





computational overhead. Recent advances in mulfi-Algorithm 1: Dual-Modality Grounding
modal large language models (MLLMs) have en- with Dynamic Zooming

abled direct GUI element localization (Hong et al., |npyt: Full-resolution GUI imagd,
2024; Cheng et al., 2024; Lin et al., 2024), partially instructionQ

bridging the visual perception gap. (Tang et al., oytput: Final grounded coordinaté
2025) introduces a dual-system framework that, siep 1: Text modality grounding.
combines fast prediction with systematic analysis, ¢, <+ DynamicGroundingl, @, “text”)
to provide robust GUI foundation. OS-Atlas (WU ; step 2: Icon modality grounding.

etal., 2024) and UGround (Gou et al., 2024) cre;, ¢ + DynamicGroundingl, @, “icon”)
ated large datasets and trained models to handlg step 3: Candidate selection.
out-of-distribution tasks. (Zhou etal., 2025; Lee ; ¢ . Select (Ciex, Cicon, I, Q)

etal., 2025a; Yuan et al., 2025; Xia and Luo, 2025), return C

explored improving grounding performance using _ _ _
reinforcement learning. (Tao et al., 2025) proposed Function: DynamicGrounding/, @,

a framework and method to diagnose and reduce Modalityn) _

localization errors in MLLMs for GUI interaction, ¢ Initialize zoom region:k < I

improving interpretability and robustness. o for ¢ = 110 max_iters do
11 Predict coordinate:

2.2 Test-time scaling 12 | Ct + PredictCoordinate (R,Q,m)
. ) i . 13 if StopCondition (C%, t) then
Test-time scaling dynamically adjusts compus;, L return C;

tational resources during inference to enhance
model performance, with recent studies showing it®
can outperform increased train-time computation
through strategies like best-of-N sampling and exs return Crmax

ternal veri cation (Snell et al., 2024; Lee et al.,

2025b; Hosseini et al., 2024). In localization tasks,

test-time scaling has also been framed as a searph parallel, DiMo-GUI decouples text-based and
problem (Wu and Xie, 2024). Inspired by its suc-con-based GUI elements, processing each modal-
cess in LLMs, similar techniques have been apity independently to reduce cross-modal interfer-
plied to GUI agents, such as leveraging action hisence. This design mitigates a common shortcom-
tories (Zhang and Zhang, 2023), gathering externahg of vision-language models (VLMs), which typ-
information (Nakano et al., 2022), zooming in andijcally exhibit stronger capabilities in text under-
searching (Nguyen, 2024), and adaptively re ningstanding compared to visual icon interpretation.
focus regions (Luo et al., 2025). (Ge etal., 2025)

proposes Multi-Region Fusion Decoding (MRFD),3.1  Dynamic Grounding Mechanism

a training-free method that reduces hallucinations

in LVLMs by leveraging inter-region consistency High resolution remains one of the most signi cant
to improve factual grounding. challenges in GUI grounding, often leading to long

inference times and excessive visual redundancy. A
3 Methodology natural solution to this problem is to iteratively nar-

row down the target region, progressively re ning
To address the limitations of existing GUI agentsthe prediction of the target coordinates. To this end,
in handling high-resolution images and their imbal-DiMo-GUI introduces a dynamic zooming mecha-
anced performance between text and icon undenism that enables ef cient and focused localization.
standing, we propose a novel framework calledSpeci cally, the original high-resolution image is
DiMo-GUI. As shown in the algorithm 1, our rst passed to the model for an initial prediction.
method integrates a dynamic zooming mechanisrBased on the returned coordinates, a bounding box
and a modality decoupling strategy. Speci cally,is cropped using the center point and a scaling fac-
DiMo-GUI dynamically narrows down the target tor of half the original image size. This cropped
region through iterative zooming on the input high-region is then used as input for the next round of
resolution screenshot, progressively re ning the loinference. Iterative zooming in allows the model to
calization until the target coordinates are identi ed.capture ner details of the target element, making
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Stage 1: Divide Modalities | Stage 2: Dynamic Zooming QO =3

Instruction: add notes o =
AE | o =
- TEXT (e — ICON
== @ Click to add notes
’
o - s

In this UI screenshot, please find the TEXT element

corresponding to the command "{}" (with bbox). Only D : :
focus on text content, ignore icons. |
In this UI screenshot, please find the ICON element !@! i ‘ @ ‘
corresponding to the command "{}" (with bbox). Only i
focus on graphical icons, ignore pure text. i

Stage 3: Select Answer %\g\ § 1 - .
You are given a UI screenshot and a user C] é \é,‘ [é 2= DU
command: add notes @ = oo T vee
There are two candidate UI elements: @ | T — T ————
Candidate 1 (text-based): [718, 741, 821, 887 : T
Candidate 2 (icon-based): [©, 444, 524, 555] h H H
Based on the command and the description of candidates, Ik to add not@) : { ]
choose which candidate (1 for text, 2 for icon) better : i L S
matches the command. i Q @
Just answer with '1' or '2'. 1

Answer: [718, 741, 821, 887] Answer: [0, 444, 524, 555]

Figure 3: Processing pipeline of DiMo-GUI.DiMo-GUI decomposes the grounding process into three steps:

(1) Divide Modalities: It processes textual and icon elements in the screenshot separately to prevent interference
between the two modalities. (2) Dynamic Zooming: Based on an initial prediction, the model centers on the returned
coordinates and crops a region half the size of the original image for more precise localization. (3) Decision Making:
By analyzing the instruction along with the screenshot, the model determines whether the text-based or icon-based
candidate is more likely to be the correct answer.

it easier to recognize. At the same time, it sigsuf cient precision. In this case, further zooming

ni cantly reduces redundant regions in the imagejs stopped, and the nal coordinates are returned
thereby increasing the signal-to-noise ratio. Thisas the result. The above process is described as
helps the model receive less visual interferenc&topCondition (Ct, t) in the algorithm 1, which
and focus more effectively on identifying the targetdecides whether to stop dynamic zooming inthe
element. As the iterations proceed, the model'steration based on the predicted coordinatesAd-
attention becomes increasingly concentrated, ultditionally, to prevent excessive zooming, we set an
mately enabling accurate target localization withupper limitmax_iters of seven zooming iterations.
minimal computational overhead.

The number of iterations in the zooming proces
plays a critical role in determining the nal ground- Another major challenge in GUI grounding lies
ing performance. Since different GUI screenshotsn the uneven performance across different Ul
and user instructions vary in complexity, it is evi-modalities, particularly between text-based and
dent that a xed number of iterations is not optimal icon-based elements. Across multiple benchmarks,
for all cases. To address this, we introduce a dyexisting models consistently perform much better
namic iteration mechanism that allows the model toon text than on icons. This imbalance stems from
autonomously decide whether to DiMo-GUI earlytwo main issues: rst, models often lack the abil-
during the progressive narrowing process. Thisty to effectively recognize and understand icons,
approach not only reduces unnecessary iteratiomaaking it dif cult to correctly associate them with
and improves inference ef ciency but also preventsthe given instruction; second, models tend to over-
the model from "overthinking"—i.e., drifting into rely on textual information due to their stronger
incorrect regions after having already located théanguage processing capabilities, often focusing on
correct target. Speci cally, the method determinesrelated text even when it is not the correct target.
whether to continue zooming based on the spatidlo address this issue, we propose a Modality De-
distance between the inference results before antbupling Strategy based on a divide-and-conquer
after zooming. If the spatial distance between thgparadigm, which explicitly separates the handling
predicted coordinates is smaller than one-sixth obf text and icons to reduce cross-modality interfer-
the diagonal length of the pre-zoom image, it indi-ence and improve grounding reliability across both
cates that the target region has been localized witmodalities.
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Grounding Model | Development | Creative | CAD | scientic | Of ce | os | Avg

|text icon avg|text icon avg|text icon avg|text icon avg|text icon avg|text icon avg|text icon avg

QwenVL-7B (Bai et al., 2023) 00 00 004 00 00 00 00 00 00/07 00 04 00 00 0000 00 00/01 00 01
GPT-40 (OpenAl, 2023) 13 00 0710 00 06/20 00 15/21 00 12/11 00 06/00 00 00/13 00 038
SeeClick (Cheng et al., 2024) 06 00 03 10 00 06/ 25 00 1935 00 20/11 00 0528 00 1518 00 11
Qwen2-VL-7B (Wang et al., 2024h)2.6 0.0 1.3/ 1.5 00 09 05 00 04/63 00 3534 19 30/ 09 00 0525 02 16

ShowUI-2B (Lin et al., 2024) 169 14 9491 00 53 25 00 19132 73 106153 75 135103 22 6.6/108 26 7.7
CogAgent-18B (Hong et al., 2024)14.9 0.7 8.0/ 9.6 0.0 56/ 7.1 3.1 6.1/22.2 18 134130 00 6.5/ 56 0.0 3.1/120 08 7.7
Aria-Ul (Yang et al., 2024b) 162 00 84237 21 14776 16 6.1/27.1 6.4 181203 19 16147 0.0 26171 20 113

Claude Comp.Use (Hu et al., 2024p2.0 3.9 12.6259 3.4 16.8145 3.7 11.933.9 15.8 25.830.1 16.3 26.211.0 45 8.1/234 7.1 17.1
UI-TARS-7B (Qin et al., 2025) 58.4 12.4 36.150.0 9.1 32.820.8 9.4 18.063.9 31.8 50.063.3 20.8 53.530.8 16.9 24.547.8 16.2 35.7
UI-TARS-72B(Qin et al., 2025) |63.0 17.3 40.857.1 15.4 39.618.8 12.5 17.264.6 20.9 45.763.3 26.4 54.842.1 15.7 30.150.9 17.5 38.1

0OS-Atlas-4B (Wu et al., 2024) 71 00 37/30 14 2320 00 15/90 55 75|51 38 44/56 00 31 50 17 37

+ DiMo-GUI 136 14 7.7 96 28 6.7/ 41 47 42306 45 19.3/243 151 22275 22 51/146 4.0 106
A 65 14 40|66 14 44|21 47 27(216 10 118192 113 17819 22 2.0/ 96 23 6.9
OS-Atlas-7B (Wu et al., 2024) 33.1 14 17.7288 2.8 17.912.2 4.7 10.3375 7.3 244339 57 274271 45 16.828.1 4.0 189
+ DiMo-GUI 66.9 21.4 44.860.6 21.7 44.350.3 14.1 41.468.1 21.8 48.080.8 52.8 74.369.2 28.1 50.565.2 24.5 49.7
A 33.8 20.0 27.131.8 18.9 26.438.1 9.4 31.130.6 145 23.646.9 47.1 46.942.1 23.6 33.737.1 20.5 30.8
UGround-7B (Gou et al., 2024) |26.6 2.1 147273 2.8 17.0142 16 11.1319 27 19.3316 113 279178 0.0 9.7/250 28 16.5
+ DiMo-GUI 442 6.2 25.839.9 7.7 264173 3.1 13.850.7 8.2 32.346.9 15.1 39.632.7 10.1 22.438.1 7.9 26.6
A 176 4.1 111126 49 9431 15 27188 55 13.0153 3.8 11.71149 10.1 12.713.1 51 10.1
UGround-V1-7B (Gou et al., 2024)51.9 3.4 28.448.0 9.1 31.720.0 1.6 15.357.6 16.4 39.861.6 13.2 50.437.4 7.9 25.0456 84 314
+ DiMo-GUI 57.8 21.4 40.160.1 18.1 42.545.7 18.8 39.175.7 28.2 55.179.7 37.7 70.051.4 30.3 41.861.7 24.3 47.4
A 59 18.0 11.712.1 9.0 10.825.7 17.2 23.418.1 11.8 15.318.1 24.5 19.614.0 22.4 16.§16.1 159 16.0

Table 1: Comparison of various models on ScreenSpot-ProWithout requiring any additional training or
external data, DiMo-GUI signi cantly boosts the grounding performance of existing models. It nearly doubles the
performance metrics of OS-ATLAS-7B and UGroundV1-7B on the ScreenSpot-Pro benchmark, with substantial
improvements observed across all subsets.

Speci cally, we perform two separate ground-top, and web platforms, emphasizing common in-
ing passes over the image: one focusing excluerface scenarios and element types. However,
sively on text elements and the other on icon eledue to its limited ability to represent professional
ments. Each pass leverages the proposed dynansgoftware environments, ScreenSpot-Pro was intro-
zooming mechanism to progressively re ne theduced, featuring 23 professional applications with
target location within its respective modality. Af- high-resolution interfaces and complex layouts.
ter obtaining two candidate coordinat@ey: and On the two latest datasets mentioned above, we
Cicon from each modality, we feed them back into select the most recently reported state-of-the-art
the model alongside the original instruction andGUI agents as baseline modelg,, OS-Atlas (Wu
full-resolution image. The model then evaluateset al., 2024) and UGround-V1 (Gou et al., 2024).
both candidates and determines which coordinat®S-Atlas is a foundational action model that lever-
is more likely to correspond to the correct targetages a multi-platform GUI grounding dataset and
C' , enabling more balanced and reliable groundingaddresses action naming con icts during training

across modalities. to enhance performance across desktop, mobile,
and web platforms for GUI agent development.
4 Experiments UGround-V1 is a universal visual grounding model

] ) for GUI agents, trained on the largest dataset of
We conducted evaluations of the DiMo-GUI frame-1 g\ Gu) elements and 1.3M screenshots, utilizing

work on the most recent ScreenSpot-Pro (Li et aly e hased synthetic data and a slight adaptation
2025) and ScreenSpot (Cheng et al., 2024) bencl the | | avA architecture to accurately map refer-
mark datasets, and the results demonstrate its SURfg expressions to pixel-level coordinates across

rior grounding performance compared to existingy;,erse platforms. We then apply our DiMo-GUI

approaches. framework to these models to evaluate its effective-
ness in enhancing the performance of GUI agent

4.1 Experimental Setup systems

Benchmarks and Models To thoroughly assess _ _ .

the grounding capabilities of DiMo-GUI, we con- 4-2  Evaluation on Grounding Ability

duct extensive experiments on two GUI groundWe evaluate the effectiveness of the DiMo-GUI
ing benchmarks: ScreenSpot (Cheng et al., 2024)amework on the latest ScreenSpot-Pro dataset.
and ScreenSpot-Pro (Li et al., 2025). ScreenSpdis shown in Tab. 1, introducing the DiMo-GUI
comprises 1,272 samples spanning mobile, deskramework leads to signi cant performance break-
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Figure 4:Quantitative results on ScreenSpot-ProOn the left is the original model's prediction, where the red
box represents the ground truth and the blue dot indicates the predicted coordinates. On the right is the result after
integrating DiMo-GUI, where the model is able to localize more accurately according to the instruction.

throughs for both OS-Atlas-7B and UGround-V1-the main challenges and provide insights into how
7B, with OS-Atlas-7B achieving more than twice future research in this eld can further improve
the performance of its original version. After in- grounding accuracy and generalization. Overall,
tegrating the framework, all subsets show noticethe performance of current GUI grounding models
able performance improvements, demonstratings mainly affected by two key factors: ultra-high
that this training-free framework delivers surpris-resolution of GUI screenshots and limited visual
ingly strong gains in GUI grounding with minimal processing ability of VLMs.
cost. The qualitative results further demonstrate the
effectiveness of the DiMo-GUI framework. When Ultra-high resolution of GUI screenshots High
integrated with OS-Atlas-7B and UGround-V1-7B, resolution has always been a critical issue in visual
we observe that in the early iterations, the model§asks. Almost all visual tasks experience a decline
often fail to return accurate coordinates—primarilyin performance as resolution increases, as higher
due to the overwhelming contextual redundancyeésolution brings in more redundant information,
caused by high-resolution input. However, aftermaking the task more challenging. GUI grounding
several rounds of iterative zooming, the modelds no exception, especially since the Ul elements
exhibit a signi cantly increased likelihood of pin- that need to be localized are often small. As shown
pointing accurate coordinates within speci c re-in Figure 1, performance in GUI grounding sig-
gions, indicating that DiMo-GUI effectively guides Ni cantly drops as the resolution increases. An
the model's attention to more relevant visual cuesintuitive solution to this issue is zooming in, which
In addition, we conduct evaluations on thelS the dynamic zooming approach proposed in this
ScreenSpot dataset by integrating the DiMo-GUP2aper. However, it can be observed that as the reso-
framework into OS-Atlas-7B and UGround-V1-7B. lution of the screenshots increases, the probability
As shown in Tab. 2, both models exhibit notabIeOf the model making errors in the rst iteration
performance improvements, further validating thelso increases, which inevitably leads to failure in
strong generalizability of this plug-and-play frame-Subsequent operations. On the contrary, blindly
work. Despite its minimal computational COS‘t,enlarging the image can also introduce negative
DiMo-GUI consistently enhances grounding per_effects—for instance, excessive magni cation may

formance across diverse task scenarios. lead to a loss of global information. Determining
the appropriate degree of magni cation plays a cru-
4.3 Analysis cial role in the task of GUI grounding, making a

dynamic zooming strategy essential.
In this section, we analyze the experimental re-

sults presented above to investigate the key factolsimited visual processing ability of VLMs  An-

that in uence GUI grounding performance. By ex-other reason for the poor performance of GUI
amining the strengths and weaknesses of differergrounding is the weak ability of grounding models
models across various tasks, we aim to identifyfo process visual information. Most current GUI
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Mobile Desktop Web Average

GUI Agent MLLMs Text Icon/Widget Text Icon/Widget Text Icon/Widget

InternVL-2-4B (Chen et al., 2024) 9.2 4.8 4.6 4.3 0.9 0.1 4.3
Fuyu (Bavishi et al., 2023) 41.0 1.3 33.0 3.6 33.9 4.4 19.5
Qwen2-VL-7B (Wang et al., 2024b)  61.3 39.3 52.0 45.0 33.0 21.8 42.9
CogAgent (Hong et al., 2024) 67.0 24.0 74.2 20.0 70.4 28.6 47.4
SeeClick (Cheng et al., 2024) 78.0 52.0 72.2 30.0 55.7 325 53.4
OS-Atlas-4B (Wu et al., 2024) 85.7 58.5 72.2 45.7 82.6 63.1 70.1
UGround-7B (Gou et al., 2024) 82.8 60.3 825 63.6 80.4 70.4 73.3
OS-Atlas-7B (Wu et al., 2024) 93.0 72.9 91.8 62.7 90.9 74.3 82.5
+DiMo-GUI 96.2"32 73506 96.4'46 751"124 89.7#12 754 11 85732
UGround-V1-7B (Gou et al., 2024) 95.0 83.3 95.0 77.8 92.1 77.2 87.6
+DiMo-GUI 94.8#0.2 85.3"20 94.3#0.7 82.1'43 93.2'11 80.3"31 89.2"16

Table 2:GUI Grounding Results of different GUI Agents on ScreenSpot-v2 Even though most models already
achieve high quantitative scores on this dataset, introducing DiMo-GUI still leads to noticeable performance
improvements across the vast majority of subsets.

save the file view more option of edit button view comments

linl

linl

Figure 5:Quantitative results on ScreenSpot-v20n the Screenspot benchmark, which features relatively low
resolution and simple scenes, DiMo-GUI also enhances the model's localization capabilities.

agents and grounding models are based on existing As illustrated in the speci c example in Fig. 6,
multimodal large models, and a common issue wittwhen the user instruction includes the word “edit,”
MLLMs is that their ability to process visual infor- the agent tends to focus on elements related to edit-
mation is weaker than their ability to handle texting during the search process. In this case, there
This causes the models to be more inclined to trushappens to be a text element labeled “Edit” in the
textual information, a phenomenon known as hallutarget region, which conveys a clearer semantic
cinations in MLLMs. Since locating, recognizing, meaning compared to the adjacent icon. Conse-
and understanding icons is much more dif cult quently, the agent model is more likely to rely on
than processing text, GUI agents tend to rely moréhis text element, as it is not only easier to recog-
on textual information during the grounding pro-nize and understand but also highly relevant to the
cess. The direct consequence is that if a screenshimistruction. However, this text element does not
contains text related to the instruction, or even theactually ful Il the intended function of the instruc-
same text, GUI agents will almost completely abantion. Its seemingly clear semantics, in this context,
don the search for icons and instead use the text dmcome a source of distraction. When we modify
the answer, even though it may not be helpful. Thehe prompt to explicitly direct the agent to focus
modality decoupling approach we propose effecenly on icon elements while ignoring text elements,
tively addresses this issue by allowing the modethe model DiMo-GUIs selecting the “Edit” text

to better consider both text and icon modalitiesand instead searches for the appropriate icon. In-
which helps mitigate the drawbacks of the model'sterestingly, the “Edit” text then serves as valuable
weaker ability to process visual information. contextual information that aids the model in locat-
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Table 4: Ablation on Dynamic Grounding and Modali-

View more option of edit button. ties Dividing.
Bt ]
Method | OS-Atlas-7B
vanilla 18.4
w DG 45.7
w MD 26.1
. w DiMo-GUI 49.7

Ablation on Modality Decoupling We also in-
vestigate the impact of modality decoupling by

Q) g comparing the full DiMo-GUI framework with a
g Q= — | 0o = formiy wi
(D)) variant that treats all Ul elements uniformly with-

Focus on ICON elements. Ignore qut dlstlngwshln_g between text and icon modali-
TEXT elements. 5 ties. The results in Tab. 4 show that modality-aware

Q processing leads to consistent performance gains.

Q= — . O This con rms our hypothesis that different modal-

ities bene t from specialized zooming strategies,
Figure 6: Case Study. GUI agents often mistake and.that de(.:oupllng helps reduc.:e visual ambigulity,
instruction-related text in the image as targets. UsingPart'CUIarly in scenarios where icons are harder to
a divide-and-conquer approach with explicit modalityinterpret than text.

helps the agent locate the target accurately.

, o 5 Conclusion
Table 3: Ablation on the number of iterative zooming

steps. Performance improves with more iterations, bubiMo-GUI is a training-free, plug-and-play frame-
plateaus after 3 steps. work designed speci cally for the GUI ground-
max_iter| 0 1 2 3 4 5 ing tgsk. It in_corporates two key comp(_)nents:_dy-
namic zooming and modality decoupling, which
effectively address the challenges of handling high-
resolution screenshots and the limited visual un-
ing the target icon—transforming from a source ofgerstanding capability of existing GUI agents. By

acc (%) | 18.4 187 402 46.7 48.848.9

distraction into a helpful cue. progressively re ning the focus region and treating
_ text and icon modalities separately, DiMo-GUI sig-
4.4 Ablation Study ni cantly boosts grounding performance across var-

effectiveness of the proposed dynamic zoomindgMProvements with minimal computational over-
strategy, we compare DiMo-GUI with two base-n€ad.

lines: (1) a no-zooming baseline where the model L

directly predicts coordinates from the original® Limitations

screenshot without any re nement, and (2) a singleg renty our model employs a progressive expan-
pass static zooming variant that only zooms intGj, strategy without any error correction or back-
the region of interest once based on the initial prég, cying mechanisms. This can lead to early-stage
diction. As shown in Tab. 3, the grounding perfor-;qiaes that propagate and become irrecoverable.
mance rst improves and then declines with the,, ,4,re work, we plan to incorporate backtrack-

mongton!c increase in |terat|ons.Th|§ aligns \,N'thing mechanisms using structures such as trees or
intuition: in early stages, more zoom-in operations

) ' graphs, aiming to further improve the accuracy.
help the model focus on target regions by ltering
out irrelevant. details. However, e>_<cess_ive zoomingy Acknowledgments
can remove important context, hindering accurate
grounding. Our proposed dynamic iterative zoomThe work is partially supported by the NSF of the
ing approach signi cantly improves grounding ac-United States Grant CRIl 2451683, an NVIDIA
curacy over both baselines, which demonstrates thedcademic Grants Program, University of Califor-
importance of progressively re ning the region of nia at Merced, and a UC Merced Faculty Research
interest. Award. The views and conclusions are those of the
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