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Abstract

Automatic pronunciation assessment is typi-
cally performed by acoustic models trained on
audio-score pairs. Although effective, these
systems provide only numerical scores, with-
out the information needed to help learners un-
derstand their errors. Meanwhile, large lan-
guage models (LLMs) have proven effective
in supporting language learning, but their po-
tential for assessing pronunciation remains un-
explored. In this work, we introduce TextPA,
a zero-shot, Textual description-based Pronun-
ciation Assessment approach. TextPA utilizes
human-readable representations of speech sig-
nals, which are fed into an LLM to assess pro-
nunciation accuracy and fluency, while also
providing reasoning behind the assigned scores.
Finally, a phoneme sequence match scoring
method is used to refine the accuracy scores.
Our work highlights a previously overlooked
direction for pronunciation assessment. Instead
of relying on supervised training with audio-
score examples, we exploit the rich pronun-
ciation knowledge embedded in written text.
Experimental results show that our approach
is both cost-efficient and competitive in perfor-
mance. Furthermore, TextPA significantly im-
proves the performance of conventional audio-
score-trained models on out-of-domain data by
offering a complementary perspective.

1 Introduction

Automatic pronunciation assessment offers an alter-
native to traditional language instruction by provid-
ing learners with accessible, scalable, and timely
feedback on their speaking abilities. Most prior
work in this area relies on supervised learning: col-
lecting speech recordings annotated with pronun-
ciation scores from human instructors and training
acoustic models to assess proficiency scores (Chen
et al., 2024; Gong et al., 2022). Although effec-
tive, models trained on audio-score pairs provide
only numerical scores, offering little insight into

why a particular score was assigned. Collecting
more informative and descriptive feedback, such
as detailed comments from human raters, can be
time-consuming and expensive.

Recently, Large Language Models (LLMs) have
gained popularity for their ability to generate natu-
ral, context-aware responses. We propose that this
generative capability can be leveraged to produce
explainable feedback in pronunciation assessment,
going beyond simple scoring. Furthermore, LLMs
have demonstrated the potential to provide valuable
insights into language learning (C Meniado, 2023).
Most studies focus on the use of LLMs in writ-
ing tasks (Lo et al., 2024), but LLMs also capture
knowledge of language speaking, as humans have
documented their knowledge about pronunciation
in written form to facilitate sharing and teaching. In
addition, previous studies have shown that LLMs,
such as GPT, have the potential to interpret tex-
tual descriptions of speech signals. In (Wang et al.,
2023), researchers wrote the pause durations in a
sentence – e.g., “it (<10 ms) is (<10 ms) nothing
(10 ms–50 ms) like (<10 ms) this,” – and put the
sentence into GPT to assess whether the pauses
are correct. However, this study focused only on
detecting inappropriate pauses using duration in-
formation, without exploring the ability of LLMs
to interpret other key dimensions of pronunciation,
such as articulation or intonation.

To bridge the gap between the textual under-
standing of LLMs and the physical acoustic signal,
audio-language models (ALMs) (Elizalde et al.,
2023; Tang et al., 20234; Chu et al., 2023) have
emerged. ALMs integrate audio and text by en-
coding audio into audio tokens, which are then
processed by the LLM with text tokens. How-
ever, most open-source ALMs are pre-trained on
audio captioning or speech recognition datasets and
show limited ability to assess speech without fine-
tuning (Deshmukh et al., 2024; Wang et al., 2025b).
In addition, due to computational constraints, these
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studies used smaller LLMs (e.g., 7B or 13B Llama),
limiting their ability to fully leverage LLM capabil-
ities. On the other hand, commercial large ALMs
such as GPT-audio and Gemini-audio have demon-
strated the potential for pronunciation assessment
in zero-shot settings (Wang et al., 2025a), but these
ALMs are costly to operate with an audio input.
Since audio tokens are much more expensive than
text tokens1 and the number of audio tokens gen-
erated from a speech signal can be much greater
than the number of text tokens in its corresponding
transcript, using a large ALM with audio inputs is
considerably more expensive than using LLM with
text inputs.

Therefore, we explore an alternative method to
bridge the gap between LLM’s textual knowledge
and physical speech signals. Instead of relying on
audio tokens, our method uses the existing capa-
bilities of LLMs by selecting text-based acoustic
descriptors common in written text. Pre-trained
acoustic models are used to generate these, includ-
ing transcripts, phoneme sequences (in both Inter-
national Phonetic Alphabet (IPA) and CMU Pro-
nouncing Dictionary (CMU) formats), and pause
durations. The descriptors are provided as input
to LLMs for pronunciation assessment. Lastly, we
incorporate a similarity score between the recog-
nized IPA sequence and the canonical IPA sequence
mapped from the transcript to improve the assess-
ment of pronunciation accuracy.

The contributions of this work are summarized
as follows: (1) We propose TextPA, a zero-shot
pronunciation assessment model that uses textual
descriptions of speech signals. (2) Our method
produces interpretable and explainable feedback,
unlike conventional pronunciation assessment sys-
tems that yield only numeric scores. In addition,
incorporating TextPA enhances the performance
of an audio-score-trained model on out-of-domain
data. (3) Compared to large ALMs, our approach
significantly reduces API costs while delivering
competitive or superior assessment performance.

2 TextPA

To assess English pronunciation in terms of accu-
racy and fluency, textual acoustic cues are extracted
using a set of pre-trained models: the transcript
is obtained from an automatic speech recognition

1For example, the OpenAI GPT-4o-mini-audio model
charges $10.00 per 1M audio tokens, compared to $0.15 per
1M text tokens (as of April 2025).

(ASR) model; pause information and the recog-
nized CMU sequence are derived from a phonetic
aligner; and the IPA phoneme sequence is gener-
ated using a phoneme recognition model. These
textual representations are then provided as input to
an LLM, which is prompted to assess the pronuncia-
tion and produce both accuracy and fluency scores,
along with the reasoning behind its evaluations.
Lastly, IPA match scoring is introduced to further
refine the accuracy score. Figure 1 presents an
overview of TextPA, which operates in a zero-shot
setting by leveraging pre-trained acoustic models
and LLMs, and thus does not require audio-score
paired pronunciation data for training.

2.1 Textual Acoustic Cues for LLM Input

2.1.1 Transcript
A transcript lacking semantic coherence may result
from inaccurate recognition due to poor pronunci-
ation. Repeated words within a sequence or filler
words such as “hmm,” can indicate a lack of fluency.
In Case study A (Figure 2), the speaker is told to
say “his head hurts even worse,” but their pronun-
ciation is highly inaccurate. Except for "His.", all
other words received only 3 out of 10 points. Due
to poor pronunciation and lack of fluency, the ASR
model produced an inaccurate transcript (i.e., “His
hand hands very well”) which is semantically in-
coherent, signaling low pronunciation proficiency
for the LLM, as reflected in its reasoning. How-
ever, since ASR model is designed to recognize
words rather than analyze pronunciation, it may au-
tomatically correct inaccurately pronounced words
to produce a semantically coherent sentence. For
example, in Figure 3, the speaker is instructed to
say “maybe we should get some cake” but mis-
pronounced “cake.” Although the pronunciation is
inaccurate, the ASR transcript (“maybe we should
get some cards,”) is still semantically reasonable.
As a result, the transcript alone is insufficient to
reveal the finer details of articulation. To address
this, we incorporate the IPA and CMU phoneme
sequences that explicitly represent spoken sounds.

2.1.2 Recognized IPA and CMU Phoneme
Sequence

IPA, widely used in linguistics, dictionaries, and
language education materials, is a standardized
phonetic notation system that represents the sounds
of spoken language using a consistent set of sym-
bols. Each symbol corresponds to a specific speech
sound, providing a one-to-one mapping between
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Transcript
maybe we should get some cards

Phonemes (Recognized) CMU
M EH M B IY W IY SH UH D (0.12s pause) 
G EH T S AH M (0.21s pause) K AH T

Automatic speech 
recognition

Phonetic aligner
(CMU-based)

Phoneme recognition
(IPA-based)

/

Speech 
signal

Word to 
IPA

mapping

Mapped 
(canonical) IPA

/m eɪ b iː w iː ʃ ʊ d 
ɡ ɛ t s ʌ m k ɑːɹ d z

You are an expert evaluator of English pronunciation. Assess the accuracy and fluency of the given text input on a scale of 1 to 5, 
with higher scores indicating better performance. A score of 5 represents native-speaker-level proficiency.
Input format: 
{"Transcript": "<Recognized ASR sentence>",
"Phonemes_CMU": "<Recognized CMU pronouncing phoneme sequence, with (time.s pause) indicating pauses in speech.>",
"Phonemes_IPA": "<Recognized IPA pronouncing phoneme sequence.>” }

Task: Return a dictionary with the following format:
{"Accuracy": <the assessment accuracy score>, 
"Fluency": <the assessment fluency score>,
"Reasoning": <detailed reasoning for the assigned score>}

Note: Do not include any other text other than the json object. 
Input: 

Transcript:              maybe we should get some cards
Phonemes CMU:   M EH M B IY W IY SH UH D (0.12s pause) G EH T S AH M (0.21s pause) K AH T
Phonemes IPA:       m ɛ m b i w iː ʃ ʊ d ɡ ɛ s s ʌ m k ɑː t

Mean/Accuracy
(LLM)

norm

norm

LLM

/

Phonemes (Recognized) IPA
m ɛ m b i w iː ʃ ʊ d ɡ ɛ s s ʌ m k ɑː t

IPA match 
scoring

Reasoning

Fluency

Accuracy

Figure 1: An overview of TextPA.

sound and notation. The CMU phoneme sequence
is a phonetic transcription format based on the
Carnegie Mellon University Pronouncing Dictio-
nary (CMUdict). Unlike IPA, which is universal
in language and more fine-grained, CMU uses a
simplified set of phonemes tailored for American
English, which is widely used in speech process-
ing applications due to its compatibility with ASR
systems and phoneme-based models. Because both
representations are widely used, LLMs trained on
extensive text corpora have encountered and in-
ternalized the mapping between IPA and CMU
phoneme annotations and the word. For exam-
ple, in Case study B (Figure 3), by comparing the
recognized IPA and CMU sequences, the LLM
identifies that the word “cards” may have been mis-
pronounced and uses this information to assess pro-
nunciation accuracy. It can align transcript words
with the corresponding phoneme sequences even
when word boundaries are not explicitly marked.
We also embed pause information from the pho-
netic aligner into the recognized CMU phoneme
sequence. Pauses are annotated in an easily inter-
pretable format, e.g. “D (0.12s pause) G” indicates
a 0.12-second pause between the phones “D” and

“G”. As shown in Case study B (Figure 3), the LLM
leverages this pause information when reasoning
about the speaker’s fluency.

2.2 IPA Match Scoring

To assess pronunciation, the LLM internally
maps each word in the transcript to its canonical

phoneme sequence and compares it with the pro-
vided recognized phoneme sequence. Although
LLMs are capable of this, as shown in Case study
B (Figure 3) where the model correctly identifies
the mispronunciation of the word “cards”, they
may still overlook some errors. For example, in the
same case, a discrepancy is observed between the
canonical phoneme sequence for the word “maybe”
(m eI b i: / M EY B IY) and the recognized se-
quence (m E m b i / M EH M B IY), indicating
inaccurate pronunciation. Although the human
annotation assigns a score of 10 out of 10 to the
pronunciation accuracy of “maybe”, our manual
inspection suggests that the word is not clearly ar-
ticulated. However, the LLM does not reflect this
error in its reasoning.

To further refine accuracy assessment, we in-
troduce IPA match scoring, which measures the
similarity between the recognized and canonical
IPA sequences and uses this as an indicator of pro-
nunciation accuracy. We use IPA instead of CMU
because IPA offers more fine-grained phonetic de-
tail. In addition, our empirical results suggest that
match scoring using IPA consistently outperforms
scoring with CMU phonemes. To perform IPA
match scoring, the transcript is first mapped to its
canonical IPA phoneme sequence using a pronun-
ciation dictionary. We then compute the similar-
ity between the transcript-mapped and the recog-
nized IPA sequences using the Smith-Waterman
algorithm (Smith et al., 1981). This algorithm is
a dynamic programming method originally devel-
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his hand hands very wellTranscript

HH IH Z HH AE N D HH AE N
D Z (0.05s pause) ER N EH R IH
IY R IH IY AH L

Phonemes 
CMU

h ɪ z h æ n d h æ n d s m ɛ ɹ i ɹ ɪPhonemes
IPA

The accuracy is low due to several mispronunciations
and inaccuracies in the phoneme recognition. "very
well" is completely different from "ER N EH R
IH IY R IH IY AH L" and "m ɛ ɹ i ɹ ɪ".
The word "hands" is repeated and there's a pause.
The fluency is slightly affected by the pause and the
unnatural sequence of words.

LLM reasoning

Case study A

LLM input

his head hurts even worseGround-truth
(Human 

annotation)

h ɪ z h æ n d h æ n d z v ɛ ɹ i w ɛ lMapped IPA

(10,   3,      3,     3,       3,  )

Figure 2: Case study A. Due to the inaccurate pro-
nunciation, the ASR model produced unnatural word
sequences, which in turn signaled to the LLM that the
pronunciation was flawed.

oped for local alignment of biological sequences
such as DNA or proteins. It identifies the most
similar subsequences between two inputs, making
it well-suited for phoneme sequence comparison,
which consists of subsequences representing differ-
ent words. Since the IPA-matched scores and the
LLM-generated accuracy scores operate on differ-
ent scales, we apply min-max normalization across
the test set to align them within a common range.
The final accuracy score is then calculated as the av-
erage of the normalized Smith-Waterman similarity
and the normalized LLM-generated score.

3 Experimental Setup

3.1 Data and Evaluation Metric
We evaluated TextPA on the open-source Spee-
chocean762 (Zhang et al., 2021) and Mul-
tiPA (Chen et al., 2024) datasets 2, both of which
focus on English speech produced by native Man-
darin speakers. The Speechocean762 (abbreviated
as Speechocean) dataset consists of 5,000 utter-
ances spoken by 250 speakers, with annotations at
the sentence, word, and phoneme levels. In this
study, we focus on sentence-level accuracy, fluency,

2License: Attribution 4.0 International (CC BY 4.0)

maybe we should get some cardsTranscript

M EH M B IY W IY SH UH D
(0.12s pause) G EH T S AH M
(0.21s pause) K AH T

Phonemes 
CMU

m ɛ m b i w iː ʃ ʊ d ɡ ɛ s s ʌ m k
ɑː t

Phonemes
IPA

Accuracy: The pronunciation is generally accurate,
with most phonemes being correctly produced. The
vowel in 'cards' is slightly off. It appears to be
truncated to 'cot' sound rather than 'cards'. Still
quite understandable.
Fluency: The presence of pauses affects the
fluency score. (0.12s) is acceptable, (0.21s) pause
in a short sentence is a bit long. The pace is
slightly uneven overall. More natural speech would
exhibit smoother transitions between words.

LLM reasoning

LLM input

maybe we should get some cakeGround-truth
(Human 

annotation)

m eɪ b iː w iː ʃ ʊ d ɡ ɛ t s ʌ m k
ɑːɹ d z

Mapped IPA

Case study B

(  10,   10,    10,   10,   10,     3,)
*incorrect

Figure 3: Case study B. The transcript is semantically
reasonable despite inaccurate pronunciation. To address
this, the mismatch between the recognized phoneme se-
quence and the transcript provides the LLM with insight
into potential articulation inaccuracies. The mapped
IPA (i.e., the canonical IPA of the transcript) is shown
for reference and is not provided as input to the LLM.

and prosody. The utterances in Speechocean are
scripted. Participants were instructed to read prede-
fined sentences, making the ground-truth transcript
available. However, our method operates without
the need for ground-truth information. Most sen-
tences in Speechocean are short, as shown in Fig-
ure 1, 2, and 3, with corresponding audio dura-
tions ranging from 2 to 20 seconds. Since TextPA
requires no training, we used only the Speechocean
test set, which contains 2,500 utterances.

The MultiPA data contains 50 audio clips, each
ranging from 10 to 20 seconds in duration, col-
lected from ~20 anonymous users interacting with
a dialogue-based chatbot. Unlike Speechocean,
where speakers are asked to read predefined sen-
tences, MultiPA data captures open-ended re-
sponses, allowing learners to speak freely or answer
questions. This allows for a more authentic assess-
ment of learners’ speaking abilities. Table 1 shows
example transcriptions from both datasets. We use

2686



Two, four, seven.Speechocean
It was good for me.
I'm an active person and I enjoy playing a
variety of sports. One of my favorite
sports to play is basketball as it is a great
way to stay fit and socialize with friends
at the same time.

MultiPA
data

I often go to the zoo. I think the zoo is a
very interesting place. And I go, I went to
the zoo once a week now.

Table 1: Example transcriptions from Speechocean
and MultiPA. Speechocean consists of relatively short,
scripted utterances from read-aloud tasks, whereas Mul-
tiPA data captures open-ended, conversational speech.

the Pearson correlation coefficient (PCC) as the
main evaluation metric since it has often been used
in prior studies and provides better interpretability
when comparing performance on different datasets.

3.2 Implementation Details
We use Whisper (Radford et al., 2023) (large-v3-
en) for transcription, the model from (Xu et al.,
2021)3 for IPA sequence, Charsiu (Zhu et al., 2022)
predictive aligner for CMU sequence, and Phone-
mize (Bernard and Titeux, 2021)4 for word-to-IPA
mapping. Acoustic models were run on an NVIDIA
RTX 4500 GPU. The LLMs use default API set-
tings, and results are from a single run.

4 Results

4.1 Performance on Free-speech
Table 2 shows the performance on MultiPA data.
We compare TextPA with different LLM back-
ends. Since TextPA (gpt-4o-mini) outperforms
TextPA (gemini-2.0-flash), we used GPT-4o-mini-
audio for the performance comparison. Results
suggest that the proposed TextPA outperforms GPT-
4o-mini-audio in assessing pronunciation, achiev-
ing better performance in both accuracy and flu-
ency. We also compare performance with the Mul-
tiPA model (Chen et al., 2024), an acoustic model
trained on Speechocean. Results show that the
proposed TextPA achieves higher accuracy and pro-
vides competitive fluency assessment, showing the
effectiveness of TextPA in a zero-shot setting.

We evaluate the performance of combining the
MultiPA and TextPA models. To account for differ-
ences in the scale of their prediction scores, we first

3https://huggingface.co/facebook/
wav2vec2-lv-60-espeak-cv-ft

4EspeakBackend("en-us")

apply min-max normalization to each model’s out-
puts. The final prediction is obtained by averaging
the normalized scores. Despite the simplicity of
this fusion strategy, the combined model achieves
notable performance improvement over using ei-
ther model alone. This improvement is likely due
to the distinct sources of information. MultiPA is
trained on paired audio-score data, learning directly
from acoustic examples, whereas TextPA operates
solely on text and leverages prior knowledge about
pronunciation assessment. Differing approaches
offer diverse perspectives, enabling the combined
system to achieve improved performance.

Due to the limited amount of paired audio-score
pronunciation data, MultiPA may have difficulty ac-
curately assessing words that were not encountered
during training. In contrast, TextPA has access to a
much broader vocabulary, leading to higher perfor-
mance on accuracy assessment. However, because
MultiPA analyzes raw audio recordings, it can cap-
ture acoustic cues such as detailed phone-level du-
rations or pitch variations. These cues are typically
not represented in written descriptions or are dif-
ficult to capture accurately in text, making them
challenging for LLMs to interpret. In fact, we also
explore the LLM’s ability to assess prosody using
ToBI annotations (Beckman and Hirschberg, 1994)
which offer a text-based representation of tonal pat-
terns and phrase boundaries. However, the LLM
appears to struggle with assessing prosody by ac-
curately interpreting these annotations, even when
given explicit instructions (see the Appendix B for
details). In essence, the two approaches provide
complementary advantages on the assessment task,
and combining them could be beneficial by lever-
aging the strengths of both.

Accuracy Fluency
TextPA

(gemini-2.0-flash)
0.697 0.557

TextPA
(gpt-4o-mini)

0.728 0.650

GPT-4o-mini-audio 0.674 0.648
MultiPA model 0.618 0.683

MultiPA model +
TextPA (gpt-4o-mini)

0.769 0.784

Table 2: Model performance on MultiPA data. Note that
MultiPA model was trained on Speechocean.
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4.2 Performance on Scripted Utterances

Table 3 shows the performance on Speechocean.
We first compare the performance of TextPA us-
ing different LLM back-ends. Results indicate that
gemini-2.0-flash outperforms gpt-4o-mini; there-
fore, we conducted another experiment using
Gemini-2.0-flash-audio for our performance com-
parison. In contrast to its strong performance on the
MultiPA dataset, TextPA performs relatively poorly
on Speechocean. This discrepancy might arise
from fundamental differences between the datasets.
Speechocean consists of shorter, more constrained
utterances (as shown in Table 1), which offer lim-
ited phonetic and semantic variation. Moreover,
Speechocean prompts students to repeat predefined
sentences, unlike the MultiPA data, which includes
free-form speech. As a result, both the pause
cues between words and the semantic content of
the transcripts offer weaker indicators of language
proficiency, thereby reducing the effectiveness of
TextPA. These dataset differences may also explain
the performance inconsistency between Gemini
and GPT across the two datasets. Nevertheless,
TextPA remains competitive on Speechocean. Note
that TextPA relies solely on text tokens, whereas
Gemini-2.0-flash-audio uses text tokens for instruc-
tions and audio tokens for input speech signals5.
We also include in-domain models’ performance as
references. Since TextPA is a zero-shot approach
without using training data, the in-domain models
naturally perform better. Directly combining the
predictions as done with MultiPA data does not
lead to improvements for the in-domain setting due
to the performance gap. Further investigation is
needed to explore more effective ways of leverag-
ing TextPA for in-domain models.

4.3 Ablation Study on Textual Descriptions of
Speech Signals

First, we evaluated the performance of accuracy
scoring based on phoneme sequence matching (Ta-
ble 4). Our findings demonstrate that IPA match
scoring is a straightforward yet highly effective
method for assessing pronunciation accuracy. We
also investigated the performance of CMU match
scoring. Similar to IPA match scoring, the words
in the transcript are mapped to CMU labels using
the dictionary, and then compared with the recog-

5The cost of gemini-2.0-flash is 0.1 per 1M text tokens and
$0.7 per 1M audio tokens, making Gemini-2.0-flash-audio
approximately 3.5 times more expensive in API calls than
running TextPA (Gemini-2.0-flash) on the Speechocean.

Accuracy Fluency

Zero-shot
TextPA

(gpt-4o-mini)
0.507 0.466

TextPA
(gemini-2.0-flash)

0.532 0.557

Gemini-2.0-flash-audio 0.562 0.556

In-domain
(Lin and Wang, 2022) 0.72 -

(Liu et al., 2023b) - 0.795
MultiPA model 0.705 0.772

Table 3: Model performance on Speechocean.

nized CMU sequence through normalized Smith-
Waterman similarity scores. However, the results
indicate that the CMU sequence is less effective
for accuracy assessment compared to the IPA se-
quence. This difference may stem from the greater
phonetic detail provided by the IPA, which contains
more than 107 syllable letters, while the CMU set
contains only 39 phonemes.

Table 4 also reports an ablation study evaluat-
ing which textual descriptions of acoustic cues are
most effective for language models in pronuncia-
tion assessment. When using an LLM, the tran-
script alone can offer insights. Augmenting the
input with recognized IPA sequences improves per-
formance, particularly in accuracy, as the LLM can
compare word transcriptions with their phonetic
transcriptions to better identify mispronunciations.
Adding CMU sequences alongside the transcript
helps to enhance both accuracy and fluency as well:
accuracy improves for similar reasons as with IPA,
while fluency benefits from the pause information
encoded in CMU sequences. Overall, combining
the transcript, CMU, and IPA sequences leads to
the best performance, with IPA match scoring pro-
viding additional boosts in accuracy.

4.4 Impact of ASR Transcription Quality
Transcripts play a crucial role in TextPA. To ex-
amine the affect of ASR model quality (i.e., tran-
scription quality), we compared LLM-based assess-
ment using transcripts generated by two Whisper
variants: large-v3-en (denoted as large-en) and
tiny. The large-en model, with 1550M parame-
ters, is English-only and generates higher-quality
transcripts that are more robust to inaccurate pro-
nunciation. In contrast, the tiny model, with only
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MultiPA data
Accuracy Fluency

TextPA
(gpt-4o-mini)

0.728 0.650

LLM: all 0.643 0.650
LLM: trans.+cmu 0.491 0.485
LLM: trans.+ipa 0.452 0.410
LLM: transcript 0.404 0.432

IPA match scoring 0.653 -
CMU match scoring 0.208 -

Speechocean
Accuracy Fluency

TextPA
(gemini-2.0-flash)

0.532 0.557

LLM: all 0.456 0.557
LLM: trans.+cmu 0.427 0.553
LLM: trans.+ipa 0.448 0.458
LLM: transcript 0.313 0.310

IPA match scoring 0.507 -
CMU match scoring 0.263 -

Table 4: Ablation study of text-based acoustic cues. We
selected the LLM with the best performance on each
dataset as the representative model: gpt-4o-mini for the
MultiPA data and gemini-2.0-flash for the Speechocean
data. LLM: transcript uses only the transcript as input.
LLM: trans.+ ipa and trans.+ cmu add IPA or CMU
sequences, respectively. LLM: all combines all three
inputs: transcript, IPA, and CMU. Note that the fluency
scores for LLM: all and TextPA are identical, as IPA
score matching is only used to refine accuracy.

39M parameters and multilingual training, is more
likely to produce transcription errors or misclassify
English as a different language when pronunciation
is inaccurate.

As shown in Table 5, when transcripts alone are
used as input to the LLM, tiny yields better assess-
ment results than large-en. This observation can
be illustrated through an analogy: using large-en
is like speaking to a listener with excellent English
comprehension – they can understand you even if
your pronunciation is poor. In contrast, the tiny
model resembles a listener with limited English
ability, who can only understand clearly articulated
speech. Whether a person with strong English lis-
tening comprehension (i.e., large-en) can under-
stand you provides less insight into your pronunci-
ation. In contrast, if people with weaker listening

ability (i.e., tiny) can understand you easily, it indi-
cates that your pronunciation is good.

Although the transcripts from tiny models per-
form better on their own, the large-en model is
more effective within the TextPA framework. In
TextPA, we incorporate the IPA and CMU se-
quences along with the transcript. Inaccurate pro-
nunciation can lead to unnatural IPA and CMU se-
quences, offering similar insights to the transcript
of tiny model. In addition, because the transcript
serves as a baseline for comparison, excessive ASR
errors introduce noise that reduces reliability. Over-
all, we believe that a stronger ASR model, such
as large-en, is the better choice within the TextPA
structure.

Accuracy Fluency
large-en tiny large-en tiny
MultiPA data

LLM: all
(gpt-4o-mini)

0.643 0.569 0.650 0.546

LLM: transcript 0.404 0.556 0.432 0.442
Speechocean

LLM: all
(gemini-2.0-flash)

0.456 0.481 0.557 0.523

LLM: transcript 0.313 0.409 0.310 0.431

Table 5: Impact of ASR transcription quality.

4.5 Analysis of Basic vs. Detailed Scoring
Guidelines

We investigated the impact of providing different
instructions to the LLM, including basic and de-
tailed scoring guidelines (Table 6). The basic scor-
ing guideline prompts the LLM to assign a scoring
range (1-5), where a higher score indicates better
pronunciation, with a score of 5 reflecting native-
speaker proficiency. The detailed scoring guideline,
on the other hand, provides the same detailed anno-
tation guidelines used by human annotators. The
detailed guidelines define the language proficiency
for each score level. For example, for MultiPA
data, an accuracy score of 5 means “Excellent:
The overall pronunciation is nearly perfect with
accurate articulation of all sounds,” while a score
of 4 means “Good: Minor pronunciation errors
may be present, but overall, the pronunciation is
highly accurate and easily understandable”, and
so on. Results suggest that the effectiveness is
dataset-dependent, possibly influenced by how the
guidelines are written. However, incorporating a
detailed scoring guideline has the potential to re-
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duce performance, while also lengthening the input
text prompt and increasing model operating costs.

Accuracy Fluency
Basic Detailed Basic Detailed

MultiPA data
LLM: all

(gpt-4o-mini)
0.643 0.500 0.650 0.543

LLM: all
(gemini-2.0-flash)

0.554 0.596 0.556 0.499

Speechocean
LLM: all

(gpt-4o-mini)
0.420 0.474 0.466 0.544

LLM: all
(gemini-2.0-flash)

0.456 0.470 0.557 0.561

Table 6: Performance with basic or detailed guidelines.

5 Analysis of TextPA Reasoning

Table 7 presents examples of TextPA reasoning.
We observed that gemini-2.0-flash is more likely
to refer to the detailed CMU and IPA phoneme
sequences to support its assessment, while gpt-4o-
mini tends to provide more generalized observa-
tions. Also, gpt-4o-mini often frames its evaluation
as verifying whether the phoneme sequence aligns
with the pronunciation, focusing on the “phoneme
sequence” or the “ASR system” rather than com-
menting directly on pronunciation.

Transcript

I want to find more about you.

gpt-4o-mini

The accuracy score is 3 because there are noticeable
issues with the CMU and IPA phoneme sequences
that deviate from a standard pronunciation. For
instance, 'more' is represented incorrectly, and there
are additional phonemes that do not correspond well
to the transcript. However, the overall attempt to
convey the sounds aligns with understandable speech.
The fluency score is 4, reflecting a reasonably smooth
delivery despite pauses, suggesting a good pace and
rhythm in the speech, although the mispronunciations
do affect the overall fluency slightly.

gemini-2.0-flash

The accuracy is reasonable but not perfect. Several
phoneme errors are present compared to a native
speaker pronunciation. Specifically, the pronunciation
of **to find more about you** has noticeable
deviations (e.g., 'f eh n d er' instead of 'f ai n d m oo r').
The schwa insertions are frequent. The fluency is
slightly affected by the pauses and some
mispronunciations, making the speech sound a bit
hesitant.

Table 7: Examples of TextPA reasoning.

To gain deeper insights, we manually annotated
the TextPA reasoning into four categories: hal-

lucination, correct, constructive, and irrelevant.
Hallucination refers to cases where the reason-
ing clearly misrepresents the audio, such as stat-
ing “closely matches standard native speaker ar-
ticulation” when the pronunciation is clearly non-
standard. Correct indicates reasoning that aligns
with the audio but does not provide actionable de-
tails; for example, “The accuracy score of 3 re-
flects a moderate level of pronunciation correct-
ness. While there are identifiable phonetic errors,
the core message is still comprehensible.” Con-
structive reasoning identifies specific areas for im-
provement, such as “**calls us** is recognized
as **cars**” Finally, irrelevant refers to reasoning
that is unrelated to pronunciation, such as com-
ments on grammar or the transcript.

We then measured the coverage of each category
in the TextPA-generated reasoning (Figure 4). Cov-
erage was determined by tokenizing the reasoning
descriptions and calculating the proportion of to-
kens belonging to each category. For MultiPA data,
53% of gemini-2.0-flash’s generated descriptions
relate to accuracy and 44% to fluency, while 40%
of gpt-4o-mini’s descriptions relate to accuracy
and 43% to fluency. Gemini-2.0-flash allocates a
greater proportion of content to accuracy than to flu-
ency, whereas gpt-4o-mini’s content is more evenly
split. The rest contains irrelevant reasoning or gen-
eral overviews of pronunciation proficiency. For
Speechocean, we randomly selected 25 samples
for annotation. Compared to MultiPA data, both
LLMs place considerably greater emphasis on accu-
racy than on fluency on Speechocean, with 68% vs.
31% for Gemini, and 50% vs. 41% for GPT. This
difference is likely due to the shorter utterances
in Speechocean, which provide limited material
to observe natural speech flow or identify disrup-
tions, making fluency assessment less feasible. On
both datasets, gemini-2.0-flash generally provides
more constructive reasoning compared to gpt-4o-
mini. For both LLMs, constructive reasoning oc-
curs more frequently for accuracy than for fluency,
likely because accuracy is more clearly defined and
can be evaluated more objectively. Overall, roughly
76% of the context in gpt-4o-mini-based TextPA
reasoning is either correct or constructive, while
over 90% of gemini-2.0-flash-based reasoning falls
into these categories, highlighting the strong poten-
tial of TextPA to generate meaningful descriptive
feedback for pronunciation assessment.
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gemini
-2.0-
flash
gpt-4o-
mini 41.3%26.6%

12.9% 36.4% 29.6% 13.8%

Accuracy Fluency

Accuracy Fluency

0% 20% 40% 60% 80% 100%

A-hallucination A-correct A-constructive
F-hallucination F-correct F-constructive
Irrelevant Other

gemini
-2.0-
flash

gpt-4o-
mini

Accuracy Fluency

Accuracy Fluency

28.2% 14.9% 32.7%

27.0%47.4%18.3%

M
ultiPA

Speechocean

Figure 4: Coverage analysis of TextPA reasoning. “A”
denotes accuracy, and “F” denotes fluency.

6 Background

6.1 Speech Pronunciation Assessment
Speech pronunciation assessment models can be
categorized into closed- or open-response scenar-
ios. In closed-response settings, learners read a pre-
determined sentence, which serves as the ground-
truth transcript for the model to guide the assess-
ment. A common approach in this scenario ex-
tracted Goodness of Pronunciation (GoP) features
to train an acoustic model (Gong et al., 2022; Do
et al., 2023). In addition to GoP, various other
features have been explored for model training, in-
cluding acoustic embeddings from self-supervised
learning (SSL) models, prosodic features such as
duration and energy, and transcript-based features
such as word embeddings (Chao et al., 2022; Yan
et al., 2025). In (Wu et al., 2025), researchers fine-
tuned an LLM using audio tokens and text prompts
to provide feedback on phone errors. However,
the performance of models trained with ground-
truth transcripts may degrade significantly when
such transcripts are unavailable. On the other hand,
open-response scenarios allow learners to speak
freely or respond to prompts, enabling a more
authentic evaluation of their pronunciation skills.
Models designed for open-response tasks do not
rely on ground-truth transcripts. Instead, they lever-
age ASR outputs or avoid ASR entirely (Lin and
Wang, 2021; Kim et al., 2022; Chen et al., 2024;
Liu et al., 2023b). Most prior studies rely on audio-
score pair data to train acoustic models for pronun-
ciation assessment, whereas zero-shot approaches
have been largely unexplored. In (Liu et al., 2023a),
researchers scored pronunciation based on the num-
ber of incorrectly recovered tokens from an SSL

model. However, like other previous studies, it
provided only numerical feedback instead of more
interpretable or explainable assessments.

6.2 LLM for Language Learning

LLMs have had a significant impact on education,
with many studies exploring how tools like Chat-
GPT can support language learning (Lo et al., 2024;
C Meniado, 2023). These models have proven
effective in helping learners identify and correct
writing errors, improve the quality of their writ-
ing (Barrot, 2023), and receive automated feed-
back (Mizumoto and Eguchi, 2023). Few studies
have focused on using LLMs to support speaking
skills. (Kim and Park, 2023) used ChatGPT as a
conversational partner in role-playing tasks, while
(Lee et al., 2023) used it to generate topics for oral
practice. A study by (Wang et al., 2023) used Chat-
GPT to assess how well ESL learners placed pauses
in their speech. However, the potential of LLMs to
support other aspects of oral language skills, such
as pronunciation accuracy and fluency as in TextPA,
remains underexplored.

7 Conclusion

We propose TextPA, a zero-shot pronunciation as-
sessment method that leverages interpretable, tex-
tual representations of speech signals to assess pro-
nunciation accuracy and fluency. These descrip-
tions include transcripts, IPA, and CMU phoneme
sequences, collectively reflecting pronunciation
characteristics. Specifically, semantically unnat-
ural transcripts may signal pronunciation issues,
mismatches between canonical and recognized
phoneme sequences reflect articulation errors, and
inappropriate pauses embedded in CMU sequences
reveal disfluencies. Experimental results demon-
strate that LLMs can effectively leverage textual
description of speech to assess different aspects of
pronunciation. Unlike conventional models trained
on audio-score pairs, TextPA operates without su-
pervision. TextPA focuses on human-readable rep-
resentations and prior knowledge of pronunciation,
aiming to provide interpretable and explainable
feedback that go beyond a score. We hope this work
offers a new perspective on pronunciation assess-
ment. Building on our initial exploration, future re-
search could further develop methods to more effec-
tively integrate TextPA with audio-trained models,
combining their strengths to improve assessment
accuracy and feedback quality for learners.
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Limitations

While prosody is an important aspect of pronun-
ciation, we found it difficult to effectively assess
using our text-based approach. Compared to accu-
racy and fluency, prosodic features such as rhythm
and intonation are harder to describe precisely in
written form, making them less suitable for meth-
ods that rely solely on textual representations. As
a result, the LLM struggled to reliably evaluate
prosody without compromising assessment perfor-
mance on accuracy and fluency. In addition, both
the LLM and the ASR system introduce variabil-
ity across runs, leading to inconsistent assessment
results. In addition, budget constraints limited our
ability to use the most advanced LLMs or to eval-
uate large ALMs across all settings. Lastly, the
LLM occasionally produces hallucinations or con-
tent irrelevant to the reasoning. While most outputs
align with the audio, providing more practically
actionable feedback could better support learners.
Exhaustive manual review of reasoning results is
beyond the scope of this study, and no established
metric currently exists to automatically verify cor-
rectness. Further investigation is needed to deter-
mine the conditions under which the LLM is more
likely to generate errors and to develop strategies
that both prevent such errors and enhance action-
able feedback. These limitations suggest future
work in prosody modeling, dataset expansion, and
automatic reasoning evaluation.

Although certain words may have multiple valid
pronunciations depending on the speaker’s accent,
our study did not consider accent variation, since
the majority of the data involved attempts to mimic
General American English. Consequently, a po-
tential risk of this study is an overemphasis on a
single accent. While many English learners aim to
emulate native speakers, the more practical goal in
everyday communication is to express one’s opin-
ions clearly and be understood. This highlights
the importance of balancing pronunciation assess-
ment systems between intelligibility and nativeness.
When such systems overemphasize native-like pro-
nunciation, which is often tied to a specific ac-
cent, they might erroneously mark understandable
speech as “wrong.” Failing to strike this balance
can marginalize learners’ linguistic identities and
encourage unnecessary accent reduction at the ex-
pense of communicative effectiveness. In addition,
an overly narrow model can reinforce the idea that
only a single variety of English is valid, thereby

undermining the rich diversity of global English
accents.
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A Prompt

Figure 5 shows the TextPA prompt for LLM; ALM
prompt follows a similar format, but does not in-
clude input format instructions. We observed that
Gemini is more likely to return results that do not
match the required format, whereas GPT tends to
produce outputs that can be directly saved as JSON
files. If the model fails to generate a correctly for-
matted output for a given test sample, we re-run it
until a valid result is obtained.

B Prosody assessment

We investigate whether LLM could assess prosody
from textual descriptions. We only used the Mul-
tiPA data for this part of the study, as most sen-
tences in Speechocean are short and do not contain
sufficient prosodic variation for a reliable assess-
ment. First, we prompted the LLM to evaluate
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You are an expert evaluator of English pronunciation. 
Assess the accuracy and fluency of the given text 
input on a scale of 1 to 5, with higher scores indicating 
better performance. A score of 5 represents native-
speaker-level proficiency.

Input format: 
{"Transcript": "<Recognized ASR sentence>",
"Phonemes_CMU": "<Recognized CMU pronouncing 
phoneme sequence, with (time.s pause) indicating 
pauses in speech.>",
"Phonemes_IPA": "<Recognized IPA pronouncing 
phoneme sequence.>"}

Task: Return a dictionary with the following format:
{"Accuracy": <the assessment accuracy score>, 
"Fluency": <the assessment fluency score>,
"Reasoning": <detailed reasoning for the assigned 
score>}

Note: Do not include any other text other than the json
object. 
Input: 

Figure 5: LLM prompt.

prosody in addition to accuracy and fluency. As
shown in Table 8, the model performs worse in
terms of prosody assessment compared to fluency
and accuracy. In addition, introducing prosody as
an additional assessment criterion leads to a de-
crease in the model’s performance in both accuracy
and fluency.

Accuracy Fluency Prosody
LLM: all

(gpt-4o-mini)
0.633 0.678 -

LLMp: all
(gpt-4o-mini)

0.590 0.549 0.243

Table 8: LLM performance with and without prosody
assessment. LLMp: all is LLM: all with the introduction
of prosody as an additional assessment criterion. Note
that the transcript is generated using turbo version of
Whisper, an optimized version of large-v3 that provides
faster transcription with minimal loss in accuracy. The
results indicate that turbo performs comparably to large-
v3-en. (Section 4.1)

We explore textual descriptions of prosody us-
ing annotations from the ToBI (Tones and Break
Indices) system (Beckman and Hirschberg, 1994)6,
which provides a standardized approach to annotate
intonation and phrasing patterns in spoken English.
ToBI includes two primary components: the break

6https://github.com/monikaUPF/PyToBI

index and the tone index, both of which are crucial
for understanding the prosody of speech signals.
The break index ranges from 0 to 4 and is defined
as follows:

0: Clear phonetic marks for clitic groups
1: Most phrase-medial word boundaries
2: Strong disjuncture, pause or virtual

pause, no tonal marks
3: Intermediate intonation phrase bound-

ary
4: Full intonation phrase boundary

The tone index includes the following categories:
H: High pitch in the local pitch

range
L: Low pitch in the local pitch

range
*: Pitch accent, indicating that the

word is stressed
%: The end of an intonation phrase
- or ––: A phrase’s accent

Table 9 presents a selection of examples from
our attempts to assess prosody using an LLM. The
experimental results indicate that the LLM is less
effective in assessing prosody, and requiring it to do
so leads to a decline performance in accuracy and
fluency. A possible reason for this is that prosody is
harder to capture accurately using textual descrip-
tions. Since prosody is less commonly expressed in
written form, the LLM has more difficulty leverag-
ing its inherent knowledge for prosody assessment.
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Index Accuracy Fluency Prosody Prompt Textual description of prosody 

LLMA 0.467 0.561 0.294 ToBI_sequence": 
"<Recognized ToBI 
sequence.> 

"L-L% !H* L-L% L* L* H*+L L+H* L-H% 
L+H* L* L* L-L% L* H* L* L*+H L-H% 
H*+L L* L-L% H-L% L-L% L* H* H-L% L* 
L*+H LH- L*" 
 
(Note: raw ToBI tone indices.) 

LLMB 0.545 0.500 0.172 "Prosody_annotated_text": 
"<Sequence of ASR-
recognized words with 
prosodic labels. '*' indicates 
a pitch accent, and '%' 
indicates a phrase 
boundary. Labels appear in 
parentheses after the 
corresponding word." 

"depends (%)  i mean it depends (*, %)  on (*) 
what (*) i'm looking (*) for (*, %)  if i'm (*) 
going to buy (*, %)  like (*) a phone or (*) 
computer (*, %)  i would definitely (*) choose 
big ones (*, %)  because (%)  the (%)  quality 
(*) of the product (%)  is more (*) reliable (*, -
-)  for sure (*)" 
 
(Note: Simplified ToBI tone indices, 
including pitch accents, phrase accents, and 
boundary tones, are provided along with the 
corresponding words in the transcript.) 

LLMC 0.494 0.617 0.231 "Prosody_annotated_text": 
"<Sequence of ASR-
recognized words with 
prosodic labels. '*' indicates 
a pitch accent, '--' indicates 
a phrase accent, and '%' 
indicates a phrase 
boundary. Labels appear in 
parentheses after the 
corresponding word." 

"depends (%).  i mean it depends (*).  on (*) 
what (*) i'm looking,  for (*).  if i'm (*) going 
to buy (*).  like (*) a phone or (*) computer.  i 
would definitely,  choose big ones 
(*).  because (%).  the (%).  quality (*) of the 
product (%).  is more (*) reliable,  for sure (*)" 
 
(Note: Simplified ToBI tone indices are used. 
Only the final tone index for each word is 
considered.) 

LLMD 0.593 0.604 0.353 "Prosody_annotated_text": 
"<Sequence of ASR-
recognized words with 
prosodic labels. '*' indicates 
a pitch accent, '--' indicates 
a phrase accent, and '%' 
indicates a phrase 
boundary. Labels appear in 
parentheses after the 
corresponding word." 

"depends (--,%).... i mean it depends (*).... on 
(*) what (*) i'm looking (*).. for (*).... if i'm (*) 
going to buy (*).... like (*) a phone or (*) 
computer (*).... i would definitely (*).. choose 
big ones (*).... because (--,%).... the (--,%).... 
quality (*) of the product (--,%).... is more (*) 
reliable (*)... for sure (*)" 
 
(Note: Simplified ToBI tone indices are used. 
Break index information is represented by 
the number of dots, with more dots ("....") 
indicating a longer break.) 

LLME 0.539 0.680 0.3043 "Transcript_prosody": 
"<Sequence of ASR 
recognized word with 
prosody information.>" 

"depends ....i mean it depends ....on what i'm 
looking ..for ....if i'm going to buy ....like a 
phone or computer ....i would definitely ..choose 
big ones ....because ....the ....quality of the 
product ....is more reliable ...for sure" 

 
Table 9: LLM performance in the presence of textual prosody descriptions. The Prompt column displays the
additional instructions given to the LLM, beyond the standard prompt shown in Figure 5. The Textual Description
of Prosody column illustrates an example input provided to the LLM.
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