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Abstract

Large language models (LLMs) have attracted
significant attention due to their impressive
general capabilities across diverse downstream
tasks. However, without domain-specific opti-
mization, they often underperform on special-
ized knowledge benchmarks and even produce
hallucination. Recent studies show that strate-
gically infusing domain knowledge during pre-
training can substantially improve downstream
performance. A critical challenge lies in bal-
ancing this infusion trade-off: injecting too lit-
tle domain-specific data yields insufficient spe-
cialization, whereas excessive infusion triggers
catastrophic forgetting of previously acquired
knowledge. In this work, we focus on the phe-
nomenon of memory collapse induced by over-
infusion. Through systematic experiments, we
make two key observations, i.e. 1) Critical col-
lapse point: each model exhibits a threshold be-
yond which its knowledge retention capabilities
sharply degrade. 2) Scale correlation: these col-
lapse points scale consistently with the model’s
size. Building on these insights, we propose a
knowledge infusion scaling law that predicts
the optimal amount of domain knowledge to in-
ject into large LLMs by analyzing their smaller
counterparts. Extensive experiments across dif-
ferent model sizes and pertaining token budgets
validate both the effectiveness and generaliz-
ability of our scaling law.

1 Introduction

Recent advancements in LLMs (OpenAl, 2024;
DeepSeek-Al, 2024; Grattafiori and et al., 2024)
have demonstrated remarkable capabilities across
diverse tasks. Following the established scaling
law (Kaplan et al., 2020; Hoffmann et al., 2022;
Aghajanyan et al., 2023; Muennighoff et al., 2023;
Isik et al., 2024), the prevailing paradigm pretrains
LLMs on massive corpora before fine-tuning them
on downstream tasks.

Despite their generalist capabilities, off-the-shelf
LLMs often underperform in specialized domains,

suffering from knowledge misalignment and hallu-
cinations when their pretraining data lack domain-
specific coverage (Xi et al., 2024). Pretraining
is the phase where models acquire both linguistic
competence and broad general knowledge (Zhang
et al., 2024), yet prior work shows that without
targeted interventions, they often fail to ground
specialized knowledge fully and may degrade in
generalization (Charton and Kempe, 2024; Dohma-
tob et al., 2024). To mitigate this, recent studies
have explored injecting domain knowledge directly
into the pertaining stage to boost memorization
fidelity (Xi et al., 2024; Srivastava et al., 2024).
However, the optimal “dose” of knowledge infu-
sion remains elusive due to differences in model
architectures and training data.

Compounding this challenge, LLM training
costs have soared where single runs can exceed
hundreds of millions of dollars (Yang et al., 2024;
Grattafiori and et al., 2024), making exhaustive
trial-and-error experimentation infeasible. This
motivates the design of predictive scaling laws: by
studying smaller models, we can forecast optimal
training configurations for larger ones.

Research question. How much knowledge
should be infused during LLM pretraining to maxi-
mize both memorization and generalization? We
address this by systematically varying infusion fre-
quency, model scale (137M-3B parameters), and
training tokens (up to 100B). We construct infu-
sion corpora by randomly sampling triples from
Wikidata (Pellissier Tanon et al., 2016) and con-
vert them into natural language corpus form for
infusion. We then conduct controlled experiments
across model sizes and token budgets to quantify
knowledge retention dynamics.

Our experiments uncover a Memory Collapse
Phenomenon that models exhibit degradation in
knowledge retention beyond a model-specific infu-
sion threshold. Intriguingly, these collapse points
correlate with the model scale, where larger mod-
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els demonstrate greater memorization capacity yet
reach collapse points earlier, implying they require
proportionally less infusion to saturate their para-
metric capacity.

This trade-off presents a dilemma: under-
infusion leaves long-tail facts underground and in-
creases hallucination (Kandpal et al., 2023a; Shus-
ter et al., 2021), whereas over-infusion induces
overfitting and catastrophic forgetting (Hernandez
et al., 2022). To navigate this balance, we propose
a Knowledge Infusion Scaling Law that predicts
the optimal infusion quantities for large LLMs by
extrapolating from small-scale experiments, which
helps dramatically reduce the computational budget
required to tune domain-specific pertaining.

Overall, our main contributions are summarized
as follows:

* We identify and characterize the memory col-
lapse phenomenon in LLM pertaining under
excessive knowledge infusion.

* We derive a knowledge infusion scaling law
for LLMs that quantifies how optimal infusion
scales with model size and token budget.

* We conduct comprehensive experiments to
validate the effectiveness of our scaling law.
Notably, we perform large-scale training
corpus experiments on larger model sizes,
closely simulating real-world training scenar-
ios, thereby demonstrating its practical utility
for efficient LLM pretraining.

2 Related work
2.1 Infusing Knowledge into LLMs

During pre-training, large language models assim-
ilate an extensive repository of knowledge within
their parameters (Jin et al., 2024), effectively posi-
tioning pretrained language models as knowledge
bases (Petroni et al., 2019; AIKhamissi et al., 2022).
Subsequent studies (He et al., 2024; Zheng et al.,
2024; Zhong et al., 2024) have further corroborated
that LLMs exhibit remarkable performance on a
variety of knowledge-intensive tasks by leveraging
their substantial parametric memories. However,
recent investigations have indicated that LLMs are
notably deficient in acquiring long-tail facts—those
associated with less common entities—or when
the relevant knowledge is particularly rare (Kand-
pal et al., 2023b; Mallen et al., 2023; Wang et al.,
2023; Liu et al., 2025). The process by which

language models imbibe knowledge during pre-
training remains a compelling area of research.
(Chang et al., 2024) have examined how LLMs
acquire factual knowledge during the pretraining
phase, albeit primarily focusing on the knowledge
encoded once pretraining is complete. Moreover,
other researchers (Roberts et al., 2020) have demon-
strated that fine-tuning pretrained models can effec-
tively “inject” additional knowledge, thereby en-
hancing their capability to answer factual queries.
In contrast to this research, our work delves into
the factors influencing the memorization of factual
knowledge—especially long-tail facts—during the
pre-training phase.

2.2 Scaling Law

(Kaplan et al., 2020) and (Hoffmann et al., 2022)
were pioneers in positing the functional form of
language modeling losses as a power function, de-
pendent on both the number of model parameters
and the size of the training data. Many subsequent
studies (Bhagia et al., 2024; Lu et al., 2024; Que
et al., 2024) that adhere to this framework provide
a predictive structure for determining the most ef-
ficient configurations for expanding models, lever-
aging insights gained from smaller models (Gao
et al., 2023). These efforts contribute significantly
to understanding the scaling behaviors of LLMs
and offer practical guidance for training large mod-
els. Recently, (Lu et al., 2024) investigated the
scaling laws of LLMs’ fact memorization and the
behaviors associated with memorizing different
types of facts. Concurrently with our work, studies
(Charton and Kempe, 2024; Dohmatob et al., 2024)
have uncovered a critical performance degradation
caused by excessive injection of data into the train-
ing corpus. Different from these works, our paper
focuses on the scaling laws of fact memorization
and the frequency of knowledge infusion within
pretraining corpora. Unlike their qualitative obser-
vations of the collapse phenomenon, we are able
to predict the precise moment when this collapse
phenomenon occurs.

3 Methodology

Our methodology investigates how to determine
the optimal quantity of knowledge infusion dur-
ing LLM pretraining to maximize memorization
for downstream tasks. We analyze the relationship
between memorization capability and three vari-
ables: model size (/V), training tokens (D), and
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1. Sampling factual
knowledge

( Angel, color, white ) —»

from Wikidata ||||||||||
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2. Converting triples to questions

—» Question: What is the color of Angel?
Answer: white

A @ —» red, blue, black

—» Question: What is the shape of napkin?
Answer: rectangle
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the perplexity
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Figure 1: The pipeline of evaluation. We first employ natural language templates to convert factual knowledge
triplets into natural language questions. One correct answer corresponds to the object, while the three negative
options are generated with the assistance of GPT-4. Then we transform each question into a four-option multiple-
choice format. Finally, calculate the PPL of each option separately and match the option with the lowest PPL with

the answer.

knowledge frequency in the training corpus (F’). In
this section, we first explores the Memory Collapse
Phenomenon under varying knowledge frequen-
cies, then formalizes the Memory Infusion Scaling
Law, and finally examines frequency effects across
different training token scales.

3.1 Memory Collapse Phenomenon

To isolate the impact of existing knowledge, we
rigorously filtered the training corpus by removing
any text containing entities, relations, or subjects
overlapping with the evaluation dataset, ultimately
resulting in 58B training corpus. Then systemati-
cally infused controlled amounts of domain knowl-
edge into the processed corpus. Specifically, we
converted knowledge triples from the evaluation
dataset into natural language statements using pre-
defined templates (see Appendix A for template
details) and randomly inserted these statements
into the processed corpus. The knowledge injec-
tion frequency refers to the number of times each
knowledge was inserted into the training corpus.

We conducted pretraining on various model
scales using the knowledge-infused corpora and
evaluated knowledge retention by constructing eval-
uation questions from the original triples. The eval-
uation process (illustrated in Figure 1 and detailed
in Section 4.2) measures the model’s ability to re-
call injected knowledge after pretraining.
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Figure 2: The fit curve of injection frequencies spanning
{10, 100, 200, 500, 1000, 10000}. Different model
sizes vary injection frequencies when trained with 58B
training tokens.

To investigate model behavior under varying
knowledge quantities, we experimented with injec-
tion frequencies spanning {10, 100, 200, 500, 1000,
10000}. Our analysis of the evaluation results re-
veals a Memory Collapse Phenomenon: excessive
knowledge injection leads to catastrophic degrada-
tion of retention performance. As shown in Figure
2, increasing injection frequency beyond a criti-
cal threshold (termed the memory collapse point)
paradoxically reduces knowledge retention, with
models eventually performing worse than baseline
(no injection). Notably, we observe strong model-
scale dependency:

(1) Larger models reach their collapse point ear-
lier (i.e., at lower injection frequencies)
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Figure 3: Prediction of optimal frequency across different model scales. The solid circular points denote the
memorization performance of differently sized models on the evaluation dataset after pre-training, while dashed
curves are performance prediction curves fitted to these points using the Equation 1. Each star (3k) marks the
maximum of a fitted curve, indicating the predicted optimal frequency. A gray dashed line connects these optimal
frequency points, demonstrating a clear scaling law where larger models achieve their peak performance at lower

frequency.

(2) Optimal injection quantity inversely corre-
lates with model size

This suggests that larger models achieve knowl-
edge saturation with fewer injected knowledge, re-
vealing in large language models’ ability to scale
knowledge absorption with parameter count.

3.2 Knowledge Infusion Scaling Law

Section 3.1 demonstrates that excessive knowl-
edge injection degrades model retention, suggest-
ing that sparse token-level knowledge infusion suf-
fices even in large corpora. To optimize pretraining
for downstream task performance, it is critical to
predict the memory collapse point and strategically
allocate training data composition. Our primary
objective is to precisely model the conditions trig-
gering this collapse.

Given that model behavior deviates significantly
only near the collapse point, we focus on fine-
grained experiments within the critical regime
while deprioritizing distant regions. We conduct
systematic sweeps across injection frequencies on
the small model to establish high-resolution perfor-
mance prediction.

To derive the Memory Infusion Scaling Law, we
first develop a predictive equation mapping injec-
tion frequency to memorization performance (P).

The parametric form must intrinsically reflect ob-
served data trends (Section 3.1) while accommodat-
ing scaling principles. After comparative analysis
(see Section 4.3), we propose the following param-
eterization:

P(F)=a-F°- exp(—c- F) (1)

where F' denotes knowledge injection frequency,
and {a, b, c} are learnable parameters. We opti-
mize these parameters using the L-BFGS-B algo-
rithm (Liu and Nocedal, 1989) as implemented in
scipy.minimize(). Equation 1 enables predic-
tion of the optimal injection frequency for a single
model with fixed pretraining tokens.

Although the Equation 1 was initially derived
from an empirical fit, its functional structure is
strongly motivated by theoretical considerations
that capture the dual effects observed in our experi-
ments. In the low-frequency regime, the term F°
models the increase in knowledge retention due to
repeated exposure. This mirrors classical scaling
law curves where performance typically improves
following a power-law relationship with respect to
the amount of training data. On the other hand,
as the infusion frequency becomes excessive, the
negative effects become dominant. This adverse
effect is modeled by the exponential decay term
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Table 1: Model configuration.

| 137M 300M 378M 562M 1.05B 1.37B 3B
Model size (V) 137,177,856 300,880,896 377,963,520 562,894,080  1,057,797,888 1,372,489,728 2,926,955,520
1xC data size (D) | 2,743,557,120 6,017,617,920 7,559,270,400 11,257,881,600 21,155,957,760 27,449,794,560 58,539,110,400
Dimension 768 1,024 1,024 1,280 1,792 2,048 3,072
Num heads 12 16 16 10 14 16 24
Num layers 12 18 24 24 24 24 24
FFN 128 128 128 128 128 256 256

exp(—c - F'), which captures the decline in perfor-
mance once a critical threshold is exceeded. Fur-
thermore, for the derivative of P(F):

ﬁ:a'F(bfl)'exp(—c'F)'(b—c-F)

Setting dP/dF to zero leads to a maximal point
at F' = b/c , which naturally interprets as the
optimal knowledge injection frequency. This an-
alytical result is consistent with our experimental
observations where the collapse point aligns well
with the predicted F”'. The Equation 1 summarizes
the processes of knowledge accumulation and over-
saturation.

For cross-model generalization, we conduct the
same experiment on varying models and predict the
collapse point of the model. Inspired by Chinchilla
scaling law (Hoffmann et al., 2022), we fit a similar
power function that use the compute-FLOPs C' for
optimal infusion frequency prediction:

F(C)=A/C*+E )

where the FLOPs are computed as C' = 6 N D, and
{A, a, E'} are fitted parameters. This law enables
accurate extrapolation of collapse points for large-
scale models using small-model experimental data.

3.3 Influence of Frequency Under Varying
Numbers of Training Tokens

To validate the generalizability of our methodology,
we expanded the training corpus from the original
58B tokens to 75B and 100B tokens, better ap-
proximating real-world pretraining scenarios. The
corpus construction methodology follows before:
we first removed all paragraphs containing evalua-
tion dataset triples to eliminate knowledge leakage,
then systematically injected controlled knowledge
quantities. Pretraining was conducted across multi-
ple model scales using identical hyperparameters.

Through extensive experiments, we reveal sev-
eral key insights:

(1) Data Scaling Benefits: Increased training to-
kens consistently enhance models’ infused knowl-
edge retention capabilities, aligning with prior stud-
ies on data size scaling.

(2) Persistence of Memory Collapse: While base-
line retention improves with corpus size, the mem-
ory collapse phenomenon remains observable.

(3) Delayed Collapse Threshold: Larger corpora
exhibit collapse points shift to higher injection fre-
quencies compared to smaller counterparts

Our experiments demonstrate that optimal
knowledge injection scales super-linearly with
training token count. Collapse point displacements
follow predictable patterns, enabling extrapolation
via our scaling law, which provides actionable
guidelines for balancing infusion quantity and cor-
pus size.

4 Experiments

To quantitatively analyze how knowledge infusion
frequency affects memorization during pretraining,
we extrapolate scaling laws from data collected
by training a suite of small-scale models with con-
trolled variables. All models share identical ar-
chitectures and training strategies. We detail our
experimental setup below.

4.1 Pre-training Setup

Model architecture. To eliminate confounding
effects from pre-existing knowledge in pre-trained
models, we train base generative LLMs from
scratch using Transformer architectures similar
to Llama2 (Touvron et al., 2023). Specifi-
cally, we use seven different model sizes N &
{137M, 300M, 378M, 562M, 1.05B, 1.37B, 3B},
by scaling transformer depth and width. Detailed
architectures are provided in Table 1. We utilize a
standard Llama?2 tokenizer for all models.

Training corpus. All training tokens are ran-
domly sampled from the FineWeb-Edu dataset !,
a widely adopted pretraining corpus composed of
educational web pages filtered from the FineWeb
dataset (Penedo et al., 2024). As depicted in Sec-
tion 3.1, we implemented rigorous filtering to elim-
inate text containing entities, relations, or subjects

1https: //huggingface.co/datasets/
HuggingFaceFW/fineweb-edu
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overlapping with the evaluation dataset. Specif-
ically, if the words from any triple (subject, re-
lation, object) in the evaluation dataset concur-
rently appear in a text paragraph within the cor-
pus, that data is excluded from the corpus. This
process yielded three filtered corpora at scales of
D € {58B,75B,100B}, with the overall token
count exceeding the "Chinchilla optimal" threshold
(Hoffmann et al., 2022). We use D = 20- N as the
Chinchilla optimal setting (denoted "1xC"). Then
we systematically infused controlled amounts of
knowledge into these filtered corpora to construct
the final pretraining data.

Training strategy. Following Chinchilla (Hoff-
mann et al., 2022), we collect data points by fixing
model sizes (V) and training tokens (D) while sys-
tematically varying the frequency of infused knowl-
edge (F') in the corpus. Additionally, we gather
multi-group data points across different N and D
combinations. To rigorously control confounding
factors affecting LLMs’ knowledge retention capa-
bility, we focus on three variables: model size ({V),
training tokens (D), and knowledge frequency (F')
in the corpus. All experiments share identical hy-
perparameters (see Appendix B), with differences
solely arising from these three variables. The pre-
training of all models required computational re-
sources totalling over 2,000 hours on a cluster of
128 A100 GPUs.

4.2 Evaluation Setup

Evaluation dataset construction. A basic
knowledge unit can be abstracted as a (subject,
relation, object) triplet. To align with real-world
LLM training scenarios on large-scale corpora and
the frequency distribution of knowledge in down-
stream tasks, we construct our evaluation dataset
from Wikidata (Pellissier Tanon et al., 2016), a
comprehensive knowledge base offering both high-
coverage and long-tail facts that appear less fre-
quently in the pre-training corpora of LLMs.
Specifically, we leverage this public Hugging
Face repository > to get factual knowledge triplets
from Wikidata and select six common relationship
types to form our evaluation dataset. For cases
where multiple valid objects exist per (subject, re-
lation) pair, we randomly sample one instance to
prevent ambiguity. This refinement results in the
final evaluation dataset comprises 28,108 unique

2https ://huggingface.co/datasets/RJZ/wikidata_
triple_en

triples. Relation-type statistics are visualized in
Figure 4.

Location, 7209
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Color, 3662

Material, 14092

Figure 4: Statistics of the evaluation dataset.

Evaluation of memory retention. Since gener-
ative LLMs are typically queried via natural lan-
guage, we convert each triplet k = (subject, relation,
object) into a natural language question using man-
ually crafted relation-specific templates. For exam-
ple, the triple (bottle, material, glass) is mapped to
"What is the material of the bottle?". Detailed rela-
tionship types and mapping templates are provided
in Appendix C.1.

Since base pretrained LLMs (without instruc-
tion alignment) are sensitive to input variations
and even minor syntactic alterations can lead to dis-
parate outputs (He et al., 2024), we adopt a rigorous
evaluation strategy. Drawing inspiration from the
form of the C3 dataset (Dong et al., 2023), we refor-
mulate each question into a multiple-choice format.
One ground-truth answer corresponds to the origi-
nal object, while the three negative distractors are
generated by GPT-4, ensuring that they are similar
in style and have an equivalent token length. All
choice options are formatted using the template:
Question: <question> Answer: <option>. The
perplexity (PPL) of a sentence is indicative of the
model’s familiarity with it—a lower PPL suggests
a higher probability of generation (Gonen et al.,
2023; Hu and Zhou, 2024). In our template, since
all tokens preceding the <option> are identical, the
PPL for each sentence (formed by concatenating
the same question with different options) effec-
tively reflects the model’s propensity to generate
that particular answer. We compute the PPL for
each option and designate the one with the lowest
PPL as the model’s response. If the selected option
matches the ground-truth object, the knowledge is
deemed memorized. An example of PPL-based
evaluation is illustrated in Figure 1
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Figure 5: Knowledge Infusion Pre-training Scaling Law. Real points denote predicted collapse points for different
model sizes, while dashed curves represent optimal frequency fitted with these collapse points.

We mainly evaluate the LLM’s Memorization
Rate (MR) as memorization performance:

[N
1
MR = ] Z I(option = object) 3)
i=1

where | V| represents the total number of evaluated
knowledge triples.

4.3 Modeling Memory Infusion Scaling Law

As formalized in Section 3.2, an ideal parametric
form must inherently align with empirical obser-
vations while integrating scaling principles. We
develop the following five parameterizations to es-
tablish a predictive equation mapping injection fre-
quency to accuracy:

Py(F) = - (“;Cb)Q +d )
Py(F) =ay - exp < (F 2_051)2) +
43 - exp <—<F;C§“’>2> (5)
Py(F)=a-F’ exp(—c- F) (6)
Py(F) = % exp (—““@C; b>2> (M)

1+ exp(—k(F — Fp)) ®

We evaluated five candidate parameterizations mod-
eling the relationship between knowledge injection
frequency and memorization performance. Predic-
tive performance is rigorously evaluated using R?,
confirming statistical significance. As illustrated
in Appendix D, parameterization P; demonstrates
superior predictive performance compared to al-
ternative functional forms, achieving the highest
agreement with empirical scaling trends. Conse-
quently, we select Ps as the foundational formu-
lation for deriving our final scaling law. Detailed
curve-fitting visualizations analogous to Figure 5
are provided in Appendix D for all formulas.

4.4 Experimental Results

Results of collapse point prediction. In order
to explore collapse point prediction in a more
fine-grained manner, we conducted extensive
experiments on several small-scale models N &€
{137M, 300M, 378M, 562M, 1.05B, 1.37B, 3B}
under a 58B training token budget, with varying
injection frequencies of knowledge. Key results
are illustrated in Figure 3. Here, real points denote
the memorization performance of differently
sized models, while dashed curves represent
accuracy trajectories fitted using Equation 1. Two
critical observations emerge: (1) Under identical
knowledge frequencies, memorization capability
improves monotonically with model size (IV),
consistent with scaling law principles. (2) Larger
models exhibit earlier collapse points, suggesting
an intrinsic relationship between model capacity
and knowledge retention limits.
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To quantify these patterns, we derive collapse
points by extrapolating the fitted curves from Equa-
tion 1. These points are then used to fit our memory
infusion scaling law (Equation 2), which predicts
collapse points for arbitrary model sizes. As shown
in Figure 5, our law achieves robust generalizability
across model scales.

Results of varying different training tokens. To
validate the generalization of our law, we per-
formed additional experiments with training cor-
pora of varying sizes (75B and 100B tokens). As
shown in Figure 6, the memory collapse phe-
nomenon persists across different training token
budgets. Furthermore, our methodology remains
effective for identifying the optimal knowledge in-
fusion quantity under fixed training costs. Notably,
the collapse point threshold shifts backward as
the training corpus scales—models require higher-
frequency knowledge infusion to maintain supe-
rior memorization capabilities. This arises because
larger training corpora distribute infused knowl-
edge more sparsely, leading to periodic forgetting
during pretraining. Consequently, increasing the in-
fusion frequency becomes necessary to counteract
knowledge dilution as training tokens scale.

4.5 Diverse template influence

To further investigate the impact of template diver-
sity on knowledge retention, we designed 10 dis-
tinct mapping templates per topic (see Appendix
E) and applied each template to every knowledge
triple before injecting them into the training cor-
pus. Each template was repeated 10 times per
triple, resulting in a total of 100 injected instances
per knowledge triple. For comparison, we imple-
mented a baseline where each triple was infused
100 times using a single template.

The experimental results presented in Figure 7
reveal that for extremely small-scale models, em-

1.0

One template used
Diverse template used

0.8

Performance
o
Y

o
IS

0.2

0.0 T T T T T
137M 300M 377M 562M 3B

Model Size

Figure 7: The performance between of one template and
diverse templates

ploying diverse linguistic templates for multiple
injections of the same knowledge triple yields su-
perior performance compared to using a single tem-
plate. However, as model size increases, the per-
formance gains from template diversity become
increasingly marginal, with memory retention lev-
els remaining consistent across different template
quantities. This suggests that template diversity
does not significantly influence the memorization
performance of LLM. When the model’s memoriza-
tion capacity reaches a sufficient threshold, simple
template expressions suffice for effective memo-
rization of factual knowledge.

To avoid knowledge overfitting to specific tem-
plates, we further implemented an experiment of
100 distinct mapping templates per topic. Specifi-
cally, we designed 100 distinct mapping templates
per topic and applied each template to every knowl-
edge triple prior to their inclusion in the training
corpus. Each template was used exactly once for
each triple, resulting in a total of 100 amount in-
jected instances per knowledge triple, thereby in-
troducing varied syntactic structures. The results
(see Appendix F) indicate that template diversity
does not significantly affect the LLM’s capacity
for knowledge retention, which corroborates the
claims made in our paper.
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5 Conclusion

This work systematically investigates the scaling
principles of knowledge infusion in LLM pre-
training. Through controlled experiments across
model scales (137M-3B) and training tokens (up
to 100B), we uncover the Memory Collapse Phe-
nomenon, whereby surpassing a model-specific in-
fusion threshold harms both memorization and gen-
eralization. Building on this insight, we formulated
a Knowledge Infusion Scaling Law that quantita-
tively links optimal infusion frequency to model
scale and token budget, allowing researchers to pre-
dict the ideal amount of domain data for large mod-
els based on small-scale experiments. These find-
ings provide actionable guidelines for efficiently
developing domain-specialized LLMs while avoid-
ing overfitting and catastrophic forgetting. In the
future, we plan to extend our framework to larger-
scale modal knowledge infusion scenarios.

Limitations

While we filtered out paragraphs containing ex-
act surface-form matches of knowledge triples to
control for frequency interference, this approach
cannot fully eliminate interference from lexical sub-
stitutions. Though efficient for large-scale prepro-
cessing, the current lexical-level filtering fails to
address semantically equivalent paraphrases that
may implicitly reinforce target knowledge. The pre-
training process requires substantial computational
resources, demanding hundreds of GPU hours even
for our smallest 137M parameter model. This sig-
nificant computational expenditure constrained our
experiments to models up to 3B parameters. We
regard the exploration of larger scales as future
work.
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A Knowledge Infusion Template

Table 2: Knowledge infusion template.

Relation type ‘ Knowledge Infusion Mapping Templates

capital
color
industry
location
material
shape

The capital of {subject} is {entity}
The color of {subject} is {entity}
The industry of {subject} is {entity}
The location of {subject} is {entity}
The material of {subject} is {entity}
The shape of {subject} is {entity}

B The Training Hyperparameters

Table 3: The list of hyperparameters.

Hyperparameters

Value

Warm-up Steps

2000

Gradient Accumulation Steps 4
Train Batch Size Per Device 512

Max Sequence Length 8192
Learning Rate Scheduler cosine
Min Learning Rate 3e-4
Min Learning Rate 3e-5
Numbers of GPUs 128

C Evaluation Dataset Details

C.1 Question Template

Table 4: Question Template.

Relation type ‘ Question Mapping Templates

capital
color
industry
location
material
shape

What is the capital of {subject}?
What is the color of {subject}?
What is the industry of {subject}?
Where is {subject} located?
What is the material of {subject}?
What is the shape of {subject} ?

C.2 Example of Question

Table 5: Example of question.

Original problem

What is the color of Angel?

Question: What is the color of Angel? Answer: red
Question: What is the color of Angel? Answer: blue
Question: What is the color of Angel? Answer: black
Question: What is the color of Angel? Answer: white
Answer: white

Perplexity calculation Question: What is the color of Angel? Answer: red -> PPL=47.72
Question: What is the color of Angel? Answer: blue -> PPL=49.61
Question: What is the color of Angel? Answer: black -> PPL=51.05
Question: What is the color of Angel? Answer: white -> PPL=52.14

Selection: red

D Function Generalizability.

Table 6: function generalizability.

Representation

R*(1)

P 0.7883
P 0.8991
Ps 0.9685
Py 0.6034
Ps 0.7441
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E Diverse Knowledge Infusion Templates

Table 7: Ten knowledge infusion templates of capital.

Template

The capital of {subject} is {object}.

{subject}’s capital city is {object}.

When considering the capital of {subject}, it is {object}.
In {subject}, the city designated as the capital is {object}.
The capital city of {subject} is located in {object}.
{subject}’s capital is {object}.

The capital of the region {subject} is {object}.

{subject} has its capital in {object}.

In terms of capital cities, {subject} has {object}.

As the capital of {subject}, you’ll find {object}.

Table 8: Ten knowledge infusion templates of color.

Template

The color of {subject} is {object}.

When considering the color of {subject}, it is {object}.
In relation to color, {subject} is {object}.

{subject}’s color is {object}.

{subject} has a {object} color.

{subject} displays the color {object}.

{subject} is known for its {object} color.

The visual color of {subject} is {object}.

{object} is the color associated with {subject}.

The natural color of {subject} is {object}.

Table 9: Ten knowledge infusion templates of industry.

Template

The industry of {subject} is {object}.

{subject} operates in the {object} industry.

When considering the industry of {subject}, it is {object}.
{subject}’s main industry is {object}.

{subject} is part of the {object} industry.

The industry classification of {subject} is {object}.
{subject} is involved in the {object} industry.

{subject} primarily works in the {object} industry.

In terms of industry, {subject} is part of {object}.
Looking at {subject}, its industry is {object}.

Table 10: Ten knowledge infusion templates of location.

Template

The location of {subject} is {object}.

The location of {subject} is where you’ll find {object}.
{subject} is located at {object}.

{subject} can be found in {object}.

{subject} is stationed at {object}.

{subject} is based at {object}.

The current location of {subject} is {object}.

{subject} is in {object}.

{subject} is placed in {object}.

{subject} lies in {object}.

Table 11: Ten knowledge infusion templates of material.

Template

The material of {subject} is {object}.

{subject} is made of {object}.

When considering the material of {subject}, it is {object}.
{subject}’s primary material is {object}.

The main material used in {subject} is {object}.

{subject} is composed of {object}.

{subject} is constructed from {object}.

{subject} is manufactured using {object}.

The composition of {subject} includes {object}.

{object} is the material used to make {subject}.

Table 12: Ten knowledge infusion templates of shape.

Template

The shape of {subject} is {object}.

When considering the shape of {subject}, it is {object}.
In terms of shape, {subject} is {object}.

{subject}’s shape is object.

{subject} takes the shape of {object}.

One can describe {subject} as having a {object} shape.
{subject} exhibits a {object} shape.

Looking at {subject}, its shape is {object}.

{subject} adopts a {object} shape.

{object} is the defining shape of {subject}.
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Figure 8: Knowledge Infusion Pre-training Scaling Law using formula P;. Real points denote predicted collapse
points for different model sizes, while dashed curves represent optimal frequency fitted with these collapse points.
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Figure 9: Knowledge Infusion Pre-training Scaling Law using formula P;. Real points denote predicted collapse
points for different model sizes, while dashed curves represent optimal frequency fitted with these collapse points.
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Figure 10: Knowledge Infusion Pre-training Scaling Law using formula P5. Real points denote predicted collapse
points for different model sizes, while dashed curves represent optimal frequency fitted with these collapse points.
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Figure 12: Knowledge Infusion Pre-training Scaling Law using formula P5. Real points denote predicted collapse
points for different model sizes, while dashed curves represent optimal frequency fitted with these collapse points.

F The Impact of Template Diversity

To mitigate knowledge overfitting to specific tem-
plates, we further implemented an experiment of
100 distinct mapping templates per topic. Specifi-
cally, we designed 100 distinct mapping templates
per topic and applied each template to every knowl-
edge triple prior to their inclusion in the training
corpus. Each template was used exactly once for
each triple, resulting in a total of 100 amount in-
jected instances per knowledge triple, thereby in-
troducing varied syntactic structures. The results
indicate that template diversity does not signifi-
cantly affect the LLM’s capacity for knowledge
retention, which corroborates the claims made in
our paper.

Table 13: Model Performance with Different Templates

Model 1 template 10 templates 100 templates

37 36.02% 36.97% 38.711%
562M 34.23% 37.98% 37.75%
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