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Abstract

Large language models (LLMs) generate high-
dimensional embeddings that capture rich
semantic and syntactic information. How-
ever, high-dimensional embeddings exacer-
bate computational complexity and storage
requirements, thereby hindering practical de-
ployment. To address these challenges, we
propose a novel training framework named
Sequential Matryoshka Embedding Compres-
sion (SMEC). This framework introduces the
Sequential Matryoshka Representation Learn-
ing(SMRL) method to mitigate gradient vari-
ance during training, the Adaptive Dimension
Selection (ADS) module to reduce informa-
tion degradation during dimension pruning,
and the Selectable Cross-batch Memory (S-
XBM) module to enhance unsupervised learn-
ing between high- and low-dimensional em-
beddings. Experiments on image, text, and
multimodal datasets demonstrate that SMEC
achieves significant dimensionality reduction
while maintaining performance. For instance,
on the BEIR dataset, our approach improves the
performance of compressed LLM2Vec embed-
dings (256 dimensions) by 1.1 points and 2.7
points compared to the Matryoshka-Adaptor
and Search-Adaptor models, respectively.

1 Introduction

Large language models excel in diverse text tasks
due to their ability to capture nuanced linguis-
tic structures and contextual dependencies. For
instance, GPT-4 achieves state-of-the-art perfor-
mance on benchmarks like GLUE (Wang et al.,
2018) and SuperGLUE (Wang et al., 2019), demon-
strating its proficiency in tasks such as natural lan-
guage inference (NLI), question answering (QA),
and text classification. This success is attributed
to their transformer-based architectures (Vaswani
et al., 2017), which enable parallel processing of
sequential data and capture long-range dependen-
cies through self-attention mechanisms. Similarly,
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Figure 1: The effectiveness of the SMEC in dimen-
sionality reduction. After customized training with the
SMEC method on BEIR Quora dataset, the embeddings
of LLM2Vec-7B (3584 dimensions) and LLM2Vec-1B
(1536 dimensions) can achieve 14 x and 12 lossless
compression, respectively.

Llama-3 (Grattafiori et al., 2024) and ChatGPT
(Brown et al., 2020) leverage similar principles
to achieve comparable or superior performance in
domain-specific and multi-lingual tasks.

LLMs are increasingly integrated into commer-
cial information retrieval (IR) systems, such as
search engines (e.g., Google’s MUM) and rec-
ommendation platforms (e.g., Netflix’s content
retrieval). Their ability to generate embeddings
for long documents (e.g., books, research papers)
and dynamic queries (e.g., conversational search)
makes them indispensable for modern applica-
tions. For example, the BEIR benchmark (Thakur
et al., 2021) evaluates cross-domain retrieval per-
formance, where LLMs outperform traditional
BM25(Robertson and Walker, 1994) and BERT-
based models(Devlin et al., 2019) by leveraging
contextual embeddings.

While LLMs’ high-dimensional embeddings en-
able sophisticated semantic modeling, their storage
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Figure 2: Illustration of embedding compression architectures and our proposed approach. (a) presents the direct
feature dimensionality reduction performed by the Search-Adaptor using FC layers. (b) illustrates the Matryoshka-
Adaptor, which employs a shared set of FC layers to generate low-dimensional embeddings with multiple output
dimensions. A Matryoshka-like hierarchical inclusion relationship exists between the high- and low-dimensional
embeddings. (c) presents our proposed Sequential Matryoshka Embedding Compression (SMEC) framework, which
adopts a sequential approach to progressively reduce high-dimensional embeddings to the target dimension. The
animated diagram in the upper-right corner vividly highlights the distinction between Matryoshka-Adaptor and

SMEC.

and computational costs hinder scalability. Em-
bedding dimensions of LLMs typically range from
1,024 (e.g., GPT-3) to 4,096 (e.g., Llama-3), ex-
acerbating storage overhead and computational in-
efficiency—especially in real-time systems requir-
ing dynamic updates. Moreover, high-dimensional
vectors degrade the performance of retrieval algo-
rithms due to the curse of dimensionality (Beyer
et al., 1999). For example: exact nearest-neighbor
search in high-dimensional spaces becomes com-
putationally infeasible, necessitating approximate
methods like FAISS (Johnson et al., 2017) or
HNSW (Yury et al., 2018). Even with optimiza-
tions, query latency increases exponentially with di-
mensionality, limiting responsiveness in real-world
applications.

To address these challenges, Matryoshka Repre-
sentation Learning (MRL) (Kusupati et al., 2022)
encodes multi-scale information into a single em-
bedding, balancing task complexity and efficiency.
It achieves strong results in large-scale classifi-
cation and retrieval tasks and has inspired vari-
ants like Matryoshka-Adaptor (Yoon et al., 2024),
which offers a scalable framework for transforming

embeddings into structured representations with
Matryoshka properties under both supervised and
unsupervised settings. However, MRL’s multi-
scale parallel training strategy simultaneously lim-
its its practical application in industry. When the
retrieval system requires a new low-dimensional
embedding, retraining from scratch is necessary to
achieve effective dimensionality reduction.

In this paper, we systematically analyze the lim-
itations of MRL and its variants in embedding
compression and propose three key enhancements:
(1) a continued-training-friendly training frame-
work named Sequential Matryoshka Representa-
tion Learning (SMRL); (2) an adaptive dimension
selection (ADS) mechanism to minimize informa-
tion degradation during dimension pruning; and
(3) a Selectable Cross-batch Memory (S-XBM)
strategy to enhance unsupervised learning between
high- and low-dimensional embeddings.

2 Related Work

2.1 Matryoshka representation learning

Matryoshka representation learning introduces a
novel paradigm where embeddings are pretrained
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to inherently support progressive dimension trun-
cation. This enables fine-grained control over the
trade-off between computational latency (via re-
duced dimensionality) and accuracy (via retained
semantic structure). Key innovations include the
design of Matryoshka properties, such as hierarchi-
cal information encoding and intra-cluster compact-
ness, which ensure that even truncated embeddings
retain utility for downstream tasks.

In addition to representation learning, the con-
cept of MRL have been applied to image genera-
tion, such as Matryoshka Diffusion Models (MDM)
(Gu et al., 2023); multimodal content understand-
ing, such as M 3 (Cai et al., 2024); and Multi-
modal Large Language Model (MLLM), such as
Matryoshka Query Transformer (MQT) (Hu et al.,
2024).

2.2 Embedding Compression

Embedding compression aims to reduce the com-
putational and memory footprint of neural network
models or embeddings while preserving their util-
ity for downstream tasks. This objective has driven
research across multiple paradigms, each address-
ing different trade-offs between compression ef-
ficiency, performance retention, and adaptability.
Early approaches primarily focused on unsuper-
vised techniques based on linear algebra, such
as Principal Component Analysis (PCA) (Jolliffe
and Cadima, 2016), Linear Discriminant Analysis
(LDA) (Mclachlan), and Non-negative Matrix Fac-
torization (NMF) (Lee and Seung, 2000). Build-
ing upon these, autoencoders and their variants,
such as Variational Autoencoders (VAEs) (Kingma
et al., 2013), have gradually emerged as powerful
tools for nonlinear dimensionality reduction, capa-
ble of capturing complex data distributions. With
the development of deep learning, methods such as
Contrastive Predictive Coding (CPC) (Oord et al.,
2018) and Momentum Contrast (MoCo) (He et al.,
2020) are capable of learning robust and compact
representations from unlabeled data.

Recently, customized methods such as Search-
Adaptor (Yoon et al.,, 2023) and Matryoshka-
Adaptor (Yoon et al., 2024) have emerged as a new
trend in embedding compression. They achieve sig-
nificant dimensionality reduction by adding only a
small number of parameters to the original repre-
sentation model and retraining it on specific data.

3 Method

3.1 Rethinking MRL for embedding
compression

MRL employs a nested-dimensional architecture
to train models that learn hierarchical feature rep-
resentations across multiple granularities. This al-
lows adaptive deployment of models based on com-
putational constraints. Specifically, MRL defines a
series of models f1, fo, ..., fas that share identical
input and output spaces but progressively expand
their hidden dimensions.

The term Matryoshka derives from the hierar-
chical parameter structure where the parameters of
model f,,, are nested within those of its successor
fm+1. To illustrate, consider a FC layer within the
largest model fj, which contains dj; neurons in
its hidden layer. Correspondingly, the FC layer of
fm retains the first d,,, neurons of this structure,
with dimensions satisfying dy < ds < --- < dyy.
MRL jointly trains these models using the follow-
ing objective:

M
D em - L{fm(x);y), e))

m=1

where £ denotes the loss function, y represents the
ground-truth label, and c,,, are task-specific weight-
ing coefficients. Notably, each training iteration
requires forward and backward propagation for all
M models, resulting in substantial computational
overhead compared to training a single standalone
model. Upon convergence, MRL enables flexible
inference by selecting any intermediate dimension
d; < djy, thereby accommodating diverse compu-
tational constraints.

Although the MRL method has partially miti-
gated the performance degradation of representa-
tions during dimensionality reduction, we contend
that it still faces the following three unresolved
issues:

Gradient Fluctuation. In large-scale vector re-
trieval systems, sample similarity is measured by
the distance between their representation vectors.
Consequently, the optimization of embedding mod-
els typically employs loss functions based on em-
bedding similarity. In this condition, according to
the derivation in Appendix A, the loss function £¢
of MRL under dimension d satisfies the following
relationship with respect to the parameter w; in the
i-th dimension of the FC layer:
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Here, §(d) is a complex function that is positively
correlated with the dimension d. This equation
provides a mathematical foundation for analyzing
gradient fluctuations in multi-dimensional joint op-
timization architecture. It indicates that during the
MRL training process, loss functions from various
dimensions result in gradients of varying magni-
tudes on the same model parameter, thereby in-
creasing gradient variance. In Section 5.2, we em-
pirically demonstrated that the conclusion above is
applicable to different loss functions. We propose
a solution to resolve the aforementioned problem
in Section 3.2.

Information Degradation. Neural network pa-
rameters exhibit heterogeneous contributions to
model performance, as demonstrated by the non-
uniform distribution of their gradients and feature
importance metrics (Frankle and Carbin, 2018).
The MRL method employs a dimension truncation
strategy (e.g., D — D/2 — D/4...) to prune
parameters and reduce feature dimensions by re-
taining partial parameters. However, this approach
fails to adequately preserve critical parameters be-
cause it relies on a rigid, static truncation rule. Al-
though MRL employs joint training of high- and
low-dimensional vectors to redistribute informa-
tion between truncated and retained parameters,
this process is unavoidably accompanied by infor-
mation degradation. Specifically, discarded param-
eters may contain essential information, such as
unique feature mappings or high-order dependen-
cies, that cannot be effectively recovered by the
remaining ones. Empirical evidence, such as accu-
racy degradation and increased generalization gaps,
demonstrates that such loss leads to suboptimal
model performance and slower convergence (Li
et al., 2023). In summary, while MRL enables hi-
erarchical dimensionality reduction, its inability to
selectively retain critical parameters and the inher-
ent information degradation during post-truncation
training ultimately undermine its effectiveness in
maintaining model performance. In Section 3.3,
we propose a more effective dimension pruning
method.

Sample Selection. The MRL framework em-
ploys supervised learning to jointly train high-
dimensional (D) and low-dimensional (D’) fea-
tures. However, the number of available sam-
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Figure 3: The ADS module introduces a set of learnable
parameters to dynamically select dimensions based on
their importance during the dimensionality reduction
process.

ples is limited by manual annotation. Matryoshka-
Adaptor introduces in-batch sample mining strate-
gies to expand the training sample scale, thereby
addressing the inherent limitation. Specifically, it
generates cross-sample pairs via the cartesian prod-
uct of batch samples:

P = {(xi,xj) | x;,x; € Batch, ¢ # j}. (3)

This approach creates B(B — 1) pairs per batch
(where B denotes the batch size), enabling cross-
sample comparisons within large batches. How-
ever, this indiscriminate pairing introduces noise
from non-representative or irrelevant sample pairs.

In light of this limitation, the method employs
Top-k similarity-based selection:

Prop-k = Topy, (similarity(x;, z;)),
“)
V (zi,x5) € P.

Here, only the top-k most similar pairs are re-
tained for training, reducing computational over-
head while focusing on informative interactions.
Despite this improvement, the diversity of effective
samples remains fundamentally constrained by the
original batch size B. In Section 3.4, we develop a
strategy that empowers the model to mine global
sample beyond the current batch.

3.2 Sequential Matryoshka Representation
Learning

Applying the conclusions from Section 3.1 to the
MRL training process, and take the parallel dimen-
sionality reduction process [D, D /2, D /4] as an ex-
ample. The ratio of the average gradients for param-
eters w;(i € [0,D/4]) and w;(j € [D/4,D/2])
is as follows:
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As shown in Equation 10, the average gradi-
ent magnitude of parameter w; can be approx-
imated as 1 + gggﬁgz times that of parameter
w;, primarily due to the influence of the lower-
dimensional loss function £P/4. To resolve this
issue, we propose Sequential Matryoshka Repre-
sentation Learning (SMRL), which substitutes the
original parallel compression of embeddings with
a sequential approach, as illustrated in the Figure
2. Assuming a dimensionality reduction trajectory
of [D,D/2,D/4,...,D/2"]. In each iteration,
only the immediate transition (e.g., D/2" "1 —
D/2™) is trained, avoiding the inclusion of lower-
dimensional losses that amplify gradients for low-
dimensional parameters. By eliminating the above
factor, the gradients of w;(i € [0, D/2"]) follow
a consistent distribution with reduced variance,
improving convergence speed and performance.
Once the loss converges in the current iteration,
the dimensionality reduction D/2"~1 — D/2"
is complete, and the process proceeds to the next
stage D/2" — D/2"*!, repeating the procedure
until the target dimension is reached. Addition-
ally, after convergence in one iteration, the opti-
mal parameters for the current dimension are fixed
to prevent subsequent reductions from degrading
their performance. Notably, compared to MRL,
the SMRL framework is more amenable to contin-
ued training. In scenarios where low-dimensional
retrieval embeddings (e.g., D/8) or intermediate
embeddings (e.g., D/3) are required, these can be
obtained through further dimensionality reduction
training based on the already preserved D/4 or
D/2 parameters, eliminating the need for retraining
from scratch as is typically required in MRL.

6£D/4

(D/2)*

5(Dj4)?

&)

3.3 Adaptive Dimension Selection Module

Since directly truncating dimensions to obtain low-
dimensional representations in MRL inevitably
leads to information degradation, we propose the
Adaptive Dimension Selection (ADS) module to
dynamically identify important dimensions dur-
ing training. As illustrated in Figure 3, we in-
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Figure 4: S-XBM maintains a queue during training
to store historical features across batches. Rather than
incorporating all stored features into the current batch,
it selectively leverages hard samples that exhibit high
similarity to the current batch samples.

troduce a set of learnable parameters that repre-
sent the importance of different dimensions in
the original representation Z(dim = D), and
use these parameters to perform dimensional sam-
pling, obtaining a reduced-dimension representa-
tion Z'(dim = D/2). Since the sampling op-
eration is non-differentiable, during the training
phase, we utilize the Gumbel-Softmax (Jang et al.,
2016) to approximate the importance of different
dimensions. This is achieved by adding Gumbel-
distributed noise G ~ Gumbel(0, 1) to the logits
parameters z for each dimension, followed by ap-
plying the softmax function to the perturbed logits
to approximate the one-hot vector representing di-
mension selection. Mathematically, this can be
expressed as:

z = softmax,(z + G). 6)

Importantly, the Gumbel approximation allows the
softmax scores of dimension importance to be in-
terpreted as the probability of selecting each di-
mension, rather than enforcing a deterministic se-
lection of the top-k dimensions. This achieves a
fully differentiable reparameterization, transform-
ing the selection of embedding dimensions into an
optimizable process.

3.4 Selectable Cross-Batch Memory

A natural teacher-student relationship inherently
exists between the original embedding and its
reduced-dimensional counterpart, making it feasi-
ble to improve the compressed embedding through
unsupervised learning (Yoon et al., 2024). How-
ever, as discussed in Section 3.1, performing this
process within a single batch suffers from sample
noise and insufficient diversity. As illustrated in
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Figure 5: Experimental results on the BEIR dataset comparing two models: OpenAl’s text-embedding-3-large (with
3072 dimensions) and LLM2Vec (with 3548 dimensions), the latter built upon the Qwen2-7B model. OpenAl text
embeddings inherently contain multi-scale representations (enabled by MRL during pretraining), while LLM2Vec
obtains its orignal low-dimensional representations via PCA.

Figure 4, we propose the Selectable Cross-Batch
Memory (S-XBM) module, which constructs a
first-in-first-out (FIFO) queue during training to
store original embeddings across batches, with the
aim of addressing this limitation. Unlike the orig-
inal XBM (Wang et al., 2020), we introduce two
task-specific improvements: (1) retrieving only the
top-k most similar samples from the memory bank
to construct new batches, and (2) deferring the
trainable FC layer and only storing features gener-
ated by the frozen backbone, thereby avoiding fea-
ture drift. The unsupervised loss between original
embedding emb and low-dimensional embedding
embl: d] is as follows:

Loun—sup = Z Z |Sim(emb;, emb;)
i jJENK(D)
—Sim(emb;[: d],emb;[: d])|  (7)

where N (i) denotes the set of the top k& most
similar embeddings to emb; within the S-XBM
module.

4 [Experiments

In this section, we compare our approach with state-
of-the-art methods in the field of embedding dimen-
sionality reduction.

4.1 Dataset Description

We evaluate the model’s retrieval performance
across diverse datasets: BEIR (Thakur et al., 2021)
(text retrieval), Products-10K (Bai et al., 2020)
(image retrieval), and Fashion-200K (Han et al.,

2017) (cross-modal retrieval). BEIR is a compre-
hensive text retrieval benchmark consisting of 13
selected datasets from diverse domains. Products-
10K contains approximately 10,000 products with
over 150,000 images for large-scale product im-
age retrieval. Fashion-200K includes over 200,000
fashion items with paired image-text data for cross-
modal tasks.

4.2 Implementation Details

We use state-of-the-art models to extract the origi-
nal embeddings for different datasets. Specifically,
the BEIR dataset employs OpenAl text embeddings
(ope) and LLM2Vec (BehnamGhader et al., 2024)
for text representation; the Products-10K dataset
utilizes LLM2CLIP (Huang et al., 2024) to obtain
cross-modal embeddings; and the Fashion-200K
dataset extracts image embeddings using the ViT-
H(Dosovitskiy et al., 2020) model. All dimension-
ality reduction methods are performed based on
these original representations. To align with other
methods, SMEC also adopts rank loss (Yoon et al.,
2023) as the supervised loss function, which is de-
fined as follows:

Loank =YY 3> I(yij > yar) (Wij — vin)
i j k m
log(1 + exp(sik[: m] — si[: m])), — (8)

where I(y;; > i) is an indicator function that is
equal to 1 if y;; > y;, and O otherwise. s;;[: m]
represents the cosine similarity between the query
embedding emb;[: m| and the corpus embedding
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emb;[: m|. The total loss function is:
Liotal = Lrank + aﬁun—supv )

with « being hyper-parameters with fixed values as
a = 1.0. As SMEC involves multi-stage training,
the training epochs of other methods are aligned
with the total number of epochs costed by SMEC,
and their best performance is reported.

4.3 Results

In this subsection, the results on the BEIR, Fashion-
200K, and Products-10K datasets are given. Re-
trieval performance is evaluated using the nor-
malized discounted cumulative gain at rank 10
(nDCG@10)(Kalervo et al., 2002) metric.

BEIR. As shown in Figure 5, we compare
the performance of SMEC and other state-of-the-
art methods on two types of models: the API-
based OpenAl text embedding and the open-source
LLM2vec, across various compressed dimensions.
Significantly, SMEC exhibits the strongest per-
formance retention, particularly at lower com-
pression ratios. For example, when compressed
to 128 dimensions, SMEC improves the perfor-
mance of the OpenAl and LLM2vec models by
1.9 and 1.1 points respectively, compared to the
best-performing Matryoshka-Adaptor.

Products-10K. Images naturally contain denser
features than text (O Pinheiro et al., 2020). As
shown in Figure 8a of Appendix C, SMEC sur-
passes other dimensionality reduction methods in
image retrieval tasks, highlighting the effective-
ness of the ADS module in mitigating information
degradation during dimension pruning.

Fashion-200K. Unlike unimodal datasets,
Fashion-200K involves cross-modal queries and
documents, such as image-to-text and text-to-
image retrieval. As illustrated in the Figure 8b and
8c of Appendix C, SMEC achieves superior per-
formance in both directions, demonstrating strong
robustness in multimodal scenarios.

5 Discussions

5.1 The influence of gradient variance

To validate the impact of gradient variance on con-
vergence speed and model performance (as dis-
cussed in Section 3.2), we conducted compara-
tive experiments between SMRL and MRL us-
ing the MiniLM model on the BEIR dataset. As
shown in Figure 6a, MRL consistently exhibits
significantly higher gradient variance than SMRL

throughout training. Consequently, the training
loss of MRL continues to decline beyond the 20th
epoch, whereas SMRL’s loss starts to converge
at the 15th epoch. A similar trend is observed
in subfigure 6¢, where SMRL enters the improve-
ment phase earlier and converges to superior per-
formance.

5.2 Gradient variance of different loss
functions

Section 5.1 demonstrates that MRL exhibits higher
gradient variance compared to SMRL when rank
loss is employed as the loss function, thereby cor-
roborating the findings presented in Section 3.2. To
enhance the validation, we conducted additional
experiments on the BEIR dataset using rank loss,
MSE loss and cross-entropy (CE) loss under identi-
cal settings. The results depicted in Figure 7 reveal
a consistent pattern across both loss functions, vali-
dating the robustness of our conclusions.

5.3 Ablation studies

To evaluate the contribution of each component in
SMEC to the overall performance, we conduct ab-
lation studies using MRL as the baseline. Different
modules are incrementally added on top of MRL,
as detailed in table 1. When examined individually,
the SMRL strategy achieves the most significant
performance gain, suggesting that its reduced gra-
dient variance contributes positively to model per-
formance. In addition, both the ADS module and
the S-XBM module also provide notable improve-
ments. The combination of all three components
improves the performance of the 128-dimensional
embedding by 3.1 points.

Method 64 128 256 512

MRL (Baseline) 0.3726 0.4534 0.4802 0.5207
w/ SMRL 0.3808 0.4621 0.4895 0.5283
w/ ADS 0.3765 0.4583 0.4863 0.5254
w/ S-XBM 0.3778 0.4583 0.4853 0.5256
SMEC (Ours) 0.4053 0.4848 0.5002 0.5459

Table 1: Ablation studies of SMEC on 8 BEIR datasets
with MRL as the baseline.

5.4 The contribution of ADS in preserving key
information

The selection of important parameters in neural
networks is a well-established research area, with
numerous studies demonstrating that network pa-
rameters are often redundant. As a result, Param-
eter Pruning have been widely adopted for model
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Figure 6: Analysis of metrics during the training process. (a) shows the gradient variance curve (with the vertical
axis in a logarithmic scale), (b) presents the loss curve on the validation set, and (c) illustrates the performance
variations on the test set. As training progresses, the gradient variances of both MRL and SMRL decrease; however,
the gradient variance of MRL remains several times higher than that of SMRL. Consequently, the loss curve of
SMRL converges more quickly to a lower value, and the compressed embedding demonstrates better retrieval

performance.

compression. We consider ADS (or more generally,
the MEC family of methods), although it focuses
on dimension selection within embeddings, to be
fundamentally implemented through network pa-
rameter selection. Therefore, ADS can be regarded
as a form of pruning method with theoretical feasi-
bility.

To fully demonstrate the effectiveness of ADS,
we evaluate both the dimension selection strategies
of ADS and MRL using WARE(Yu et al., 2018)
(Weighted Average Reconstruction Error), a com-
monly used metric in the pruning area for assessing
parameter importance. The WARE is defined as
follows:

|gm _ym‘

(10)
Y|

1 M
WARE = i Z
m=1

,where M denotes the number of samples; 4, and
Ym represent the model’s score (which can be inter-
preted as the similarity between embedding pairs)
for the m-th sample before and after dimension
pruning, respectively. The core idea of WARE is to
quantify the change in the model’s output induced
by removing a specific dimension; a larger change
indicates higher importance of that dimension.
We randomly sampled 10,000 instances from
multiple sub-datasets of BEIR. For the LLM2VEC
embeddings (3072dim), we computed the WARE
for each dimension. Then, we used both ADS and
MRL to generate low-dimensional embeddings of
1536, 768, and 256 dimensions, respectively. For
each method and compression level, we calculated
the achievement rate, which is defined as the pro-
portion of selected dimensions that appear in the

top-N most important dimensions according to the
WARE-based ranking.

Di i ADS (Di

1536
768
256

Selection) MRL (Dimension Truncation)
50.3%

32.8%
17.4%

94.3%
90.1%
83.6%

Table 2: Achievement Rate of Important Dimension
Selection at Different Dimension Levels.

The results in table 2 show that the achievement
rate of MRL is roughly linear with the compression
ratio, indicating that the importance of dimensions
has no strong correlation with their positions. The
achievement rate of ADS also decreases as the num-
ber of retained dimensions reduces, which is due to
the increased difficulty of selecting the top-N most
important dimensions under higher compression ra-
tios. However, even when compressed by a factor
of 6, ADS still selects over 80 of the most important
dimensions. This explains why, as seen in Figure 5,
SMEC demonstrates stronger performance at lower
dimensions.

5.5 Memory size of S-XBM

In this subsection, we explore how the memory
size of S-XBM module affects training speed and
model performance. Theoretically, as the memory
size increases, it is easier for the S-XBM mod-
ule to mine more hard samples, thereby improving
model performance. However, an excessively large
memory size may increase the retrieval time for top-
k samples, which could negatively affect training
efficiency. To prove this observation experimen-
tally, we train the SMEC framework with vary-
ing memory sizes (e.g., 1000, 2000, 5000, 10000,
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Figure 7: Gradient statistics with Rank, MSE and CE
loss (with the vertical axis in a logarithmic scale): av-
erage gradient magnitudes of parameters in the ranges
[0,96] and [96, 192], as well as the gradient variance
over all parameters in the range [0, 192], during train-
ing.

and 15000), as illustrated in the table 3. The re-
sults demonstrate a clear trade-off between training
speed and model performance. We select a memory
size of 5000 as our final choice to strike a balance
between them.

6 Conclusions

Although high-dimensional embeddings from large
language models (LLMs) capture rich semantic fea-
tures, their practical use is often limited by compu-
tational efficiency and storage constraints. To miti-
gate these limitations, Sequential Matryoshka Em-
bedding Compression (SMEC) framework is pro-
posed in this paper to achieve efficient embedding

Memory Size 1000 2000 5000 10000 15000
Forward Time/s | 0.06 0.08 0.11 0.15 0.21
NDCG@10 t 0.4631 0.4652 0.4675 0.4682 0.4689

Table 3: Trade-off analysis of training speed and model
performance under different memory size of S-XBM.

compression. Our proposed SMEC framework con-
tains Sequential Matryoshka Representation Learn-
ing(SMRL) module, adaptive dimension selection
(ADS) module and Selectable Cross-batch Memory
(S-XBM) module. The SMRL module is designed
to mitigate gradient variance during training. The
ADS module is utilized to minimize information
degradation during feature compression. And the S-
XBM is utilized to enhance unsupervised learning
between high- and low-dimensional embeddings.
Compared to existing approaches, our approaches
preserve higher performance at the same compres-
sion rate.

Limitations

The SMEC framework introduces only a small
number of additional parameters on top of a pre-
trained model and is trained using labeled data from
a specific domain, along with mined hard samples,
with the aim of reducing the dimensionality of the
original embeddings. However, this design and ob-
jective limit its generalizability and applicability
to broader scenarios. Future work could explore
extending the SMEC approach to full-parameter
training of representation models, enabling them
to directly generate embeddings of multiple dimen-
sions. Additionally, the feasibility of training the
model on diverse datasets is also worth investigat-
ing.
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A Derivation of the Gradient Fluctuation

To formalize this issue, we analyze the Mean Squared Error (MSE) loss as a representative case. Let
X1 = [z1,%2,.. .,xn]T € R" and x2 = [y1,Y2,... ,yn]T € R™ denote two input feature vectors.
The final FC layer employs a matrix W = [wy, Wa,...,w,]' € R™*" to generate scalar outputs
y1 = Wx; € R™ and yo = Wxy € R™. The MSE loss at dimension d is defined as:

2
Ed = |:ylabel - Sim(yicll7 yg) ’ (11)

where Vjqpe; denotes the binary classification label for pairs (0 or 1), and sim(-) represents the normalized
similarity of the learned representations.

According to the chain rule, the partial derivative of £¢ with respect to the i-th dimension parameter of
the FC layer is derived as:

oct  ord ‘3[Yﬂi+ oL? .a[yg]i (12)
ow, " Ol o L], owi

Utilizing cosine similarity (clamp to [0, 1]) as the similarity function sim(-), the equation 11 can be
rewritten as:

dTod 1°
yly?] . (13)

L= | Viaver —
[ae [NellNz

Let lyd|| = A, |ly4] = B, y‘nyg =Cands = T%' The partial derivatives of the £¢ with respect to
[y{], and [y3], are given as follows:

oL’ = [yg]z s d
a[yﬂi —2(3—ylabel)(AB _P[yl}z‘ ; (14)
oL’ = [yﬂz S d
oy, =2(8 — Viavel) ( BB [yQL ) (15)
Substituting [yf]. = w;x; and [y§], = wixo, the partial derivatives of the [y{], and [y§], with

respect to w; are given as follows:

d d
a[yl]z :lea[y?}i = X. (16)

Owi

Based on the above equations, the partial derivative of £¢ with respect to w; is derived as:

(- 3o0)e (3 sba)e]

Assume that A and B can be approximated by d(d)-a and 6(d)-b, respectively. Under this approximation,
d(d) can be used to fit the relationship between the magnitude of vector x or y and the variation of d (It is
evident that this is a positive correlation). Therefore, Equation 17 can be approximated by the following
expression:

! g ] a1 s
o 20000 (B b (B ) o

In equation 18, a, b, [yil] i [yg]i are constants, x; and X» are constant vectors, while s and ) ,pe; are
invariant with respect to the index d. Therefore, we can conclude the following:
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In theory, this rule can also be extended to other pair-wise similarity-based functions, such as rank loss,
which is experimentally verified in Section 5.2.

(19)

B Results on BEIR Sub-datasets.

We compare the performance of different compression methods on several representative sub-datasets of
BEIR, and the results are shown in Table 4.

NDCG @10
Model 128 256 512 768 1536 3072
Sub-dataset—Scifact
LLM2Vec 0.787

w/ Search-Adaptor 0.806 0.845 0.864 0.879 0.886 0.884
w/ MRL-Adaptor  0.826 0.861 0.876 0.880 0.886 0.887
w/ SMEC (ours) 0.841 0.874 0.879 0.882 0.885 0.886

Sub-dataset—FiQA

LLM2Vec - - - - - 0.498
w/ Search-Adaptor 0.475 0.505 0.529 0.540 0.545 0.550
w/ MRL-Adaptor 0496 0.523 0.534 0.543 0.547 0.550
w/ SMEC (ours) 0.521 0.533 0.540 0.546 0.549 0.551

Sub-dataset—Quora

LLM2Vec - - - - - 0.775
w/ Search-Adaptor 0.771 0.805 0.830 0.845 0.861 0.864
w/ MRL-Adaptor  0.784 0.812 0.834 0.847 0.862 0.863
w/ SMEC (ours) 0.794 0.818 0.839 0.850 0.862 0.865

Sub-dataset—NF Corpus

LLM2Vec - - - - - 0.389
w/ Search-Adaptor 0.345 0.375 0.396 0.412 0425 0.426
w/ MRL-Adaptor  0.364 0.384 0.403 0.419 0426 0.427
w/ SMEC (ours) 0.389 0.402 0418 0.426 0430 0.431

Sub-dataset—SciDocs

LLM2Vec - - - - - 0.232
w/ Search-Adaptor 0.204 0.225 0.245 0.250 0.258 0.263
w/ MRL-Adaptor  0.220 0.240 0.250 0.255 0.262 0.265
w/ SMEC (ours) 0.239 0.246 0.251 0.255 0.261 0.264

Table 4: Comparison of retrieval performance on 5 BEIR sub-datasets.

C Experimental results on Products-10K and Fashion-200k.
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Figure 8: Experimental results on image and multimodal datasets. (a) presents the results on the Products-10K
dataset using an image representation model based on ViT-H (with 1024 dimensions). (b) and (c) show the results
on the Fashion-200K dataset for text-to-image and image-to-text retrieval tasks, respectively, using the LLM2CLIP
model (with 768 dimensions, base on ViT-L/14 and Llama-3.2-1B).
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