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Abstract

Mobile GUI agents have attracted tremendous
research participation recently. Traditional ap-
proaches to mobile agent training rely on cen-
tralized data collection, leading to high cost
and limited scalability. Distributed training uti-
lizing federated learning offers an alternative
by harnessing real-world user data, providing
scalability and reducing costs. However, piv-
otal challenges, including the absence of stan-
dardized benchmarks, hinder progress in this
field. To tackle the challenges, we introduce
FedMABench, the first benchmark for feder-
ated training and evaluation of mobile GUI
agents, specifically designed for heterogeneous
scenarios. FedMABench features 6 datasets
with 30+ subsets, 8 federated algorithms, 10+
base models, and over 800 apps across 5 cate-
gories, providing a comprehensive framework
for evaluating mobile agents across diverse en-
vironments. Through extensive experiments,
we uncover several key insights: federated al-
gorithms consistently outperform local training;
the distribution of specific apps plays a crucial
role in heterogeneity; and, even apps from dis-
tinct categories can exhibit correlations during
training. FedMABench is publicly available at:
https://github.com/wwh0411/FedMABench.

1 Introduction

Recent advances in Vision-Language Models
(VLMs) (Wang et al., 2021; Jin et al., 2021; Zhou
et al., 2022) have significantly propelled the evolu-
tion of Graphical User Interface (GUI) agents (Bai
et al., 2024; Wang et al., 2024c,a). GUI agents on
mobile phones, known as Mobile Agents, are ca-
pable of automating complex tasks, thereby signif-
icantly reducing human workload. Mobile agents
have demonstrated promising potential across a
wide range of applications (Liu et al., 2024).

The traditional approach for mobile agents
largely depends on centralized data collection and

∗Primary contributing authors. †Corresponding authors.

training (Hong et al., 2023; Dorka et al., 2024;
Chen and Li, 2024), which, although effective,
leads to several challenges such as high costs and
limited scalability (Sun et al., 2024). Meanwhile,
the frequent use of mobile phones by users world-
wide naturally generates valuable supervisory infor-
mation, which serves as a rich data source for train-
ing mobile agents. However, this wealth of high-
quality data remains underutilized, as it cannot be
publicly shared due to privacy concerns (Xiong
et al., 2025). Therefore, data from real-world mo-
bile users must be utilized in a distributed manner,
where each client locally collects and trains on its
own data without direct data transmission.

Continuing to improve the quality and cover-
age of mobile agents necessitates the development
of distributed data collection and training (Wang
et al., 2025a). Distributed training mobile agents
on user data offers two key advantages: (1) In con-
sideration of the billions of phone users worldwide,
collecting data directly from real-world users en-
ables unprecedented scalability. (2) The data col-
lection and annotation costs can be significantly
reduced, as user data is an incidental by-product
of daily phone usage. Additionally, privacy con-
cerns surrounding the collection of personal data
can be effectively mitigated through the application
of Federated Learning (FL) (McMahan et al., 2017;
Kuang et al., 2023; Wang et al., 2024g), which en-
sures that sensitive information remains decentral-
ized, thus fostering greater user trust and ensuring
compliance with privacy regulations.

Despite the promising potential of training mo-
bile GUI agents on distributed user data via
FL, a critical challenge persists: the absence of
standardized benchmarks for federated mobile
agents, which impedes comparisons and advance-
ments in this field. In this context, (1) without di-
verse and heterogeneous datasets, research efforts
cannot effectively address the issue of heterogene-
ity, which is crucial to utilizing distributed phone
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Figure 1: Overview of FedMABench. FedMABench is tailored for benchmarking federated mobile agents trained
on distributed mobile user data with diverse types of heterogeneity (top left). We construct two homogeneous
dataset and four heterogeneous datasets with 30+ subsets. We also build a research-friendly framework, which
integrates eight representative federated algorithms and supports evaluation on more than 10 base models (bottom
left). Our datasets cover 877 apps across five categories (bottom right), and the experiments (top right) demonstrate
the varying performance of methods under diverse distributions.

usage trajectories. (2) Without an efficient and uni-
fied framework, future research may give rise to
varied training and evaluation protocols, complicat-
ing re-implementations and heightening the risk of
unfair comparisons.

To address these challenges, we introduce
FedMABench, the first benchmark specifically de-
signed for federated training and evaluation of mo-
bile GUI agents, with three key features: (1) Com-
prehensiveness: FedMABench provides a compre-
hensive framework that integrates eight federated
algorithms and supports over ten base models. The
evaluation metrics include two performance indi-
cators for both high-level and low-level training,
establishing a solid foundation for future research
and development. (2) Diversity: FedMABench
includes thousands of tasks, spanning over 800
apps across five categories from two distinct data
sources, yielding substantial diversity. (3) Het-
erogeneity: FedMABench puts strong emphasize
on heterogeneous scenarios to promote further re-
search. We incorporate 30+ datasets derived from
the original Android Control and Android in the
Wild datasets (Rawles et al., 2023; Li et al., 2024b),

carefully curated to ensure fair and standardized
training and evaluation setups.

Specifically, our datasets address three typical
types of heterogeneity, reflecting the diverse mobile
usage patterns and preferences of users worldwide:
(1) App Category Distribution: Each app cate-
gory addresses a specific type of user need. Since
mobile phone usage varies based on users’ different
needs, the distribution of app categories becomes
inherently heterogeneous. (2) Specific App Prefer-
ence: Users exhibit varying preferences for specific
apps even with the same function. We construct
two series of datasets: one focusing on underlying
the differences between apps by selecting the top
five apps for experiments and the other expanding
the scope with more clients and apps for further
validation. (3) Two-Level Sample Counts: Mo-
bile agent datasets comprise different number of
episodes, where differences in users’ tasks and us-
age patterns lead to additional variations in the
number of steps required to complete each episode.

Based on FedMABench, we conduct an exhaus-
tive empirical study to explore federated mobile
GUI agents in diverse scenarios, offering new in-
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Dataset Name Distribution Characteristic N. Subsets N. Clients N. Apps N. Episodes N. Steps

Basic-AC Homogeneous 14 10-70 877 7,000+700 47055+4648
Basic-AitW Homogeneous 5 10-50 - 5,000+500 39394+4447
Step-Episode Two-Level Sample Counts 4 10 293 1,000+100 6685+635
Category-Level App Category Distribution 6 5 52 1,000+100 7127+703
App-Level Specific App Preference 4 5 5 750+100 4456+574
ScaleApp Specific App Preference 3 30 30 2,500+250 15700+1691

Table 1: Summary of the six dataset series in FedMABench. N. denotes "the number of". The training set and
evaluation set are combined by "+". Our datasets span a broad spectrum of homogeneity and heterogeneity ,
encompassing a variety of apps across five categories.

sights into this area. Through extensive experi-
ments, we make several key observations: (1) FL
algorithms consistently outperform local training,
providing strong motivation for users to collabo-
rate; (2) The distribution of specific apps is more
fundamental to represent heterogeneity than app
categories; (3) Even apps from distinct categories
can exhibit correlations during training.

In summary, our contributions are:
1. We propose FedMABench, the first benchmark

for federated training and evaluation of mo-
bile agents, which is both research-friendly
and comprehensive, integrating eight federated
algorithms and supporting 10+ base models.

2. We release 6 datasets with 30+ subsets, specifi-
cally targeted at three typical types of hetero-
geneity across various scenarios, simulating
real-world user behavior on diverse apps.

3. We conduct extensive experiments to thor-
oughly investigate the training of federated
mobile agents on distributed data with diverse
distributions, revealing insightful discoveries.

2 Related Work

2.1 Conventional Centralized Mobile Agents

The emergence of VLMs (Zhang et al., 2024b)
has revolutionized phone automation by facilitat-
ing more adaptive, contextually aware, and intel-
ligent interactions with mobile devices (Liu et al.,
2025). The evolution of mobile agents has under-
gone several pivotal advancements, with modern
models exhibiting enhanced capabilities in process-
ing multi-modal information, discerning user inten-
tions, and autonomously performing intricate user
tasks (Zhang et al., 2024d; Nong et al., 2024).

Datasets. Acquiring training trajectories for mo-
bile agents presents considerable challenges. The
research community has invested tremendous ef-
forts into constructing high-quality datasets for mo-
bile agents (Rawles et al., 2023; Zhou et al., 2024;

Zhang et al., 2024c). However, existing approaches
primarily rely on manual curation, rendering data
collection both costly and inefficient, and limiting
scalability (Gao et al., 2024; Li et al., 2024c).

Benchmarks. Several works have sought to es-
tablish efficient benchmarks for mobile GUI agents
(Zhang et al., 2024a; Wang et al., 2024a). Yet,
none of them is tailored for distributed or federated
training. While there are benchmarks for feder-
ated Large Language Models (LLMs) (Ye et al.,
2024a,b; Wu et al., 2024a), they are not applicable
to mobile agent training. This gap significantly ob-
structs the advancement of federated mobile agents,
which offer superior scalability.

2.2 Towards Distributed Mobile Agents
Federated Mobile Agent. FedMobileAgent
(Wang et al., 2025a) stands as a pioneering ap-
proach that proposes distributed training for mobile
agents using self-sourced data from diverse users.
It leverages locally deployed VLMs to automati-
cally annotate user instructions and integrates fed-
erated learning to collaboratively optimize a global
mobile agent. The authors also introduce a novel
form of heterogeneity, elaborated in Section 3.3.2.
However, the study falls short of further investigat-
ing more complexities of heterogeneity, or other
real-world scenarios of diverse user phone usage.

Challenges. Federated mobile agents face two
major challenges: (1) To facilitate collaboration
among a large and diverse set of users with vary-
ing usage habits, it is essential to address the is-
sue of heterogeneity (Ye et al., 2023; Qu et al.,
2022). This heterogeneity manifests in various
forms, such as differing app usage patterns, indi-
vidual needs, and app preferences for similar func-
tionalities. However, these facets of heterogene-
ity remain largely unexplored, with vast potential
yet to be uncovered. (2) Currently, no publicly
available datasets or benchmarks exist for training
federated mobile agents. And it is non-trivial to
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(a) Step-Episode IID
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(b) Step Skew
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(c) Episode Skew
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(d) Both Skew

Figure 2: Distributions of episode and step counts within the Step-Episode Dataset. The four subsets highlight
distinct differences in average steps per episode across clients.

effectively capture the heterogeneity that is repre-
sentative of real-world scenarios by directly down-
sampling from existing datasets. In this context,
FedMABench stands out as the first comprehensive
benchmark in the literature, addressing these gaps.

3 FedMABench

3.1 System Overview
FedMABench features a comprehensive frame-
work and six datasets emphasizing on heterogene-
ity and diversity. As shown in Figure 1 (grey),
FedMABench adopts the conventional federated
learning protocol and provides an easy-to-use,
research-friendly framework that includes eight FL
baselines. Specifically, diverse users with hetero-
geneous data collaboratively train a global mobile
GUI agent on their distributed datasets through four
iterative steps: server-to-client model broadcasting,
local model training, client-to-server model upload-
ing, and global model aggregation.

In real-world scenarios, mobile users exhibit di-
verse usage habits and preferences, leading to het-
erogeneous data distributions which are extremely
complex and difficult to quantify. To lay the founda-
tion for research on the heterogeneity of distributed
data trajectories, we construct two homogeneous
datasets and four heterogeneous datasets, address-
ing diverse aspects of heterogeneity. A summary
of the dataset statistics is presented in Table 1.

3.2 Data Collection
Data Composition. To train the core VLM of
mobile GUI agents, each data episode, denoted
as D, comprises multiple steps, each serving as a
basic training unit. A step consists of three com-
ponents: a task instruction T , a screenshot, and
a corresponding action. The data episode is de-
fined as: D = {⟨T , ai, si⟩ | i ∈ [1, n]}, where
⟨T , ai, si⟩ represents the i-th step, with ai and si
denoting the action and screenshot respectively. A
data example is attached in Figure 6.

Collection. Our datasets are derived from the
AndroidControl and Android in the Wild (AitW)
datasets, with two key modifications which are
labeling and partitioning. Each episode in our
datasets is annotated with two app-related at-
tributes: the app name and its corresponding cate-
gory. Given that the original app and category infor-
mation is not publicly available in Li et al. (2024b),
we are compelled to infer these details based on the
actions performed and the instructions provided.
We first employ a dual-strategy method, described
in Appendix C.1, to extract the related app name for
each episode. Following human heuristics, we then
categorize the apps into five distinct groups: Shop-
ping, Traveling, Office, Lives, and Entertainment.
We employ GPT-4o to automatically assign each
app a corresponding category. Details regarding
the categorization is presented in Table 19.

Subsequently, we partition each constructed
dataset into multiple subsets to simulate the fed-
erated learning environment, where each subset
represents a distinct data distribution. We specifi-
cally control the variables and ensure that subsets
are only different in the distribution to provide the
fairest possible comparison.

3.3 Datasets Description

To establish a comprehensive foundation for re-
search, we construct six datasets in FedMABench,
emphasizing on different forms of homogeneity or
heterogeneity. This section provides detailed de-
scriptions and visualizations of these datasets, with
additional details available in Appendix C.1.

3.3.1 Basic-AC and Basic-AitW Datasets
Initially, we introduce two basic datasets with ho-
mogeneous distributions, to validate general princi-
ples and properties of federated mobile agents.

Description of Basic-AC Dataset. Basic-AC is
constructed from Li et al. (2024b) based on ho-
mogeneous distributions, where we disregard the
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(a) Category-App IID (b) Category Skew (c) Category Half-Skew

(d) Category Non-Uniform (e) App Random (f) App Skew

Figure 3: Distributions of the top 10 apps across five clients in Category-Level. The top two apps from each of the
five categories are selected. Our six subsets exhibit diverse patterns across clients.

app attributes of all episodes. Since all episodes are
available in this IID setup, we construct six subordi-
nate datasets with increasing data sizes (200-7,000)
by random sampling. Additionally, we create five
subsets, each consisting of episodes from a single
category, to provide more focused scenarios. Basic-
AC offers diverse situations with varying data sizes
and client participation, enabling the exhaustive
evaluation of federated mobile agents under IID
settings. For each training set, we sample 10% of
the training size to form the test set.

Description of Basic-AitW Dataset. To estab-
lish a comprehensive experimental foundation with
multiple sources, we construct another homoge-
neous dataset, named Basic-AitW, derived from
AitW (Rawles et al., 2023). We sample 1,000
episodes from each category to form five subsets.
The Basic-AitW dataset offers distinct data charac-
teristics compared to Basic-AC, adding further di-
versity for benchmarking federated mobile agents.

3.3.2 Step-Episode Dataset
Step-Episode Two-Level Heterogeneity. As
pointed out in FedMobileAgent (Wang et al.,
2025a), the distributed user data for training mobile
GUI agents exhibits heterogeneity at two levels:
step counts and episode counts, due to variances in
users’ app usage habits. Unlike traditional feder-
ated learning tasks, such as image classification or
sentiment analysis, the datasets for training feder-
ated mobile agents are characterized by two types
of quantity measurements: one based on episode
counts and the other based on step counts. As usage
habits vary across different users, these two types
of measurements do not necessarily align, leading

to a unique form of heterogeneity that cannot be
adequately captured by the conventional "sample
count" perspective. Therefore we refer to this het-
erogeneity as "step-episode two-level".

Description & Visualization. To evaluate fed-
erated mobile agents under step-episode two-level
heterogeneity, we design four subsets based on a
common data pool split among clients using differ-
ent partition rules. To reduce other heterogeneity
factors like app usage, we randomly sample from
the pool to create the Step-Episode Dataset. The
four subsets are as follows: (1) Step-Episode IID:
All clients have identical step counts and episode
counts. (2) Episode Skew: Clients share similar to-
tal step counts, but exhibit skewed episode counts.
(3) Step Skew: All clients have the same episode
count, but distinct total step counts. (4) Both Skew:
Both episode and step counts are heterogeneous
across clients. As shown in Figure 2, the four sub-
sets yield distinct step and episode counts, offering
valuable signals for evaluating mobile agents under
diverse data distributions.

3.3.3 Category-Level Dataset

App Category Heterogeneity. In real-world user
phone usage, the users have various app using
habits. As showcased in Figure 1 (grey), some
users such as "User 1", use mobile phones mostly
for shopping and traveling needs, while others such
as "User 2" may often utilize phones for office
needs. Such using habits and needs result in hetero-
geneous training data for federated mobile agents
as the category distributions differ among users.
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(a) App IID (b) App Skew (c) App Half-Skew (d) Non-Uniform
Figure 4: Distributions of the five apps across App-Level. Our subsets reveal distinct differences in the heterogeneity
of app usage. Note that the numbers represent episode counts, and the episodes are identical for all subsets.

Supported Base Models
Qwen: Qwen2-VL-2B/7B-Instruct, Qwen-VL-Chat
Intern: InternVL2-1B/2B/4B/8B
DeepSeek: DeepSeekVL2, DeepSeekVL2-tiny/small
OpenAI: GPT-4o, GPT-4o-mini, GPT-4-Vision

Integrated FL Algorithms
FedAvg, FedProx, SCAFFOLD, FedAvgM,
FedAdam, FedYogi, FedAdagrad, FedMobileAgent

Table 2: Supported base models and FL algorithms.

Description & Visualization. To investigate how
mobile agents using classic FL methods perform,
we sample 1,000 episodes from Basic-AC to form
the Category-Level Dataset which consists of 5 cat-
egories with 52 apps. To control and monitor the
influence of different apps, we select only those
apps with a large number of episodes for research
efficiency. The sub-datasets are as follows: (1)
IID: Each app is evenly allocated across all five
clients, meaning each client has the same number
of episodes for every app and app category. (2)
Category Skew: The distribution of app categories
is highly skewed, as each client possesses only one
unique category. (3) Category Half-Skew: Similar
to Category Skewed, each client has access to two
categories, with an even distribution over the two
seen categories. (4) Category Non-Uniform: All
clients have seen all five categories, but the distri-
bution of categories varies across clients. (5) App
Skew: Each client has five categories of apps, but
within each category, a particular app is only seen
by one client. In other words, the category distri-
bution is IID across clients, but the specific apps
within each category are completely different. (6)
App Random: Each app is only seen by one client,
with apps randomly assigned to clients. Figure 3
highlights the notable distinctions between subsets.

3.3.4 App-Level and ScaleApp Datasets
To evaluate on the app-level heterogeneity instead
of categories, we build a concise dataset called
App-Level targeted at 5 apps, and another dataset

ScaleApp with scaled app and client numbers.

App Name Heterogeneity. In real life, mobile
phone users exhibit distinct preferences for specific
apps, even among those that serve similar functions.
Therefore, this form of heterogeneity cannot be
measured from the perspective of app categories,
but rather by app names. As showcased in Figure 1,
"User K" prefers Amazon over eBay for purchasing
products and Epic over Steam for gaming, resulting
in heterogeneity in the specific apps used.

Description of App-Level Dataset. We con-
struct a series of datasets aimed at capturing this
diversity in apps. To make the distinction more ap-
parent and straightforward for research comparison,
we select five apps with the highest usage frequen-
cies: Amazon, Clock, eBay, Flipkart, and Gmail.
Given the limitations in available data samples for
each individual app, we sample 150 episodes for
each app. Subsequently, we create four represen-
tative subsets following similar insights to those
described in Section 3.3.3: (1) App-IID: All clients
share the same number of episodes for each app.
(2) App Skew: Each client has data collected from
only one specific app. (3) App Half-Skew: Each
client has access to two apps with an equal distri-
bution of episodes. (4) App Non-Uniform: All
clients have seen all five apps but with varying
distributions of data. To facilitate comprehensive
research, we provide a test dataset with an equal
number of episodes for each of the five apps.

3.4 Framework Description

FedMABench integrates eight typical federated
learning algorithms and supports more than ten
base models. Our supported models and imple-
mented methods are summarized in Table 2. In
addition, we establish an end-to-end pipeline that
offers two training paradigms: high-level and low-
level training, each can be evaluated using two
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Algorithm
Basic-AC Basic-AitW

High-Level Low-Level General Install G-Apps Single WebShopping Avg.Step Acc Step Acc Episode Acc

Zero-Shot 27.24 52.13 6 15.90 5.20 15.08 28.38 11.41 15.19
Central 55.59 80.47 27 35.04 54.50 46.65 55.46 39.82 46.29
Local 0 37.64 70.87 20 35.21 52.47 36.03 45.41 32.04 40.23
FedAvg 50.87 78.90 33 36.56 51.84 38.27 54.59 33.59 42.97

Table 3: Experiments on the Basic-AC and Basic-AitW Datasets. FedAvg consistently surpasses Local Learning,
validating the effectiveness of training mobile agents on distributed user data. Local 0 denotes the 0-th client.

metrics: step-level accuracy and episode-level ac-
curacy. In this framework, a low-level instruction
refers to a fine-grained, atomic command that corre-
sponds to a single execution step, while a high-level
instruction encapsulates the overarching task goal.
Compared to high-level training, low-level training
provides the agent with additional guidance in the
form of explicit subgoals as input at each step.

We build our framework based on the well-
known repository ms-swift (Zhao et al., 2024).
It is important to note that incorporating federated
learning support is non-trivial, as we decompose
the training pipeline and successfully integrate fed-
erated training in a concise manner, which facili-
tates the easy reproduction of other algorithms.

4 Experiments

4.1 Basic Setups (Details in Appendix C)

Base Model. We employ Qwen2-VL-7B-Instruct
(Wang et al., 2024b) as the base model for most
of our experiments. We use Low-Rank Adaptation
(LoRA) (Hu et al., 2021) for efficient fine-tuning
as the resources are limited on mobile phones.

Training Configuration. We train every model
for 10 rounds and sample 10% the total dataset at
each round. In most settings, we randomly sam-
ple 3 clients to participate each round to simulate
real-world scenarios where users are occasionally
offline (Jiang et al., 2024).

Metrics. We adopt a two-tier evaluation: Step
Accuracy measures precision at the action level
by checking if the predicted response matches the
ground truth based on TF-IDF similarity. Episode
Accuracy evaluates task execution success, requir-
ing all steps in an episode to be correct.

4.2 Experiments on Basic-AC & Basic-AitW

Setups. The experiments are based on the two ho-
mogeneous datasets to examine the general proper-
ties of federated mobile agents. From all available
subsets we choose those with 1,000 episodes as

Algorithm IID Episode Step Both Avg.

Qwen2-VL-7B 27.24 27.24
GPT-4o 42.52 42.52
Central 55.59 55.59

Local 0 37.64 33.39 29.13 46.77 36.73
FedAvg 43.78 40.63 40.63 40.81 41.46
FedProx 42.36 41.10 40.16 40.16 40.95
FedAvgM 42.00 41.57 41.10 40.47 41.29
FedYogi 42.05 41.10 41.26 42.05 41.62
FedAdagrad 43.31 41.42 41.10 41.26 41.77
SCAFFOLD 41.73 41.42 41.26 39.84 41.06
FedMobileAgent 42.68 41.89 41.26 46.53 43.09

Table 4: Experiments with multiple baselines on the
Step-Episode Dataset. In this setting, FedMobileAgent
achieves best performance on average and outperforms
GPT-4o, one of the SOTA VLMs.

representatives. We evaluated four methodologies
on behalf of all baselines, using step-level accuracy
as the primary evaluation metric. For Basic-AC,
we perform both high-level training and low-level
training. Since the episode accuracies of high-level
training are close, we omit them for brevity. For
Basic-AitW, we experiment on each subset sepa-
rately and provide the average results as well.

Results. From Table 3, we draw the following
conclusions: (1) Federated learning effectively
leverages distributed user data, as evidenced by the
noticeable improvement of FedAvg over local train-
ing on both the Basic-AC and Basic-AitW Datasets.
However, the performance of FedAvg still falls
short of centralized training, which aligns with ex-
pectations. (2) Federated learning yields varying
levels of improvement across different subsets of
Basic-AitW, highlighting the impact of different
data types and laying the foundation for exploring
heterogeneity in the following sections.

4.3 Experiments on Step-Episode Dataset

Setups. We compare seven baselines and two
base models on all four subsets: Step-Episode IID,
Episode Skew, Step Skew and Both Skew (short
for IID, Episode, Step and Both in Table 4 respec-
tively). The evaluation dataset is consistent to pro-
vide straightforward comparison, which is why the
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Algorithm Shop Travel Office Lives Entertain. Avg. Algorithm Shop Travel Office Lives Entertain. Avg.

Zero-Shot 26.61 25.33 27.05 24.41 23.81 25.46 Central 57.26 58.67 51.64 55.12 60.95 56.90

Homo. Category IID Hetero. Category Skew
Local 0 48.39 45.78 36.89 32.28 45.71 42.25 Local 0 50.81 47.56 46.72 38.58 48.57 46.51
FedAvg 55.65 52.00 52.46 37.80 51.43 50.07 FedAvg 52.42 52.00 48.36 41.73 52.38 49.64
FedProx 53.23 52.44 51.64 38.58 51.43 49.79 FedProx 51.61 52.44 47.54 41.73 49.52 49.08
FedAvgM 54.84 52.89 50.00 38.58 49.52 49.64 FedAvgM 54.84 52.89 48.36 42.52 52.38 50.50
FedYogi 54.84 53.78 52.46 38.58 50.48 50.50 FedYogi 54.03 53.78 48.36 41.73 51.43 50.36

Hetero. Category Half-Skew Hetero. Category Non-Uniform
Local 0 41.13 56.00 36.89 40.16 37.14 44.38 Local 0 38.71 33.78 34.43 34.65 33.33 34.85
FedAvg 46.77 47.11 39.34 36.22 47.62 43.81 FedAvg 50.00 48.89 47.54 40.94 46.67 47.08
FedProx 47.58 49.33 42.62 39.37 46.67 45.66 FedProx 47.94 52.42 50.22 45.90 42.52 46.67
FedAvgM 45.16 48.89 42.62 38.58 45.71 44.81 FedAvgM 48.39 51.56 46.72 43.31 48.57 48.22
FedYogi 43.55 46.22 36.07 34.65 40.00 40.97 FedYogi 46.77 52.00 47.54 43.31 48.57 48.22

Table 5: Experiments on Category-Level. FL algorithms exhibit diverse behaviors with non-IID distributions result in
slightly lower accuracy. Entertain. is short for Entertainment. Colors represent homogeneity and heterogeneity .

results are identical for centralized learning and
base models across subsets. Note that we intention-
ally evaluate FedMobileAgent with the parameter
λ set to 7 (around the average steps per episode),
which is designed to balance the two-level hetero-
geneity in both step and episode counts.

Results. As shown in Table 4, the results indicate
that: (1) The presence of two-level heterogene-
ity in step and episode counts is evident, as there
is a clear performance drop when the federated
trained mobile agents shift from IID scenarios to
other non-IID scenarios. (2) Different federated
learning algorithms exhibit distinct behaviors in
response to this heterogeneity. Overall, FedMo-
bileAgent(Wang et al., 2025a), which leverages a
weighted aggregation of each client’s total steps
and episodes, demonstrates the best performance
under these heterogeneous conditions. This ap-
proach effectively captures the disparities in data
contributions across clients, thereby mitigating the
performance drop caused by the two-level sample
count heterogeneity. (3) It is surprising at first
sight, that Local 0 performs exceptionally well on
the Both Skew subset. However, Figure 2 (d) shows
that the 0-th client holds a large portion of the total
data, which explains its superior performance.

4.4 Experiments on Category-Level Dataset

Setups. We construct 6 subsets to examine how
federated mobile agents behave with heterogeneous
app category distributions. Due to page limits, we
present 4 subsets in Table 5, with the remaining
provided in the Appendix (Table 10 and 11). The
red color and blue color represent homogeneous
and heterogeneous datasets respectively. We evalu-
ate performance across all five category and report
the average accuracy across all test samples.

Results. In our constructed hierarchy, hetero-
geneity escalates from mild to severe as we
progress from Category IID −→ Non-Uniform −→
Half-Skew −→ Skew. However, the general accu-
racy results in Table 5 rank as Category IID > Skew
> Non-Uniform > Half-Skew, which does not pre-
cisely align with the expected heterogeneity levels.
These results suggest that: (1) App category het-
erogeneity exists and degrades federated learning
performance, as nearly all algorithms show a perfor-
mance drop when transitioning from homogeneous
to heterogeneous scenarios. (2) Despite explicit
shifts in category distributions, the results on the
Category Skew subset remain statistically compa-
rable to those on the Category IID subset. This
suggests that category differences lead to domain-
invariant representations (i.e., features common
across categories, such as temporal usage patterns)
which counteract the harmful effects of heterogene-
ity. In summary, app category differences are not
the fundamental cause of heterogeneity.

4.5 Experiments on App-Level Dataset

Setups. The App-Level Dataset encompasses 5
apps: Amazon, Clock, Ebay, Flipkart and Gmail.
We evaluate all 5 apps and report their average per-
formance across four subsets. The color scheme
follows the same convention as in Section 4.4. Ad-
ditionally, we include more results from training on
the 1-st and 2-nd clients to offer more comparative
insights and useful findings.

Results. As shown in Table 6, we conclude the
following: (1) The presence of app heterogeneity is
evident, as there is a clear performance drop when
the model shifts to heterogeneous situations. (2)
We further observe a positive correlation between
the severity of app name heterogeneity and per-
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Algorithm Amazon Clock Ebay Flipkart Gmail Avg. Algorithm Amazon Clock Ebay Flipkart Gmail Avg.

Zero-Shot 29.75 32.38 28.33 30.00 28.12 29.62 Central 54.55 64.76 58.33 61.00 51.56 57.67

Homo. App IID Hetero. App Skew
Local 0 44.63 49.52 41.67 50.00 33.59 43.38 Local 0 56.20 36.19 42.50 44.00 21.09 39.72
Local 1 46.28 57.14 52.50 54.00 39.06 49.30 Local 1 33.06 60.00 38.33 31.00 28.91 37.80
Local 2 54.55 53.33 51.67 51.00 38.28 49.48 Local 2 40.50 17.14 45.00 37.00 20.31 32.06
FedAvg 57.02 53.33 52.50 55.00 46.88 52.79 FedAvg 48.76 53.33 48.33 52.00 42.97 48.78
FedProx 55.37 53.33 55.00 54.00 44.53 52.26 FedProx 48.76 53.33 48.33 54.00 39.84 48.43
FedAvgM 58.68 52.38 54.17 54.00 46.88 53.14 FedAvgM 49.59 53.33 48.33 52.00 39.84 48.26
FedYogi 57.02 54.29 54.17 58.00 48.44 54.18 FedYogi 48.76 54.29 47.50 54.00 43.75 49.30

Hetero. App Half-Skew Hetero. App Non-Uniform
Local 0 52.89 57.14 45.00 40.00 36.72 46.17 Local 0 39.67 58.10 38.33 48.00 46.09 45.64
Local 1 57.02 53.33 50.00 47.00 28.91 46.86 Local 1 52.89 56.19 38.33 47.00 39.84 46.52
Local 2 50.41 40.95 41.67 58.00 28.91 41.64 Local 2 47.11 49.52 45.00 55.00 40.62 47.04
FedAvg 54.55 53.33 45.83 55.00 38.28 48.95 FedAvg 56.20 55.24 45.83 51.00 42.19 49.83
FedProx 56.20 55.24 43.33 55.00 38.28 49.13 FedProx 57.02 55.24 45.83 50.00 38.28 48.95
FedAvgM 54.55 53.33 45.00 54.00 42.19 49.48 FedAvgM 55.37 54.29 45.83 50.00 41.41 49.13
FedYogi 54.55 51.43 44.17 55.00 41.41 48.95 FedYogi 55.37 55.24 46.67 52.00 42.19 50.00

Table 6: Experiments on the App-Level Dataset. We provide evaluation results on all five apps. FL algorithms in
skewed app distributions perform significantly lower accuracy compared to IID situations.

formance degradation, confirming that this form
of heterogeneity not only exists but critically im-
pacts model effectiveness in real-world deployment
contexts. (3) In comparison with the results from
Category-Level, we find that differences in specific
app names contribute more significantly to hetero-
geneity than app categories. (4) Overall, FedYogi
(Reddi et al., 2020) outperforms other representa-
tive FL algorithms. (5) Notably, we observe that the
1-st client in the App Half-Skew subset, which only
has access to episodes from Clock and Ebay, outper-
forms all FL baselines on Amazon. We hypothesize
that there may be underlying relationships between
these apps that warrant further exploration.

4.6 Efficiency Evaluation

We conduct additional evaluations focusing on
communication and computation efficiency.

Communication. For approximation, we assume
that all episodes have equal data size, and com-
pare the communication overhead of three ap-
proaches: (1) centralized training (one round of
full dataset transmission), (2) federated training
with full fine-tuning (transmitting full model pa-
rameters in each round), and (3) federated training
with LoRA (transmitting only LoRA adapters in
each round). As shown in Table 7, LoRA-based
FL is the most communication-efficient method.
It is worth noting that the communication cost is
identical across different federated algorithms used
in our experiments.

Computation. We further report the computation
cost of FedAvg using three representative VLMs
in Table 8. These results reinforce the training

Approach Overhead

Central + Unpacked data (10k) ≈100 GB
Central + Unpacked data (1k) ≈10 GB
Central + Original TFRecord file 50 GB

FL + Full model 16.57 GB × round
FL + LoRA adapter (rank=8,α=32) 77.06 MB × round

Table 7: Communication overhead using Qwen2-VL-7B
on Android Control. Transmitting only LoRA adapters
yields achieves the highest communication efficiency.

Base Model GPU Memory Time per Round
(MB) (mm:ss)

Qwen2-VL-7B 21610 2:59
Intern2-VL-1B 10498 6:56
Phi-3.5-Vision 11560 13:20

Table 8: Computational statistics for training VLMs
using FedMABench, showing its efficiency in both GPU
memory usage and training time.

efficiency of FedMABench, which can be fully
executed on a single RTX 4090 GPU.

5 Conclusion

In this paper, we present FedMABench, the first
research-friendly and comprehensive benchmark
for federated learning of mobile GUI agents, ac-
companied by six diverse datasets encompassing
over 30 meticulously designed subsets that capture
representative patterns of real-world heterogeneity.
Our extensive experiments reveal insightful discov-
eries, such as differences in specific app names
contribute more significantly to heterogeneity than
app categories. Overall, FedMABench bridges the
critical gap between theoretical FL research and
practical mobile agent applications, laying a solid
foundation for future work.
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Limitations

Despite its comprehensive framework and diverse
datasets, FedMABench still has some limitations.
One major challenge lies in the trade-off between
constructing datasets from real user interactions
and relying on publicly available open-source data.
Using real user data would provide more realis-
tic and representative usage patterns, which are
valuable for academic research. However, it raises
significant privacy and ethical concerns. In con-
trast, open-source datasets facilitate direct com-
parison with existing work and pose no barriers
to public release, but may lack the authenticity of
real-world usage. Due to ethical considerations
and the high cost of acquiring real user data on our
own, we adopt the latter approach by leveraging the
AndroidControl and Android in the Wild datasets.
This strategy inevitably falls short in terms of re-
alism compared to private user data, although it
offers a reasonable simulation of actual user trajec-
tories.

Another limitation is that our analysis does not
provide an in-depth examination of the linguistic
complexity inherent in GUI interactions. Such in-
teractions often involve highly complex instruc-
tions and responses that are of high value for re-
search. Because our primary focus is on hetero-
geneity in application usage rather than on linguis-
tic challenges, we leave this aspect for future work.
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(a) ScaleApp IID (b) ScaleApp Skew (c) ScaleApp Random

Figure 5: Heatmap distribution of the ScaleApp Dataset. We select top 15 apps for visualization.
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A Discussions and Future Directions

Previously, we have shown the promising results
achieved by training mobile agents via federated
learning. However, this is not the end as there are
still emerging challenges and interesting directions
that are worth exploring in this field in the future.

A.1 Federated Algorithms for Heterogeneity
of Mobile User Data

In FedMABench, we establish the benchmark for
evaluating federated mobile agents trained on het-
erogeneous user data. Our results in Section 4.4
and 4.5 demonstrate that currently no existing fed-
erated algorithm can achieve consistently good re-
sult when meeting the heterogeneity of diverse app
usage. Specifically, FedYogi (Reddi et al., 2020)
has noticeable performance drop on the Category
Half-Skew subset; FedMobileAgent (Wang et al.,
2025a) has no improvement when the distribution
is completely skewed.

Recently, there has been some research (Mik-
aberidze et al., 2024; Yao et al., 2024; Li et al.,
2024a) on generative AI and communication opti-
mization for heterogeneous mobile clients. How-
ever, none of these studies address app heterogene-
ity among users. The deployment of federated
mobile agents require enhanced performance over
diverse data distributions for scalability, which ne-
cessitates further research into designing novel FL
algorithms to address the heterogeneity of phone

usage trajectories, such as privacy-preserving dis-
tillation (Wang et al., 2024f,e) and data selection
(Du et al., 2025).

A.2 Privacy Preservation in Federated Mobile
Agents

Training on user data inevitably raises privacy con-
cerns. While federated learning helps mitigate pri-
vacy leakage by keeping private data on the client
side and transmitting only LoRA adapters, poten-
tial privacy issues remain.

Models with substantial sizes are prone to mem-
orization of their training data (Yu et al., 2024;
Wang et al., 2024d). Similar to large LLMs, re-
cent studies (Caldarella et al., 2024; Samson et al.,
2024; Jayaraman et al., 2024) reveal that VLMs
also inadvertently memorize and potentially ex-
pose sensitive information. Dejavu memorization
(Jayaraman et al., 2024) proposes a novel measure-
ment for memorization by quantifying the fraction
of ground-truth objects in an image that can be pre-
dicted from its text description in a training image-
text pair. Mobile agents rely on VLMs to perceive
the interface and make decisions. Therefore, train-
ing directly on user data may lead to leakage of
sensitive information.

Federated mobile agents also face the same pri-
vacy risks as traditional federated learning, includ-
ing gradient inversion and membership inference
attacks. During transmission, model parameters
can be intercepted or exploited, potentially leaking
sensitive information about the underlying training
data.

The above mentioned issues can be mitigated
through techniques such as differential privacy
(DP) (Wu et al., 2025) and secure aggregation (Wu
et al., 2024b); however, their application to VLMs
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Hetero. Algorithm Amazon Clock Ebay Flipkart Gmail Avg.

- Zero-Shot 30.68 32.53 39.84 33.33 18.35 32.17
Central 62.50 68.67 61.72 65.38 63.29 63.10

Local 0 50.00 54.22 51.56 55.13 34.18 46.72
Local 1 43.75 51.81 39.06 46.15 34.81 44.83
FedAvg 54.55 60.24 55.47 64.10 47.47 54.35
FedProx 54.55 59.04 55.47 65.38 46.84 54.46
FedAvgM 54.55 59.04 55.47 61.54 46.84 54.76

ScaleApp IID

FedYogi 56.25 61.45 56.25 64.10 48.10 55.12

Local 0 52.27 54.22 53.91 53.85 38.61 49.67
Local 1 21.59 31.33 28.12 28.21 20.25 25.61
FedAvg 59.66 60.24 57.81 57.69 46.84 55.35
FedProx 58.52 60.24 57.81 60.26 49.37 55.59
FedAvgM 60.80 60.24 60.16 62.82 46.84 55.71

ScaleApp Random

FedYogi 59.66 57.83 57.03 60.26 43.04 53.93

Local 0 59.66 39.76 54.69 61.54 26.58 42.46
Local 1 48.30 49.40 48.44 52.56 28.48 41.87
FedAvg 57.39 57.83 55.47 58.97 40.51 52.81
FedProx 57.95 57.83 56.25 57.69 42.41 53.40
FedAvgM 57.95 59.04 58.59 60.26 43.04 54.41

ScaleApp Skew

FedYogi 58.52 57.83 54.69 60.26 43.67 54.29

Table 9: Experiments on the ScaleApp Dataset. Skewed app distribution results in lower average accuracy across
apps. The long tailed apps with few episodes witness a greater decrease in performance.

and mobile-agent training remains largely underex-
plored.

A.3 Efficiency and Resources in Federated
Mobile Agents

To collaboratively train a global mobile agent on
distributed user data, each user needs to locally
train a small-sized VLM and communicate with
the central server. However, limited computation
resources and communication channels on mobile
devices may hinder the feasibility of deployment.

With the recent advancement of LLMs, VLMs
and diffusion models and their integration into fed-
erated learning systems (Zhou et al., 2021; Jia et al.,
2024; Wang et al., 2025b), numerous approaches
have been proposed to alleviate computational and
communication overheads (Ding and Hu, 2024;
Raje, 2024; Fang et al., 2025). On the other hand,
the proliferation of smaller VLMs has significantly
enhanced efficiency. For instance, AppVLM (Pa-
poudakis et al., 2025) specifically targets app con-
trol tasks with a lightweight architecture, facilitat-
ing rapid and cost-efficient inference for real-time
execution.

A.4 Combination of Reinforcement Learning
with Federated Mobile Agents

Although our current framework does not yet in-
corporate reinforcement learning, we identify it as
a promising future direction. In a federated mobile

agent setting, user feedback can serve as a criti-
cal reward signal, enabling agents to adjust their
decision-making policies dynamically.

Future work will need to tackle challenges in-
herent to integrating reinforcement learning into a
federated environment, such as handling heteroge-
neous feedback, ensuring robust and stable learning
under variable network conditions, and preserving
user privacy. We believe that exploring these is-
sues will pave the way for more adaptive and user-
centric mobile agents, ultimately enhancing both
their responsiveness and overall utility.

B Additional Experiments

B.1 Experiments on ScaleApp Dataset

Setups. We construct three subsets of the
ScaleApp Dataset to further investigate the het-
erogeneity of specific app preferences. The distri-
bution of subsets are visualized in the heatmaps
in Figure 5. We select the top 15 apps to plot as
the rest 15 apps have basically the same distribu-
tion with the 14-th app. To enhance scalability and
increase diversity, we select 30 apps, each with
a varying number of episodes, to form a training
set consisting of 2,500 episodes. Additionally, we
sample 10% of the episodes from each app to form
the test set.

Results. From Table 9, we draw the following
conclusions: (1) By comparing FedAvg across the
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Algorithm Shopping Traveling Office Lives Entertain. Avg. Algorithm Shopping Traveling Office Lives Entertain. Avg.

Zero-Shot 26.61 25.33 27.05 24.41 23.81 25.46 Central 57.26 58.67 51.64 55.12 60.95 56.90

Homo. Category IID Hetero. Category Skew
Local 0 48.39 45.78 36.89 32.28 45.71 42.25 Local 0 50.81 47.56 46.72 38.58 48.57 46.51
FedAdagrad 54.84 53.78 50.00 39.37 50.48 50.21 FedAdagrad 54.03 52.44 48.36 42.52 51.43 50.07
SCAFFOLD 53.23 52.00 53.28 38.58 50.48 49.79 SCAFFOLD 54.03 52.89 47.54 41.73 51.43 49.93

Hetero. Category Half-Skew Hetero. Category Non-Uniform
Local 0 41.13 56.00 36.89 40.16 37.14 44.38 Local 0 38.71 33.78 34.43 34.65 33.33 34.85
FedAdagrad 47.58 46.22 40.98 35.43 40.95 42.82 FedAdagrad 50.00 52.89 49.18 43.31 48.57 49.36
SCAFFOLD 46.77 48.89 42.62 37.80 42.86 44.52 SCAFFOLD 47.58 52.00 47.54 44.09 48.57 48.51

Table 10: Supplementary experiments on the Category-Level Dataset with more baselines. Colors represent
homogeneity and heterogeneity . FedMA is short for FedMobileAgent (Wang et al., 2025a).

Algorithm Shopping Traveling Office Lives Entertain. Avg. Algorithm Shopping Traveling Office Lives Entertain. Avg.

Zero-Shot 26.61 25.33 27.05 24.41 23.81 25.46 Central 57.26 58.67 51.64 55.12 60.95 56.90

Homo. App Random Hetero. App Skew
Local 0 43.55 45.78 35.25 43.31 38.10 41.96 Local 0 44.35 40.44 48.36 29.92 35.24 39.83
FedAvg 50.81 51.56 47.54 44.09 48.57 48.93 FedAvg 50.81 53.78 45.90 33.86 53.33 48.22
FedProx 49.19 49.78 46.72 41.73 49.52 47.65 FedProx 51.61 54.22 47.54 38.58 54.29 49.79
FedAvgM 50.00 54.67 46.72 44.09 52.38 50.21 FedAvgM 52.42 52.00 45.90 37.01 54.29 48.65
FedYogi 53.23 51.56 49.18 46.46 48.57 50.07 FedYogi 50.00 52.89 45.08 35.43 49.52 47.37

Table 11: Supplementary experiments on the two other subsets of Category-Level Dataset: App Random and App
Skew. Compared to the results in Category Skew, App Skew produces more severe heterogeneity. All FL algorithms
demonstrate diverse performances on the two subsets with FedAvgM generally achieves the best results.

three subsets, we further confirm the presence of
app-level heterogeneity, as a clear performance
drop occurs when the model transitions to more het-
erogeneous scenarios. (2) Additionally, we observe
that in heterogeneous settings, apps with a long-
tailed distribution and fewer episodes experience a
more significant performance decline compared to
apps with more abundant data, such as Amazon and
Ebay. (3) The performance of the 0-th local client
on Amazon in the ScaleApp Skew subset aligns
with expectations, as the client has 300 training
episodes of Amazon data. However, it also per-
forms exceptionally well on Flipkart, even though
it has not encountered any Flipkart data during
training. This remarkable performance suggests
that there may be shared patterns between Amazon
and Flipkart, contributing to the unexpected yet
correlated success.

B.2 Supplementary Experiments on
Category-Level and App-Level Datasets

Setups. The experimental settings as the same
with the experiments in Section 4.4 and 4.5. Due to
page limits, we present more results with different
baselines and other subsets in this section for refer-
ence. We use "FedMA" to denote FedMobileAgent
for spacing. The colors represent homogeneity and

heterogeneity.

Results. We draw the following conclusions: (1)
As shown in Table 10, we further substantiate that
training mobile agents using federated learning
yields promising enhancements, as all baselines ex-
hibit remarkable progress compared to local train-
ing. (2) From Tables 10 and 5, global aggrega-
tion methods based on optimization (FedAdam,
FedAdagrad, and FedYogi) consistently manifest
subpar performance on the Category Half-Skew
subset, but demonstrate exceptional results on the
other subsets. This performance discrepancy re-
mains challenging to explain. (3) By comparing
the FL results on the two subsets, Category Skew
and App Skew, in Tables 11 and 5, we conclude
that FL algorithms generally underperform on the
App Skew subset, which indicates that app name
heterogeneity is more fundamental and severe than
app category heterogeneity. (4) As shown in Tables
12 and 6, the eight baselines exhibit diverse per-
formance across different heterogeneous scenarios.
FedMobileAgent performs averagely, as it is not
specifically designed to handle this type of hetero-
geneity, and it degrades to standard FedAvg when
the app distribution becomes extremely skewed.
(5) As reaffirmed, no current FL algorithm effec-
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Algorithm Amazon Clock Ebay Flipkart Gmail Avg. Algorithm Amazon Clock Ebay Flipkart Gmail Avg.

Zero-Shot 29.75 32.38 28.33 30.00 28.12 29.62 Central 54.55 64.76 58.33 61.00 51.56 57.67

Homo. App IID Hetero. App Skew
Local 0 44.63 49.52 41.67 50.00 33.59 43.38 Local 0 56.20 36.19 42.50 44.00 21.09 39.72
FedAdagrad 56.20 54.29 54.17 58.00 50.00 54.36 FedAdagrad 45.45 54.29 50.83 55.00 46.88 50.17
SCAFFOLD 56.20 54.29 55.00 53.00 47.66 53.14 SCAFFOLD 48.76 54.29 52.50 52.00 44.53 50.17
FedMA 58.68 53.33 53.33 55.00 48.44 53.66 FedMA 47.93 53.33 48.33 54.00 41.41 48.61

Hetero. App Half-Skew Hetero. App Non-Uniform
Local 0 52.89 57.14 45.00 40.00 36.72 46.17 Local 0 39.67 58.10 38.33 48.00 46.09 45.64
FedAdagrad 54.55 54.29 43.33 55.00 42.19 49.48 FedAdagrad 56.20 54.29 46.67 50.00 40.62 49.30
SCAFFOLD 54.55 53.33 43.33 54.00 40.62 48.78 SCAFFOLD 55.37 53.33 45.83 50.00 40.62 48.78
FedMA 55.37 53.33 45.83 55.00 41.41 49.83 FedMA 55.37 55.24 45.83 52.00 41.41 49.65

Table 12: Supplementary Experiments on the App-Level Dataset. We provide additional evaluation results with four
other baselines. The total eight baselines yield diverse performance in different heterogeneous scenarios.

tively addresses the new heterogeneity introduced
by federated mobile agents, as all FL algorithms
experience a substantial decline from IID to non-
IID app distributions, which highlights the need for
further advancements in this area.

B.3 Comparison of Base Models

Setups. Built upon ms-swift, FedMABench sup-
ports over ten base VLMs and has the potential
to accommodate more in the future. We select
five models as representatives, encompassing both
open-ended and closed-ended models from three
distinct model families. Since closed-ended mod-
els cannot be fine-tuned, we provide zero-shot re-
sults for them. For open-ended models, we fine-
tune them on the App IID subset of the App-Level
Dataset as a representative case.

Results. As shown in Table 13, we draw the fol-
lowing conclusions: (1) Training on different mod-
els yields diverse performance results. (2) Overall,
the performance of open-ended models shows a
strong positive correlation with their model size.
(3) Through federated training on distributed data,
even smaller VLMs like Qwen2-VL-2B-Instruct
can achieve performance on par with SOTA closed-
ended models such as GPT-4o.

B.4 Ablation on Dataset Size

Setups. We conduct experiments on the Basic-
AC Dataset with incrementally increasing data
sizes to investigate the impact of dataset size on
performance, and to examine whether scaling laws
hold in the context of federated learning for mobile
agent training. To control experimental conditions,
we fix the number of clients at 10 and evaluate the
mobile agents after 10 communication rounds. No-
tably, in the FedAvg implementation, 30% of par-

Base Model Amazon Clock Ebay Flipkart Gmail Avg.

Algorithm Zero-Shot
GPT-4o 40.50 48.57 43.33 45.00 38.28 42.86
GPT-4o-mini 26.45 33.33 30.83 30.00 35.16 31.18

Algorithm FedAvg
Qwen2-VL-2B 47.11 46.67 35.83 38.00 39.84 41.46
Qwen2-VL-7B 57.02 53.33 52.50 55.00 46.88 52.79
InternVL2-1B 28.93 40.00 27.50 28.00 35.16 31.88
InternVL2-2B 34.71 41.90 30.00 28.00 32.03 33.28

Table 13: Comparison of different base models on the
App IID subset. We choose five models as representa-
tives including both open-ended and closed-ended mod-
els.

ticipating clients are randomly sampled per round,
leading to a smaller number of sample iterations
compared to centralized training.

Results. As shown in Table 14, we draw the
following conclusions: (1) Performance improve-
ments exhibit a strong positive correlation with
dataset scale across all training paradigms, validat-
ing the effectiveness of federated learning for scal-
able mobile agent training. Specifically, FedAvg
demonstrates incremental gains from 31.18% to
53.54% as data availability increases. (2) FedAvg
shows diminishing returns as the data size reaches
a certain threshold, still leaving a gap relative to
centralized training. Enhancing the performance of
federated trained mobile agents necessitates further
efforts into this area.

B.5 Ablation on Clients Number
Setups. We investigate federated learning dynam-
ics under varying client number while maintaining
a fixed budget of 100 episodes per client. Mobile
agents are evaluated after 100 training rounds with
a controlled participation scheme: each round acti-
vates 10% of available clients.
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Algorithm 200 500 1000 3000 5000 7000

Zero-Shot 27.24
Central 43.94 42.36 55.59 56.38 59.69 62.05

Local 0 17.80 28.35 37.64 44.25 47.40 52.44
FedAvg 31.18 36.54 43.78 50.39 51.50 53.54

Table 14: Experiments on dataset sizes. Performance
improvements exhibit strong positive correlation with
dataset scale for all training paradigms.

Client Number 10 30 50 70
Client Sample 1 3 5 7

FedAvg 51.81 56.06 57.17 57.48

Table 15: Experiments with different client numbers.
Each client is allocated 100 episodes. As more clients
are involved, the dataset scale increases. Performance
improvements show a positive correlation with the num-
ber of clients, consistent with the results in Table 14.

Results. As shown in Table 15, we conclude that:
(1) As reiterated, model performance demonstrates
strong positive correlation with client population
size, validating federated learning’s effectiveness
for scalable distributed training. (2) A particularly
significant performance leap (51.81% → 56.06%
step accuracy) occurs when scaling from 10 to 30
clients, suggesting critical mass benefits in collabo-
rative learning.

B.6 Ablation on Clients Participation

Setups. We analyze the impact of client participa-
tion rates while keeping the total client population
constant and maintaining a fixed global data vol-
ume. Specifically, we use the subset of Basic-AC
with 3,000 episodes, partitioned across 30 clients.
The system is evaluated after 100 training rounds
with varying numbers of clients sampled per round,
ranging from 1 to 30 participants.

Results. As shown in Table 16, we draw the fol-
lowing conclusions: (1) Cross-referencing with
Table 15 reveals an emergent pattern: under equiv-
alent total data budgets, increasing client participa-
tion enhances model performance. This suggests
distributed learning benefits stem not merely from
data accumulation, but crucially from diversified
experiential sampling across heterogeneous clients.
(2) Moderate participation rates, with 3 clients sam-
pled per round, achieve performance comparable
to maximum participation. This phenomenon can
be attributed to the fact that as the number of partic-
ipating clients increases, heterogeneity also rises,

Client Number 30 30 30 30 30 30
Client Sample 1 3 5 10 15 30

FedAvg 41.10 45.35 44.72 44.09 43.94 45.67

Table 16: Experiments with varying client participation
rates, with the dataset and its partition kept constant for
controlled comparison. A moderate number of clients
per round achieves comparable performance to full par-
ticipation.

Open the Zoho Meet app , view the scheduled meetings. 
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Figure 6: A data episode example for training mobile
GUI agents.

which may degrade overall performance despite
the higher training cost.

C Data & Experiment Details

C.1 Dataset Details
We provide detailed descriptions of our datasets
and the data collection process in this section, in-
cluding examples and statistics.

Data Episode Example. To provide a clearer un-
derstanding of the structure of our dataset and the
composition of a data episode, we present a sample
as an example in this section. As shown in Fig-
ure 6, each episode consists of: (1) A high-level
instruction, which is a natural language sentence
describing the task to be accomplished; (2) A se-
quence of low-level instructions, detailing the fine-
grained tasks required for the current screenshot;
(3) A series of screenshots taken from the start to
the end of the task; and (4) A corresponding list of
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actions, matching the number of screenshots, indi-
cating what the user does to progress to the next
screenshot. All actions belong to an action space
containing 7-9 options. We adopt the action spaces
defined in (Rawles et al., 2023; Li et al., 2024b;
Wang et al., 2025a).

Dual-Strategy App Name Extraction. For each
episode from the original dataset of Android Con-
trol, we implement a dual-strategy approach for
application name extraction based on the "open
app" action and regular expression matching.

As demonstrated in the following code snippet,
if the actions include the the "open app" action,
the application name is directly retrieved from the
dedicated app_name field, followed by sanitized
string processing.
for episode in all_episodes:

// Load the task information for the current
episode

data = load("task_info.json")
// Check if ’open_app ’ in the actions of this

episode
if "open_app" in data["action_type"]:

// Direct extraction with sanitization
app_name = data["app_name"]. replace("\ufeff"

, "")
else:

// Use semantic pattern matching

pattern = re.compile(
r’\bthe\s+(\w+(?:\s+\w+)?)\s+app\b’,
re.IGNORECASE

)
match = pattern.search(data["goal"])
if match exists:

app_name = match.group (1)
else:

// Skip episodes where extraction fails
continue

Otherwise, if the actions of this episode do not
contain the "open app" action, which indicates that
explicit application identifiers are absent, we at-
tempt to extract potential app name from the goal
field (i.e., instructions) . This is achieved through a
regular expression designed to identify the phrase
"the [app] app" using semantic pattern match-
ing.

Episodes failing both extraction strategies were
systematically excluded to ensure data valid-
ity. This dual-strategy filtering process ultimately
yielded 8,400 qualified episodes containing unam-
biguous application identifiers, forming the core
dataset for subsequent construction and analysis.

Dataset Statistics. In this part, we provide a de-
tailed enumeration of the specific apps included
in each dataset, along with the exact number of
instances for each app.

(1) Basic-AC Dataset: The Basic-AC Dataset
encompasses comprehensive categories and apps.

Detailed statistical information can be found in Ta-
ble 19. (2) Category-Level Dataset: The Basic
Dataset comprises a total of 52 apps that are or-
ganized into several categories. In the shopping
category, there are 10 apps: Amazon, eBay, Flip-
kart, Adidas, Nike, Decathlon, Etsy, Puma, Temu,
and Snapdeal, with each app contributing 20 in-
stances for a total of 200. The travelling cate-
gory includes 10 apps, namely Google Maps, Ex-
pedia, Omio, Booking.com, Citymapper, Trainline,
Kayak, Cruisemapper, MakeMyTrip, and Agoda,
where each app again provides 20 instances to
reach a sum of 200. The office category follows the
same pattern with 10 apps: Gmail, Clock, Google
Drive, Google Docs, Calendar, Google Keep, Con-
tacts, Reminder, Recorder, and Voice Recorder,
each adding 20 data points for a total of 200. The
lives category also consists of 10 apps: Kitchen
Stories, Home Workout, Sidechef, Yummly, Blos-
som, Plantum, Simple Habit, Leafsnap, Medito,
and Insight Timer, each contributing 20 instances
to make up another 200. In contrast, the enter-
tainment category is slightly different, comprising
12 apps. Eight of these apps, which are YouTube,
Vimeo, Artsy, Sketchbook, Messenger, Pinterest,
Flipboard, and SoundCloud, each provide 20 in-
stances, while the remaining four apps, namely
Snapchat, SmartNews, The Hindu, and CNN, con-
tribute 10 instances each, together totaling 200.

Basic-AC Specifics. We construct 14 subsets in
Basic-AC, a detailed description of which is pro-
vided in Table 17. The table specifies three key
parameters for each subset: number of participat-
ing clients, total episodes, and total steps. Sub-
sets 1-9 represent cross-category aggregations with
varying scales, while subsets 10-14 correspond to
category-specific partitions.

C.2 Training Details
General Parameters. Our implementation lever-
ages the Swift library (Zhao et al., 2024) with
parameter-efficient fine-tuning. The LoRA config-
uration employs a rank of 8 with an alpha scaling
factor of 32, incorporating dropout regularization
of 0.05 to prevent overfitting. We set the maximum
sequence length to 4,096. We set the batch size
to 1 and the gradient accumulation step to 4. The
learning rate is kept fixed at 5e-5.

Hardware Configuration. The training is con-
ducted on two NVIDIA GeForce RTX 3090 GPUs
utilizing CUDA version 12.4. Under this hard-
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Dataset Subset Category N. Client N. Episode N. Step

Basic-AC

c10n200 all 10 200 7454
c10n500 All 10 500 20198

c10n1000 All 10 1000 40112
c10n3000 All 10 3000 120512
c10n5000 All 10 5000 201434
c10n7000 All 10 7000 282332
c30n3000 All 30 3000 120512
c50n5000 All 50 5000 201434
c70n7000 All 70 7000 282332
Shopping Shopping 10 2252 79292
Travelling Travelling 10 788 47918

Office Office 10 1974 76910
Lives Lives 10 1136 46070

Entertainment Entertainment 10 850 32150

Table 17: Composition details of the 14 subsets in the Basic-AC Dataset. ’N.’ denotes the number of instances, and
’Category’ refers to the covered categories within each subset.

Configuration Value
Model Architecture Qwen2VLForConditionalGeneration
Model Type qwen2_vl
Torch Dtype bfloat16
Tokenizer Qwen2TokenizerFast
Tokenization Strategy Greedy search

Table 18: Model and tokenizer configurations.

ware configuration, the training process achieves a
throughput of approximately 2 minutes per training
round per client when processing 10 episodes.

Federated Algorithms. The framework imple-
ments adaptive hyperparameter defaults for vari-
ous federated algorithms: FedYogi (Reddi et al.,
2020) employs momentum factors (β1 = 0.9, β2 =
0.999) with learning rate η = 10−3 and stabi-
lization constant τ = 10−6. FedAvgM (Hsu
et al., 2019) uses 0.9/0.1 ratio for historical/cur-
rent model interpolation. FedProx (Li et al., 2020)
applies proximal regularization with µ = 0.2
through ||w − wt||2 penalty terms. SCAFFOLD
(Karimireddy et al., 2020) configurations maintain
server learning rate ηs = 1.0 with client momen-
tum compensation, while FedAdam and FedAda-
grad (Reddi et al., 2020) share base parameters
(β1 = 0.9, β2 = 0.999) with adaptive learning rate
scaling. All algorithms expose tunable coefficients
through the framework’s unified parameter inter-
face.

This section outlines the specific configurations
used for our vision-language model (VLM) experi-
ments, ensuring reproducibility and clarity.

Model and Tokenization Our primary experi-
ments are conducted using the Qwen2-VL model.

The specific configuration is detailed in Table 18.

C.3 Prompt Format
Following FedMobileAgent (Wang et al., 2025a),
we designed a structured prompt format (Figure 7)
that provides the necessary context for decision-
making. The prompt template includes the high-
level goal, the visual context (i.e., the screen screen-
shot), and a list of available actions. This structured
approach allows the model to ground its decision-
making process in both the overall objective and
the immediate, actionable elements visible on the
screen.
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Prompt 1: High-Level Training Prompt

You are a smartphone assistant tasked with helping users complete actions by
interacting with apps. I will provide you with one screenshot, representing the
UI state before an operation is performed.

For the screenshot, you need to identify and output a specific action required
to complete the User Instruction.

### User Instruction ###
{ high-level instruction T high }

### Response Requirements ###
For each screenshot, you need to decide just one action on the current
screenshot.
You must choose one of the actions below:

1. Click on button with the text "⟨UI element text⟩"
If the button has no text related, output "Click on the location ⟨x,y⟩".
2. Long press on button with the text "⟨UI element text⟩"
If the button has no text related, output "Long press on the location ⟨x,y⟩".
3. Type text: "⟨ input text ⟩"
Type the ⟨input text⟩ in the current input field or search bar.
4. Scroll ⟨direction⟩
Scroll the UI element by ⟨direction⟩.
If the current UI includes scrollers but lacks the necessary elements for the
task, try scrolling down to reveal elements below or scrolling up to uncover
elements above. Similarly, scroll right to reveal elements on the right or scroll
left to uncover elements on the left.
5. Return to the home page
Return to the home page. If you want to exit an app, use this action.
6. Go back to the previous page
Go back to the previous page. If you need to return to the previous step or
undo an action, use this action to navigate back.
7. Open App: ⟨app name⟩
If you wish to open an app, use this action to open ⟨app name⟩.
8. Wait for response
Pause for a moment to allow any background processes to complete or for
elements to load before proceeding with the next action.
9. Check status: ⟨successful/infeasible⟩
If you think all the requirements of the user’s instruction have been completed
successfully and no further operation is required, you can choose "successful"
to terminate the operation process. If the task cannot be completed due to
missing elements or any other issue, you can use "infeasible" to indicate that
the action cannot be performed.

### Your Response ###

Figure 7: Prompt template for the high-level training of federated mobile agents within FedMABench.
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App Num App Num App Num App Num App Num App Num

Shopping
amazon 302 ebay 225 flipkart 151 adidas 83 decathlon 82 etsy 76
nike 64 temu 64 puma 59 shopsy 53 snapdeal 52 ikea 47
shopclues 43 ubuy 40 banggood 38 industrybuy. 37 myntra 37 tata cliq 37
zara 37 jiomart 33 dhgate 32 blinkit 30 moglix 30 bigbasket 26
asos 25 joom 20 tata neu 20 dmart ready 19 ajio 17 hardware sh. 17
nnnow 17 pepperfry 17 edmunds 15 houzz 13 footshop 12 hamleys 12
limeroad 12 rapidbox 12 mywarehouse 11 nykaaman 11 toys ’r’ us 11 yalla toys 11
coolblue 10 freshtohome 10 lazada 10 mega

hardwa.
10 shoppers st. 10 barakat 9

cartrade 8 furlenco 8 nykaafashion 8 autoscout24 7 lovelocal 7 cars24 6
carwale 6 nykaa 6 olx india 6 spinny 6 toyspoint 6 woodenstreet 6
dookanti 5 uniqlo 5 urbanic 5 albertsons 4 hardware sh. 4 jd 4
louis vuitt. 4 max fashion 4 nature’s ba. 4 pdffiller 4 sports dire. 4 true value 4
urban outfi. 4 zalando 4 1800 flowers 3 abercrombie 3 adani one 3 bechdo 3
bewakoof 3 carguru 3 dunzo 3 globalsourc. 3 homzmart 3 igp 3
khelmart 3 nykaa fashi. 3 peter engla. 3 pizza max 3 reliance di. 3 shoptime 3
spencers 3 sportsuncle 3 westside 3 cardekho 2 colourpop c. 2 coop 2
ferns n pet. 2 flower aura 2 funeasylearn 2 furniture o. 2 instashop 2 jaquar 2
louis phili. 2 love local 2 m&s india 2 magzter 2 massimo

dut.
2 milkbasket 2

moira
cosme.

2 namshi 2 noon 2 p louise co. 2 pantaloons 2 pepper 2

redbubble 2 royal 2 safeway 2 sports bazar 2 sportsdirect 2 sportspar 2
super note 2 top-most ha. 2 topmost har. 2 weather rad. 2 yoox 2 zappo 2
zappo
brands

2 acme 1 apkpure 1 app market 1 character c. 1 dubizzle 1

ebay app 1 electronics. 1 estee lauder 1 farfetch 1 fernsnpetals 1 goat 1
gostor 1 ikea app 1 industry ub. 1 insaraf - s. 1 iplan.ai 1 jd sports 1
jollee 1 kicks crew 1 luxuryestate 1 massimo du. 1 mikbasket 1 mytrip 1
nnnnow 1 nobroker 1 same temu 1 samsung

shop
1 sanitary ba. 1 second cale. 1

sun & sand . 1 tesco 1 thriftbooks 1 toys shoppi. 1 tradet mark. 1 vijetha live 1
winni 1 woodland 1 woodlands 1 zomato 1
Travelling
google maps 111 expedia 55 omio 47 booking.com 46 kayak 40 citymapper 37
cruisemapper 29 makemytrip 27 trainline 27 airbnb 25 skyscanner 25 agoda 23
wanderu 21 alltrails 20 rail planner 20 guardian 15 moovit 14 traillink 13
hopper 11 momondo 11 rome2rio 11 trip.com 11 yatra 10 cruisedeals 9
goibibo 9 amtrak 8 easemytrip 8 ixigo 8 klook 8 flixbus 7
foursquare 7 talabat 7 time zone c. 6 trainpal 6 schedule pl. 5 cleartrip 4
kiwi.com 4 shipatlas 4 traveloka 4 getby 3 hiking proj. 3 hotels.com 3
immobiliare 3 lambus 3 maxmilhas 3 prestigia 3 rail europe 3 riyadh bus 3
travel life 3 wego flight. 3 bookaway 2 eurostar 2 gotogate 2 greyhound 2
hhr train 2 hiiker 2 klm 2 lner 2 orbitz 2 passporter 2
sbb mobile 2 sncf connect 2 sygic travel 2 trovit 2 cheapflights 1 egy train w. 1
farefirst 1 maps go 1 mytrip 1 roadtrippers 1 sncb intern. 1 thalys 1
trivago 1
Office
gmail 189 clock 158 google drive 127 reminder 101 calendar 72 contacts 69
google keep 65 google docs 52 recorder 48 voice recor. 47 google slid. 45 ticktick 37
khan aca. 36 skype 36 chat 33 powerpoint 33 settings 31 files by go. 30
dropbox 28 officesuite 22 todoist 22 phonebook 21 polaris off. 20 clockbuddy 19
all currenc. 18 memrise 17 microsoft w. 17 onedrive 17 outlook 17 smart recor. 16
google news 15 taskito 15 tasks 15 jotform 14 myrecorder 14 any.do 13
readera 13 translate 13 currency pl. 12 easy voice . 12 migros 12 merriam. 11
to do remin. 11 to do list 10 formsapp 9 notein 9 presentatio. 9 colornote 8
coursera 8 easy dialer 8 easy notes 8 easy timezo. 8 xodo 8 zoho meet-

ing
8

calculator 7 note 7 spck editor 7 webex 7 alarmy 6 dictionary 6
duocards 6 habitica 6 meet 6 microsoft p. 6 mondly

lang.
6 moon+

reader
6

pdf reader . 6 whiteboard 6 notebook 5 pcloud 5 schedule pl. 5 simple calc. 5
timezone co. 5 alarm clock. 4 calendar pl. 4 code editor 4 digital ala. 4 easynotes 4
forms app 4 plantapp 4 savvy time 4 sheets 4 sublime text 4 tododo 4
vocab.com 4 webex meet 4 winzip 4 word office 4 zarchiver 4 alarm clock. 3
clevnote 3 contact 3 cursa 3 cx file exp. 3 deftpdf 3 digical 3
Continued on next page.
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App Num App Num App Num App Num App Num App Num

doodle 3 forms.app 3 math tests 3 my money 3 pdfelement 3 pull&bear 3
spendee 3 udemy 3 voice recor. 3 weather xl 3 calcu 2 calendar pro 2
carrot 2 ereader pre. 2 flipsnack 2 funeasylearn 2 giant stopw. 2 google tasks 2
letter temp. 2 math learni. 2 microsoft 3. 2 multi calcu. 2 munimobile 2 mycurrency 2
papago 2 power point 2 pro 7-zip 2 quip 2 simple cont. 2 smartcal 2
super note 2 timezones 2 unit conver. 2 voice recor. 2 world clock 2 xe converter 2
zoho show 2 7z 1 blaze wordp. 1 bookscape 1 calculator . 1 currencycon. 1
docx - all . 1 drawing pad 1 everand ebo. 1 exchange ra. 1 focus to-do 1 g-forms 1
internal fi. 1 iplan.ai 1 lists 1 math learni. 1 maths test 1 monefy 1
office: pre. 1 oppia 1 pdf extra 1 radio u.s. 1 rar 1 setting 1
simple clock 1 smartify 1 step tracke. 1 telegram 1 upgrad 1 webcode 1
Lives
kitchen sto. 91 home work. 51 fit 50 sidechef 44 yummly 44 insight tim. 38
leafsnap 30 redfin 30 blossom 28 weather 27 plantum 26 opentable 25
google fit 24 simple habit 24 plantin 23 strava 20 dmart ready 19 fitai 19
fitbit 19 meditopia 19 idanim 18 artier 17 medito 17 pepperfry 17
calm 15 jefit 15 grubhub 13 mindfulness 13 tasty 13 cookpad 12
deliveroo 12 evolve 12 migros 12 trovit homes 12 breethe 11 lifestyle 11
photos 11 supercook 11 all recipes 10 bigoven 10 lunch recip. 10 notes 10
doordash 9 home centre 9 99acres 8 all recipes. 8 rentberry 8 urban ladder 8
fitpro 7 heartfulness 7 phases of t. 7 talabat 7 bbc news 6 budgetbytes 6
daff moon 6 moon 6 pizza hut 6 withings 6 baby tracker 5 balance 5
gym work-
out

5 martinoz pi. 5 mi fitness 5 my moon
pha.

5 plant ident. 5 realtor.com 5

runkeeper 5 housing 4 moonx 4 serenity 4 flo 3 headspace 3
healthifyme 3 ovia pregna. 3 planta 3 pregnancy 3 smiling

mind
3 trulia 3

carrot 2 hatch baby 2 home garden 2 immoscout24 2 moonly 2 plantora 2
property fi. 2 recime 2 vivareal 2 what to exp. 2 babycenter 1 cult.fit 1
freshto
home

1 good food 1 immobiliare. 1 indian reci. 1 luxuryestate 1 mojopizza 1

my workout
.

1 nobroker 1 workout pla. 1

Entertainment
youtube 95 vimeo 64 gallery 36 artsy 35 messenger 32 pinterest 31
spotify 27 sketchbook 26 soundcloud 23 flipboard 20 snapchat 17 the weather. 16
cnn 15 google news 15 guardian 15 arts & cult. 13 tunein radio 13 wynk music 12
audiomack 11 deviantart 11 nytimes 11 photos 11 pocketbook 11 show 11
smartnews 11 youtube

mus.
11 coolblue 10 mytuner rad. 10 the hindu 10 sgraffito 9

skyview free 9 behance 8 reuters 7 sketchar 7 bbc news 6 moon+
reader

6

radio garden 6 time zone c. 6 toi 6 washington . 6 webnovel 6 whiteboard 6
color 5 euronews 5 gaana 5 hindu 5 kobo books 5 mi fitness 5
thefork 5 wattpad 5 cafeyn 4 cna 4 cnn news 4 dolby on 4
domino’s 4 hindu news 4 hungama 4 usa today 4 anghami 3 dailymotion 3
fox news 3 headspace 3 mojarto 3 nbc news 3 peggy 3 rtistiq 3
toi news 3 daily art 2 dailyart 2 hiiker 2 magzter 2 msn weather 2
paint 2 radio 2 radio fm 2 readly 2 readwhere

m.
2 sky tracker 2

startracker 2 zinio magaz. 2 app market 1 artly 1 bbdaily 1 deccan hera. 1
expert pape. 1 hipaint 1 messages 1 newyork

tim.
1 radio u.s. 1 readly maga. 1

sky view 1 skyview 1 smartify 1 winni 1

Table 19: Application categorization and statistics for the Basic-AC Dataset. Due to the limited table width, app
names that are too long will be truncated, with the truncated portion replaced by a dot(.).
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