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Abstract

Large language models (LLMs) show strong
potential for simulating human social behav-
iors and interactions, yet lack large-scale, sys-
tematically constructed benchmarks for eval-
uating their alignment with real-world so-
cial attitudes. To bridge this gap, we intro-
duce SocioBench—a comprehensive bench-
mark derived from the annually collected, stan-
dardized survey data of the International So-
cial Survey Programme (ISSP). The bench-
mark aggregates over 480,000 real respondent
records from more than 30 countries, span-
ning 10 sociological domains and over 40
demographic attributes. Our experiments in-
dicate that LLMs achieve only 30–40% ac-
curacy when simulating individuals in com-
plex survey scenarios, with statistically signif-
icant differences across domains and demo-
graphic subgroups. These findings highlight
several limitations of current LLMs in sur-
vey scenarios, including insufficient individual-
level data coverage, inadequate scenario diver-
sity, and missing group-level modeling. We
have open-sourced SocioBench at https://
github.com/JiaWANG-TJ/SocioBench.

1 Introduction

As the LLMs advance in generating natural lan-
guage (Min et al., 2023; Karanikolas et al., 2024;
Gao et al., 2025), simulating cognitive processes
(Niu et al., 2024; Subramonyam et al., 2024; Ren
et al., 2025; Azaria et al., 2023; Chen, 2024), and
engaging in complex dialogues (Mou et al., 2024b;
Li et al., 2024), their potential applications in the
social sciences are becoming increasingly evident
(Anthis et al., 2025; Aher et al., 2023; Chen et al.,
2024). Beyond analyzing large-scale textual data,
LLMs can function as "computational agents" that
simulate human behavior (Liu et al., 2024; Wang
et al., 2025) and decision-making (Sun et al., 2025;
Li et al., 2025), enabling social experiments and
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surveys (Zhang et al., 2025; Leng and Yuan, 2023;
Mou et al., 2024a) that are difficult to conduct
in real-world settings due to ethical, logistical, or
financial constraints (Park et al., 2023). Existing re-
search has primarily focused on micro-level social
capabilities such as persona consistency, linguistic
style, and personality traits, or on group-level tasks
like social reasoning, social bias identification, and
multi-agent cooperation (Ji et al., 2025; Strachan
et al., 2024; Li et al., 2023). Although benchmarks
such as OpinionQA (Santurkar et al., 2023) have
made important strides in evaluating these aspects,
few have systematically assessed LLMs’ ability
to reflect macro-level social attitudes and cross-
cultural differences.

To bridge this gap, we develop SocioBench, a
large-scale, cross-national benchmark for simulat-
ing human behavior in social survey scenarios. The
benchmark is built upon the ISSP’s (Group, 2015,
2016b,a, 2017, 2018, 2019, 2020, 2022, 2023,
2024) standardized questionnaires and 481,629 au-
thentic respondent records, and it covers 10 re-
search domains: Citizenship, Environment, Family
and Changing Gender Roles, Health and Health
Care, National Identity, Religion, Role of Govern-
ment, Social Inequality, Social Networks, and Work
Orientations. Figure 1 shows an overview of the
pipeline for constructing SocioBench.

2 SocioBench Curation

Dataset Statistics. SocioBench is built upon the
ISSP, a long-standing, international collaborative
project that annually collects standardized data on
social attitudes, with its data archive maintained
by the GESIS – Leibniz Institute for the Social
Sciences1. SocioBench covers 10 sociological do-
mains across more than 30 countries. The full
version, SocioBench-Full, comprises 481,629 re-
spondents, with each respondent profiled by over

1https://www.gesis.org/en/home
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Dataset Evaluation
Data source Survey domain Person profile

Citizenship

Religion

Environment

Government Role

Family & Gender

Social Inequality

Health & Care

Social Networks

National Identity

Work Orientations

International Social
Survey Programme

Data statistics

Demographics Education

Ethnicity Household

Employment Spouse/Partner

Political AttitudeReligion

Income Union

Role-play as each respondent (           &       &                      &                   &                 ……)

profile

question

options

Question: ……to be a good citizen. 
……on a scale of 1 to 7, ……7 is 
very important, how important is it: 
Always to vote in elections

As an Australian female aged 50, I 
hold strong beliefs about civic respon-
sibility. …… Given these factors, 
voting holds significant importance for 
me. "option": "7"

LLM answer:  7
Ground truth: 4

Figure 1: Overview of SocioBench. We first constructed the questionnaire question-answering dataset covering
the ten sociological domains of the ISSP, along with the dataset containing ground-truth demographic labels and
respondent answers. We then instructed the LLM to answer the survey conditioned on the demographic labels,
and evaluated model performance by computing the accuracy between the LLM’s responses and the ground-truth
answers.

40 demographic features—including age, gender,
education level, occupation, income, religious af-
filiation, and political orientation et al. To enhance
computational efficiency, we release sampled ver-
sions: SocioBench-5000, where the suffix indi-
cates the total number of respondents. Unless
otherwise specified, all experiments—excluding
those in Section 4 (Data Sampling Ratios Compar-
ison)—are conducted using SocioBench-5000. By
default, "SocioBench" refers to this version. The
statistical overview is presented in Table 2, while
detailed distributions of Q&A and demographic
information are available in Appendix A.1 & A.2.

We compare SocioBench with some representa-
tive datasets for the analysis of social attitudes and
show the results in Table 1. Previous resources
adopt partial perspectives, restricted to specific
countries, a narrow set of topics, or without de-
mographic diversity. SocioBench, on the contrary,
provides a unified benchmark that simultaneously
spans languages, domains, demographics, and re-
gions, aligning more closely with real-world social
contexts.

Dataset Curation. The SocioBench dataset
comprises the questionnaire, respondents’ de-
mographic attributes and their responses. The
data processing pipeline comprises three steps:
first, we filter out open-ended questions and in-
valid responses (e.g., "Not applicable") in the
questionnaire to retain quantifiable closed-ended
items. Then, we sample 1% of the data to form
SocioBench-5000 for experiments using a two-
stage scheme—stratified by country and then ran-
dom sampling within each country—in order to
balance resource constraints against survey cover-

age. Examples from SocioBench dataset are pro-
vided in Appendix A.3.

3 Experiment Setup

Evaluation Pipeline. The evaluation pipeline en-
gages LLMs in role-playing. A prompt template is
designed to mimic authentic survey participation:
LLMs are explicitly instructed to adopt the identity
of the respondent through embedded demographic
profiles (e.g., "You are a 31-year-old Australian
woman with a high school to high school educa-
tion completed, who has a partner, no religious
affiliation, and is of Australian ethnicity", see Ap-
pendix C). The models then generate answer op-
tions accodrding to the sociocultural context.

Comparison Models. We compare state-of-the-
art LLMs on SocioBench, including the GPT se-
ries, Llama series, Qwen series, Mistral series,
and so on (OpenAI et al., 2024; Qwen et al.,
2024; Grattafiori et al., 2024; GLM et al., 2024;
DeepSeek-AI et al., 2025; Team et al., 2025; Jiang
et al., 2024)23.

Evaluation Metrics. To evaluate the alignment
of LLMs with real-world social attitudes in So-
cioBench, we employ the metrics: Accuracy. Ac-
curacy measures the proportion of model pre-
dictions that exactly match the ground-truth re-
sponses:

Accuracy =

∑n
i=1 I(ytrue

i = y
pred
i )

n
× 100% (1)

2https://github.com/QwenLM/Qwen3
3https://github.com/InternLM/InternLM
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Dataset Multilingual? Multi-domain? Demographic variables Multi-regions?

SocioBench (Ours) ✓ ✓ ✓ ✓
SocialBench (Chen et al., 2024) × × × ×
OpinionQA (Santurkar et al., 2023) × ✓ ✓ ×
GlobalOpinionQA (Durmus et al., 2023) ✓ ✓ × ✓

Table 1: Comparison of social and opinion survey datasets.

Domain Year Ctry. Feat. Resp. Q. Total

Citizen 2014 33 44 500 59 29 500
Enviro 2020 28 45 500 50 25 000
Family 2012 39 45 500 54 27 000
Health 2021 28 45 500 51 25 500
Nat.Ident 2013 35 46 500 60 30 000
Religion 2018 30 46 500 59 29 500
R.Gov 2016 30 46 500 60 30 000
S.Ineq 2019 25 44 500 46 23 000
S.Net 2017 28 47 500 59 29 500
Work 2015 35 47 500 57 28 500

Total — — 408 5 000 555 277 500

Table 2: Respondent profile information and question-
naire statistics in SocioBench. Abbreviations: Ctry. =
Number of countries; Feat. = Number of features; Resp.
= Number of respondents; Q. = Number of questions;
Tot. = Total. Citizen = Citizenship; Enviro = Environ-
ment; Family = Family and Changing Gender Roles;
Health = Health and Healthcare; Nat.Ident = National
Identity; Religion = Religion; R.Gov = Role of Gov-
ernment; S.Ineq = Social Inequality; S.Net = Social
Networks; Work = Work Orientations.

where ytrue
i and y

pred
i denote the true and predicted

responses for the i-th sample respectively, n is
the total number of valid samples, and I(·) is an
indicator function that equals 1 when the condition
is satisfied and 0 otherwise.

Implementation Details. The experiment lever-
ages the vLLM framework to efficiently serve
LLMs on 4 NVIDIA H100 GPUs supporting con-
text lengths up to 10,240 tokens. Generation pa-
rameters are consistently maintained with a Tem-
perature of 0.5, Top P of 0.95, Repetition Penalty
of 1.1.

4 Experimental Results

We conducted extensive experiments, systemati-
cally investigating the influence of various factors,
including model parameter scale, model family,
survey domain, dataset size, and survey rounds in
different years. Furthermore, we examine how two
factors—whether to enable reasoning and whether
to output reasons—affect LLMs’ behavioral sim-
ulation, and we conduct subgroup analyses based
on different demographic information to further

explore the bias of the LLM.
The core analyses and findings are presented in

this section, while additional results are detailed in
Appendix G.

Overall Experimental Results. Our experi-
ments yielded four primary findings. First, when
simulating individual behavior in complex social
survey scenarios, the accuracy of LLMs is gener-
ally 30–40% (see Table 3). This shows the limita-
tions of LLMs in modeling individual behavior.

Second, model performance improves with in-
creasing parameter scale. For instance, within the
Qwen2.5 family, Qwen2.5-7B-Instruct, Qwen2.5-
32B-Instruct, and Qwen2.5-72B-Instruct achieve
average accuracies of 33.35%, 36.03%, and
37.24%, respectively.

Furthermore, across different model fami-
lies, we find that GLM-4-9B-chat, Qwen2.5-
32B-Instruct, and DeepSeek-R1-Distill-Llama-
70B emerge as the top-performing models in the
< 10B, ∼ 30B, and ∼ 70B parameter ranges,
achieving average accuracies of 35.60%, 36.03%,
and 38.52%, respectively.

Finally, model performance varies significantly
across different domains. For instance, accuracy
peaks at 44.30% in Citizenship but is only 36.16%
in Health and Healthcare. The consistent trend
observed across different models is likely due to
the uneven data distribution of LLM pre-training
corpora. Data scarcity in certain domains results in
disparities in the models’ semantic comprehension
capabilities when addressing sociological issues.

Subgroup Analyses. To analyze biases that may
arise when LLMs role-play respondents from dif-
ferent demographic backgrounds, we conducted
subgroup analyses using representative models (the
Qwen family, the Llama family, and the GPT fam-
ily). We consider subgroups defined by geographic
region (continent), sex, and age range. Moreover,
we perform statistical tests to determine whether
these labels significantly affect group-level accu-
racy in behavioral simulation. The detailed data
are available in Appendix I.
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Model Citizen Enviro Family Health Nat.Ident Religion R.Gov S.Ineq S.Net Work Avg.

Accuracy % (↑)

BASELINES

Random Guess 25.93 23.22 21.58 21.24 23.02 20.84 23.64 20.25 18.65 22.99 22.14

GPT-4o 44.30 37.07 39.14 35.33 36.35 40.76 39.86 36.62 36.69 38.94 38.51
InternLM3-8b-instruct 41.65 33.66 31.05 32.35 34.60 36.61 36.09 32.21 33.96 36.19 34.84
GLM-4-9b-chat 41.81 33.95 31.96 34.13 36.53 37.32 36.03 34.35 31.86 38.10 35.60
Gemma-3-27b-it 40.92 34.63 34.87 30.49 33.84 38.08 35.97 32.60 35.63 38.10 35.51
DeepSeek-R1-Distill-Llama-70B 44.19 35.98 38.11 36.14 37.42 40.65 39.32 35.97 37.38 39.99 38.52

Mistral-7B-Instruct-v0.3 39.64 32.62 28.16 30.68 32.86 35.85 34.58 30.21 33.81 35.49 33.39
Mixtral-8x22B-Instruct-v0.1 43.10 34.20 34.40 32.38 33.29 37.86 35.89 33.70 37.35 35.11 35.73

Llama-3.1-8B-Instruct 40.43 32.11 31.89 32.21 33.37 36.99 35.27 31.47 34.99 33.39 34.21
Llama-3.3-70B-Instruct 44.03 35.97 38.62 36.16 38.19 41.26 39.19 35.73 36.14 38.80 38.41

Qwen2.5-7B-Instruct 40.90 29.84 30.10 31.82 33.67 36.54 34.80 30.37 33.34 32.18 33.35
Qwen2.5-32B-Instruct 42.54 35.26 34.94 33.20 35.09 37.88 36.32 34.00 34.48 36.57 36.03
Qwen2.5-72B-Instruct 43.59 35.51 36.27 35.90 34.13 39.80 36.56 35.17 38.06 37.38 37.24

Qwen3-8B 40.28 32.70 33.07 33.98 33.12 37.58 34.65 30.83 34.38 34.20 34.48
Qwen3-32B 43.60 34.12 34.53 33.53 32.64 38.90 35.52 33.16 35.31 35.25 35.66

Table 3: Comparison of different LLMs across SocioBench. We report the best LLM performance in bold and the
second best underlined.

Cross-Continental Analysis: We specifically
selected the domains of Religion and Social In-
equality for analysis, see Figure 2. Analysis of vari-
ance reveals highly significant differences across
continents for all evaluated models (all p < .001).
Specifically, models exhibit generally lower ac-
curacy when simulating the personas of African
respondents compared to those from Europe, North
America, and Oceania.

Cross-Gender Analysis: Our analysis of the
Citizenship and Family and Changing Gender
Roles domains reveals that the accuracy in sim-
ulating female personas is consistently higher than
that for male personas. For instance, the respective
accuracies are 43.04% ± 1.72% (mean ± standard
deviation) and 41.87% ± 1.97% in the Citizenship.
These findings suggest that training corpora imbal-
ances may lead to female roles being associated
with clearer semantic patterns in certain domains,
see Figure 14.

Cross-Age Analysis: Our analysis shows that
in the Role of Government and Social Networks
domains, the accuracies for the 56–65 and 66-and-
over age groups (37.52% ± 2.27% and 37.91%
± 1.45%, respectively) outperform young people,
such as the 18–25 and 36–45 age groups. This
suggests that these domains are more strongly as-
sociated with middle-aged and older populations,
or that the social networks and political participa-
tion of these groups are more established, thereby
enabling LLMs to simulate these demographic
groups with greater accuracy, see Figure 15.

Option Distribution in LLMs’ Responses. We
further conducted a comparative analysis of the
distribution of options selected by human respon-
dents and LLMs. The results reveal that although
the ground truth exhibits skewed distributions (i.e.,
options are concentrated in several categories),
the LLM-generated responses make this skewness
more pronounced, and Llama-3.3-70B-Instruct
shows the most marked concentration. Conversely,
we observe that Qwen3-32B tends to produce more
uniform option distributions. See Appendix F for
details.

How do Thinking Modes Shape LLMs’ Behav-
ioral Simulation? To analyze how the think-
ing/reasoning processes affect behavioral simu-
lation in social survey scenarios, we compared
Qwen3-8B and Qwen3-32B with and without the
thinking mode. The results show that the thinking
mode has only a minor effect, yielding slight gains
in behavioral simulation accuracy, see Table 11 in
the Appendix G. Specifically, the 8B model shows
an average improvement of 0.51 percentage point
(pp), while the 32B model improves by 0.89 pp.
An output example can be found in Appendix D.

Data Sampling Ratios Comparison. To eval-
uate robustness across different data scales, we
further constructed two sub-datasets, SocioBench-
10000 and SocioBench-20000, by sampling 2%
and 4% of the complete dataset. On SocioBench-
5000, SocioBench-10000, and SocioBench-20000,
the Llama-3.1-8B-Instruct model achieved aver-
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a. Religion

b. Social Inequality

Figure 2: Experimental Results and Significance Analysis of Representative LLMs in the Cross-Continental
Subgroup.

age accuracies of 34.21%, 34.28%, and 34.32%,
respectively, with a maximum deviation of less
than 0.11 pp (see Table 9). These results suggest
that small sample sizes yield relatively stable and
reliable results.

5 Conclusion

We introduce SocioBench, a cross-cultural bench-
mark using large-scale real-world sociological sur-
vey data to evaluate LLMs’ ability to model human
behavioral patterns. Through demographic role-
play prompts, models generate answers that enable
a systematic assessment of alignment with empiri-
cally observed social attitudes.

Limitations

Long-Term Data Sustainability. SocioBench
relys on the static data of ISSP question–answer
pairs and respondent answers. Although these data
represent the currently newest survey round results,
they cannot track longer-term attitudinal drift.

Evaluation of Dynamism and Openness. The
current evaluation relies solely on accuracy, focus-

ing on matching answers at the individual level;
and its evaluation of dynamism is insufficient.

Ethic Statement

The SocioBench dataset is based on ISSP4. And
we contacted the official data provider GESIS
(Leibniz Institute for the Social Sciences; isspser-
vice@gesis.org) via email and obtained explicit
written permission authorizing the use of the
dataset for this study and for publication. Use
of the SocioBench must strictly adhere to the data
usage requirements of the ISSP and GESIS5.
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A Details of Data Statistics

A.1 Statistics and Analysis
Figure 3 provides a detailed overview of the structural characteristics of questionnaire items in the
SocioBench dataset.
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Figure 3: Question and Answer Option Distribution Analysis across ISSP Survey Domains. (a) shows the
distribution of answer options per question across domains using violin plots. The width of each violin represents
the density of questions with that number of options. The red line indicates the mean number of options, while
the dark red line shows the median number of options for each domain. The black lines represent the data range
(minimum to maximum values). (b) displays the overall distribution of questions grouped by answer option count
across the entire dataset, showing how many questions have 2, 3, 4, 5, etc. answer options in total.

A.2 Demographic Information Distribution within the Citizenship Domain
Table 4 to Table 8 show the distribution statistics of some demographic information in the citizenship
domain, including gender, country, year of birth, educational background, and religion.

Value Freq. Pct.

Austria 16 3.2%
Taiwan, China 16 3.2%
Australia 16 3.2%
Croatia 16 3.2%
Chile 16 3.2%
Lithuania 15 3.0%
Belgium 15 3.0%
Netherlands 15 3.0%
Korea (South) 15 3.0%
Slovakia 15 3.0%
Turkey 15 3.0%

Value Freq. Pct.

Venezuela 15 3.0%
United States of America 15 3.0%
Czech Republic 15 3.0%
Germany 15 3.0%
Russia 15 3.0%
Great Britain 15 3.0%
Spain 15 3.0%
Poland 15 3.0%
Georgia 15 3.0%
South Africa 15 3.0%
Norway 15 3.0%

Value Freq. Pct.

France 15 3.0%
Japan 15 3.0%
Philippines 15 3.0%
Israel 15 3.0%
India 15 3.0%
Finland 15 3.0%
Switzerland 15 3.0%
Slovenia 15 3.0%
Iceland 15 3.0%
Denmark 15 3.0%
Sweden 15 3.0%

Table 4: Demographic Profile of Citizenship Domain: Country Distribution. Freq. refers to the frequency of
occurrence, Pct. refers to the percentage
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Value Freq. Pct.

1975 15 3.0%
1962 14 2.8%
1961 14 2.8%
1949 13 2.6%
1963 13 2.6%
1965 13 2.6%
1958 13 2.6%
1976 12 2.4%
1981 12 2.4%
1967 12 2.4%
1979 12 2.4%
1964 12 2.4%
1985 12 2.4%
1969 12 2.4%

Value Freq. Pct.

1960 12 2.4%
1977 10 2.0%
1951 10 2.0%
1971 10 2.0%
1952 10 2.0%
1992 10 2.0%
1970 9 1.8%
1938 9 1.8%
1974 9 1.8%
1982 9 1.8%
1942 9 1.8%
1950 9 1.8%
1989 8 1.6%
1983 8 1.6%

Value Freq. Pct.

1972 8 1.6%
1953 8 1.6%
1954 8 1.6%
1955 8 1.6%
1994 7 1.4%
1947 7 1.4%
1980 7 1.4%
1984 7 1.4%
1973 7 1.4%
1944 7 1.4%
1957 6 1.2%
1986 6 1.2%
1956 6 1.2%
1978 6 1.2%

Value Freq. Pct.

1943 6 1.2%
1988 6 1.2%
1946 5 1.0%
1933 5 1.0%
1939 5 1.0%
1948 5 1.0%
1968 5 1.0%
1993 5 1.0%
1987 5 1.0%
1966 4 0.8%
1935 4 0.8%
1959 4 0.8%
1995 4 0.8%
1937 3 0.6%

Value Freq. Pct.

1934 3 0.6%
1991 3 0.6%
1936 3 0.6%
1990 3 0.6%
1941 2 0.4%
1998 2 0.4%
1932 2 0.4%
1940 1 0.2%
No answer 1 0.2%
1931 1 0.2%
1925 1 0.2%
1997 1 0.2%
1996 1 0.2%
1945 1 0.2%

Table 5: Demographic Profile of Citizenship Domain: Birth Year Distribution

Value Freq. Pct.

Upper secondary (programs that allow entry to university) 122 24.4%
Lower level tertiary, first stage (also technical schools at a tertiary level) 111 22.2%
Lower secondary (secondary completed does not allow entry to university: obligatory school) 106 21.2%
Upper level tertiary (Master, Doctor) 65 13.0%
Post secondary, non-tertiary (other upper secondary programs toward labour market or technical formation) 59 11.8%
Primary school (elementary education) 22 4.4%
No formal education 14 2.8%
No answer 1 0.2%

Table 6: Demographic Profile of Citizenship Domain: Education Level Distribution

Value Freq. Pct.

Male 257 51.4%
Female 243 48.6%

Table 7: Demographic Profile of Citizenship Domain: Gender Distribution

Value Freq. Pct.

No religion 140 28.0%
Catholic 139 27.8%
Protestant 100 20.0%
Orthodox 26 5.2%
Islamic 25 5.0%
Other Christian 17 3.4%
Buddhist 14 2.8%
Hindu 14 2.8%
Jewish 10 2.0%
Other Asian Religions 5 1.0%
No answer 3 0.6%
Other Religions 3 0.6%
Refused 3 0.6%
Information insufficient 1 0.2%

Table 8: Demographic Profile of Citizenship Domain: Religious Affiliation Distribution
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A.3 Data example
Figure 4 and Figure 5 respectively show the questionnaire data, respondent profile data and ground-truth
answer data contained in the SocioBench dataset. Figure 4 shows the Q&A data processing for special
countries. For example, for question V44, when the respondent’s country code is equal to the country
code of "special" in the dataset, the corresponding question option in "special" replaces the question
option in "answer" and asks the question.

Structured JSON data

  {
    "question_id": "V44",
    "question": "Q40 To what extent do you agree or disagree with the following statements? I think most people in [COUNTRY] are 
better informed about politics and government than I am.",
    "answer": {
      "1": "Strongly agree",
      "2": "Agree",
      "3": "Neither agree nor disagree",
      "4": "Disagree",
      "5": "Strongly disagree"
    },
    "special": {
      "JP": {
        "1": "I think so",
        "2": "I rather think so",
        "3": "Can't say one way or the other",
        "4": "I rather don't think so",
        "5": "I don't think so"
      },
      "VE": {
        "1": "I agree",
        "2": "I somewhat agree",
        "3": "I neither agree nor disagree",
        "4": "I somewhat disagree",
        "5": "I disagree"
      }
    }
  },

Figure 4: SocioBench Dataset: Questions and answers in social survey questionnaires
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Structured JSON data

[
  {
    "person_id": 10021906,
    "attributes": {
      "Country Prefix ISO 3166": "Lithuania",
      "Sex of Respondent": "Female",
      "Year of birth": "1946",
      "Age of respondent": "69",
      "Education I: years of schooling": "15",
      "Country specific highest completed degree of education: Lithuania": "Vocational (completing basic)",
      "Highest completed education level: Categories for international comparison": "Lower secondary (secondary completed does not 
allow entry to university: obligatory school)",
      "Currently, formerly, or never in paid work": "Currently not in paid work, paid work in the past",
      "Hours worked weekly": "NAP (code 2 or 3 in WORK)",
      "Employment relationship": "Employee",
      "Self-employed: how many employees": "NAP (code 1, 2, 4, 0 in EMPREL)",
      "Supervise other employees": "No",
      "Number of other employees supervised": "NAP (code 2, 0 in WRKSUP)",
      "Type of organization, for-profit/ non-profit": "For-profit organization",
      "Type of organization, public/ private": "Public employer",
      "Occupation ISCO/ ILO 2008": "Engineering professionals (excluding electrotechnology)",
      "Main status": "Retired",
      "Living in steady partnership": "Yes, have partner; live in same household",
      "Spouse, partner: currently, formerly or never in paid work": "Currently not in paid work, paid work in the past",
      "Spouse, partner: hours worked weekly": "NAP (code 0, 2 or 3 in SPWORK)",
      "Spouse, partner: employment relationship": "Employee",
      "Spouse, partner: supervise other employees": "No",
      "Spouse, partner: occupation ISCO/ ILO 2008": "Electronics mechanics and servicers",
      "Spouse, partner: main status": "Retired",
      "Trade union membership": "Yes, previously, but not currently",
      "Country specific religious affiliation or denomination: Lithuania": "Orthodox",
……
……
……
    },
    "questions_answer": {
      "v5": 6,
      "v6": 7,
      "v7": 7,
      "v8": 7,
      "v9": 5,
      "v10": 7,
……
……
……
      "v60": 3,
      "v61": 2,
      "v62": 2,
      "v63": 3,
      "v64": 1
     }
  },

Figure 5: SocioBench Dataset: respondent demographic information and Ground-truth answers
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B Data Curation Details

Figures 6 and 7 show structured Questionnaire QA/Demographic Questionnaire QA examples extracted
from the ISSP Variable Report.pdf, in Chinese and English versions, respectively.

Structured JSON data

你是一个专业的数据处理专家，请仔细阅读当前pdf，根据我的要求，逐页提取信息，并进行结构化的json输出。
具体包含5点信息：
1.第一点为domain信息，表示当前内容所属的内容缩写，例如："v1"、"C_ALPHAN"、"V9"、"CZ_V65"、"IN_RINC"…………这里只是作为示例，具
体内容以当前文档为准，示例中的信息与当前pdf无关，仅供参考；
2.第二点为含义信息，表示domain所指内容，例如："GESIS Data Archive Study Number - 'Citizenship II'"、"Country Prefix ISO 3166"
、"Q5 Good citizen: active in social or political associations"、"Q61 Frequency: read political content of a newspaper"、"Country spe-
cific personal income: India"等，示例仅作参考;
3.第三点为问题信息，表示调查中具体询问的内容，例如：" GESIS Data Archive Study number ZA6670 for the ISSP 2014 on 'Citizen-
ship II'.  Study number of the data set producer and archiving number "、" Sample Prefix ISO 3166 Code - alphanumeric  ISO 
3166 Country/ Sample Prefix  This alphanumerical sample identification variable C_ALPHAN includes country codes that are based 
on ISO 3166."、" There are different opinions as to what it takes to be a good citizen. As far as you are concerned personally on 
a scale of 1 to 7, where 1 is  not at all important and 7 is very important, how important is it:  To be active in social or political 
associations"、" Before taxes and other deductions, what on average is your own total monthly income? "、"Here are some different 
forms of political and social action, that people can take. Please indicate, for each one, whether you have done any of these things 
in the past year, whether you have done it in the more distant past, whether you have not done it but might do it or have not done 
it and would never, under any circumstances, do it. Attended a political meeting or rally"
- 注意，对于直接用于社会调查访问的内容，不进行提取，例如 (IF DONE BY INTERNET COUNT AS YES)(IF MORE THAN ONE RE-

SPONSE, CODE THE MORE PARTICIPATIVE ONE - THAT IS, THE ONE CLOSER TO THE LEFT END OF THE SCALE.)等
4.第四点为内容信息，数据格式为一组key value，左侧的为option code，表示选项代码。禁止删减输出，所有选项都要输出，包括：NAP, all 
other countries、Refused、Don't know、No answer等特殊情况；右侧的为option text，表示此选项对应的文本含义，如"6670   GESIS Data 
Archive Study Number ZA6670"、"AT = Austria"、" 1   1, Not at all important  2   2  3   3  4   4  5   5  6   6  7   7, Very im-
portant  8   Can't choose  9   No answer"、" 1   Several times a day "等，你需要逐个结构化为字典格式例如，6670: "GESIS Data Ar-
chive Study Number ZA6670"、AT: "Austria"、1:"1, Not at all important"、2:"2"等；
5.第五列，为特殊数据形式，在某些特定的国家编号下，数据需要特殊处理，！！注意："Note:"之中的信息不做任何的提取/处理。例如" Note:  / 
CZ: For-profit organization means limited liability company, private joint stock company, cooperative, profit-seeking state-owned 
business  etc. Non-profit organization means non-profit non-governmental organization, foundation, public benefit corporation, public 
administration,  local administration, public institution like hospitals, public schools, libraries, police, the military."这些信息完全不管。
你需要对在选项之中出现如下特殊国家情况，"in Austria (AT):  0   Not available"这样的选项进行处理，需要按照具体的国家格式化为三元组格
式，{ "AT": {  0: "Not available" } }、{ "GB-GBN": {  0: "NAP (code 0, 2, 3 in EMPREL" } } ，若无特殊选项，输出空白即可。
注意：
1.！！禁止减少输出、省略输出，输出原文英文，禁止修改原始内容的表达，一次性输出完毕当前pdf的全部内容。最终将所有内容输出到一个json
中，每一条信息都包含5元组.一次性输出完毕所有页面的信息，禁止不全输出或中途停止。
2.具体内容并非一定与当前pdf相关，上述prompt给出的所有例子禁止直接作为输出，你需要阅读pdf中的内容，在进行输出，必须确保输出内容，
直接在pdf中有所对应。我给出你1个输出的示例：
    {
      "domain": "NEMPLOY",
      "meaning": "Self-employed: how many employees",
      "question": "If self-employed with employees, how many employees do/did you have, not counting yourself?",
      "content": {
        "0": "NAP (code 1, 2, 4, 0 in EMPREL)",
        "1": "1 employee",
        "9995": "9995 employees or more",
        "9998": "Don't know",
        "9999": "No answer"
      },
      "special": {
        "NL": {
          "4": "2-5 employees",
          "9": "6-11 employees",
          "19": "12-25 employees",
          "30": "More than 25 employees"
        },
        "US": {
          "97": "97 employees or more"
        }
      }
    }

Structured Extraction Questionnaire QA/Demographic Questionnaire QA from ISSP Variable Report.pdf

Figure 6: Structured Extraction Questionnaire QA/Demographic Questionnaire QA from ISSP Variable Report.pdf
(Chinese)
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Structured JSON data

You are a professional data processing expert. Please carefully read the current PDF and, according to my requirements, extract 
information page by page and output it in a structured JSON format.

Specifically, the output should include the following five pieces of information:

1. Domain Information: Indicates the abbreviation of the current content's domain, such as "v1", "C\_ALPHAN", "V9", "CZ\_V65", 
"IN\_RINC", etc. These are just examples; the actual content should be based on the current document. The examples provided 
are for reference only and are not related to the current PDF.

2. Meaning Information: Represents the meaning of the domain, for example: "GESIS Data Archive Study Number - 'Citizenship 
II'", "Country Prefix ISO 3166", "Q5 Good citizen: active in social or political associations", "Q61 Frequency: read political content 
of a newspaper", "Country specific personal income: India", etc. These examples are for reference only.

3. Question Information: Indicates the specific question asked in the survey, such as: "GESIS Data Archive Study number ZA6670 
for the ISSP 2014 on 'Citizenship II'. Study number of the data set producer and archiving number", "Sample Prefix ISO 3166 
Code - alphanumeric ISO 3166 Country/ Sample Prefix This alphanumerical sample identification variable C\_ALPHAN includes coun-
try codes that are based on ISO 3166.", "There are different opinions as to what it takes to be a good citizen. As far as you are 
concerned personally on a scale of 1 to 7, where 1 is not at all important and 7 is very important, how important is it: To be active 
in social or political associations", "Before taxes and other deductions, what on average is your own total monthly income?", "Here 
are some different forms of political and social action that people can take. Please indicate, for each one, whether you have done 
any of these things in the past year, whether you have done it in the more distant past, whether you have not done it but might do 
it, or have not done it and would never, under any circumstances, do it. Attended a political meeting or rally", etc.

Note: Do not extract content that is directly used for social survey visits, such as "(IF DONE BY INTERNET COUNT AS YES)(IF 
MORE THAN ONE RESPONSE, CODE THE MORE PARTICIPATIVE ONE - THAT IS, THE ONE CLOSER TO THE LEFT END OF 
THE SCALE.)", etc.

4. Content Information: The data format should be a set of key-value pairs, where the left side is the option code, representing 
the option code, and the right side is the option text, representing the textual meaning of the option, such as "6670 GESIS Data 
Archive Study Number ZA6670", "AT = Austria", "1 1, Not at all important 2 2 3 3 4 4 5 5 6 6 7 7, Very important 8 Can't 
choose 9 No answer", "1 Several times a day", etc. You need to structure each as a dictionary format, for example, 6670: "GESIS 
Data Archive Study Number ZA6670", AT: "Austria", 1: "1, Not at all important", 2: "2", etc.

5. Special Data Format: In certain specific country codes, data requires special handling. **Note**: Information within "Note:" 
should not be extracted or processed in any way. For example, "Note: / CZ: For-profit organization means limited liability company, 
private joint stock company, cooperative, profit-seeking state-owned business, etc. Non-profit organization means non-profit 
non-governmental organization, foundation, public benefit corporation, public administration, local administration, public institution 
like hospitals, public schools, libraries, police, the military." This information should be completely ignored.

You need to process special country cases that appear in the options, such as "in Austria (AT): 0 Not available". These options 
should be handled and formatted into a triple format, for example, { "AT": { 0: "Not available" } }, { "GB-GBN": { 0: "NAP (code 0, 
2, 3 in EMPREL" } }. If there are no special options, leave this blank.

Attention:
1. Do not reduce or omit any output**; output the original English text without modifying the original expressions. Output all the 
content of the current PDF at once. Each piece of information should include a 5-tuple. Do not output partially or stop midway.

2. The specific content may not necessarily be related to the current PDF. The examples provided in the above prompt are not to 
be directly used as output. You need to read the content in the PDF and then output accordingly. Ensure that the output content 
directly corresponds to the content in the PDF.

I will provide you with an example of the output:
```json
{
  "domain": "NEMPLOY",
  "meaning": "Self-employed: how many employees",
  "question": "If self-employed with employees, how many employees do/did you have, not counting yourself?",
  "content": {
    "0": "NAP (code 1, 2, 4, 0 in EMPREL)",
    "1": "1 employee",
    "9995": "9995 employees or more",
    "9998": "Don't know",
    "9999": "No answer"
  },
  "special": {
    "NL": {
      "4": "2-5 employees",
      "9": "6-11 employees",
      "19": "12-25 employees",
      "30": "More than 25 employees"
    },
    "US": {
      "97": "97 employees or more"
    }
  }
}
```

Structured Extraction Questionnaire QA/Demographic Questionnaire QA from ISSP Variable Report.pdf

Figure 7: Structured Extraction Questionnaire QA/Demographic Questionnaire QA from ISSP Variable Report.pdf
(English)
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C LLMs Role-playing Prompt template

Figure 8 shows the prompt templates passed to the LLMs along with examples.

Structured JSON data

### Instruction:
You are participating in the International Social Survey Programme. Assume the role of a real individual with the following personal informa-
tion. Fully immerse yourself in this persona and answer the question truthfully, based solely on the provided personal information.

### Personal Information:
{attributes}

e.g.
Country Prefix ISO 3166: Australia; 
Sex of Respondent: Female; Year of birth: 1984; 
Age of respondent: 31; Education I: years of schooling: 11;
Country specific highest completed degree of education: Australia: Completed High School to Year 10; 
Highest completed education level: Categories for international comparison: Lower secondary (secondary completed does not allow entry to uni-
versity: obligatory school); 
Currently, formerly, or never in paid work: Currently in paid work; 
Hours worked weekly: 40; 
Employment relationship: Employee;
Supervise other employees: Yes; 
Number of other employees supervised: 12; 
Type of organization, for-profit/ non-profit: For-profit organization; 
Type of organization, public/ private: Private employer; 
Occupation ISCO/ ILO 2008: No answer; 
Main status: In paid work; 
Living in steady partnership: Yes, have partner; live in same household; 
Spouse, partner-currently, formerly or never in paid work: Currently in paid work; 
Spouse, partner-hours worked weekly: 48; 
Spouse, partner-employment relationship: Employee; Spouse, partner: supervise other employees: No; 
Spouse, partner-occupation ISCO/ ILO 2008: Advertising and marketing professionals; 
Spouse, partner-main status: In paid work; Trade union membership: No, never; 
Country specific religious affiliation or denomination: Australia: No religion; 
Groups of religious affiliations (derived from nat_RELIG): No religion; 
Attendance of religious services: Never; 
Top-Bottom self-placement: No answer; 
Did respondent vote in last general election: Yes; 
Country specific party voted for in last general election-Australia: Australian Labor Party - ALP; 
Party voted for in last general election: left-right (derived from nat_PRTY): Left, center left; 
Country specific ethnic group 1: Australia: AU born: + Both parents also AU born; 
How many children in household: children between [school age] and 17 years of age: No children; 
How many toddlers in household: children up to [school age -1] years: No toddlers; 
How many persons in household: Two persons; 
Australia: Country specific personal income: 5200; 
Australia: Country specific household income: 12000; 
Legal partnership status: Married; Father's country of birth: Australia; 
Mother's country of birth: Australia; 
Place of living: urban - rural: The suburbs or outskirts of a big city; 
Australia: Country specific region: South Australia; 
person_id: 10001310.
### Question:
{question}

e.g.
Q1 There are different opinions as to what it takes to be a good citizen. As far as you are concerned personally on a scale of 1 to 7, where 
1 is  not at all important and 7 is very important, how important is it: Always to vote in elections

### Options:
{options}

e.g.
4: 4; 5: 5; 7: 7, Very important; 1: 1, Not at all important; 2: 2; 6: 6; 3: 3 

### Please strictly follow the following json format output:
```json
{{{{
  "reason": "",
  "option": ""
}}}}

```
### Requirements:
1. Please answer the questions based on your personal information only and give a detailed and complete justification, which requires a 6-10 
sentence response.
2. 2. Please choose the option that best suits you from the ### Options given, and respond with the number only. For example: #### Op-
tions contains: {{"1": "1, Not at all important", "2": "02"}}, you can choose "1" or "2", but do not choose "1, Not at all important" or "02".

Figure 8: Prompt Template for LLMs Role-playing Respondents in Social Survey Scenarios
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D Comparison of Qwen3-32B With and Without "Think" Mode

Figure 9 shows the Qwen3-32B response comparison on the same question.

Structured JSON data

    
Question: There are different opinions as to what it takes to be a good citizen. As far as you are concerned personally on a scale 
of 1 to 3, where 1 is  not at all important and 3 is very important, how important is it: Always to vote in elections.
Options: 3: 3, Very important; 2: 2; 1: 1, Not at all important.

Structured JSON data

Qwen3-32B w/ think

"llm_response": "<think>\nOkay, let's tackle this question. The user is asking about 
the importance of always voting in elections on a scale of 1 to 3. The options are 1 
(not at all important), 2, or 3 (very important). \n\nFirst, I need to look at the 
personal information provided. The respondent is a 69-year-old Lithuanian woman 
with a vocational education. She's retired, lives in a town in Vilnius, and is married 
to someone who's also retired. She's Orthodox and voted in the last election for 
the Electoral Action of Lithuanian Poles - LLRA. She's part of a household with 
three people, no children.\n\nNow, the question is about her personal belief on the 
importance of voting. Since she did vote in the last general election, that suggests 
she values participation in the democratic process. Her party is on the left-right 
spectrum as \"Other,\" which might indicate she's not strictly aligned with major 
parties but still engages politically. Her education level is lower secondary, which 
might influence her political awareness, but she's active enough to vote. \n\nHer 
religious affiliation as Orthodox could play a role, but there's no direct link to 
voting behavior mentioned. However, her involvement in a political party and voting 
history imply she sees voting as important. The fact that she's part of a trade 
union (previously) might also mean she's more engaged with societal issues. \n\nCon-
sidering her age and the fact that she's retired, she might have more time to 
engage in civic duties. The question is about the importance of always voting. Since 
she voted in the last election, it's likely she views it as important. But the scale is 
1-3, with 3 being very important. Given that she's a voter and her party affilia-
tion, she might rate it as 3. However, the options don't have a 3 labeled as \"Very 
important\" in the options provided. Wait, looking back, the options are 2: 2, 3: 3, 
Very important, and 1: 1, Not at all important. So the correct answer would be 3. 
\n\nBut wait, the user's personal info says she voted in the last election, which 
suggests she believes in voting. Therefore, she would rate it as important. Since 
the options include 3 as \"Very important,\" that's the most fitting. Even though 
she's retired, her active participation in the last election indicates she values it. So 
the answer should be 3.\n</think>\n\n{\n  \"reason\": \"As a retired individual who 
actively voted in the last general election for a specific political party, I believe 
voting is a fundamental civic duty. My participation in the electoral process reflects 
a commitment to shaping societal decisions. Although I am not currently employed, 
my historical engagement with political systems (e.g., trade union membership) un-
derscores the importance of civic responsibility. Voting aligns with my values of con-
tributing to collective governance, even if my current status as a non-worker shifts 
priorities. My Orthodox religious background may emphasize community and account-
ability, further reinforcing the significance of electoral participation. The fact that 
I consistently voted in the past suggests a strong belief in its importance, warrant-
ing the highest rating on the scale.\",\n  \"option\": \"3\"\n}",

Qwen3-32B w/o think

"llm_response": "```json\n{\n  \"rea-
son\": \"As a retired individual who has 
voted in the last general election, I be-
lieve that voting is a fundamental duty 
and a way to have a voice in shaping the 
future of the country. Being part of a 
household in Vilnius and having lived 
through various political changes in Lith-
uania, I understand the importance of 
participating in the democratic process. 
I have always valued civic engagement, 
especially given my background in engi-
neering and my spouse's technical pro-
fession, which instills a sense of re-
sponsibility towards society. Additional-
ly, my Orthodox faith encourages com-
munity involvement and moral responsi-
bility, which aligns with the act of 
voting. Since I have a steady partner-
ship and live in a small city, I feel con-
nected to my local and national commu-
nity, reinforcing the importance of 
casting a vote. Therefore, I believe it 
is very important to always vote in elec-
tions.\",\n  \"option\": \"3\"\n}\n```",

Figure 9: Qwen3-32B response comparison on the same question
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E Comparison of Qwen3-32B With and Without "Reason" in prompt

Figure 10 shows the Qwen3-32B response comparison on the same question.

Structured JSON data

    
Question: There are different opinions as to what it takes to be a good citizen. As far as you are concerned personally on a scale 
of 1 to 3, where 1 is  not at all important and 3 is very important, how important is it: Always to vote in elections.
Options: 3: 3, Very important; 2: 2; 1: 1, Not at all important.

Structured JSON data

Qwen3-32B w/ reason

"llm_response": "<think>\nOkay, let's tackle this question. The user is asking 
about the importance of always voting in elections on a scale of 1 to 3. The 
options are 1 (not at all important), 2, or 3 (very important). \n\nFirst, I need 
to look at the personal information provided. The respondent is a 69-year-old 
Lithuanian woman with a vocational education. She's retired, lives in a town in 
Vilnius, and is married to someone who's also retired. She's Orthodox and 
voted in the last election for the Electoral Action of Lithuanian Poles - LLRA. 
She's part of a household with three people, no children.\n\nNow, the question 
is about her personal belief on the importance of voting. Since she did vote in 
the last general election, that suggests she values participation in the demo-
cratic process. Her party is on the left-right spectrum as \"Other,\" which 
might indicate she's not strictly aligned with major parties but still engages 
politically. Her education level is lower secondary, which might influence her 
political awareness, but she's active enough to vote. \n\nHer religious affilia-
tion as Orthodox could play a role, but there's no direct link to voting behavior 
mentioned. However, her involvement in a political party and voting history 
imply she sees voting as important. The fact that she's part of a trade union 
(previously) might also mean she's more engaged with societal issues. \n\nCon-
sidering her age and the fact that she's retired, she might have more time to 
engage in civic duties. The question is about the importance of always voting. 
Since she voted in the last election, it's likely she views it as important. But 
the scale is 1-3, with 3 being very important. Given that she's a voter and her 
party affiliation, she might rate it as 3. However, the options don't have a 3 
labeled as \"Very important\" in the options provided. Wait, looking back, the 
options are 2: 2, 3: 3, Very important, and 1: 1, Not at all important. So the 
correct answer would be 3. \n\nBut wait, the user's personal info says she 
voted in the last election, which suggests she believes in voting. Therefore, 
she would rate it as important. Since the options include 3 as \"Very impor-
tant,\" that's the most fitting. Even though she's retired, her active partici-
pation in the last election indicates she values it. So the answer should be 
3.\n</think>\n\n{\n  \"reason\": \"As a retired individual who actively voted in 
the last general election for a specific political party, I believe voting is a 
fundamental civic duty. My participation in the electoral process reflects a 
commitment to shaping societal decisions. Although I am not currently em-
ployed, my historical engagement with political systems (e.g., trade union mem-
bership) underscores the importance of civic responsibility. Voting aligns with 
my values of contributing to collective governance, even if my current status as 
a non-worker shifts priorities. My Orthodox religious background may empha-
size community and accountability, further reinforcing the significance of elec-
toral participation. The fact that I consistently voted in the past suggests a 
strong belief in its importance, warranting the highest rating on the scale.\",\n  
\"option\": \"3\"\n}",

Qwen3-32B w/o reason

"llm_response": "<think>\nOkay, let's see. The 
question is about how important it is to always 
vote in elections, on a scale of 1 to 3. The op-
tions are 1 (not at all important), 2, or 3 (very 
important). \n\nLooking at the personal infor-
mation provided: the respondent is a 
69-year-old woman from Lithuania, retired, 
with a lower secondary education. She's in a 
steady partnership, both she and her partner 
are retired. She's Orthodox, attends religious 
services once a month, and self-places on the 
top-bottom scale at 05 (which I think is neu-
tral). She did vote in the last general election 
and supported the Electoral Action of Lithuanian 
Poles - LLRA, which is categorized as 'Other' in 
left-right terms. \n\nShe's part of the Russian 
ethnic group in Lithuania. Since she did vote in 
the last election, that might indicate she sees 
some importance in voting. Also, considering her 
age and being retired, she might have a stron-
ger sense of civic duty. However, her education 
level is lower secondary, which might influence 
her perspective. But since she actually voted, 
it's likely she believes it's at least somewhat 
important. The options are 1, 2, or 3. Since 
she voted, she probably wouldn't rate it as 1. 
Between 2 and 3. Given that she's part of a 
political party that's 'Other' and not strictly 
left or right, maybe she values voting as im-
portant but not extremely. However, the fact 
that she did vote might push her towards 3. But 
I need to consider her personal info. She's in a 
town, Vilnius region. Maybe in Lithuania, voting 
is seen as important. Also, being part of a mi-
nority (Russian ethnic group) might make her 
feel that voting is a way to have her voice 
heard. So, she might rate it as very important 
(3). Alternatively, maybe she's more moderate. 
But since she actually voted, and the question is 
about personal importance, it's more likely she 
thinks it's very important.\n</think>\n\n```-
json\n{\n  \"option\": \"3\"\n}\n```",

Figure 10: Qwen3-32B response comparison on the same question
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F Example comparison of the option distribution for real respondents and
LLM-generated responses.

Focusing on the Family and Health and Health Care domains, we conducted a further analysis comparing
real respondents with four representative models—Qwen2.5-72B-Instruct, Qwen3-32B, Llama-3.3-70B-
Instruct, and GPT-4o—by sampling ten questions and examining the response-option distributions.

As shown in Figure 11 and Figure 12, although the ground-truth results exhibit skewed distributions
(i.e., options are concentrated in several categories), the LLM-generated responses make this skewness
more pronounced, with Llama-3.3-70B-Instruct showing the most marked concentration. Conversely, we
observe that Qwen3-32B tends to produce more uniform option distributions.
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Figure 12: Comparison of the option distribution in the health domain
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G Supplementary experimental results and findings

Data Sampling Ratios Comparison. For the experimental result of dataset sampling ratios, please
refer to the Table 9.

n = 5000 n = 10000 n = 20000

Citizen 40.43 40.15 40.07
Enviro 32.11 32.33 32.08
Family 31.89 32.82 33.19
Health 32.21 32.55 32.47
Nat.Ident 33.37 33.37 33.27
Religion 36.99 37.17 36.83
R.Gov 35.27 34.85 34.87
S.Ineq 31.47 31.03 31.48
S.Net 34.99 34.43 35.02
Work 33.39 34.10 33.94

Avg. 34.21 34.28 34.32

Table 9: Results of Llama-3.1-8B-Instruct under different sampling ratios (n denotes the number of respondents
under 10 domains).

How does requiring a reason in responses affect LLMs’ behavioral simulation? To analyze how
providing reasons impacts the evaluation, we conducted experiments on Qwen3-8B and Qwen3-32B,
comparing two response strategies: Option-only vs. Reason & Option. The results indicate that including
reasons has a minor effect on performance. In fact, it leads to a slight decrease in accuracy, as detailed
in Table 10. We analyse that this may be due to the cognitive overhead or response biases, which
can interfere with the model’s intrinsic decision-making process. An output example can be found in
Appendix E.

8B w/ R B w/o R 32B w/ R 32B w/o R

Citizen 40.28 39.96 43.60 44.18
Enviro 32.70 32.64 34.12 34.78
Family 33.07 33.61 34.53 35.37
Health 33.98 34.79 33.53 34.21
Nat.Ident 33.12 34.45 32.64 34.79
Religion 37.58 37.62 38.90 39.52
R.Gov 34.65 34.50 35.52 35.89
S.Ineq 30.83 30.81 33.16 33.14
S.Net 34.38 34.71 35.31 36.54
Work 34.20 35.55 35.25 35.18

Avg. 34.48 34.87 35.66 36.36

Table 10: Results of Qwen3 models with/without reason in response (R indicates the reason why the LLM selected
this option when responding.

How thinking modes shape LLMs’ behavioral simulation? For the experimental result of how
thinking and reasoning processes affect behavioral simulation in social survey scenarios, please refer to
the Table 11.

Comparison Across Survey Rounds. Because the ISSP determines its annual sociological topics
through general meetings and typically fields one survey per domain each year, we conducted additional,
extensive experiments to compare how survey rounds from different years within the same domain
affect benchmark results. Using Llama-3.3-70B-Instruct, we performed experiments for Environment,
Health and Healthcare, National Identity, Religion, Role of Government, Social Inequality, and Work
Orientations. By contrast, for Citizenship, Family and Changing Gender Roles, and Social Networks,
limitations imposed by the data format of the Variable Reports files prevented us from extracting fully
structured datasets; therefore, we did not carry out further experiments on these domains, see Table 12.

Across the seven domains with two waves, temporal changes remain modest and bidirectional: Religion
(+1.95 pp, 2008→2018), Role of Government (+1.28 pp, 2006→2016), and Environment (+1.28 pp,
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8B w/ T 8B w/o T 32B w/ T 32B w/o T

Citizen 40.28 42.34 43.60 43.52
Enviro 32.70 32.66 34.12 32.63
Family 33.07 30.36 34.53 32.05
Health 33.98 32.23 33.53 33.52
Nat.Ident 33.12 33.59 32.64 31.86
Religion 37.58 37.52 38.90 37.90
R.Gov 34.65 32.94 35.52 35.31
S.Ineq 30.83 30.78 33.16 32.15
S.Net 34.38 33.03 35.31 35.52
Work 34.20 34.25 35.25 33.27

Avg. 34.48 33.97 35.66 34.77

Table 11: Results of Qwen3 Models With/Without Think Mode (T denotes the think mode; 8B and 32B denote
Qwen3–8B and Qwen3–32B, respectively).

2010→2020) show small improvements, while Work Orientations (-4.90 pp, 2005→2015), Health and
Healthcare (-2.48 pp, 2011→2021), National Identity (-1.22 pp, 2003→2013), and Social Inequality
(-1.36 pp, 2009→2019) decline. Averaged across these pairs, the later wave’s accuracy is slightly lower
by 0.78 pp than the earlier one (37.90% vs. 38.68%), indicating no systematic drift over time.

The benchmark (bold) years used in SocioBench yield an average accuracy of 37.90% (SD=1.90;
range 35.73–41.26). The strongest results occur in Religion (41.26%) and Role of Government (39.19%).
A similar pattern is observed in the earlier, non-benchmark waves, which exhibit a comparable mean
accuracy of 38.68% (SD=2.54; range 34.69–43.70), with Work Orientations (43.70%) and National
Identity (39.41%) as the top performers. While temporal deltas show some variation—with Work
Orientations decreasing by 4.90 pp and Religion increasing by 1.95 pp over their respective decade
spans—most changes remain minor. This suggests that performance is driven more by domain-specific
structure than by survey rounds.

As observed from Figure 13, within the same domain, the accuracy between the two survey rounds is
highly consistent across continents. For instance, in the Environment, performance in the first round is
uniformly lower than in the second round for all continents. Conversely, in the Health and Healthcare
domain, the first round consistently outperforms the second across all continents. This indicates that
while accuracy is influenced by the domain and the specific survey round, the benchmark performance
demonstrates coordination and consistency across different continents.

Domain Year Accuracy

Enviro
2010 34.69
2020 35.97

Health
2011 38.64
2021 36.16

Nat.Ident
2003 39.41
2013 38.19

Religion
2008 39.31
2018 41.26

R.Gov
2006 37.91
2016 39.19

S.Ineq
2009 37.09
2019 35.73

Work
2005 43.70
2015 38.80

Table 12: Comparison of benchmark accuracy across survey rounds. Years set in bold correspond to the data years
used in the SocioBench dataset, whereas years in regular (non-bold) type denote supplementary comparison waves.
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National Identity Religion

Role of Government Social Inequality

Work Orientations

Figure 13: Comparison of benchmark accuracy across different continents in the two survey rounds.
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H Subgroup analysis: Biases Across Demographic Information

For the results of subgroup analyses by gender and age, please refer to the Figure 14 and Figure 15.

a. Citizenship b. Family

Figure 14: Experimental Results and Significance Analysis of Representative LLMs in the Cross-Gender Subgroup.

a. Role of Government

b. Social Networks

Figure 15: Experimental Results and Significance Analysis of Representative LLMs in the Cross-Age Subgroup.
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I Detailed Accuracy by Demographic Variables

This appendix presents the detailed model accuracy results across different demographic subgroups,
broken down by domain and variable.

Table 13: Mean Accuracy (% ± SD) of Each Model across Regions for All Domains.

Domain Continent Qwen2.5-7B Qwen2.5-72B Qwen3-8B Qwen3-32B Llama-3.1-8B Llama-3.3-70B GPT-4o

Citizenship Africa 41.8 ± 7.1 39.9 ± 7.8 41.4 ± 7.6 42.1 ± 8.5 38.1 ± 8.5 41.6 ± 7.8 40.6 ± 7.9
Asia 37.8 ± 10.1 39.8 ± 8.9 39.4 ± 8.4 41.1 ± 9.4 37.2 ± 9.5 39.4 ± 9.6 41.5 ± 10.3
Europe 41.2 ± 8.5 44.6 ± 7.8 40.4 ± 8.1 44.1 ± 7.5 41.0 ± 7.3 44.9 ± 8.5 45.0 ± 8.6
North America 37.6 ± 7.6 42.6 ± 7.4 37.9 ± 8.6 40.1 ± 5.8 38.4 ± 6.2 44.0 ± 7.9 46.4 ± 10.8
Oceania 44.0 ± 7.3 46.0 ± 5.6 42.0 ± 8.5 44.6 ± 4.5 44.3 ± 7.6 49.8 ± 5.9 48.2 ± 5.4
South America 45.0 ± 6.0 43.3 ± 5.0 41.4 ± 5.7 46.3 ± 6.1 42.3 ± 8.5 44.1 ± 7.1 43.2 ± 7.2

Environment Africa 28.1 ± 6.8 31.1 ± 9.0 35.4 ± 8.1 30.0 ± 6.6 29.9 ± 6.9 36.4 ± 7.5 34.82 ± 5.8
Asia 30.4 ± 7.1 35.1 ± 7.2 33.4 ± 7.0 33.3 ± 7.3 33.0 ± 6.9 36.4 ± 7.1 35.9 ± 8.5
Europe 29.7 ± 7.6 36.1 ± 8.0 32.4 ± 7.7 34.5 ± 7.8 31.9 ± 6.8 35.5 ± 8.3 37.6 ± 8.5
North America 28.0 ± 7.2 36.7 ± 8.4 34.2 ± 5.6 35.6 ± 10.2 32.9 ± 8.3 35.6 ± 9.8 38.6 ± 10.3
Oceania 30.9 ± 6.1 33.8 ± 8.1 30.7 ± 6.2 34.8 ± 7.9 31.4 ± 7.0 38.0 ± 8.0 36.8 ± 8.9

Family Africa 30.9 ± 4.6 31.2 ± 8.8 33.5 ± 8.0 29.8 ± 8.5 31.9 ± 7.6 39.6 ± 9.2 38.3 ± 6.7
Asia 28.8 ± 6.8 34.0 ± 8.8 31.6 ± 8.2 34.2 ± 8.4 30.8 ± 8.1 36.9 ± 9.4 35.6 ± 9.5
Europe 30.9 ± 6.8 37.6 ± 7.4 33.8 ± 7.4 35.5 ± 8.0 39.3 ± 8.3 39.3 ± 8.3 40.6 ± 8.3
North America 28.0 ± 5.4 35.2 ± 7.7 31.6 ± 6.9 32.1 ± 7.6 29.9 ± 5.0 36.8 ± 7.3 37.9 ± 6.6
Oceania 33.3 ± 4.8 41.5 ± 6.0 33.5 ± 7.4 35.2 ± 8.8 28.9 ± 7.5 40.9 ± 6.4 44.0 ± 8.5
South America 27.7 ± 6.5 32.2 ± 9.1 31.6 ± 7.8 31.2 ± 9.0 29.3 ± 6.2 37.7 ± 8.8 35.8 ± 8.7

Health Africa 29.9 ± 6.4 34.4 ± 5.8 31.8 ± 7.4 28.1 ± 4.4 27.5 ± 7.0 30.2 ± 8.0 30.2 ± 6.4
Asia 31.7 ± 6.6 35.9 ± 8.7 32.9 ± 8.1 32.3 ± 7.7 32.4 ± 7.0 36.3 ± 8.7 35.1 ± 9.1
Europe 32.5 ± 7.0 36.6 ± 8.0 34.8 ± 7.4 34.8 ± 7.4 32.5 ± 7.7 36.7 ± 9.0 36.2 ± 9.4
North America 27.8 ± 9.3 30.4 ± 8.9 31.3 ± 7.8 28.3 ± 7.9 30.7 ± 8.2 32.6 ± 7.5 31.0 ± 8.5
Oceania 31.2 ± 7.8 36.4 ± 8.2 34.5 ± 8.7 35.2 ± 8.0 33.1 ± 8.7 37.4 ± 8.4 35.8 ± 7.8

National Identity Asia 34.3 ± 7.6 32.3 ± 7.8 31.2 ± 8.5 29.9 ± 8.8 33.8 ± 7.8 37.9 ± 9.0 35.2 ± 8.8
Europe 33.6 ± 8.2 34.8 ± 8.1 33.7 ± 7.6 33.5 ± 7.5 33.4 ± 8.2 38.3 ± 8.1 36.7 ± 8.2
North America 32.4 ± 9.9 31.7 ± 6.3 32.2 ± 7.3 30.9 ± 7.6 32.0 ± 8.0 38.3 ± 9.4 35.3 ± 9.1

Religion Africa 27.1 ± 9.7 31.5 ± 11.7 28.0 ± 10.4 29.3 ± 10.3 27.2 ± 8.2 31.7 ± 9.0 34.4 ± 10.6
Asia 34.4 ± 7.9 35.9 ± 7.9 36.7 ± 6.7 36.6 ± 8.5 35.1 ± 7.2 39.7 ± 9.0 38.5 ± 9.2
Europe 38.4 ± 8.2 42.0 ± 8.8 38.7 ± 8.7 40.6 ± 8.2 38.8 ± 8.1 42.7 ± 9.3 42.5 ± 8.6
North America 31.4 ± 9.1 37.7 ± 8.3 36.3 ± 8.9 36.7 ± 9.9 32.5 ± 9.5 37.8 ± 9.1 38.3 ± 11.5
South America 31.4 ± 7.7 34.6 ± 9.8 33.9 ± 7.9 34.6 ± 8.5 31.0 ± 7.8 37.9 ± 8.1 34.3 ± 9.9

Role of Government Africa 33.4 ± 8.6 34.8 ± 4.5 33.6 ± 6.1 32.8 ± 6.7 32.9 ± 5.7 36.1 ± 4.9 36.5 ± 6.2
Asia 32.8 ± 7.3 34.1 ± 7.0 32.6 ± 8.0 33.1 ± 8.3 33.1 ± 6.8 36.5 ± 7.2 36.8 ± 7.3
Europe 35.3 ± 6.7 37.6 ± 7.3 35.9 ± 8.3 36.9 ± 8.3 35.9 ± 7.3 40.6 ± 8.1 41.1 ± 8.0
North America 36.7 ± 6.1 35.4 ± 4.7 34.2 ± 6.0 38.0 ± 5.5 35.9 ± 7.6 37.8 ± 8.9 38.8 ± 6.8
Oceania 38.2 ± 8.0 37.3 ± 8.7 35.5 ± 5.3 35.6 ± 6.9 33.7 ± 6.2 39.7 ± 7.1 42.4 ± 6.2
South America 34.4 ± 7.2 35.5 ± 6.8 31.1 ± 7.9 32.1 ± 7.7 36.9 ± 6.8 37.3 ± 6.4 39.0 ± 8.2

Social Inequality Africa 23.6 ± 8.4 28.5 ± 9.1 26.3 ± 8.0 25.4 ± 6.5 27.4 ± 6.9 26.4 ± 6.8 29.6 ± 9.6
Asia 30.2 ± 9.0 34.2 ± 8.2 29.3 ± 8.8 31.7 ± 7.8 30.6 ± 8.4 34.0 ± 8.2 36.0 ± 9.2
Europe 31.0 ± 8.2 36.4 ± 9.2 31.8 ± 9.0 34.6 ± 9.0 32.2 ± 8.6 37.1 ± 9.1 37.8 ± 10.2
North America 31.3 ± 7.3 35.4 ± 7.9 31.6 ± 9.5 32.2 ± 8.7 29.7 ± 8.1 36.0 ± 9.2 37.6 ± 9.5
Oceania 33.2 ± 7.4 37.9 ± 6.7 34.4 ± 6.7 35.5 ± 8.0 34.1 ± 8.0 37.0 ± 8.9 39.6 ± 8.5
South America 27.9 ± 7.6 31.2 ± 8.2 27.4 ± 8.3 29.7 ± 8.5 29.3 ± 7.9 34.0 ± 9.0 31.8 ± 9.6

Social Networks Africa 33.9 ± 7.2 39.6 ± 7.1 35.6 ± 7.8 39.3 ± 9.7 32.3 ± 7.9 35.9 ± 9.6 37.4 ± 8.6
Asia 34.0 ± 7.3 38.3 ± 9.1 35.4 ± 9.7 36.4 ± 10.3 35.0 ± 8.2 35.7 ± 8.5 37.2 ± 8.8
Europe 33.3 ± 7.3 37.9 ± 8.6 33.9 ± 8.5 34.7 ± 8.8 35.1 ± 7.5 36.6 ± 7.3 36.6 ± 7.4
North America 32.0 ± 6.3 38.5 ± 8.0 35.2 ± 6.9 36.7 ± 7.3 35.8 ± 7.6 35.9 ± 7.0 36.3 ± 7.8
Oceania 33.1 ± 6.8 38.4 ± 6.7 34.6 ± 8.0 34.6 ± 7.5 35.0 ± 7.0 36.6 ± 6.0 37.4 ± 6.8
South America 31.6 ± 7.4 35.9 ± 8.2 31.8 ± 7.8 31.2 ± 9.0 33.7 ± 7.0 31.4 ± 6.2 33.4 ± 6.1

Work Orientations Africa 31.3 ± 9.0 36.0 ± 8.0 33.2 ± 6.0 35.7 ± 5.9 31.5 ± 9.0 38.8 ± 6.6
Asia 30.9 ± 7.8 36.3 ± 7.6 33.6 ± 7.6 34.6 ± 7.6 32.4 ± 6.9 37.0 ± 7.7 38.0 ± 9.1
Europe 32.7 ± 6.6 38.1 ± 7.4 34.7 ± 7.1 35.7 ± 7.6 33.6 ± 6.2 38.8 ± 7.6 39.5 ± 7.8
North America 33.7 ± 5.7 35.2 ± 6.5 33.7 ± 6.4 33.5 ± 7.9 35.4 ± 5.9 42.4 ± 7.9 36.8 ± 7.4
Oceania 32.6 ± 6.7 39.0 ± 7.0 34.2 ± 7.8 34.4 ± 7.0 34.3 ± 7.6 40.5 ± 8.2 42.0 ± 6.8
South America 29.4 ± 6.3 34.4 ± 7.0 32.1 ± 9.1 34.2 ± 8.1 32.4 ± 7.6 38.5 ± 7.0 35.1 ± 7.2
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Table 14: Mean accuracy (% ± SD) of each model across gender groups for all domains.

Domain Gender Qwen2.5-7B Qwen2.5-72B Qwen3-8B Qwen3-32B Llama-3.1-8B Llama-3.3-70B GPT-4o

Citizenship Female 41.9 ± 9.0 44.3 ± 8.2 40.7 ± 8.3 44.6 ± 7.9 41.2 ± 8.1 44.2 ± 8.5 44.4 ± 9.2
Male 39.9 ± 8.3 42.9 ± 7.6 39.9 ± 7.8 42.6 ± 7.5 40.0 ± 7.5 43.8 ± 9.0 44.2 ± 8.8

Environment Female 30.9 ± 7.0 36.2 ± 7.4 33.1 ± 7.7 34.4 ± 7.9 32.8 ± 7.0 36.6 ± 7.7 38.1 ± 7.5
Male 28.8 ± 7.5 34.8 ± 8.4 32.3 ± 7.0 33.8 ± 7.7 31.3 ± 6.5 35.3 ± 8.3 36.0 ± 9.3

Family Female 30.9 ± 6.9 37.5 ± 8.5 33.7 ± 7.6 34.9 ± 8.4 33.0 ± 6.9 38.6 ± 8.7 39.9 ± 8.8
Male 29.3 ± 6.4 35.0 ± 7.5 32.5 ± 7.5 34.2 ± 8.1 30.8 ± 7.0 38.6 ± 8.3 38.3 ± 8.4

Health Female 31.5 ± 6.8 35.9 ± 8.4 34.4 ± 7.6 33.7 ± 7.6 31.5 ± 7.5 36.0 ± 8.5 35.1 ± 9.2
Male 32.2 ± 7.6 35.9 ± 8.2 33.5 ± 7.9 33.5 ± 7.9 33.0 ± 7.8 36.4 ± 9.2 35.6 ± 9.3

National Identity Female 33.3 ± 7.7 34.2 ± 8.5 33.2 ± 7.7 32.3 ± 7.9 33.4 ± 8.1 37.7 ± 8.2 35.8 ± 8.4
Male 34.0 ± 8.5 34.1 ± 7.6 33.0 ± 7.9 33.0 ± 8.0 33.4 ± 8.2 38.6 ± 8.4 36.8 ± 8.4

Religion Female 36.6 ± 8.5 40.0 ± 9.4 38.2 ± 8.2 38.8 ± 8.2 37.4 ± 8.2 41.3 ± 9.2 41.0 ± 8.8
Male 36.4 ± 8.9 39.6 ± 9.3 36.9 ± 9.0 39.0 ± 9.4 36.5 ± 8.8 41.2 ± 9.7 40.5 ± 9.8

Role of Government Female 35.0 ± 7.1 36.8 ± 6.7 35.1 ± 8.2 35.8 ± 8.0 35.7 ± 7.4 39.3 ± 7.4 40.1 ± 8.0
Male 34.7 ± 7.0 36.3 ± 7.7 34.2 ± 8.1 35.3 ± 8.5 34.9 ± 7.0 39.1 ± 8.3 39.6 ± 8.0

Social Inequality Female 30.3 ± 8.7 35.0 ± 9.2 30.6 ± 9.4 33.1 ± 9.0 31.6 ± 8.5 35.6 ± 8.9 35.9 ± 10.1
Male 30.5 ± 8.0 35.3 ± 8.7 31.1 ± 8.3 33.3 ± 8.8 31.3 ± 8.3 35.8 ± 9.3 37.3 ± 10.0

Social Networks Female 33.5 ± 7.4 38.7 ± 8.7 34.4 ± 8.6 35.6 ± 8.8 35.0 ± 7.6 36.5 ± 7.1 37.1 ± 7.8
Male 33.2 ± 7.0 37.4 ± 8.2 34.4 ± 8.7 34.9 ± 9.4 35.0 ± 7.7 35.8 ± 8.1 36.2 ± 7.7

Work Orientations Female 32.4 ± 6.9 37.4 ± 7.3 34.2 ± 7.2 35.5 ± 8.0 33.7 ± 6.5 38.8 ± 7.6 38.7 ± 7.9
Male 31.9 ± 7.0 37.4 ± 7.5 34.2 ± 7.4 35.0 ± 7.1 33.1 ± 6.6 38.8 ± 7.6 39.1 ± 8.1
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Table 15: Mean accuracy (% ± SD) of each model across age ranges for all domains.

Domain Age Range Qwen2.5-7B Qwen2.5-72B Qwen3-8B Qwen3-32B Llama-3.1-8B Llama-3.3-70B GPT-4o

Citizenship 18–25 41.5 ± 8.4 45.2 ± 7.1 40.5 ± 7.9 43.6 ± 8.6 39.8 ± 8.2 45.1 ± 8.6 44.0 ± 9.4
26–35 40.2 ± 9.7 42.8 ± 7.4 39.9 ± 8.2 44.4 ± 8.0 39.8 ± 7.7 42.6 ± 8.4 43.3 ± 8.9
36–45 40.7 ± 10.1 43.4 ± 8.9 40.2 ± 8.5 43.9 ± 7.7 39.8 ± 8.4 44.4 ± 8.7 43.7 ± 8.8
46–55 39.3 ± 7.5 42.8 ± 7.6 40.7 ± 8.2 43.0 ± 7.2 40.5 ± 7.3 43.8 ± 8.5 43.6 ± 8.1
56–65 42.0 ± 8.4 43.6 ± 7.8 39.6 ± 6.8 42.5 ± 8.4 40.9 ± 7.7 43.7 ± 9.4 45.2 ± 9.7
66+ 42.5 ± 7.9 44.7 ± 8.2 40.9 ± 8.3 44.5 ± 7.5 41.4 ± 8.0 44.8 ± 9.0 46.0 ± 9.3

Environment 18–25 32.1 ± 6.4 33.9 ± 6.8 31.8 ± 5.9 32.7 ± 7.1 33.0 ± 6.8 36.7 ± 7.0 38.0 ± 8.2
26–35 30.2 ± 7.3 35.1 ± 8.6 32.2 ± 8.0 33.5 ± 8.8 31.9 ± 6.9 34.8 ± 8.4 36.9 ± 10.5
36–45 28.2 ± 7.1 35.1 ± 7.3 33.9 ± 7.2 34.8 ± 6.9 31.5 ± 7.6 35.1 ± 7.5 36.9 ± 7.7
46–55 30.0 ± 6.8 35.5 ± 7.6 32.4 ± 7.4 34.0 ± 8.1 32.2 ± 6.3 36.3 ± 8.0 36.4 ± 8.6
56–65 30.0 ± 7.3 36.3 ± 8.0 32.8 ± 7.5 33.6 ± 7.4 32.3 ± 6.9 36.1 ± 8.8 37.3 ± 7.8
66+ 29.7 ± 8.2 36.1 ± 8.1 32.8 ± 7.5 35.7 ± 8.1 31.9 ± 6.7 36.9 ± 7.2 37.6 ± 8.0

Family 18–25 29.6 ± 3.9 35.1 ± 7.4 30.7 ± 8.7 31.3 ± 11.1 31.9 ± 6.6 39.6 ± 9.2 38.6 ± 10.1
26–35 29.9 ± 6.9 34.3 ± 8.6 31.4 ± 6.4 32.2 ± 8.5 31.2 ± 7.1 35.8 ± 7.3 37.0 ± 8.3
36–45 31.4 ± 6.5 36.3 ± 8.4 33.5 ± 8.2 34.4 ± 8.9 32.1 ± 7.2 38.3 ± 9.2 38.5 ± 9.0
46–55 29.6 ± 7.0 35.6 ± 7.7 33.7 ± 8.1 33.9 ± 8.2 31.9 ± 7.0 38.6 ± 8.1 38.8 ± 8.8
56–65 29.1 ± 6.8 36.7 ± 7.6 32.6 ± 7.2 35.5 ± 7.7 31.5 ± 6.5 38.2 ± 7.8 40.2 ± 8.6
66+ 30.6 ± 6.4 38.2 ± 8.5 33.5 ± 7.0 36.2 ± 7.2 32.6 ± 7.6 41.6 ± 9.0 40.6 ± 8.0

Health 18–25 31.9 ± 8.1 36.2 ± 7.8 32.9 ± 7.2 34.0 ± 8.1 31.3 ± 7.0 38.5 ± 8.2 34.9 ± 9.2
26–35 30.9 ± 7.3 35.9 ± 7.7 33.0 ± 8.4 33.3 ± 7.9 31.8 ± 7.4 37.4 ± 8.7 34.3 ± 9.5
36–45 30.8 ± 7.2 35.2 ± 8.1 34.0 ± 7.4 33.8 ± 7.7 31.4 ± 7.7 36.4 ± 8.8 36.0 ± 9.5
46–55 27.8 ± 9.3 32.5 ± 8.8 32.0 ± 8.0 31.1 ± 7.4 29.5 ± 8.2 34.3 ± 9.0 34.9 ± 9.4
56–65 31.2 ± 7.8 36.4 ± 8.2 34.5 ± 8.7 35.2 ± 8.0 32.5 ± 7.9 37.5 ± 9.3 34.5 ± 8.7
66+ 32.9 ± 8.4 37.3 ± 8.5 35.4 ± 9.0 35.5 ± 8.7 34.6 ± 8.5 38.6 ± 9.5 37.1 ± 8.9

National Identity 18–25 33.3 ± 7.7 34.7 ± 8.1 32.4 ± 7.9 31.7 ± 8.2 33.7 ± 8.0 38.5 ± 7.8 33.3 ± 8.3
26–35 34.2 ± 7.8 34.9 ± 8.0 32.7 ± 8.3 32.5 ± 8.0 33.7 ± 8.1 39.2 ± 8.3 35.9 ± 8.5
36–45 33.7 ± 8.3 35.5 ± 7.9 33.3 ± 7.5 32.8 ± 7.4 33.9 ± 7.6 39.4 ± 8.4 38.0 ± 7.3
46–55 32.4 ± 9.9 34.8 ± 8.4 32.4 ± 7.7 32.1 ± 7.8 33.3 ± 7.8 38.8 ± 9.2 36.9 ± 9.0
56–65 34.0 ± 7.8 35.6 ± 8.2 33.6 ± 7.9 33.1 ± 8.0 33.8 ± 7.9 38.2 ± 8.5 36.0 ± 8.3
66+ 34.4 ± 8.4 35.9 ± 8.0 33.3 ± 8.6 32.8 ± 8.6 34.5 ± 8.1 39.5 ± 9.0 37.2 ± 8.2

Religion 18–25 34.7 ± 9.7 38.9 ± 10.7 35.4 ± 8.4 37.5 ± 10.1 35.5 ± 8.5 39.7 ± 9.9 39.6 ± 10.4
26–35 35.8 ± 7.9 38.0 ± 9.2 37.3 ± 9.4 37.9 ± 8.9 35.2 ± 7.9 41.8 ± 9.3 39.4 ± 9.2
36–45 36.9 ± 8.0 40.3 ± 8.7 37.5 ± 8.2 39.2 ± 8.3 38.1 ± 7.9 41.5 ± 8.8 41.7 ± 9.5
46–55 36.6 ± 8.2 40.2 ± 8.8 37.7 ± 8.6 38.1 ± 8.4 37.7 ± 9.3 41.3 ± 9.3 41.4 ± 8.0
56–65 38.2 ± 9.9 40.9 ± 10.1 38.8 ± 8.9 40.5 ± 9.2 38.2 ± 8.7 42.6 ± 9.4 42.1 ± 10.2
66+ 35.9 ± 8.3 39.6 ± 8.7 38.0 ± 8.0 39.6 ± 8.1 36.0 ± 8.0 39.8 ± 10.2 39.1 ± 8.3

Role of Government 18–25 34.7 ± 6.5 37.0 ± 6.2 35.6 ± 8.7 37.1 ± 8.1 36.8 ± 7.5 40.6 ± 7.6 41.2 ± 7.0
26–35 34.1 ± 7.2 36.1 ± 7.6 33.5 ± 8.5 34.6 ± 9.7 34.8 ± 6.9 38.4 ± 8.2 39.4 ± 8.1
36–45 33.9 ± 5.7 35.6 ± 7.0 32.5 ± 8.1 34.2 ± 7.8 36.1 ± 6.5 38.4 ± 6.9 39.0 ± 7.8
46–55 35.4 ± 7.7 36.5 ± 8.4 35.3 ± 8.0 36.3 ± 7.8 35.7 ± 7.3 39.1 ± 7.2 39.5 ± 8.5
56–65 36.9 ± 6.3 36.9 ± 6.0 36.6 ± 7.5 36.3 ± 8.3 34.8 ± 6.5 39.6 ± 7.3 41.6 ± 8.1
66+ 33.9 ± 7.9 37.1 ± 7.4 35.1 ± 7.7 34.5 ± 7.2 33.8 ± 8.0 39.0 ± 9.4 38.4 ± 7.2

Social Inequality 18–25 28.5 ± 8.3 34.8 ± 7.6 30.6 ± 6.8 33.6 ± 7.8 30.3 ± 7.8 34.9 ± 6.7 34.9 ± 11.1
26–35 30.6 ± 7.6 35.2 ± 9.3 30.8 ± 7.6 33.7 ± 7.5 31.8 ± 7.8 33.6 ± 8.3 35.5 ± 8.0
36–45 30.6 ± 8.4 35.2 ± 9.0 31.2 ± 8.7 33.2 ± 8.6 31.3 ± 8.9 36.8 ± 9.3 38.0 ± 10.4
46–55 30.2 ± 8.8 35.3 ± 9.0 31.3 ± 8.5 33.1 ± 8.3 31.7 ± 7.8 36.7 ± 9.6 37.1 ± 10.5
56–65 31.5 ± 8.7 35.1 ± 9.3 30.9 ± 9.8 33.2 ± 9.6 31.7 ± 9.2 34.9 ± 9.6 36.1 ± 10.6
66+ 30.0 ± 8.0 35.2 ± 9.0 30.5 ± 10.2 32.8 ± 10.6 31.4 ± 8.8 36.6 ± 9.2 36.9 ± 9.8

Social Networks 18–25 33.0 ± 7.3 37.1 ± 8.0 32.4 ± 8.8 34.3 ± 10.4 34.3 ± 7.9 36.6 ± 7.1 38.2 ± 7.0
26–35 33.9 ± 7.2 39.1 ± 8.3 34.8 ± 8.0 36.2 ± 8.3 35.4 ± 8.2 36.6 ± 8.7 37.6 ± 8.5
36–45 32.8 ± 6.2 38.9 ± 8.0 33.4 ± 8.5 34.2 ± 7.9 34.8 ± 7.7 37.0 ± 6.6 36.9 ± 7.0
46–55 32.4 ± 7.0 37.2 ± 8.6 34.4 ± 8.8 34.9 ± 9.9 35.7 ± 7.7 35.8 ± 8.6 36.4 ± 8.2
56–65 32.6 ± 7.2 36.6 ± 8.9 34.6 ± 8.1 34.7 ± 8.8 33.9 ± 7.0 34.4 ± 7.3 34.4 ± 7.3
66+ 36.6 ± 7.9 40.5 ± 8.3 37.4 ± 8.9 39.2 ± 8.3 36.6 ± 7.2 37.1 ± 7.3 37.9 ± 8.2

Work Orientations 18–25 32.9 ± 7.0 35.9 ± 6.5 33.5 ± 6.5 33.9 ± 8.1 32.4 ± 7.4 38.0 ± 7.0 37.5 ± 6.9
26–35 31.2 ± 6.6 35.9 ± 6.8 33.7 ± 7.6 35.0 ± 8.3 33.1 ± 6.6 38.0 ± 7.4 38.7 ± 8.2
36–45 32.1 ± 7.2 37.9 ± 7.5 33.8 ± 7.1 35.2 ± 7.3 33.4 ± 6.4 38.6 ± 7.7 39.6 ± 8.5
46–55 33.2 ± 6.9 38.4 ± 8.0 35.0 ± 8.0 36.0 ± 7.7 34.6 ± 6.3 40.3 ± 7.9 39.4 ± 8.0
56–65 31.8 ± 6.8 37.2 ± 7.2 34.0 ± 6.4 34.9 ± 7.0 32.3 ± 7.0 38.1 ± 7.2 38.0 ± 7.3
66+ 32.7 ± 6.8 40.1 ± 6.3 39.5 ± 6.6 37.5 ± 4.9 32.5 ± 4.3 39.7 ± 9.4 41.4 ± 5.0
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