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Abstract
Once language models (LMs) are deployed,
they can interact with users long-term, ide-
ally evolving based on their feedback. Ask-
ing for direct user feedback can be disruptive;
thus, we study harvesting implicit user feed-
back from user-LM interaction logs. We study
two user-LM interaction datasets (WildChat
and LMSYS). First, we analyze user feedback in
the user-LLM conversation logs, providing in-
sights into when and why such feedback occurs.
Second, we study harvesting learning signals
from such implicit user feedback. Specifically,
we study whether incorporating the contents
of user feedback (e.g., user wanted clarifica-
tion), in addition to the polarity of the feedback,
can improve the model performance. We ob-
serve mixed results, showing this helps in short
human-designed questions (MTBench) but not
on longer and more complex questions (Wild-
Bench). Together, we provide an in-depth study
of implicit user feedback, showing its potential
and limitations.

1 Introduction

User queries are often ambiguous and underspec-
ified (Liu et al., 2023), making it challenging for
LLMs to generate a satisfactory response in a sin-
gle attempt. Users frequently engage in multi-
turn interactions with language assistants, provid-
ing feedback for previous model responses like
“Could you label y-axis in this plot?”, implying
that the LLMs initial response did not fully satisfy
their request. Such implicit feedback is natural and
common in human-LLM interactions (Zheng et al.,
2023a; Zhao et al., 2024).

Our work explores such implicit human feed-
back and how they can be used to improve model
responses. We build upon recent work (Don-Yehiya
et al., 2024) which prompts LLMs to identify im-
plicit user feedback in the LMSYS dataset (Zheng
et al., 2023a) and uses such feedback to improve
LLMs. Specifically, they classify feedback into

two broad categories (positive and negative) and
train models to promote responses that elicited pos-
itive feedback and suppress responses that elicited
negative feedback. While simple and intuitive, our
study finds that this approach can lead to model
degradation.

We first provide a comprehensive study on
implicit user feedback (Section 3 and Sec-
tion 4), on two real-world datasets, LMSYS and
WildChat (Zhao et al., 2024). Compared to pre-
vious study which provided annotations at some
turns in the conversation, we newly provide dense
annotations on 109 conversations, annotating each
user turn after the initial prompt whether it con-
tains user feedback or not. Our analysis shows
that feedback is very frequent in longer multi-turn
conversations, consisting of more than half of user
utterances at later turns. We further study what are
the characteristics of user prompt that elicits posi-
tive or negative feedback. We find that prompts that
elicit positive feedback are slightly lower quality
and more toxic than randomly sampled prompts,
suggesting potential issue with simply promoting
responses that elicited positive feedback.1

In the later sections (Section 6 and Section 7),
we study leveraging implicit user feedback to im-
prove an LLM. Having identified negative prompt
quality is correlated with the prompts that elicit pos-
itive feedback, we focus on leveraging implicit neg-
ative feedback. Can it highlight where the model
is failing, allowing us to provide targeted updates?
Figure 1 visualizes this intuition. We study a dis-
tillation setting, where we assume a stronger LLM,
distinct from the LLM used in user interaction
logs.2 Our key hypothesis is that leveraging not

1Figure 5 presents an example of positive user feedback
upon model’s jailbreaking responses.

2This choice is motivated by the lack of available interac-
tion logs for newer models, and limited ability of feedback
integration of older models. The difficulty of gathering user
data poses a challenge in this line of research.
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Figure 1: Approaches to improve model responses that elicited user negative feedback. New model response
generated incorporating such feedback content (msem

i , bottom right) can align better with the user’s intended output
than the new model response generated with the initial user input alone (mscr

i , top right).

only the feedback polarity but the contents of feed-
back (what aspects of the initial model response
was unsatisfactory) should be helpful for improving
model responses. We report mixed results, painting
the complexity of learning from noisy real-world
user data. Our dataset and code is shared publicly.3

2 Background

Don-Yehiya et al. (2024) classifies implicit feed-
back into two categories: (1) positive feedback
which praises the model’s response (i.e., “Great
job!”) and (2) negative feedback which signals
the model’s previous response was not satisfactory.
They further divide the negative feedback into the
following four categories:

• Rephrasing where the user rephrased their prior
request to try and elicit a better LLM response.

• Make Aware without Correction where the
user’s response simply indicates that the model’s
prior response was wrong.

• Make Aware with Correction where the user’s
response additionally provides instruction on
how to correct the model’s prior response.

• Ask for Clarification where the user asks the
LLM to provide additional information that was
missing from its prior response.

We follow their ontology of feedback types in
this work. Other relevant works present alternative
ontologies for user responses, such as one focusing
on grounding acts (Shaikh et al., 2025) and others
focusing on human-AI collaboration (Lee et al.,
2022; Chang et al., 2025). Relevant to this work,
Shaikh et al. (2025) introduces seven categories of
user responses, and five of these categories could

3https://github.com/lyh6560new/
implicit-user-feedback

be mapped back to the five feedback types from
Don-Yehiya et al. (2024). For example, “Reformu-
lations” could be mapped to our “Rephrasing” cat-
egory. The remaining two categories, “Next Turns”
and “Follow-ups”, do not belong in feedback.

2.1 Formulation
We assume a multi-turn conversation between users
and LLMs, c = {u1,m1, · · · ,un,mn}, where
ui and mi are the i-th user and model responses,
respectively. Each i-th user turn after their initial
request may contain feedback for the prior model
response, mi−1. We assign each user turn ui for
2 ≤ i ≤ n with one label from a label set L.

We define three label sets L, differing in the
granularity of the labels. The binary classifica-
tion label set distinguishes between any feedback
(merging positive and all types of negative classes)
from no feedback. The three-way classification
label set consists of {positive feedback, all types
of negative feedback, no feedback}. Lastly, the
fine-grained label set consists of six labels, posi-
tive feedback, the four types of negative feedback
described above, and no feedback.

A classification model f takes the conversation
c and produces an n− 1 dimensional vector y.

f(c) → y

where y ∈ Ln−1 and yi−1 represent the label as-
signed to the i-th user turn.

3 Identifying Implicit User Feedback

3.1 Datasets
We examine two sources of user-LLM interac-
tions, the LMSYS-chat-1M and WildChat datasets.
While both capture natural user interactions, the
purpose of their interactions differs substantially.
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LMSYS-chat-1M (Zheng et al., 2023a) is col-
lected from Chatbot Arena,4 where users interact
with LLMs to evaluate them. Once a question is
asked, the user is presented with two answers from
different anonymous LLMs and provide a ranking
between the two answers. We will refer to this
dataset as LMSYS.

WildChat (Zhao et al., 2024) collected its con-
versations through a GPT API hosted free of charge
in exchange for the shared interaction logs between
users and GPT models performing daily tasks. It is
referred to as WildChat in later sections.
LMSYS is used mainly for model evaluation,

while WildChat more closely reflects real user
needs. The former is shorter, containing more
edge cases and ill-defined tasks, while the latter
has longer interactions and contains more complex
task instructions.

3.2 Manually Annotated Feedback Dataset

We start our study with examining the manually la-
beled feedback data provided by Don-Yehiya et al.
(2024) on LMSYS. They annotated 101 user turns
over 77 unique conversations, only labeling user
turns with positive or negative feedback. We refer
to this as the Sparse annotation set, as it consists
of three turn {ui,mi,ui+1} partial conversations,
where the label for ui+1 is either positive or one of
the four negative feedback types. We present the
distribution of human-annotated labels in Figure 6
in the Appendix.

These existing annotations are not comprehen-
sive (i.e., not every turn in the conversation is
labeled). To explore the dynamics of feedback
throughout the entire conversation, we select a to-
tal of 109 conversations6 (75 sampled from LMSYS
and 34 from WildChat) and annotate them com-
prehensively. We refer to these annotated sets as
Dense. Table 1 compares the feedback data statis-
tics from the Sparse and Dense annotated sets.

Inter-Annotator Agreement The authors of this
paper provided this annotation after reading the
guidelines from Don-Yehiya et al. (2024). Two

4https://lmarena.ai/
5Upon examining our labels for 75 conversations from

LMSYS, we find one conversation has incorrect annotation (e.g.
feedback labeled in the first user turn) and removed this con-
versation.

6For LMSYS, we use the same set of conversations as their
released annotations; For WildChat, we randomly sample 34
conversations so that we have roughly 200 feedback instances
for both datasets.

authors cross-annotated about 54 conversations for
measuring inter-annotator agreement. We report
substantial agreement measured by Cohen’s kappa:
0.70 for binary classification, 0.74 for three-way
classification and 0.60 for fine-grained classifica-
tion.

Handling Multiple Labels Per Utterance 5 out
of 443 annotated user turns (in 109 conversations)
contain user utterances falling into more than one
feedback category (e.g. "Good answer could you
please continue from 17 step", there former is pos-
itive feedback and the latter part is negative). We
assign a single label following a heuristic order of
labels (described in Appendix B).

3.3 Automatic Feedback Identification

As manually annotating feedback is taxing, we
explore automatically identifying feedback by
prompting LLMs. LLMs have shown promising
performances in various classification tasks (Brown
et al., 2020), and prior work (Don-Yehiya et al.,
2024; Shaikh et al., 2025) has also explored prompt-
ing LLMs (specifically GPT-4o-mini) to classify
user feedback in multi-turn user-LLM interactions.

Without fine-tuning, we prompt GPT-4o-mini
model with our new prompt template which con-
tains in-context examples. The exact prompt can
be found in the appendix H.2. Given the entire con-
versation, LMs are prompted to provide feedback
labels for each user turn after the first one.

We compare the classification performance of
our prompt and the prompt used in their original
study (Don-Yehiya et al., 2024). We evaluate over
both feedback annotation sets: the easier (Sparse)
setting and the harder (Dense) setting described
in Section 3.2. For the sparse setting, the input
conversation is truncated, only consisting of three
turns (ui,mi,ui+1), and the last user turn (ui+1)
is always a positive or negative feedback. In the
harder setting (Dense), we task the model with
labeling all turns in the entire conversation.

Table 2 reports the feedback identification re-
sults. Overall, our new prompt, with in-context ex-
amples, improves the classification accuracy than
the previous prompt. We see larger gains in the
dense annotation setting (more than double accu-
racy for fine-grained classification task).

4 Analysis of Implicit Human Feedback

With our automatic feedback detection method, we
now launch a larger-scale analysis of implicit feed-
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Annotation Source # annotated # annotated N (# turns with fb / # turns annotated)
convs turns 2 3 4 ≥5

Sparse (Don-Yehiya et al., 2024) LMSYS 75 107 44 / 44 20 / 20 10 / 10 21 / 21
Dense (Ours) LMSYS 745 227 43 / 74 26 / 32 13 / 17 24 / 25
Dense (Ours) WildChat 34 206 30 / 34 24 / 30 26 / 29 85 / 86

Table 1: Statistics of annotated feedback data. N= i represents the number of feedback at ith turn of conversations.
# conv is the total number of conversations annotated, and # turns means the total number of user messages in the
conversation from this data split. Overall, WildChat has denser feedback ratios along all conversation turns.

Eval
Setting Prompt

Accuracy %
P % R %

Bin. Three. Fine.

Sparse Prior 41.4 45.3 43.2 84.2 44.9
Ours 81.1 60.2 47.4 100.0 69.2

Dense Prior 31.5 30.07 22.3 76.0 27.0
Ours 41.6 55.4 49.0 61.1 35.9

Table 2: Automatic feedback identification results with
prompting GPT-4o-mini. Prior refers to the prompt from
prior work (Don-Yehiya et al., 2024). In the last two
columns, we report Precision (P) and Recall (R) for
binary classification.

back patterns in both datasets. We first characterize
when feedback typically happens. We then set out
to rule out possible causes of negative feedback
other than unsatisfying model output: the imperfec-
tion of user prompts and model refusals.

Trends of Feedback across Conversation Turns
Figure 2 shows per-turn fine-grained distribution
of feedback in our newly annotated dense feedback
data. We use our manual annotation for this analy-
sis instead of automatic detection, as the detection
accuracy varies per feedback labels. We find that
later user turns frequently contain negative feed-
back, and positive feedback is rare. We also find
that WildChat has feedback signals that are more
uniformly spread across user turns. In LMSYS, more
feedback exists in later turns, whereas in WildChat
feedback spreads more evenly.

User’s Toxic Prompts We study the influence
of toxic user messages on the presence and distri-
bution of user feedback. To do this, we use the
Perspective API7 to compute the toxicity scores
over three different sets of sampled user utterances:
user utterance that elicited negative feedback, ran-
domly sampled user utterances, and user utterance
that elicited positive feedback. We sample 1K ut-
terances using each of these three methods for both
the LMSYS and WildChat datasets dataset, labeling

7https://perspectiveapi.com/
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Figure 2: Turn-level distribution over feedback cate-
gories from our new densely annotated dataset. We find
feedback is commonly found in later turns.
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Figure 3: Comparison of toxicity level between random
user prompts and prompts that trigger positive/negative
feedback. In both datasets, the toxicity is slightly higher
for responses that elicit positive feedback.

a total of 6k user utterances.
Figure 3 shows trends in the toxicity score. In

both datasets, we find that utterances that elicit pos-
itive feedback tend to be slightly more toxic than
the other two sets. Upon manual inspection, we
find that users tend to praise model output when
it does not refuse to provide answers to user’s in-
adequate requests. In LMSYS user prompts in in-
teractions rendering negative feedback are slightly
more toxic. In WildChat dataset, we do not see a
significant difference between user utterances that
invoke negative feedback vs. randomly sampled
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Figure 4: Comparison of the quality of randomly sam-
pled user prompts and the quality of prompts that in-
curred positive/negative feedback (N=1000). In LMSYS,
prompts that incur negative or positive feedback are
slightly worse than randomly sampled prompts.

utterances.

Impact of Model Refusals One potential rea-
son for negative feedback is the model’s refusal to
fulfill the user’s request. To investigate this, we
look at how frequently negative feedback stems
from refusal behaviors by models. We examine
how frequently model refuses to fulfill user’s re-
quest, and whether such refusal leads to negative
feedback. We sampled 1K conversation turns from
six groups (negative, random, postive) and (LMSYS,
WildChat). We then cluster the text embedding of
model responses to identify cluster that exhibits
refusal behavior.

We find that model refusals are not common
across all settings, always consisting less than 3%
of responses. In LMSYS, around 2.5% responses are
refusals, while in WildChat there are fewer than
1%. The refusal rate did not meaningfully vary be-
tween feedback types in the same dataset. Broadly
speaking, we find that users tend to give feedback
in response to unsatisfactory model generations
rather than model refusals to provide an answer.

Analysis on Prompt Quality Li et al. (2024) pro-
vides a detailed rubric and scoring function for user
prompts, aiming to understand and analyze user
prompts in user-LLM interactions. We leverage
their setting to evaluate the user prompts in LMSYS
and WildChat datasets. We report the prompt qual-
ity in Figure 4. In general, WildChat has a higher
user prompt quality than LMSYS. In LMSYS, the nega-
tive conversations receive lower quality scores than
the randomly selected ones, while in WildChat we
do not observe such a trend.

User prompts from WildChat that elicited posi-
tive responses show the highest average quality, po-
tentially reflecting users praising the model’s good
response to concrete, challenging initial prompts.
However, such prompts from LMSYS show the low-

est quality. Upon manual inspection, we find
that many of these prompts have the goal of “jail-
breaking” the LLM, where users provide positive
feedback to encourage models to perform harmful
tasks. We provide a further breakdown of prompt
quality scores across seven fine-grained aspects of
prompt quality in Table 5 in the Appendix.

5 Using User Feedback to Improve Model
Responses

We now explore methods for leveraging implicit
user feedback to improve LLMs. Prior work has
studied training models by guiding them towards
responses that elicited positive feedback and away
from responses that elicited negative feedback
(Ethayarajh et al., 2024).

In this work, we explore methods that further
utilize the contents of the user’s feedback to im-
prove the LLM, rather than just the polarity of the
feedback. For prompts that have elicited negative
feedback, we use the content of the negative feed-
back messages to generate model responses that
address the negative feedback. For example, if user
asks for a more detailed response after observing
model’s initial response, we aim to train the model
to generate a more detailed response for user’s prior
turn.

Definitions For a conversation {u1,m1, · · · },
we define a sub-conversation si as a partial con-
versation sequence {ui,mi,ui+1,mi+1} involv-
ing two user utterances and two model responses
starting from i-th user turn. We examine the second
user turn in the sequence ui+1 to see whether it con-
tains negative feedback for the model’s response
mj to the prior user message uj.

We define a set Dneg = {si : f(c)i = NEG}.
For control, we also collect a set Drand, a randomly
sampled set of subconversations without such re-
striction. We collect a total of four such datasets,
two Dneg and two Drand, each consisting of 1K
sub-conversations from 1K unique conversations
for both LMSYS and WildChat.

5.1 Response Regeneration Methods

Our proposed method, Regeneration w/ Seman-
tics, utilizes negative feedback in a user-LLM con-
versation to generate improved model responses
that can be used for SFT training. For each mini-
mal feedback instance si ∈ Dneg, we use an LLM
ϕ to generate mi

sem, an improved version of mi

2671



Data
Split

Response A Response B Eval Setting

Model Method Model Method w/ fb w/o fb

Drand Better mi
scra Weak mi — 88%

Dneg

Better mi
scra Weak mi 81% 86%

Better mi
sem Weak mi 89% 61%

Better mi
sem Better mi

scra 48% 19%
Better mi

sem Weak mi+1 81% 81%
Weak mi+1 Weak mi 58% 25%

Table 3: Winrate scored by RM between the answers
from Response A versus Response B, evaluated both
with and without feedback (fb) on LMSys dataset. We
compare responses from Better in two settings (gen-
eration from scratch mscra

i , and generation with user
feedback msem

i ). For Weak LLMs, where originial
conversation derived, we compare the initial model re-
sponse mi and the model response after user feedback
mi+1. See Table 6 in the Appendix for similar results
on the WildChat dataset.

that incorporates the user’s feedback: mi
sem =

ϕ(ui,mi,ui+1).
In our experiments below, we regenerate re-

sponses using LLMs ϕ that are stronger than the
original LLMs used in the conversations in LMSYS
and WildChat. Therefore, we expect regenerated
responses to improve both from incorporating the
user’s feedback and from the stronger LLM. To ac-
count for this, we introduce the following baseline.

Baseline: Regenerating from Scratch We com-
pare our above method for generating improved
model responses with regenerating responses from
scratch, without conditioning on the model’s orig-
inal response or the user’s feedback: mi

scra =
ϕ(ui).

Because regenerating responses from scratch
does not make use of conversation history, we com-
pare against regenerating responses that elicited
negative feedback from Dneg as well as random
model responses from Drand.

6 Experiments: Comparing Regenerated
Responses

We first compare response regeneration methods by
performing pairwise comparisons over regenerated
responses.

Pairwise Evaluations To compare two response
regeneration methods, we use a reward model RM8

to generate a score s for each method’s responses.

8We use sfairXC/FsfairX-LLaMA3RM-v0.1 (Dong et al.,
2023; Xiong et al., 2024).

We then use these scores to track the pairwise win
rate for each method. We experiment with two set-
tings for generating scores from the reward model:
(1) Eval w/ fb incorporates the user’s feedback into
the prompt s = RM({ui,ui+1,a}) and (2) Eval
w/o fb scores responses based only on the initial
request s = RM({ui,a}). a is the regenerated
answer. Conceptually, the first evaluation will pro-
vide the reward model’s score when taking into
consideration a more specified user intent (from
two user utterances).

Regenerating Responses with Different LLMs
To explore the influence of the LLM’s strength
on our response regeneration methods, we exper-
iment with using a stronger model, ϕ = Better,
and a weaker model, ϕ = Weak, for regenerat-
ing responses. For Better, we use GPT-4o-mini
to regenerate model responses. For Weak, we di-
rectly take the interaction logs from the LMSYS and
WildChat datasets: for each example fi, we simply
take the original model responses, mi

scra = mi

and mi
sem = mi+1. For LMSYS, the assistant

turns are mostly (54% of conversations) generated
with Vicuna-13B model (Chiang et al., 2023); For
WildChat, assistant turns are generated with the
2023 version of GPT.

6.1 Results

In Table 3, we report the results from comparing
regenerated responses on Dneg and Drand on LMSYS
dataset. The results on WildChat dataset (Table 6
in the Appendix) exhibit similar trends.

Better LLMs can help weak models improve
their response We consistently observe a high
win rate of Better answers over Weak model’s gen-
erations, regardless of using semantics or not. This
is reflected in the first three rows in the table.

Adding feedback semantics doesn’t always help.
Now we examine compare whether adding feed-
back semantics help over the baseline of regener-
ating from scratch. mi

sem shows slightly higher
win rate (89%) against the original response com-
pared to mi

scra (81%), but this pattern was not
observed in WildChat dataset. Moreover, when
comparing two new answers directly (4th row), we
find that answers generated with the feedback con-
tent mi

sem does not win over the answer generated
from scratch mi

scra, even in Eval w/ fb setting
(48%), and substantially lower in Eval w/o fb set-
ting (19%).
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When we look at rows involving mi
sem gen-

erated from better LLM (3rd-5th), we find
RM({ui,mi

sem}) ≤ RM({ui,ui+1,mi
sem}).

This suggests that the regenerated answer with feed-
back incorporates information from the feedback
to draft the new answer.

Weak LLMs could fail to address human feed-
back. In the last row, we compare the weak
model’s refined response mi+1 with its initial re-
sponse mi. The win rate is 58%, showing that self-
refinement is challenging. The number is higher
for WildChat at 74%, as it used GPT models.

7 Training LLMs with Regenerated
Responses

In the previous section, we compared the regener-
ated model responses with reward model. In this
section, we fine-tune models with the regenerated
model responses, using standard SFT training with
next-token prediction loss. We use A100 GPUs for
fine-tuning with a learning rate of 5e-6, where each
run takes about 2 hours on one GPU.

7.1 Compared Settings

Similar to our experiments from Section 6 above,
we experiment with training LLMs on the revised
responses from both our regenerating from scratch
and regenerating with semantics methods, over on
both Dneg and Drand. For both methods, we ex-
clusively use ϕ = Better (GPT-4o-mini) for gener-
ating revised responses with templates described
in Section 5. For each setting, we sample 20K
conversations and their corresponding regenerated
responses.

We additionally compare against KTO (Etha-
yarajh et al., 2024) as a baseline, following prior
work (Don-Yehiya et al., 2024). KTO (Ethayarajh
et al., 2024) is a method that directly optimizes over
non-paired preference data, which is naturally suit-
able for learning from raw human feedback from
interactions. To train models with KTO, we also
derived a set Dpos with positive feedback instances,
Dpos = {si : f(c)i = POS}.

7.2 Evaluation

Base Models For each data generation method,
we experiment with training two different LLMs:
mistral-7b (Jiang et al., 2023) following (Don-
Yehiya et al., 2024) and vicuna-7b (Zheng et al.,
2023b), a representative 7B model in LMSYS (Zheng
et al., 2023a,b).

Datasets We evaluate our distilled models on MT-
Bench (Zheng et al., 2023b) and WildBench (Lin
et al., 2024), two benchmark datasets. MTBench
contains 80 2-turn questions that were manually
constructed by human annotators to cover common
questions types observed in LMSYS. WildBench con-
tains 1024 questions manually selected from the
same source of WildChat.9 Both benchmarks use
LLMs to rate the scores of model responses. Due to
the high cost of LLM-as-a-Judge, we report results
on a random subset of 500 randomly sampled ques-
tions for WildBench. For each setting, we report
the average performance and the variance over 5
randomly initialized training runs.

We briefly compare these two benchmarks in
Table 7 in the Appendix, reporting data statistics
like question amount, average number of turns in
each question, average question length (tokens) and
complexity score (Wang et al., 2024). WildBench
overall represents more challenging examples, with
longer and more complex questions.

Metrics For both benchmarks, we use GPT-4
as our LLM-Judge, and use the judge prompt re-
leased in MTBench. We discuss the differences
of using MTBench Judge and WildBench Judge
in Appendix F. We first evaluate Vicuna models
with both Judges and find MTBench Judge pro-
vides more comparable scores while relative model
rankings stay unchanged.

7.3 Results

We present the results from each setting in Table 4
and discuss the results below. Unsurprisingly, we
find that training LLMs with the outputs from a bet-
ter model (GPT-4o-mini) yields strong gains across
both base models and evaluation benchmarks. On
the other hand, we find that training with our KTO
baseline (Dneg,Dpos w/ KTO), which simply en-
courages responses that yielded positive feedback
and discourages ones that yielded negative feed-
back, showed mixed results.

Can distilling model on conversations that were
regenerated from responses that received negative
feedback (Dneg) provide targeted supervision for
model failures? If so, expect that SFT training on
mi

scra may perform better with Dneg than with
Drand. Our results, however, demonstrate that this
is only partially true for our MTBench evaluations
(3 out of 4 experimental settings), and that SFT

9These are from the same sources, but there are no over-
lapping instances between WildChat and WildBench.
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Train Data Split Method
MT-BENCH SCORE ↑ WILDBENCH SCORE ↑
Vicuna-7b Mistral-7B Vicuna-7b Mistral-7B

Base checkpoint 6.09 3.09 26.0 -19.01

LMSYS

Dneg,Dpos KTO 6.09 3.88 21.33 -18.81
Drand SFT on mi

scra 6.37±0.06 6.02±0.03 28.90±3.38 49.02±3.39

Dneg SFT on mi
scra 6.53±0.09 5.87±0.07 28.65±1.9 48.97±1.70

Dneg SFT on mi
sem 6.68±0.03 5.86±0.02 24.47±1.25 41.47±1.31

WildChat

Dneg,Dpos KTO 6.15 5.08 24.29 11.72
Drand SFT on mi

scra 6.19±0.02 5.96±0.44 28.74±1.16 56.16±1.26

Dneg SFT on mi
scra 6.38±0.07 5.77±0.04 27.97±1.36 51.66±1.30

Dneg SFT on mi
sem 6.86±0.02 6.32±0.03 23.38±1.94 31.80±0.62

Table 4: Results from training on response regenerations from Better LLM. We observe different result trends on
two datasets (MT-Bench and WildBench). We provide the statistical significance test in Appendix G.

training on mi
scra with Drand outperforms training

with Dneg on all WildBench evaluations.
One hypothesis explaining these unintuitive re-

sults is that distilling on the more targeted data from
Dneg improves performance on the easier tasks in
MT-Bench, but not on the much harder tasks in
WildBench. Another potential explanation is that
WildBench contains more well-specified user re-
quests and with clear, unambiguous instructions,
and training models to incorporate negative user
feedback (inferring unspoken intent) can discour-
age such close prompt adherence. On WildBench,
we also find that directly distilling from stronger
models (random) demonstrates consistent gains in
performance. This echoes our findings in the previ-
ous section (Section 6), where we found that msem

i

is not consistently better than mscra
i according to

pairwise comparisons with a reward model.

8 Related Work

Evaluating Multi-turn Human-LLM Collabora-
tion Rather than single-pass instruction follow-
ing, prior works (Lee et al., 2022; Chang et al.,
2025; Laban et al., 2025) have demonstrated the
"interactiveness" of how general users collaborate
with language assistants, where ambiguous user
queries are usually given at first followed by a se-
ries of clarifying actions. (Chang et al., 2025; La-
ban et al., 2025) shows that LLM performance on
multi-turn tasks is worse than on single-turn tasks.
This is due to the outcome of a multi-turn interac-
tion can be upper bounded by both human and AI
participants (Chang et al., 2025). Similarly, (Wang
et al.) proposes a benchmark to evaluate LLM’s
performance with GPT-simulated human feedback,
claiming that most LLMs benefit from such sig-
nal. In this paper, we look into a large collection

of human-LLM interactions from the real world
and explore how human feedback can be applied
to model training at scale.

Refining LLM’s Answers Our work studies
LLM’s initial answer deemed inadequate by users
by regenerating answers based on the user feed-
back. Bai et al. (2022) explores fine-tuning mod-
els on LLM revising its own answers. Madaan
et al. (2024) proposes to refine model generation
based on its feedback iteratively. Similarly, Qu
et al. (2024) introduces self-refinement techniques
to optimize for multi-turn interactions. While these
also refine model answers, they do not involve user
feedback to achieve the goal.

Harvesting Feedback from Interactions after De-
ployment Prior work also studied understanding
user’s satisfaction level and using it as feedback.
Hancock et al. (2019) uses feedback responses as-
sociated with the conversation partner’s attitude
in chatbot applications. Pang et al. (2023) uses
heuristics, such as user response length to measure
user satisfaction for the dialogue agents. Chen et al.
(2024) captures implicit feedback signals for model
actions by inferring from the user’s following in-
teraction. Gao et al. (2024) derives feedback from
user edits on the model outputs. Most of these
approaches are limited in their task application do-
main.

Borges et al. (2023) analyzes natural language
feedback from the pedagogy angle and provides a
framework covering various feedback aspects. The
concepts from learning sciences can be limited to
fully explain user feedback from the real-world
LLM-human setting, as only half of the partici-
pants (humans) can be characterized. And random
users interacting with LLMs differ significantly
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from professional educators, limiting the quality
and complexity of the feedback provided.

Most closely relevant to our work, Don-Yehiya
et al. (2024) also studied naturally occurring, im-
plicit feedback in large-scale human-LLM interac-
tions datasets. Another concurrent work (Shaikh
et al., 2025) frames this interaction as a natural
language grounding task, where both human and
LLM initiate grounding acts in a multi-turn na-
ture. Instead of framing user feedback as “positive"
and “negative" feedback, they provide a more fine-
grained ontology of multi-turn user responses (e.g.,
“acknowledgement"). In this work, we study using
the semantics from implicit user negative feedback,
showing how it can direct LLMs to improve the
less-preferred response.

9 Conclusion

In this paper, we systematically study the existence
of user feedback in conversations. We first pro-
pose strong feedback detection methods to detect
multiple feedback instances given long conversa-
tions. We then study when negative feedback oc-
curs and the potential causes. We show that most
negative feedback results from the model’s unsatis-
fying answer. Motivated by this, we then explore
how to leverage this as useful training signals. We
find that strong LLMs can help improve on weak
model’s feedback, but this rewriting is not necessar-
ily better than regeneration from the strong LLM
alone. Training on such feedback signals shows
performance gains on MTBench but no gains on
the harder benchmark. Our results and discussions
reveal the complexity of harvesting training signal
from noisy user data.

Limitations

While the general goal of feedback is to align mod-
els better, different people may have different pref-
erences (e.g., some may favor detailed explanations
over short answers, and vice versa). We leave it
to future work to discuss whose preferences we
shall align with. We also make an assumption
that feedback in all positions of conversation is
of equal importance. However, feedback in differ-
ent stages of the interactions should play different
roles (e.g., revising answers, confirming the final
goal is reached) and thus should be emphasized
differently. Finally, we treat the feedback to be for
the most recent model responses, while there could
be other cases when the user wants to revise earlier

model answers.

Impact Statement

Our work explores how naturally occurring feed-
back signals can help improve LLMs. While this
could help models better capture human preference,
there are some concerns on the training data side,
such as privacy leakage of training on human di-
alogues and bias amplification. We request that
our proposed method be used for research purposes
only.
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A A User Case with Positive Feedback Encouraging toxic model behavior

In Figure 5, we showcase how positive user feedback helps amplify harmful model behavior.

Figure 5: A real user case from existing interaction logs, where the user provides positive feedback upon model’s
jailbreaking responses.

B Addressing Dual labels in Feedback Dataset Annotation

When a user utterance can be paired with more than one feedback category, the annotators using the
follow logic to decide the final label:
• Positive and negative labels will never overlap.
• When feedback types in the four fine-grained negative categories overlap, a priority order is followed to

maximize the feedback information: Make Aware with Correction, Make Aware without Correction,
Ask for Clarification, Rephrasing.

C Analysis of Prompts Quality from Different Interaction Logs

We report the prompt measured by BenchBuilder in (Li et al., 2024) in Table 5.

Data Subset Specificity Domain
Knowledge Complexity Problem

Solving Creativity Technical
Accuracy

Real
World Mean

Drand 0.312 0.346 0.052 0.178 0.210 0.190 0.888 0.311
LMSYS Dneg 0.222 0.236 0.036 0.130 0.166 0.122 0.708 0.231

Dpos 0.124 0.178 0.010 0.078 0.210 0.056 0.610 0.181

Drand 0.242 0.388 0.076 0.190 0.236 0.220 0.844 0.314
WildChat Dneg 0.240 0.376 0.056 0.206 0.254 0.216 0.870 0.317

Dpos 0.168 0.284 0.142 0.168 0.546 0.128 0.880 0.331

LIMA - 0.173 0.368 0.035 0.165 0.397 0.148 0.929 0.316

Table 5: Average prompt quality in real human-LLM interactions (LMSYS and WildChat) and prompt quality in
instruction-tuning dataset (LIMA). For LMSYS and WildChat, we report prompt quality in three subsets: prompts
that elicited positive feedback in the next turn (Dpos), prompts that elicinted negative feedback in the next turn
(Dneg), and randomly sampled prompts (Drand). We find that in LMSYS, negative and positive feedback can be seen
as a response to less specific prompt.
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D Winrate of LLM-Regenerated Response on WildChat

We present the winrate of different answer regeneration methods for the WildChat dataset in Table 6.

Data Split
Setting A Setting B WildChat

Model Method Model Method Eval w/ fb Eval w/o fb

Drand Better mi
scra Weak mi — 88%

Dneg

Better mi
scra Weak mi 89% 90%

Better mi
sem Weak mi 84% 46%

Better mi
sem Weak mi+1 70% 71%

Better mi
sem Better mi

scra 44% 9%
Weak mi+1 Weak mi 74% 29%

Table 6: Winrate scored by RM between the answers, comparing answers from Setting A to Setting B. We compare
responses from Better in two settings (generation from scratch mscra

i , and generation with feedback from user
(msem

i ). For Weak LLMs, where the original conversation is derived, we compare the initial model response mi

and the model response after user feedback mi+1. We empirically show: 1. Weak models could fail to address user
feedback. 2. User-written instructions are imperfect. 3. Human feedback may not always help improve the model’s
response and the quality can vary across subsets and datasets.

E Comparison between MTBench and WildBench Prompts

Data # prompts Avg # tokens complx.

MTBench 80 91.55 3.85
WildBench 1024 499.25 4.31

Table 7: Wildbench contains longer and more complex questions
compared to MTBench.

For MTBench and WildBench, we
compare the differences of prompt
length, complexity and more in Table
7.To measure complexity score, we fol-
low (Wang et al., 2024) to prompt GPT-
4o-mini with questions and rubrics to
get a score between 1 and 5, where
high scores mean harder prompts.
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F Comparison between MTBench Judge and WildBench Judge

We compare the scores from Judges released in MTBench and WildBench in Table 8.

Train Data Split Method MT-JUDGE SCORE ↑ WILD-JUDGE SCORE ↑

WildChat
Drand SFT on mscra

i 30.51± 2.43 4.62± 0.95
Dneg SFT on mscra

i 31.08± 2.37 4.80± 1.69
Dneg SFT on msem

i 27.08± 1.29 0.1± 1.17

Table 8: Comparison of Vicuna evaluation results by MT-Judge (LLM Judge from MT-Bench) and Wild-Judge
(LLM Judge from WildBench).

G Statistical Significance Test

We perform t-tests over the SFT on Drand and two other baselines on Dneg. As shown in Table 9, our
significance test results show that our main take-aways are statistically significant. Specifically:

1. On MTBench, all the comparisons are statistically significant, confirming that providing targeted
fixes with feedback semantics can help models improve on MTBench.

2. WildBench results are more mixed, as we discuss in the main paper:

(a) Finetuning on Dneg does not consistently outperform Drand.
(b) Finetuning on Dsemsignificantly underperforms Dneg, which aligns with our hypothesis and

reward model analysis that regenerating with targeted feedback semantics is not always more
effective than regenerating from scratch.

Train Data Split Method
MT-BENCH P-VALUES WILDBENCH P-VALUES

Vicuna-7b Mistral-7B Vicuna-7b Mistral-7B

LMSYS
Drand SFT on mscra

i (reference) (reference)
Dneg SFT on mscra

i 0.00543 0.000889 0.445797 0.488326
Dneg SFT on msem

i <.00001 <.00001 0.012582 0.000834

WildChat
Drand SFT on mscra

i (reference) (reference)
Dneg SFT on mscra

i 0.000279 0.000027 0.184309 0.000264
Dneg SFT on msem

i <.00001 <.00001 0.000369 <.00001

Table 9: Statistical significance test results (p-values) from paired t-tests comparing each method against SFT on
mscra

i with Drand split.

H Feedback Detection

H.1 Feedback Distribution
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Figure 6: Distribution of dense human annotated labels.

We present the distribution of our annotated feedback categories in Fig 6.
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H.2 Prompts

# Context
You will be given a multi-turn conversation between a User and an Assistant. You should act as
a human annotator to identify User feedback for the Assistant. Please read the conversation and
complete the task below.
# Task
Your task is to identify all feedback instances for Assistant in the User responses that satisfy the
following feedback patterns:
## Repeat or Rephrase (NEG_1)
Does the user repeat or rephrase their concern?
Examples for “yes”:
• By house, I mean apartments, not condo
• Actually, I wanted
Examples for “no”:
• Thank you
...
# Format
You should output annotations per User turn except for the first query. You should both output the
content of the User turn where feedback exists as well as the feedback pattern category using a json
format:

{
“User Response Pattern”: [Insert User Response Pattern],
“User Response Text”: [Insert User Response Text]
}
If there’s no feedback, please output: {
“User Response Pattern”: “NEU”,
“User Response Text”: [Insert User Response Text]
}

Here are four examples of an input and your expected output.
...
Now you try:
Input:

Table 10: Prompt for feedback detection.
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H.3 Feedback Detection Performance
We present the detailed scores of feedback detection performance across Sparse and Dense Eval sets in
Table 11,12,13,14,15, 16.

Metric Theirs (%) Ours (%)

False positives 7.76 0.00
False negatives 50.86 18.86
True positives 41.38 42.29
True negatives 0.00 38.86

Accuracy 41.38 81.14
Recall 44.86 69.16
Precision 84.21 100.00

Table 11: Binary Detection performance on Sparse eval set.

Metric Theirs Ours

# predicted feedback
/ conversation

1.1 2.11

False positives (%) 7.17 15.32
False negatives (%) 61.36 43.07
True positives (%) 22.71 24.09
True negatives (%) 8.77 17.52

Accuracy (%) 31.47 41.61
Recall (%) 27.01 35.87
Precision (%) 76.00 61.11

Table 12: Binary Detection performance on Dense eval set.

Class P (%) R (%) F1 (%)

POS 66.67 50.00 57.14
NEG 80.43 37.37 51.03
NEU 24.71 70.00 36.52

Accuracy 45.26 45.26 45.26
Macro avg 57.27 52.46 48.23
Weighted avg 67.43 45.26 48.21

Table 13: Three-way classification (theirs) on Sparse eval. “P”, “R”, and “F1” stand for precision, recall and
F1-score respectively.
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Class Precision (%) Recall (%) F1-Score (%)

NEG 68.82 55.65 61.54
NEU 52.73 66.67 58.88
POS 62.50 55.56 58.82

Accuracy 60.19 60.19 60.19
Macro avg 61.35 59.29 59.75
Weighted avg 61.91 60.19 60.33

Table 14: Three-way classification (ours) on Sparse eval.

Class Precision (%) Recall (%) F1-Score (%)

NEG 18.70 70.49 29.55
NEU 69.64 17.11 27.46
POS 70.00 100.00 82.35

Accuracy 30.07 30.07 30.07
Macro avg 52.78 62.53 46.46
Weighted avg 59.15 30.07 29.19

Table 15: Three-way classification (theirs) on Dense eval.

Class Precision (%) Recall (%) F1-Score (%)

NEG 29.92 58.22 39.53
NEU 79.55 54.65 64.79
POS 25.81 32.00 28.57

Accuracy 55.35 55.35 55.35
Macro avg 45.09 48.29 44.30
Weighted avg 66.97 55.35 58.32

Table 16: Three-way classification (ours) on Dense eval.
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