O

Aromaticity Error CC(=O)OC1=C=C=CC=C1C(=O)O Valence Error CC(=O)OC1=CC=CC=C1=C(=O)O

Syntax Error CC=(=O)OC1=CC=CC=C1C(=O)O Bond Already Exists CC(=O)OC1=CC2=C2C=C1C(=O)O

CC(=O)OC1=CC=CC=C1=C(=O)O)

Invalid SMILES

Graph-SELFIES
Rules

[C][C][=Branch1]
[C][=O][O][C][=C
][C][=C][C][=C][
Ring1][=Branch1
][=C][=Branch1][

C][=O][O]

SELFIES

SELFIES-Graph
Rules

Valid SMILES

CC(=O)OC1=CC=CC=C1C(=O)O

Semantically Valid
Molecular Graph

Syntactically Valid
Molecular Graph

SMILES Parser

CC(=O)OC1
=CC=CC=C1

CCarbon
Atom

=Double
Bond

CC(=O)
OC1

=CC=C
C=C1

Valence
Constraints

Figure 3: Overview of SmiSelf. An invalid SMILES string generated by an LLM is processed by a SMILES parser
capable of handling various errors, converted into a syntactically valid molecular graph, and then transformed
into a SELFIES string. The SELFIES string is re-converted into a semantically valid molecular graph, ensuring
compliance with syntactic and semantic constraints, thus guaranteeing 100% validity. Finally, the molecular graph
is translated back into a valid SMILES string.

valid molecule. Leveraging this property, as illus-
trated in Figure 1 (Bottom), we introduce Invalid
SELFIES Editing. We directly use LLMs to gener-
ate SELFIES representations for molecule genera-
tion. If the generated SELFIES are invalid (i.e., if
they contain symbols not in the alphabet), we per-
form editing (removing non-alphabetic symbols)
to make the SELFIES valid, ensuring the validity
of the generated molecules.

2.3 Task Description

We evaluate molecular representations for LLMs
using the following two tasks: Text-Based Molecule
Generation and Molecule Captioning (Edwards
et al., 2022). The aim of Text-Based Molecule
Generation is to generate molecules that match the
given natural language text describing a molecule’s
structures and properties. Molecule Captioning
is the reverse of text-based molecule generation,
aiming to generate textual descriptions for a given
molecule. Compared to the typical de novo
molecule generation task (Polykovskiy et al., 2020),
which aims to generate a variety of possible new
molecules, these two tasks are much more challeng-
ing for deep generative models. They can assess
the model’s ability to understand molecules and
generate them from descriptions.

2.4 Experiment Setting

We use the ChEBI-20 dataset (Edwards et al.,
2021) and evaluation metrics identical to those

used in MolT5 (Edwards et al., 2022). The base-
lines include RNN (Cho et al., 2014), Transformer
(Vaswani et al., 2017), T5 (Raffel et al., 2020),
MolT5 (Edwards et al., 2022), GPT-3.5, GPT-4
(Achiam et al., 2023), and LLaMA2 (Touvron et al.,
2023). See Appendix B for details.

2.5 Experiment Results

As shown in Tables 1 and 2, experimental results
for both tasks indicate that LLMs perform worse
when using SELFIES as a molecular representation
compared to SMILES. One reason for this is that
SMILES was introduced much earlier than SELF-
IES, resulting in its much greater presence in the
training data for LLMs. Evidence supporting this
can be drawn from three key aspects: First, the
zero-shot results of GPT-3.5 and LLaMA2-7B in
text-based molecule generation demonstrate that
SMILES strings are included in their pre-training
corpus, as they can generate mostly valid SMILES
representations of molecules based on zero-shot
prompts. Second, the zero-shot performance of
GPT-3.5 and LLaMA2-7B is lower compared to
task-specific small-scale models, and significantly
inferior to that of T5 and MolT5 in text-based
molecule generation. This suggests that these
LLMs have not been specifically trained on the
ChEBI-20 dataset. Finally, as shown in Figure 4,
citation counts over the past decade reveal that
publications referencing SMILES substantially out-
number those mentioning SELFIES.

26579

Method #Params. BLEU↑ EM↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ FCD↓ Text2Mol↑ Validity↑
RNN (task-specific) 56M 0.652 0.005 38.09 0.591 0.400 0.362 4.55 0.409 0.542

Transformer (task-specific) 76M 0.499 0.000 57.66 0.480 0.320 0.217 11.32 0.277 0.906

T5-Base (fine-tuned) 248M 0.762 0.069 24.950 0.731 0.605 0.545 2.48 0.499 0.660
T5-Large (fine-tuned) 783M 0.854 0.279 16.721 0.823 0.731 0.670 1.22 0.552 0.902

MolT5-Base 248M 0.769 0.081 24.458 0.721 0.588 0.529 2.18 0.496 0.772
MolT5-Large 783M 0.854 0.311 16.071 0.834 0.746 0.684 1.20 0.554 0.905

LLaMA2-7B (zero-shot) 7B 0.104 0.000 84.18 0.243 0.119 0.089 42.01 0.148 0.631
LLaMA2-7B (2-shot) 7B 0.693 0.022 36.77 0.808 0.717 0.609 4.90 0.149 0.761
GPT-3.5 (zero-shot) N/A 0.489 0.019 52.13 0.705 0.462 0.367 2.05 0.479 0.802
GPT-3.5 (10-shot) N/A 0.790 0.139 24.91 0.847 0.708 0.624 0.57 0.571 0.887

GPT-4 (10-shot) 1.76T 0.857 0.280 17.14 0.903 0.805 0.739 0.41 0.593 0.899
GPT-4-SELFIES (10-shot) 1.76T 0.682 0.179 26.596 0.756 0.624 0.541 1.666 0.468 1.000

Table 1: Text-based molecule generation results on ChEBI-20. The best scores are in bold, and the second-best
scores are underlined. “N/A” indicates that the parameter size is unknown.

Methods #Params. BLEU-2↑ BLEU-4↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ METEOR↑ Text2Mol↑
RNN (task-specific) 56M 0.251 0.176 0.450 0.278 0.394 0.363 0.426

Transformer (task-specific) 76M 0.061 0.027 0.204 0.087 0.186 0.114 0.057

T5-Base (fine-tuned) 248M 0.511 0.423 0.607 0.451 0.550 0.539 0.523
T5-Large (fine-tuned) 783M 0.558 0.467 0.630 0.478 0.569 0.586 0.563

MolT5-Base 248M 0.540 0.457 0.634 0.485 0.578 0.569 0.547
MolT5-Large 783M 0.594 0.508 0.654 0.510 0.594 0.614 0.582

LLaMA2-7B (zero-shot) 7B 0.094 0.039 0.169 0.054 0.142 0.175 0.153
LLaMA2-7B (2-shot) 7B 0.489 0.409 0.535 0.374 0.472 0.495 0.466
GPT-3.5 (zero-shot) N/A 0.103 0.050 0.261 0.088 0.204 0.161 0.352
GPT-3.5 (10-shot) N/A 0.565 0.482 0.623 0.450 0.543 0.585 0.560

GPT-4 (10-shot) 1.76T 0.607 0.525 0.634 0.476 0.562 0.610 0.585
GPT-4-SELFIES (10-shot) 1.76T 0.569 0.488 0.607 0.445 0.538 0.577 0.550

Table 2: The performance of molecule captioning on ChEBI-20. The best scores are in bold, and the second-best
scores are underlined. “N/A” indicates that the parameter size is unknown.

2015 2019 2024
Year

0

200

400

600

800

1000

1200

1400

C
ita

tio
n

C
ou

nt

SMILES
SELFIES

Figure 4: Comparison of Citation Counts.

Another reason lies in the inherent character-
istics of the representations themselves. Several
studies (Skinnider, 2024; Skinnider et al., 2021;
Edwards et al., 2022; Guo et al., 2023) have shown
that language models trained on SMILES outper-
form those trained on SELFIES. Surprisingly, al-
though models may produce invalid molecules us-
ing the SMILES format, a significantly larger num-
ber of SELFIES was required to train a model
of equivalent quality to one trained on SMILES

strings (Skinnider et al., 2021).
From the experimental results, we also observe

that increasing the size of the language model leads
to significant performance improvements. While
it is well known that scaling up model size and
pretraining data generally enhances performance
(Kaplan et al., 2020), it is still surprising to see that
when using SMILES as the molecular representa-
tion, LLMs outperform MolT5-Large—specifically
pre-trained and fine-tuned for text-based molecule
generation—across most metrics, with only 10-shot
in-context examples.

In summary, while our proposed Invalid SELF-
IES Editing ensures the validity of generated
molecules, LLMs perform worse when using
SELFIES. SMILES remains the most suitable
molecular representation for molecule genera-
tion using language models.

3 LLMs Are Inefficient Invalid SMILES
Correctors

In Section 5, we discuss approaches to address
the validity issue in LLM-based SMILES genera-
tion and explain why they cannot fully resolve it
by analyzing their limitations and comparing per-

26580

formance. Recent research (Zhong et al., 2024)
has demonstrated that LLMs can function as post-
hoc correctors, proposing corrections for tasks like
molecular property prediction. This section ex-
plores the question: Can LLMs efficiently correct
the invalid SMILES they generate?

3.1 Iterative SMILES Generation

To answer the question, we propose using LLMs
as post-hoc invalid SMILES correctors. Given an
invalid SMILES string, an LLM is first prompted
to generate a possibly valid SMILES string based
on the current invalid SMILES and a textual de-
scription of the desired molecule. This output is
then verified using the external tool RDKit (Lan-
drum, 2013). This process is repeated iteratively,
where the cycle of “Correct SMILES ⇒ Verify
SMILES” continues until the generated SMILES
string is valid. See Algorithm 1 for a summary of
the method.

3.2 Experiment Setting

We evaluate on the Text-Based Molecule Gener-
ation task using the ChEBI-20 dataset (Edwards
et al., 2021) and evaluation metrics identical to
those used in MolT5 (Edwards et al., 2022). The
baseline results are 10-shot example results of GPT-
3.5 and GPT-4 (Achiam et al., 2023). LLMs used
as post-hoc correctors include GPT-3.5, GPT-4o-
mini (Hurst et al., 2024), LLaMA2 (Touvron et al.,
2023), and LLaMA3 (Grattafiori et al., 2024). See
the Appendix B for further details.
Types of Errors. To assess the validity of model
outputs, we used RDKit to identify invalid SMILES
generated by LLMs—those that could not be con-
verted into valid molecules. These invalid SMILES
were classified into six categories based on RDKit
error messages: syntax error, unclosed ring, paren-
theses error (extra open or close parentheses), bond
already exists (dual occurrence of a bond between
the same two atoms), aromaticity error (non-ring
atom marked aromatic and kekulization errors),
and valence error (exceeding an atom’s maximum
number of bonds). If strings contain multiple error
types, only the first error is reported.
Correction Rate. To evaluate how effectively the
model can self-correct, we introduce the correction
rate, which is the ratio of valid SMILES gener-
ated after correction to the total number of invalid
SMILES before correction.

Algorithm 1 LLMs as invalid SMILES correctors
Require: Input description x, initial invalid SMILES ŷ0,

prompt p, model M, external tool T , number of itera-
tions n

1: Get initial invalid SMILES ŷ0 ▷ Initialization

2: for i← 0 to n− 1 do
3: ˆyi+1 ∼ PM(·|p⊕ x⊕ yi) ▷ Correction

4: Verify ˆyi+1 through T to obtain feedback fi ▷ Verification

5: if fi indicates that ˆyi+1 is valid then ▷ Stopping Criteria

6: return ˆyi+1

7: end if
8: end for
9: return ŷn

3.3 Experiment Results

As shown in Table 3, LLMs can improve the valid-
ity of molecules generated by them with feedback
from an external tool. However, this enhancement
is accompanied by a reduction in other metrics. In
particular, there is a noticeable reduction in both
the BLEU score and the Levenshtein score, as well
as a slight reduction in other metrics. These results
indicate that, while the molecules are corrected to
be valid, they deviate more from the ground truth
and become less aligned with the given description,
despite the description being provided during the
refinement process.

As shown in Figure 5, LLMs predominantly pro-
duced “parentheses error”, which accounted for
approximately half of all invalid SMILES. The sec-
ond most common error was “valence errors”, con-
stituting 22.31% of invalid SMILES generated by
GPT-3.5 and 22.42% by GPT-4.

41.94%
3.76%

10.48%

20.43%

22.31%
1.08%

GPT-3.5

58.19%

1.82%
11.82%

5.45%
22.42%

0.30%

GPT-4

Parentheses Error
Aromaticity Error

Syntax Error
Unclosed Ring

Valence Error
Bond Already Exists

Figure 5: Distribution of error types in the invalid
SMILES generated by LLMs.

As shown in Figure 6, LLMs demonstrate poten-
tial in correcting invalid SMILES. However, there
are significant variations in correction rates across
different models and error types. Overall, the GPT
series tends to outperform the LLaMA series in
correcting various errors, with GPT-3.5 notably

26581

surpassing all other models.

0 20 40 60 80
Correction Rate (%)

Parentheses Error

Aromaticity Error

Syntax Error

Unclosed Ring

Valence Error

Bond Already Exists

GPT-3.5 GPT-4 LLaMA2-7B LLaMA3-8B

(a) GPT-3.5

0 20 40 60 80 100
Correction Rate (%)

Parentheses Error

Aromaticity Error

Syntax Error

Unclosed Ring

Valence Error

Bond Already Exists

GPT-3.5 GPT-4 LLaMA2-7B LLaMA3-8B

(b) GPT-4

Figure 6: Comparison of correction rates across differ-
ent LLMs for various error types in invalid SMILES
generated by GPT-3.5 and GPT-4.

In summary, for the text-based molecule gener-
ation task, LLMs have demonstrated potential
in correcting invalid SMILES strings. However,
they continue to face challenges in enhancing va-
lidity while maintaining other metrics without
significant degradation. Additionally, there are
notable variations in correction rates across differ-
ent models and error types.

4 Making LLMs Generate 100% Valid
Molecules

We present SmiSelf (invalid SMILES to
SELFIES), a cross-chemical language framework
that ensures valid molecule generation through mu-
tual conversion between two chemical languages:
SMILES and SELFIES.

4.1 SmiSelf: Cross-Chemical Language for
Invalid SMILES Correction

Although SELFIES is a 100% robust molecular
string representation, based on our observations, it
is not as suitable as SMILES for molecule gener-
ation with LLMs. We propose converting invalid

SMILES generated by LLMs into SELFIES, then
transforming them back into SMILES, leveraging
the mechanism of SELFIES to correct the SMILES.

SMILES and SELFIES, though both string-
based molecular representations, have distinct
grammars. Precise conversion that preserves molec-
ular characteristics from invalid SMILES to SELF-
IES cannot be fully achieved through in-context
learning. To achieve this precise conversion, we
use molecular graphs as intermediaries to convert
between these two representations, as molecules
can be represented as molecular graphs that ad-
here to chemical constraints. Our goal is to elimi-
nate both syntactic and semantic errors in invalid
SMILES to ensure syntactic and semantic validity.
Syntactic errors involve strings that cannot be inter-
preted as molecular graphs, while semantic errors
involve strings that form molecular graphs but vio-
late basic chemical rules. See the Appendix E for
details of the distinction between syntactic validity
and semantic validity.

As shown in Figure 3, we implement
a SMILES parser that converts invalid
SMILES into a molecular graph. The string
CC(=O)OC1=CC=CC=C1=C(=O)O) represents an
invalid SMILES with both syntactic (extra closing
parenthesis) and semantic (exceeding valence
bond limits) errors. Carbon “C” and oxygen
“O” atoms are parsed as nodes, connected by
edges representing single (denoted by no symbol
between atoms) or double (denoted by “=”)
bonds. The number “1” shows that the ring is
formed between the two carbon atoms labeled
“C1”. Branched structures “(=O)” are given using
brackets. We skip the extra closing parenthesis
based on predefined rules and ignore the semantic
error during graph construction, ensuring syntactic
validity.

Next, the molecular graph is converted into a
SELFIES string using the Graph-SELFIES rules
(SELFIES grammar) (Krenn et al., 2020). The
SELFIES string is transformed into a semantically
valid molecular graph according to the SELFIES-
Graph rules (Table 8). As shown in Figure 3, the
molecule is constructed from the partial SELF-
IES string, corresponding to the SMILES string
CC(=O)OC1=CC=CC=C1. The next SELFIES sym-
bol, [=C], adds a carbon atom with a double
bond. However, this would violate valence con-
straints, so the bond is converted to a single
bond by the SELFIES-Graph rules. Finally, the
molecular graph is translated back into a SMILES

26582

Model BLEU↑ EM↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ FCD↓ Text2Mol↑ Validity↑
GPT-3.5 (10-shot)

Baseline 0.790 0.139 24.910 0.847 0.708 0.624 0.570 0.571 0.887
+ LLM Corrector (GPT-3.5) 0.738 0.141 29.171 0.836 0.692 0.600 0.537 0.561 0.967
+ LLM Corrector (GPT-4o-mini) 0.753 0.140 29.018 0.837 0.693 0.606 0.550 0.563 0.942
+ LLM Corrector (LLaMA2-7B) 0.685 0.139 30.663 0.830 0.692 0.609 0.776 0.556 0.916
+ LLM Corrector (LLaMA3-8B) 0.732 0.140 31.400 0.841 0.700 0.615 0.568 0.566 0.909

GPT-4 (10-shot)

Baseline 0.857 0.280 17.140 0.903 0.805 0.739 0.410 0.593 0.899
+ LLM Corrector (GPT-3.5) 0.772 0.280 22.220 0.890 0.784 0.710 0.375 0.582 0.981
+ LLM Corrector (GPT-4o-mini) 0.788 0.280 21.299 0.894 0.790 0.722 0.401 0.586 0.940
+ LLM Corrector (LLaMA2-7B) 0.718 0.280 25.034 0.886 0.787 0.722 0.562 0.578 0.929
+ LLM Corrector (LLaMA3-8B) 0.779 0.280 24.549 0.897 0.795 0.728 0.405 0.587 0.920

Table 3: Results of using LLMs as post-hoc correctors for correcting invalid SMILES in text-based molecule
generation. The best scores are in bold.

string. These transformations ensure the resulting
SMILES satisfy both syntactic and semantic con-
straints, guaranteeing 100% validity.

4.2 Experiment Setting

4.2.1 Text-Based Molecule Generation
For this task, we use the ChEBI-20 dataset (Ed-
wards et al., 2021) and evaluation metrics identical
to those used in MolT5 (Edwards et al., 2022). The
baseline results include n-shot (0, 1, 2, 5, and 10)
in-context example results of GPT-3.5 and 10-shot
in-context example results of GPT-4. These are
used to evaluate the performance of our proposed
SmiSelf method in correcting SMILES strings gen-
erated by LLMs at varying quality levels. See the
Appendix B for further details.

4.2.2 Class-Specific Molecule Generation
This task aims to generate molecules specific to
a given class, based on a limited number of ex-
emplars from that class. The dataset contains 32
Acrylates, 11 Chain Extenders, and 11 Isocyanates.
For each class, 100 molecules are generated using
LLMs. The evaluation metrics include: Validity,
percentage of chemically valid molecules, diversity,
average pairwise Tanimoto distance over Morgan
fingerprints (Rogers and Hahn, 2010); Member-
ship, and the percentage of molecules that belong
to the desired monomer class.

We employ grammar prompting (Wang et al.,
2024) during in-context learning to evaluate
the benefits of explicitly incorporating generic
SMILES grammar into LLM-based molecule gen-
eration. Grammar prompting enables LLMs to in-
corporate external knowledge and domain-specific
constraints, expressed through a Backus–Naur
Form grammar, during in-context learning.

Unlike prompting-based methods, the baseline

model DEG (Guo et al., 2022) generates molecules
using a graph-based grammar, which is learned
through a sequence of production rules automati-
cally derived from the training data.

4.3 Experiment Results

4.3.1 Text-Based Molecule Generation

As shown in Table 4, the molecules corrected by
SmiSelf are 100% valid. However, we also ob-
serve that some metrics for the corrected molecules
are worse than those for the uncorrected ones.
These results are to be expected. First, the calcu-
lation of metrics—excluding BLEU, Exact Match,
Levenshtein, and Validity—considers only valid
SMILES, so the correction phase broadens the
scope of the metrics. Second, since generating
molecules from molecular descriptions is a one-to-
one task with a ground truth, the process of cor-
recting the molecules inevitably introduces some
distortion, which can affect the original informa-
tion and slightly reduce the metrics.

These results align with those of TGM-DLM
(Gong et al., 2024), which trains a diffusion model
in its second phase to correct invalid SMILES gen-
erated in the first phase. However, the performance
reduction observed with our method is significantly
lower across most metrics compared to the reduc-
tion caused by TGM-DLM’s second phase, as well
as our previously proposed Invalid SELFIES Edit-
ing and LLM Corrector. Additionally, SmiSelf
improves the EM score, indicating that some in-
valid SMILES can exactly match the ground truth
after correction, whereas TGM-DLM’s EM score
remains unchanged. We provide these additional
comparison results in the Table 6.

26583

Method BLEU↑ EM↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ FCD↓ Text2Mol↑ Validity↑
GPT-3.5 (zero-shot) 0.489 0.019 52.13 0.705 0.462 0.367 2.05 0.479 0.802

+ SmiSelf 0.544 0.020 46.967 0.688 0.447 0.339 1.986 0.456 1.000

GPT-3.5 (1-shot) 0.706 0.074 33.38 0.799 0.620 0.526 0.84 0.540 0.842
+ SmiSelf 0.701 0.075 33.49 0.790 0.610 0.505 0.719 0.527 1.000

GPT-3.5 (2-shot) 0.748 0.101 28.89 0.827 0.668 0.578 0.67 0.557 0.860
+ SmiSelf 0.741 0.102 29.311 0.815 0.654 0.552 0.604 0.545 1.000

GPT-3.5 (5-shot) 0.771 0.121 26.78 0.836 0.686 0.599 0.60 0.564 0.882
+ SmiSelf 0.761 0.122 27.51 0.827 0.674 0.576 0.542 0.554 1.000

GPT-3.5 (10-shot) 0.790 0.139 24.91 0.847 0.708 0.624 0.57 0.571 0.887
+ SmiSelf 0.778 0.141 25.938 0.838 0.695 0.602 0.492 0.561 1.000

GPT-4 (10-shot) 0.857 0.280 17.14 0.903 0.805 0.739 0.41 0.593 0.899
+ SmiSelf 0.846 0.282 17.668 0.892 0.789 0.718 0.312 0.584 1.000

Table 4: Few-shot text-based molecule generation results on ChEBI-20, along with results corrected by SmiSelf.
The better scores are in bold.

Acrylates Chain Extenders Isocyanates
Model V D M V D M V D M

Graph Grammar 100 0.83 30 100 0.86 98 100 0.93 83

Standard Prompting 23 0.74 19 100 0.81 99 94 0.82 94
+ SmiSelf 100 0.75 83 100 0.81 99 100 0.82 100

Grammar Prompting 97 0.77 56 86 0.91 84 71 0.83 65
+ SmiSelf 100 0.78 57 100 0.92 96 100 0.83 79

Table 5: Results for class-specific molecule generation with GPT-3.5, along with results corrected by SmiSelf. The
metrics are validity (V), diversity (D), and membership (M). The better scores are in bold.

4.3.2 Class-Specific Molecule Generation

In Table 5, we observe that applying our proposed
SmiSelf method results in improvements across
all metrics. This outcome can be attributed to the
one-to-many nature of the task (learn the distri-
bution of a class from a few examples and sam-
ple from it to generate multiple new molecules),
and the results indicate that the molecules de-
coded from the corrected SMILES successfully
capture the specifics of the monomer class. No-
tably, while standard prompting results in very
low validity for acrylate molecules generated by
LLMs, these molecules—once corrected by our
SmiSelf method—achieve 100% validity and show
significant improvement in the Membership met-
ric. These findings suggest that although LLMs
face challenges in generating valid SMILES strings,
they can still capture class-specific molecular char-
acteristics through low-shot examples. Further-
more, this highlights that our proposed SmiSelf
method not only corrects invalid molecules but also
preserves their molecular characteristics.

We also observe that, compared to standard
prompting, grammar prompting does not consis-
tently improve validity or other performance met-
rics. This suggests that explicitly incorporating

generic SMILES grammar into the prompt may not
provide additional benefits. Moreover, while the
baseline method DEG achieves 100% validity in its
generated molecules, its Membership metric across
all three molecular classes is lower compared to the
prompting-based methods and significantly lower
than that of the molecules corrected using our Smi-
Self method. This is because LLMs have encoun-
tered SMILES strings during pretraining, allowing
them to acquire extensive domain knowledge about
molecules. In contrast, DEG cannot incorporate
external knowledge beyond the 11 or 32 molecules
provided in its training data. Additionally, the high
computational complexity of grammar construction
limits DEG to being applied only to structurally
similar low-shot molecules. Results for more base-
lines are in Appendix C.

5 Related Work

In this section, we introduce various methods to
improve the validity of generated molecules. For a
broader discussion, see Appendix A.

The existing potential solutions for generating
valid SMILES with LLMs can be categorized into
training-time correction, generation-time correc-
tion, and post-hoc correction (Pan et al., 2024).

26584

Model BLEU↑ EM↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ FCD↓ Text2Mol↑ Validity↑
Ground Truth 1.000 1.000 0.000 1.000 1.000 1.000 0.00 0.609 1.000

Constrained Decoding for Generation-Time Correction

MolT5-Large 0.858 0.318 15.957 0.890 0.813 0.750 0.38 0.590 0.958
MolT5-Large-HV 0.810 0.314 16.758 0.872 0.786 0.722 0.44 0.582 0.996

-5.59% -1.26% +5.02% -2.02% -3.32% -3.73% +15.79% -1.36% +3.97%

Training Generative Models for Post-Hoc Correction

TGM-DLMw/o corr 0.828 0.242 16.897 0.874 0.771 0.722 0.89 0.589 0.789
TGM-DLM 0.826 0.242 17.003 0.854 0.739 0.688 0.77 0.581 0.871

-0.24% 0.00% +0.63% -2.29% -4.15% -4.71% -13.48% -1.36% +10.39%

Our Methods for Post-Hoc Correction

GPT-4 (10-shot) 0.857 0.280 17.14 0.903 0.805 0.739 0.41 0.593 0.899
+ Invalid SELFIES Editing 0.682 0.179 26.596 0.756 0.624 0.541 1.666 0.468 1.000

-20.42% -36.07% +55.17% -16.28% -22.48% -26.79% +306.34% -21.08% +11.23%

GPT-4 (10-shot) 0.857 0.280 17.14 0.903 0.805 0.739 0.41 0.593 0.899
+ LLM Corrector (GPT-3.5) 0.772 0.280 22.220 0.890 0.784 0.710 0.375 0.582 0.981

-9.92% 0.00% +29.64% -1.44% -2.61% -3.92% -8.54% -1.85% +9.12%

GPT-4 (10-shot) 0.857 0.280 17.14 0.903 0.805 0.739 0.41 0.593 0.899
+ SmiSelf 0.846 0.282 17.668 0.892 0.789 0.718 0.312 0.584 1.000

-1.28% +0.71% +3.08% -1.22% -1.99% -2.84% -23.90% -1.52% +11.23%

Table 6: Results of methods for improving the validity of text-based molecule generation, with relative improvements
marked in blue and declines marked in pink.

Since training-time correction is limited by the in-
feasibility of fine-tuning giant closed-source LLMs,
we will focus on generation-time correction and
post-hoc correction.
Constrained Decoding for Generation-Time
Correction. Constrained decoding is a technique
used to enforce constraints on language model
outputs. It restricts model outputs to adhere to
predefined constraints without requiring retraining
or modifications to the model architecture (Geng
et al., 2023, 2024). While constrained decoding
can improve the validity of molecule generation,
it reduces the search space and significantly low-
ers other metrics (Wang et al., 2024; Edwards
et al., 2022). Additionally, constrained decoding
increases the number of LLM API calls.
Training Generative Models for Post-Hoc Cor-
rection. Another possible approach is training
generative models to correct invalid SMILES gen-
erated by LLMs post hoc. Theoretically, invalid
SMILES strings could also be corrected using trans-
lator models, as employed in the field of gram-
matical error correction (Yuan and Briscoe, 2016).
However, this approach requires both invalid and
ground-truth molecules to form input-output pairs
for training, and thus may be task-specific (Gong
et al., 2024; Zheng et al., 2019). Moreover, such
models cannot correct 100% of invalid outputs, and
the percentage of corrected outputs varies across
different invalid output generators (Schoenmaker
et al., 2023).

To compare our methods with these approaches,
we calculate the relative improvement in text-based
molecule generation. As shown in Table 6, all
methods come with trade-offs. SmiSelf provides
a promising approach for generating 100% valid
molecules with LLMs, while keeping the perfor-
mance on other metrics.

6 Conclusion

This paper studies how to ensure that the molecules
generated by LLMs are 100% valid. To this end, we
first propose Invalid SELFIES Editing and LLMs
as post-hoc correctors. Through our experiments,
we find that: 1) LLMs perform worse when us-
ing SELFIES compared to SMILES; 2) LLMs face
challenges in correcting and refining the invalid
SMILES they generate. We then present SmiSelf,
a cross-chemical language framework for invalid
SMILES correction. We propose converting invalid
SMILES generated by LLMs into SELFIES and
transforming them back into SMILES, leveraging
the mechanism of SELFIES to correct the SMILES.
Experiments demonstrate that SmiSelf effectively
corrects invalid SMILES generated by LLMs, en-
suring 100% validity while preserving their original
molecular characteristics and maintaining or even
enhancing performance on other metrics. SmiSelf
helps expand the practical applications of LLMs in
the biomedical domain and is compatible with all
SMILES-based generative models.

26585

Limitations

Like other post-hoc correction methods, SmiSelf
introduces some distortion in the correction process
for the text-based molecule generation task, which
can lead to corrected molecules deviating further
from the ground truth and being less aligned with
the given descriptions.

Acknowledgements

We thank Kai-Wei Chang from the UCLA NLP
group for the support and suggestions. This
work is supported by the National Key R&D Pro-
gram of China under Grant No. 2024YFA1012700
and No. 2023YFF0725100, by the National Nat-
ural Science Foundation of China (NSFC) un-
der Grant No. 62372159, No. 62402410, and No.
U22B2060, by Guangdong Provincial Project (No.
2023QN10X025), by Guangdong Basic and Ap-
plied Basic Research Foundation under Grant No.
2023A1515110131, by Guangzhou Municipal Sci-
ence and Technology Bureau under Grant No.
2024A04J4454, by Guangzhou Municipal Educa-
tion Bureau (No. 2024312263), by Guangzhou In-
dustrial Information and Intelligent Key Laboratory
Project (No. 2024A03J0628), by Guangzhou Mu-
nicipal Key Laboratory of Financial Technology
Cutting-Edge Research (No. 2024A03J0630), by
NTU Start-Up Grant, and by the Ministry of Ed-
ucation, Singapore, under its Academic Research
Fund Tier 1 (RG22/24) and Academic Research
Fund Tier 2 (FY2025) (Grant MOE-T2EP20124-
0009).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Darko Butina. 1999. Unsupervised data base clustering
based on daylight’s fingerprint and tanimoto similar-
ity: A fast and automated way to cluster small and
large data sets. Journal of Chemical Information and
Computer Sciences, 39(4):747–750.

Austin H Cheng, Andy Cai, Santiago Miret, Gustavo
Malkomes, Mariano Phielipp, and Alán Aspuru-
Guzik. 2023. Group selfies: a robust fragment-based
molecular string representation. Digital Discovery,
2(3):748–758.

Yu Cheng, Yongshun Gong, Yuansheng Liu, Bosheng
Song, and Quan Zou. 2021. Molecular design in

drug discovery: a comprehensive review of deep
generative models. Briefings in bioinformatics,
22(6):bbab344.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena,
and Le Song. 2018. Syntax-directed variational
autoencoder for structured data. In International
Conference on Learning Representations.

Joseph L Durant, Burton A Leland, Douglas R Henry,
and James G Nourse. 2002. Reoptimization of mdl
keys for use in drug discovery. Journal of chemical
information and computer sciences, 42(6):1273–
1280.

Carl Edwards, Tuan Lai, Kevin Ros, Garrett Honke,
Kyunghyun Cho, and Heng Ji. 2022. Transla-
tion between molecules and natural language. In
2022 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2022.

Carl Edwards, ChengXiang Zhai, and Heng Ji. 2021.
Text2mol: Cross-modal molecule retrieval with
natural language queries. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 595–607.

Daniel Flam-Shepherd, Kevin Zhu, and Alán Aspuru-
Guzik. 2022. Language models can learn complex
molecular distributions. Nature Communications,
13(1):3293.

Saibo Geng, Berkay Döner, Chris Wendler, Martin Josi-
foski, and Robert West. 2024. Sketch-guided con-
strained decoding for boosting blackbox large lan-
guage models without logit access. In Proceedings
of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short
Papers), pages 234–245.

Saibo Geng, Martin Josifoski, Maxime Peyrard, and
Robert West. 2023. Grammar-constrained decod-
ing for structured nlp tasks without finetuning. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages
10932–10952.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Du-
venaud, José Miguel Hernández-Lobato, Benjamín
Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-
Iparraguirre, Timothy D Hirzel, Ryan P Adams, and
Alán Aspuru-Guzik. 2018. Automatic chemical de-
sign using a data-driven continuous representation of
molecules. ACS central science, 4(2):268–276.

Haisong Gong, Qiang Liu, Shu Wu, and Liang Wang.
2024. Text-guided molecule generation with diffu-
sion language model. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38,
pages 109–117.

26586

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Minghao Guo, Veronika Thost, Beichen Li, Payel
Das, Jie Chen, and Wojciech Matusik. 2022. Data-
efficient graph grammar learning for molecular gen-
eration. In International Conference on Learning
Representations.

Taicheng Guo, Bozhao Nan, Zhenwen Liang, Zhichun
Guo, Nitesh Chawla, Olaf Wiest, Xiangliang Zhang,
and 1 others. 2023. What can large language mod-
els do in chemistry? a comprehensive benchmark
on eight tasks. Advances in Neural Information
Processing Systems, 36:59662–59688.

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément
Vignac, and Max Welling. 2022. Equivariant diffu-
sion for molecule generation in 3d. In International
conference on machine learning, pages 8867–8887.
PMLR.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, and 1
others. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola.
2018. Junction tree variational autoencoder for
molecular graph generation. In International
conference on machine learning, pages 2323–2332.
PMLR.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola.
2020. Hierarchical generation of molecular graphs
using structural motifs. In International conference
on machine learning, pages 4839–4848. PMLR.

Hiroshi Kajino. 2019. Molecular hypergraph gram-
mar with its application to molecular optimization.
In International Conference on Machine Learning,
pages 3183–3191. PMLR.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Seojin Kim, Jaehyun Nam, Sihyun Yu, Younghoon Shin,
and Jinwoo Shin. 2024. Data-efficient molecular
generation with hierarchical textual inversion. In
Proceedings of the 41st International Conference on
Machine Learning, pages 24392–24414.

Mario Krenn, Florian Häse, AkshatKumar Nigam, Pas-
cal Friederich, and Alan Aspuru-Guzik. 2020. Self-
referencing embedded strings (selfies): A 100%
robust molecular string representation. Machine
Learning: Science and Technology, 1(4):045024.

Matt J Kusner, Brooks Paige, and José Miguel
Hernández-Lobato. 2017. Grammar variational au-
toencoder. In International conference on machine
learning, pages 1945–1954. PMLR.

Greg Landrum. 2013. Rdkit documentation. Release,
1(1-79):4.

Jiatong Li, Yunqing Liu, Wenqi Fan, Xiao-Yong Wei,
Hui Liu, Jiliang Tang, and Qing Li. 2024. Em-
powering molecule discovery for molecule-caption
translation with large language models: A chatgpt
perspective. IEEE Transactions on Knowledge and
Data Engineering.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. 2021.
Graphdf: A discrete flow model for molecular graph
generation. In International conference on machine
learning, pages 7192–7203. PMLR.

Andreas Mayr, Günter Klambauer, Thomas Unterthiner,
Marvin Steijaert, Jörg K Wegner, Hugo Ceulemans,
Djork-Arné Clevert, and Sepp Hochreiter. 2018.
Large-scale comparison of machine learning meth-
ods for drug target prediction on chembl. Chemical
science, 9(24):5441–5451.

Lingrui Mei, Jiayu Yao, Yuyao Ge, Yiwei Wang, Bao-
long Bi, Yujun Cai, Jiazhi Liu, Mingyu Li, Zhong-Zhi
Li, Duzhen Zhang, Chenlin Zhou, Jiayi Mao, Tianze
Xia, Jiafeng Guo, and Shenghua Liu. 2025. A sur-
vey of context engineering for large language models.
Preprint, arXiv:2507.13334.

Noel O’Boyle and Andrew Dalke. 2018. Deepsmiles:
an adaptation of smiles for use in machine-learning
of chemical structures.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak
Nathani, Xinyi Wang, and William Yang Wang. 2024.
Automatically correcting large language models: Sur-
veying the landscape of diverse automated correc-
tion strategies. Transactions of the Association for
Computational Linguistics, 12:484–506.

Daniil Polykovskiy, Alexander Zhebrak, Benjamin
Sanchez-Lengeling, Sergey Golovanov, Oktai
Tatanov, Stanislav Belyaev, Rauf Kurbanov, Alek-
sey Artamonov, Vladimir Aladinskiy, Mark Veselov,
and 1 others. 2020. Molecular sets (moses): a bench-
marking platform for molecular generation models.
Frontiers in pharmacology, 11:565644.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Stephen Robertson, Hugo Zaragoza, and 1 others. 2009.
The probabilistic relevance framework: Bm25 and
beyond. Foundations and Trends® in Information
Retrieval, 3(4):333–389.

26587

https://arxiv.org/abs/2507.13334
https://arxiv.org/abs/2507.13334

David Rogers and Mathew Hahn. 2010. Extended-
connectivity fingerprints. Journal of chemical
information and modeling, 50(5):742–754.

Nadine Schneider, Roger A Sayle, and Gregory A
Landrum. 2015. Get your atoms in order an open-
source implementation of a novel and robust molecu-
lar canonicalization algorithm. Journal of chemical
information and modeling, 55(10):2111–2120.

Linde Schoenmaker, Olivier JM Béquignon, Willem
Jespers, and Gerard JP van Westen. 2023. Uncorrupt
smiles: a novel approach to de novo design. Journal
of Cheminformatics, 15(1):22.

Michael A Skinnider. 2024. Invalid smiles are beneficial
rather than detrimental to chemical language models.
Nature Machine Intelligence, 6(4):437–448.

Michael A Skinnider, R Greg Stacey, David S Wishart,
and Leonard J Foster. 2021. Chemical language mod-
els enable navigation in sparsely populated chemical
space. Nature Machine Intelligence, 3(9):759–770.

Teague Sterling and John J Irwin. 2015. Zinc 15–
ligand discovery for everyone. Journal of chemical
information and modeling, 55(11):2324–2337.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, and 1 others. 2023. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. Advances in neural information
processing systems, 30.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bo-
han Wang, Volkan Cevher, and Pascal Frossard. 2023.
Digress: Discrete denoising diffusion for graph gen-
eration. In The Eleventh International Conference
on Learning Representations.

Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao,
Rif A Saurous, and Yoon Kim. 2024. Grammar
prompting for domain-specific language generation
with large language models. Advances in Neural
Information Processing Systems, 36.

David Weininger. 1988. Smiles, a chemical language
and information system. 1. introduction to method-
ology and encoding rules. Journal of chemical
information and computer sciences, 28(1):31–36.

Minkai Xu, Alexander S Powers, Ron O Dror, Stefano
Ermon, and Jure Leskovec. 2023. Geometric la-
tent diffusion models for 3d molecule generation.
In International Conference on Machine Learning,
pages 38592–38610. PMLR.

Zheng Yuan and Ted Briscoe. 2016. Grammati-
cal error correction using neural machine trans-
lation. In Proceedings of the 2016 conference
of the north American Chapter of the Association
for computational linguistics: Human language
technologies, pages 380–386.

Zheni Zeng, Yuan Yao, Zhiyuan Liu, and Maosong
Sun. 2022. A deep-learning system bridging
molecule structure and biomedical text with compre-
hension comparable to human professionals. Nature
communications, 13(1):862.

Shuangjia Zheng, Jiahua Rao, Zhongyue Zhang, Jun
Xu, and Yuedong Yang. 2019. Predicting retrosyn-
thetic reactions using self-corrected transformer neu-
ral networks. Journal of chemical information and
modeling, 60(1):47–55.

Zhiqiang Zhong, Kuangyu Zhou, and Davide Mottin.
2024. Harnessing large language models as post-hoc
correctors. arXiv preprint arXiv:2402.13414.

A Broader Related Work

Molecule Generation. Existing methods can be
categorized according to their molecular represen-
tation. Molecules, for example, can be treated as
chemical graphs (Luo et al., 2021; Vignac et al.,
2023), combinations of substructures (Jin et al.,
2018), or three-dimensional objects (Hoogeboom
et al., 2022; Xu et al., 2023). However, these ap-
proaches have yet to consistently surpass the ear-
lier chemical language models (Gómez-Bombarelli
et al., 2018; Flam-Shepherd et al., 2022). These
models represent molecules as text strings, typ-
ically using the SMILES (Weininger, 1988) or
SELFIES (Krenn et al., 2020) formats.
Validity of Generated Molecules. SMILES
(Weininger, 1988) strings have been a prominent
molecular representation since they were invented.
However, the SMILES representation is not in-
herently robust, meaning that generative models
are likely to produce strings that do not represent
valid molecules. A large body of work has been
dedicated to addressing this issue in recent years,
whether by developing alternative textual represen-
tations of molecules (O’Boyle and Dalke, 2018;
Krenn et al., 2020; Cheng et al., 2023), methods
that generate valid SMILES by design (Kusner
et al., 2017; Dai et al., 2018), or techniques to
correct invalid SMILES post hoc (Schoenmaker
et al., 2023; Zheng et al., 2019; Kim et al., 2024;
Gong et al., 2024).

26588

B Molecule-Caption Generation

B.1 Evaluation Metrics

BLEU (Bilingual Evaluation Understudy) mea-
sures the similarity between generated and refer-
ence texts (e.g., molecule captions). Higher is bet-
ter.
ROUGE (Recall-Oriented Understudy for Gist-
ing Evaluation) measures overlap between gener-
ated and reference molecule captions. Higher is
better.
METEOR (Metric for Evaluation of Translation
with Explicit ORdering) measures similarity be-
tween generated and reference molecule captions,
considering precision, recall, synonyms, and word
order. Higher is better.
EM (Exact Match) checks if the generated
molecule exactly matches the ground truth. Higher
is better.
Levenshtein (Edit Distance) measures the mini-
mum number of insertions, deletions, or substitu-
tions needed to convert one string to another. Lower
is better.
MACCS FTS (MACCS Fingerprint Tanimoto
Similarity) measures Tanimoto similarity between
target and generated molecules using MACCS fin-
gerprints (Durant et al., 2002). Higher is better.
RDK FTS (RDKit Fingerprint Tanimoto Simi-
larity) is similar to MACCS FTS but uses RDKit
fingerprints (Schneider et al., 2015). Higher is bet-
ter.
Morgan FTS (Morgan Fingerprint Tanimoto
Similarity) measures Tanimoto similarity of target
and generated molecules using Morgan fingerprints
(Rogers and Hahn, 2010). Higher is better.
FCD (Fréchet ChemNet Distance) measures the
distance between generated and target molecule
distributions using ChemNet (Mayr et al., 2018).
Lower is better.
Text2Mol measures relevance between textual
descriptions and generated molecules using the
Text2Mol model (Edwards et al., 2021). Higher
is better.
Validity measures whether generated strings are
valid chemical representations using RDKit (Lan-
drum, 2013). Higher is better.

B.2 Datasets

We utilize the ChEBI-20 dataset (Edwards et al.,
2021), which contains 33,010 molecule-caption
pairs. The dataset is split into 80% for training,

10% for validation, and 10% for testing. For in-
context learning, the training set serves as a local
database to retrieve n-shot examples.

B.3 Baselines

RNN. RNN-GRU (Cho et al., 2014) with a 4-
layer bidirectional encoder, trained from scratch
on ChEBI-20.
Transformer. A vanilla Transformer (Vaswani
et al., 2017) with six encoder–decoder layers,
trained from scratch on ChEBI-20.
T5. A model based on T5 (Raffel et al., 2020), pre-
trained on C4 and directly fine-tuned on ChEBI-20,
with small, base, and large variants. No molecular
knowledge is used in pre-training.
MolT5. MolT5 (Edwards et al., 2022) is initialized
from pre-trained T5, jointly pre-trained on ZINC-
15 SMILES (Sterling and Irwin, 2015) and C4 text
(Raffel et al., 2020), and then fine-tuned on ChEBI-
20. It is available in small, base, and large sizes.
LLMs. GPT-3.5 (GPT-3.5-Turbo), GPT-4 (GPT-
4-0314) (Achiam et al., 2023), and GPT-4o-mini
(Hurst et al., 2024) are accessed via the OpenAI
API. The open-source LLMs LLaMA2-7B (Tou-
vron et al., 2023) and LLaMA3-8B (Grattafiori
et al., 2024) are used without fine-tuning. In-
puts follow the five-part structure of (Li et al.,
2024): role, task, examples, output instruction, and
user prompt, with examples retrieved using BM25
(Robertson et al., 2009) (text-based molecule gen-
eration) or Morgan Fingerprint (Butina, 1999) sim-
ilarity (molecule captioning).

C Class-Specific Molecule Generation

We compare our method with four baselines for
class-specific molecule generation: JT-VAE (Jin
et al., 2018), HierVAE (Jin et al., 2020), MHG
(Kajino, 2019), and DEG (Guo et al., 2022), as
shown in Table 7.

From the results, we observe that the vocabulary-
based method JT-VAE fails to extract a vocabu-
lary that enables it to generate diverse molecules
on small datasets. HierVAE, another vocabulary-
based method with a more diverse vocabulary, ad-
dresses this limitation; however, its low member-
ship scores indicate that it does not capture class-
specific characteristics. Among grammar-based
methods, MHG employs fine-grained rules that
simply attach atoms, resulting in high diversity.
Nevertheless, these rules fail to capture domain-
specific characteristics when compared to another

26589

Acrylates Chain Extenders Isocyanates
Model V D M V D M V D M

Task-Specific
JT-VAE 100 0.29 49 100 0.62 80 100 0.72 67
HierVAE 100 0.83 1 100 0.83 44 100 0.83 0
MHG 100 0.89 1 100 0.90 41 100 0.88 12
DEG 100 0.83 30 100 0.86 98 100 0.93 83

Prompting + SmiSelf
GPT-3.5 100 0.75 83 100 0.81 99 100 0.82 100

Table 7: Results for class-specific molecule generation. The metrics are validity (V), diversity (D), and membership
(M). Higher is better for all metrics.

grammar-based method, DEG.

Overall, the results demonstrate that molecules
generated using the prompting-based method and
subsequently corrected with our proposed SmiSelf
successfully capture class-specific features and con-
sistently achieve stable performance. These find-
ings clearly distinguish our approach from the base-
lines.

D SMILES vs. SELFIES

SMILES (Simplified Molecular-Input Line-Entry
System) (Weininger, 1988) is the de facto standard
representation in cheminformatics. In SMILES,
molecules are represented as a chain of atoms, writ-
ten as letters in a string. Branches in the molecule
are enclosed in parentheses, while ring closures
are indicated by two matching numbers. Although
the SMILES grammar is simple, it allows for the
description of complex structures, as well as prop-
erties such as stereochemistry. However, SMILES
lacks a mechanism to ensure that molecular strings
are valid in terms of both syntax and physical prin-
ciples.

SELFIES (SELF-referencIng Embedded
Strings) (Krenn et al., 2020), on the other hand, is a
100% robust molecular string representation. That
is, SELFIES cannot produce an invalid molecule,
as every combination of symbols in the SELFIES
alphabet corresponds to a chemically valid graph.
SELFIES is a formal grammar with derivation
rules (Table 8). It can be understood as a small
computer program with minimal memory that
guarantees 100% robust derivation. The SELFIES
grammar is specifically designed to eliminate both
syntactically and semantically invalid molecules,
which is especially important in generative tasks.

E Syntactic Validity vs. Semantic Validity

Syntactic validity refers to whether the string con-
forms to specific syntactic rules and can be parsed
into a molecular graph. For example, the SMILES
string C#C=C is syntactically valid because it ad-
heres to SMILES syntax rules.
Semantic validity refers to whether the molecular
graph represented by the string adheres to funda-
mental chemical rules, such as the valence rules
for atoms. For example, the SMILES string C#C=C
is semantically invalid because the middle carbon
(bonded via # and =) exceeds carbon’s maximum
valency of 4.

A syntactically invalid string is always seman-
tically invalid because it cannot be parsed into a
molecular graph and therefore cannot be assessed
for semantic validity.

We provide examples of three possible cases:

• Syntactically invalid: The SMILES string
C#C=C) is syntactically invalid because of the
non-matched).

• Syntactically valid but semantically invalid:
The SMILES string C#C=C is syntactically
valid, but the middle carbon (bonded via #
and =) exceeds carbon’s maximum valency of
4, which violates chemical rules and is there-
fore semantically invalid.

• Both syntactically and semantically valid:
The SMILES string C=C=C is both syntacti-
cally and semantically valid, representing a
molecule that adheres to both syntactic and
chemical rules.

F Fine-tuning vs. SmiSelf

Although fine-tuning can be applied to achieve
higher validity and improve other metrics, we
would like to highlight several crucial factors to
consider when deciding whether to use it:

26590

State [ϵ] [F] [=O] [#N] [O] [N] [=N] [C] [=C] [#C] [Branch1] [Branch2] [Branch3] [Ring]

X0 X0 F X1 O X2 N X3 O X2 N X3 N X3 C X4 C X4 C X4 ign X0 ign X0 ign X0 ign X0

X1 ϵ F O N O X1 N X2 N X2 C X3 C X3 C X3 ign X1 ign X1 ign X1 R(N)

X2 ϵ F =O =N O X1 N X2 =N X1 C X3 =C X2 =C X2 B(N, X5)X1 B(N, X5)X1 B(N, X5)X1 R(N) X1

X3 ϵ F =O #N O X1 N X2 =N X1 C X3 =C X2 #C X1 B(N, X5)X2 B(N, X6)X1 B(N, X5)X2 R(N) X2

X4 ϵ F =O #N O X1 N X2 =N X1 C X3 =C X2 #C X1 B(N, X5)X3 B(N, X7)X1 B(N, X6)X2 R(N) X3

X5 C F O N O X1 N X2 N X2 C X3 C X3 C X3 X5 X5 X5 X5

X6 C F =O =N O X1 N X2 =N X1 C X3 =C X2 =C X2 X6 X6 X6 X6

X7 C F =O #N O X1 N X2 =N X1 C X3 =C X2 #C X1 X7 X7 X7 X7

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Table 8: Derivation rules of SELFIES for small organic molecules.

• availability of training data

• computational cost of fine-tuning

• time cost of fine-tuning

• performance improvement

• feasibility of training LLMs

In contrast, our proposed SmiSelf:

• does not require training data

• eliminates the computational cost of fine-
tuning, with only a small overhead

• is rapid

• ensures 100% validity while preserving
molecular characteristics and maintaining or
even enhancing performance on other metrics

• is compatible with all SMILES-based genera-
tive models

G Prompts

Prompt for text-based molecule generation:
System Prompt

You are now working as an excellent expert in chemisrty and drug
discovery. Given the caption of a molecule, your job is to predict the
SMILES representation of the molecule. The molecule caption is a
sentence that describes the molecule, which mainly describes the
molecule's structures, properties, and production. You can infer the
molecule SMILES representation from the caption.

Example 1:
```
Instruction: Given the caption of a molecule, predict the SMILES
representation of the molecule.
Input: The molecule is a steroid ester that is pregn-4-en-21-yl acetate
substituted by oxo group at positions 3 and 20, a methyl group at
position 6 and hydroxy groups at positions 11 and 17 respectively. It is
a 3-oxo-Delta(4) steroid, a steroid ester, an 11beta-hydroxy steroid, a
17alpha-hydroxy steroid, a 20-oxo steroid and a tertiary alpha-hydroxy
ketone. It derives from a hydride of a pregnane.
```

Your output should be:
```
{"molecule":
"C[C@H]1C[C@H]2[C@@H]3CC[C@@]([C@]3(C[C@@H]([C@@H]2[C@@]4(C1=CC(=O)CC4)C)
O)C)(C(=O)COC(=O)C)O"}
```

Your response should only be in the exact JSON format above; THERE
SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.

User Prompt

Input: The molecule is a steroid ester that is methyl
(17E)-pregna-4,17-dien-21-oate substituted by oxo groups at positions 3
and 11. It is a 3-oxo-Delta(4) steroid, an 11-oxo steroid, a steroid
ester and a methyl ester. It derives from a hydride of a pregnane.

Prompt for molecule captioning:
System Prompt

You are now working as an excellent expert in chemisrty and drug
discovery. Given the SMILES representation of a molecule, your job is to
predict the caption of the molecule. The molecule caption is a sentence
that describes the molecule, which mainly describes the molecule's
structures, properties, and production.

Example 1:
```
Instruction: Given the SMILES representation of a molecule, predict the
caption of the molecule.
Input: C[C@]12CCC(=O)C=C1CC[C@@H]3[C@@H]2C(=O)C[C@]4([C@H]3CCC4=O)C
```

Your output should be:
```
{"caption": "The molecule is a 3-oxo Delta(4)-steroid that is
androst-4-ene carrying three oxo-substituents at positions 3, 11 and 17.
It has a role as an androgen, a human urinary metabolite, a marine
metabolite and an EC 1.1.1.146 (11beta-hydroxysteroid dehydrogenase)
inhibitor. It is a 3-oxo-Delta(4) steroid, a 17-oxo steroid, an
androstanoid and an 11-oxo steroid. It derives from a hydride of an
androstane."}
```

Your response should only be in the JSON format above; THERE SHOULD BE
NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.

User Prompt

Input:
C[C@]12CCC(=O)C=C1CC[C@@H]3[C@@H]2C(=O)C[C@]\\4([C@H]3CC/C4=C/C(=O)OC)C

Prompt for LLMs as correctors:
System Prompt

You are now working as an excellent expert in chemisrty and drug
discovery. Given the invalid SMILES representation and the caption of a
molecule, your job is to predict the valid SMILES representation of the
molecule. The molecule caption is a sentence that describes the
molecule, which mainly describes the molecule's structures, properties,
and production. You can infer the molecule SMILES representation from
the caption.

Task Format
```
Instruction: Given the invalid SMILES representation and the caption of
a molecule, predict the valid SMILES representation of the molecule.
Input:
Invalid SMILES Representation: [INVALID_SMILES_REPRESENTATION_MASK]
Caption: [CAPTION_MASK]
```

Your output should be:
```
{"molecule": "[VALID_SMILES_REPRESENTATION_MASK]"}
```

26591

Your response should only be in the exact JSON format above; THERE
SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.

User Prompt

Input:
Invalid SMILES Representation:
C[C@H]1[C@H]([C@H]([C@@H]([C@@H](O1)O[C@@H]2[C@H]([C@H]([C@H](O[C@H]2O)
CO)O[C@H]3[C@@H]([C@H]([C@@H]([C@H](O3)CO)O)O)NC(=O)C)O)O)NC(=O)C)O)O
Caption: The molecule is a branched amino tetrasaccharide consisting of
N-acetyl-beta-D-glucosamine having two alpha-L-fucosyl residues at the
3- and 6-positions as well as an N-acetyl-beta-D-glucosaminyl residue at
the 4-position. It has a role as a carbohydrate allergen. It is a
glucosamine oligosaccharide and an amino tetrasaccharide. It derives
from an alpha-L-Fucp-(1->3)-[alpha-L-Fucp-(1->6)]-beta-D-GlcpNAc.

Prompt for class-specific molecule generation:
You are an expert in chemistry. You are given a list of acrylates
molecules in SMILES format. You are asked to write another acrylates
molecule in SMILES format.
Molecule: C=CC(=O)OCCCCCCOC(=O)C=C
Molecule: CCCCCCOC(=O)C=C
Molecule: CCCOC(=O)C(=C)C
Molecule: CCC(C)OC(=O)C(=C)C
Molecule: CCC(COCCCOC(=O)C=C)(COCCCOC(=O)C=C)COCCCOC(=O)C=C
Molecule: C=CC(=O)OC1=CC=CC=C1
Molecule: CCC(C)OC(=O)C=C
Molecule: CCCCCCCCOC(=O)C(=C)C
Molecule: C=CC(=O)OC1=C(C(=C(C(=C1F)F)F)F)F
Molecule: CC(=C)C(=O)OCCOC1=CC=CC=C1
Molecule: CCCCCCCCCCCCOC(=O)C(=C)C
Molecule: CC(=C)C(=O)OC
Molecule:
C=CC(=O)OCC(CO)(COCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C)COC(=O)C=C
Molecule: CC(C)CCCCCCCOC(=O)C=C
Molecule: CCOCCOC(=O)C(=C)C
Molecule: C=CC(=O)OCC1=CC=CC=C1
Molecule: CCCCOC(=O)C=C
Molecule: CCC(COCC(CC)(COC(=O)C=C)COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C
Molecule: CC(=C)C(=O)OCC1=CC=CC=C1
Molecule: CC1CC(CC(C1)(C)C)OC(=O)C(=C)C
Molecule: COC(=O)C=C
Molecule: CC(=C)C(=O)OC1CC2CCC1(C2(C)C)C
Molecule: CCCOC(=O)C=C
Molecule: COCCOC(=O)C=C
Molecule: C=CC(=O)OCCC1=CC=CC=C1
Molecule:
C=CC(=O)OCC(COCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C
Molecule: CC(=C)C(=O)OC1=CC=CC=C1
Molecule: CCCCC(CC)COC(=O)C(=C)C
Molecule: CC(C)(COCCCOC(=O)C=C)COCCCOC(=O)C=C
Molecule: C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C
Molecule: CCCCOCCOC(=O)C(=C)C
Molecule: CC(C)COC(=O)C(=C)C
Molecule:

26592

