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Abstract

Logical reasoning is a critical benchmark for
evaluating the capabilities of large language
models (LLMs), as it reflects their ability to
derive valid conclusions from given premises.
While the combination of test-time scaling with
dedicated outcome or process reward models
has opened up new avenues to enhance LL.Ms
performance in complex reasoning tasks, this
space is under-explored in deductive logical
reasoning. We present a set of Outcome Re-
ward Models (ORMs) for deductive reasoning.
To train the ORMs we mainly generate data
using Chain-of-Thought (CoT) with single and
multiple samples. Additionally, we propose a
novel tactic to further expand the type of er-
rors covered in the training dataset of the ORM.
In particular, we propose an echo generation
technique that leverages LLMs’ tendency to re-
flect incorrect assumptions made in prompts to
extract additional training data, covering previ-
ously unexplored error types. While a standard
CoT chain may contain errors likely to be made
by the reasoner, the echo strategy deliberately
steers the model toward incorrect reasoning.
We show that ORMs trained on CoT and echo-
augmented data demonstrate improved perfor-
mance on the FOLIO, JustLogic, and ProverQA
datasets across four different LLMs.!

1 Introduction

Logical reasoning in large language mod-
els (LLMs) has primarily been studied as a sym-
bolic task using in-context learning (Matthew Lam
et al., 2024; Pan et al., 2023; Ye et al., 2023; Olaus-
son et al., 2023), and fine-tuning (Thatikonda et al.,
2024; Qi et al., 2025). Current state-of-the-art tech-
niques in reasoning which bundle test-time scal-
ing (Brown et al., 2024; Snell et al., 2024) with
Process or Outcome Reward Models (Wang et al.,
2024; Lightman et al., 2024; Uesato et al., 2022),

!Code is available at
RamyaKeerthy/LogicORM

https://github.com/

proven effective in math and coding, while remain-
ing heavily underexplored for logical reasoning.
This presents a significant opportunity to assess
and enhance LLLMs’ reasoning capabilities using
reward models at test-time with text-based reason-
ing. In this paper we explore logical reasoning
with test-time scaling, demonstrating performance
gains on three datasets; FOLIO (Han et al., 2024),
ProverQA (Qi et al., 2025), and JustLogic (Chen
et al., 2025) when combined with verification via
Outcome Reward Models (ORMs).

Outcome Reward Models (ORMs) enable ver-
ification of the entire reasoning sequence by as-
signing a confidence score to the final output. A
central challenge in training ORMs is acquiring
high-quality, diverse training data. To address this,
we generate multiple Chain-of-Thought (Wei et al.,
2022) reasoning candidates via sampling. Com-
pared to an ORM trained on a single sample per
reasoning question, this facilitates more effective
re-ranking of solutions during inference.

To further enrich the training data, we leverage
the echoing behavior of LLMs - where models tend
to align their reasoning with user-provided answers.
This phenomenon can introduce hallucinated rea-
soning, which, when subsequently flagged as incor-
rect through a second-level filtering process, results
in a diverse set of flawed reasoning paths. We show
that incorporating these echoed errors into the train-
ing set helps the ORM learn to better distinguish
between valid and invalid reasoning trajectories
during use with test-time scaling.

Our contributions are as follows: (1) We demon-
strate that training ORMs with multiple sampled
CoT candidates (per example) significantly im-
proves the reliability of the ORM on deductive
reasoning tasks. (2) We show that augmenting CoT
training data with data generated by echoed-error
further enhances the resulting ORMs’ accuracy. (3)
We compare ORM models on training data size,
format, and reward distribution.
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Figure 1: Methodology for generating training data for CoT and EcCoT ORMs. A. The LLM is prompted to
generate CoT reasoning, and both correct and incorrect answers are used to construct the ORM dataset. B. The
LLM is provided with a misleading answer to elicit reasoning. The resulting incorrect reasoning trajectories are then
passed back to the LLM for evaluation. If the LLM fails to recognize its error, the trajectory is added to the dataset.

2  Outcome Reward Model for Logic

In outcome supervision, the reward model evalu-
ates the entire reasoning sequence and assigns a
final score reflecting the quality of the outcome.
During inference, this score can be used to re-rank
the candidate solutions generated by a large lan-
guage model (LLM). Following Lightman et al.
(2024) recipe for mathematical reasoning, to train
an Outcome Reward Model (ORM), each reason-
ing trace is compared against a gold-standard label:
a positive reward is given when the final output
matches the correct answer, and a negative reward
is assigned otherwise. The ORM learns to map
reasoning sequences to these rewards, producing
logits that can be used to rank candidate outputs
during inference.

We explore two types of data generation strate-
gies for training ORMs: Outcome supervision on
standard Chain-of-Thought (CoT) reasoning, and
Outcome supervision on Echo Chain-of-Thought
(EcCoT) - a variant that incorporates the LLM’s
echoing behavior to produce additional reasoning
paths. See Figure 1 for an overview.

CoT ORM Data Generation. For standard CoT
data generation, we prompt an LLM with the con-
text and question to generate step-by-step reason-
ing, with the final answer appended at the end. The
LLM generates multiple reasoning candidates for a
given question. These candidates are then parsed
into individual CoT traces. We used "Please
reason step by step, and put your final

answer within \\boxed{}" as prompt.

Each candidate is labeled with a reward: positive
if the final answer matches the gold label, and neg-
ative otherwise. This data is used to train a second
LLM as a classifier that predicts the reward score
based on the reasoning sequence. Our approach
builds on the ideas presented in Wang et al. (2024),
but differs by applying outcome supervision rather
than process supervision, and by using a straight-
forward automated annotation to label the data.

EcCoT ORM Data Generation. LLMs often
exhibit a tendency to follow user-provided answers
uncritically, sometimes hallucinating or forcefully
aligning their reasoning to fit an incorrect answer.
We exploit this behavior to generate challenging
negative examples.

In contrast to Li et al. (2025), we prompt the
LLM with the instruction "Given the answer is
True, please reason step by step, and put
your final answer within \\boxed{}" for all
reasoning questions. This coerces the model into
producing reasoning that unjustifiably supports the
provided answer (where we deliberately provided
an incorrect answer, e.g. "True" where the correct
answer was "False") resulting in flawed reasoning
trajectories. These incorrect yet plausible reason-
ing sequences, referred to as echoes, are valuable
for training ORMs to penalize invalid rationales.

While echoing can encourage LLMs to com-
mit to flawed reasoning paths, we further filtered
the collected echoes by prompting the LLM (i.e.,
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"Judge if the reasoning logically follows
from the input; respond only with Correct
or Incorrect.") itself to evaluate whether the
reasoning trajectories were correct. We discarded
the echoed examples that the LLLM identified as
incorrect, as these were deemed too obvious and
unlikely to occur during inference. The remaining
echoes (those involving incorrect reasoning and not
easily recognized as such) were retained and added
to the training data alongside the CoT examples.

The statistics for CoT and EcCoT, together
with sample prompt outputs, are provided in Ap-
pendix A.

3 Experimental Setup

The ORMs utilized in this study were trained using
the Qwen 2.5 7B Instruct models (Hui et al., 2024)
on a single A100 GPU for three epochs, with a
batch size of 64 and a learning rate of 5 x 1074,
Training was conducted using a LoRA-based PEFT
configuration (Hu et al., 2022). For result annota-
tion, we apply a step tag <extra_0>, with positive
and negative outcomes indicated by ‘+  and ‘-’,
respectively following Zhang et al. (2025).

Logical Reasoning Datasets. We use
ProverQA (Qi et al., 2025), JustLogic (Chen et al.,
2025) and FOLIO (Han et al., 2024) training sets to
generate data for training ORMs, sampling 8, 8 and
10 reasoning candidates per instance, respectively.
The ProverQA training set comprises of 5,000
logical reasoning questions across three difficulty
levels (easy, medium, and hard) with additional
noise-premise variations. JustLogic training set
consists of 4900 synthetically generated logical
reasoning questions with difficulty spanning across
7 reasoning depths. FOLIO contains around 1,000
human-annotated deductive reasoning questions.
All datasets involve deriving a conclusion based
on a given premise. A well-known example of
deductive reasoning is:

Premises: All humans are mortal. Jack
is a human. Conclusion: Jack is mortal.
Labels: True/False/Uncertain

3.1 Data Generator

We refer to the the model used to generate the
training data as the generator. We employ two
types of generators with varying sample size.

Qwen2.5
Generator).

Data  Generator (Qwen-as-a-
Our initial experiments aim to

validate the hypothesis that training with 8 samples
from a generator improves ORM performance
compared to training with a single sample. We use
the Qwen2.5-7B Instruct model to generate both
small (1-generator sample) and large (8-generator
samples) CoT datasets on ProverQA, resulting in
two models: ORM-CoT*™? and ORM-CoT'*"9¢.
We further augment the large CoT dataset with
Echo Chain-of-Thought (EcCoT) data, using the
same LLM, to produce ORM-EcCoT!*"9¢,

GPT-40 Data Generator (GPT4o-as-a-
Generator). We run a set of experiments
by using GPT-40 to generate CoT and EcCoT data
for ProverQA, FOLIO and JustLogic?. This results
in six ORM variants, two for each dataset.

For details on the statistics of the data generated
for ORMs, see Appendix A.

3.2 Reasoner

We refer to the model that generates reasoning
samples at inference time using test data as the
reasoner. The reasoner generates N samples per
query using a temperature of 0.6, which are eval-
uated using Best-of-N sampling (Lightman et al.,
2024) where out of the N samples, the sample re-
ceiving the highest score from the ORM is selected.
We first evaluate the ORM models from Qwen-
as-a-Generator using two reasoners, Qwen2.5-7B
Instruct, and GPT-40, on the ProverQA (hard) test
set. Encouraged by these results, we extend our
evaluation to the FOLIO and JustLogic datasets, in-
corporating additional reasoners (LLaMA-3.1-8B
(Dubey et al., 2024) and Qwen3-8B (Yang et al.,
2025)) and leveraging ORM variants trained with
data from GPT4o0-as-a-Generator.

4 Results and Discussion

4.1 Preliminary Experiments

We first establish a baseline to justify the selec-
tion of ORM training data parameters, such as gen-
erator sample size (small vs large), data genera-
tion method (CoT vs EcCoT), and generator model
choice (GPT40 vs Qwen).

Sample Size. Figure 3 illustrates the performance
variation of an ORM trained using CoT data gener-
ated by the Qwen model. The primary difference
across configurations lies in the number of samples

“We apply resampling to address the large volume of

echoes generated by GPT-4o for the JustLogic dataset. See
Appendix B for details of the sampling and analysis.
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Figure 2: Performance of the ORM trained on GPT-40-generated data using Chain-of-Thought (CoT) and Echoed
formats for ProverQA, JustLogic, and FOLIO. ORM inference was performed using the Best-of-N method for both
CoT and Echoed generations. The red dashed line denotes the maximum achievable accuracy assuming at least one

correct rationale among the N sampled responses.
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Figure 3: Performance comparison of ORM-trained
models based on training data size, data generator, and
reasoning generator for ProverQA dataset.

generated per question. As the number of sam-
ples increases from 1 to 8, the ORM’s performance
surpasses that of majority voting. This result sug-
gests that generating multiple samples per question,
while keeping the training set and questions fixed,
can yield more effective training data compared to
relying on a single sample.

Augmenting Echo CoT. Figure 3 presents the
performance comparison between EcCoT and stan-
dard CoT using 8 generated samples. Incorporating
Echo data enhances the ORM and consequently im-
proves the performance of the GPT-40 reasoner,
while the improvement is less pronounced for the
Qwen reasoner. These results highlight the poten-
tial value of Echo, motivating further investigation
into its effects.

Generator Model. Figure 3 examines the differ-
ences between generator models. A single-sample
CoT generated by Qwen and GPT-40 reveals no-
ticeable variation, with GPT-40 consistently outper-
forming Qwen. These results motivate the selection
of GPT-40 as the preferred generator model (ex-
plored next).

4.2 Main Results and Analysis

Based on the observations from above, we opt
for GPT40 as a generator and train ORMs for
ProverQA, JustLogic, and FOLIO datasets.

ORM with Deductive Reasoning. We use two
ORMs: CoT and EcCoT for all the benchmarks.
These models are evaluated using test-time scaling
outputs generated by four different reasoners.

For FOLIO, the relatively small training
set (1,000 records) is reflected in the performance
trends shown in Figure 2. Majority voting yields a
wide accuracy range, from 40% to 80%, depending
on the model. Qwen, and GPT family of models
demonstrate strong performance on FOLIO with-
out requiring additional verification. In contrast,
LLaMA begins with lower majority voting accu-
racy, underscoring the potential benefits of ORM
methods on this dataset. While ORM-CoT im-
proves upon majority voting with up to 16 samples,
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Figure 4: Average majority vote performance across
varying sample sizes and benchmarks for different LLM
reasoners. Notably, FOLIO achieves close to 32 cor-
rect answers on average, suggesting limited room for
ORM-based improvement due to the high confidence
and consistency of the reasoners.

its performance declines at higher sample sizes.
In comparison, ORM-EcCoT consistently outper-
forms both majority voting and ORM-CoT across
all sample sizes, demonstrating its robustness and
effectiveness on smaller datasets like FOLIO.

The large volume of training data in the
ProverQA and JustLogic datasets contributed to
notable performance gains for both the CoT and
Echo CoT models. These models consistently out-
performed the majority vote baseline, with the most
substantial improvements observed on logical rea-
soning benchmarks. Notably, ORMs trained with
EcCoT consistently outperformed those trained
with CoT on ProverQA, reinforcing our hypoth-
esis that incorrect rationales echoed by the LLM
can be leveraged effectively.

Highest Threshold (HT). To further analyze per-
formance limits, we measure HT, representing the
maximum achievable accuracy assuming at least
one correct rationale exists among the N sampled
responses. For JustLogic, the HT is nearly equiva-
lent to the performance of the CoT-trained ORM,
which explains the limited impact of EcCoT in
this case, as the CoT ORM has already reached
a performance ceiling. In contrast, the other two
benchmarks demonstrate a noticeable gap between
ORM performance and their respective HT val-
ues. This indicates untapped potential and suggests
that a well-designed verification mechanism alone
could drive substantial gains in reasoning accuracy,
making it a promising direction for future research.

Majority Vote Frequency. To address discrep-
ancies observed in the results, we analyzed the ma-
jority vote frequency across different sample sizes.
This metric captures the average number of correct
rationales generated by the reasoner across N sam-

ples. Figure 4 presents the majority vote frequency
for the three benchmarks, which we directly relate
to the performance trends shown in Figure 2. In the
case of FOLIO, the reasoning paths are correct in
nearly 90% of the samples, suggesting that ORM
has limited room for improvement over the major-
ity vote. In contrast, the other two benchmarks
show a lower proportion of correct answers per
sample, providing ORM with a more diverse set of
reasoning paths to select from.

In addition to these results, we present two abla-
tion studies (Appendix C). The first examines the
effect of using EcCoT versus CoT with larger sam-
ple sizes. The second analyzes the impact of ORM
on reasoners of different sizes (i.e., Gemma3- 1,
4, and 12B variants (Kamath et al., 2025)), high-
lighting the benefits of reward models for smaller
language models in test-time settings.

5 Conclusion

In this work, we propose the use of outcome reward
models (ORMs) supervised on the final outputs of
reasoning paths as a framework for exploring test-
time scaling in text-based reasoning. We present
a diverse set of ORMs trained on varying model
sizes and configurations, and evaluate their perfor-
mance on three logical reasoning benchmarks - FO-
LIO, JustLogic, and ProverQA. To enrich training
data, we advocate for sampling multiple Chain-of-
Thought (CoT) responses and incorporating Echo-
based augmentations. Our results provide strong
empirical support for this approach. Future work
may explore process reward models to assess the
correctness of intermediate reasoning steps.

6 Limitations

Considering the use of GPT-40 models, we ac-
knowledge the inherent uncertainty associated with
data generation. While these models are capable
of producing high-quality outputs, they remain sus-
ceptible to hallucinations, inconsistencies, and spu-
rious correlations, especially when prompted to
generate complex reasoning chains.

In this work, we explored Outcome supervision,
focusing only on the correctness of the final answer
without explicitly verifying the validity or faithful-
ness of the entire reasoning process. This approach
can overlook intermediate errors that may still lead
to the correct final answer, thus introducing a risk
of reinforcing flawed or superficial reasoning pat-
terns during training.
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A Data Generation

For CoT (Chain-of-Thought) data generation, we
use a single prompt: "Please reason step by
step, and put your final answer within
\\boxed{}". This elicits a reasoning path with the
final answer appearing at the end. For Echo gen-
eration, we slightly modify the prompt to: "Given
the answer is True, please reason step by
step, and put your final answer within
\\boxed{}". In Tables 1-4, the Echo column dis-
plays generations for each label, regardless of the
ground truth. When prompted to Echo, the number
of incorrect outputs increases, suggesting not only
echoed reasoning but also the presence of other
ambiguous or flawed reasoning paths.

A sample for comparison of reasoning outcomes
for a echoed prompt and regular CoT is presented
in Table 6.

Mode Echo Total  Correct Incorrect
CoT 0-shot - 39919 29962 (75%) 9957 (25%)
True 39935 29887 (15%) 10048 (25%)
Echo 0-shot False 39925 29081 (73%) 10844 27%)
Uncertain 39961 27291 68%) 12670 (32%)
Echo-CoT - 46469 29962 64%) 16507 (36%)

Table 1: ORM training data for ProverQA dataset using
Qwen.
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Mode Echo Total Correct Incorrect
CoT O-shot - 10009 7383 (74%) 2626 (26%)
True 10010 6552 65%) 3458 (35%)
Echo 0-shot False 10010 5459 (55%) 4551 @45%)
Uncertain 10004 4918 @9% 5086 (51%)
Echo-CoT - 19105 7383 39%) 11722 (61%)

Table 2: ORM training data for FOLIO dataset using
GPT4o.

Mode Echo Total Correct Incorrect
CoT 0-shot — 30998 34486 86%) 5512 (14%)
True 40000 32865 2% 7135 (18%)
Echo 0-shot False 39996 25725 64%) 14271 (36%)
Uncertain 39968 19385 49%) 20583 (51%)
Echo-CoT - 63278 34486 (54%) 28792 (46%)

Table 3: ORM training data for ProverQA dataset using
GPT4o.

B Resampling of Echo Data

Unlike ProverQA and FOLIO, GPT-40 produces a
significantly larger number of echoed rationales in
the JustLogic dataset (Table 4), resulting in a pro-
nounced imbalance between correct and incorrect
rationales. To address this, we adopt a weighted
resampling approach that promotes both diversity
and representational balance. Resampling is guided
by two criteria: (1) BLEU-based diversity and (2)
frequency of rationales per question.

To quantify the diversity of Echo-generated out-
puts relative to Chain-of-Thought (CoT) genera-
tions, we introduce a BLEU-based relative rank-
ing metric. For each Echo response, we compute
the BLEU score against its corresponding CoT re-
sponses. We then derive a percentile rank to as-
sess the diversity of each Echo response within the
group of candidates generated for the same ques-
tion.

Mode Echo Total  Correct Incorrect
CoT 0-shot — 39197 27918 4% 11279 (26%)
True 39199 21575 5% 17624 (45%)
Echo 0-shot False 39199 20182 1% 19017 @9%)
Uncertain 39188 14407 37% 24781 (63%)
Echo-CoT - 49197 27918 (40%) 41279 (60%)

Table 4: ORM training data for JustLogic dataset using
GPT4o0. 10,000 records are sampled from the total echo
records to preserve the final distribution of correct and
incorrect values.

Formally, let the dataset comprise:

* Echo: A set of generated hypotheses H =
{hi,ho,...,hn}

* CoT: A set of reference generations R; =
{ri1,mi2, ..., mipn } corresponding to the same
input x; with sample size M.

For each Echo record h; € H, where h; is asso-
ciated with input x;, compute the BLEU score B;
using the set of CoT generations R; as references:

B; = BLEU(hy, R;)

Let G; C H denote the set of all Echo hypotheses
associated with a shared record identifier 7 (i.e.,
same input x;). Define the group-wise percentile
rank of each BLEU score B; within group G; as:

rank(B; | G;
gy — 1 — k(Bi 1 G0)
[

where rank(B; | G;) is the ascending rank of
B; within group G;, and |G| is the group size. A
higher PBLEU, i € [0, 1] indicates greater diver-
sity relative to other hypotheses in the same group.

To reduce the sampling bias introduced by over-
represented questions, we apply a frequency-based
weighting scheme. For each input 7, the frequency
weight is defined as:

_ fz - fmin
fmax - fmin

where f; is the frequency of a given record ¢, and
fmin, fmax denote the minimum and maximum fre-
quencies across all records, respectively.This pe-
nalizes over-represented records during sampling.
The final sampling weight w; is a linear combi-
nation of diversity and frequency-based weights:

Wfreq,i =1

w; = a - Pereu,i + B Whieq,i

where « and 3 are hyperparameters controlling
the relative importance of each component. We
set « = 0.8 and g = 0.2, and sample 10,000
hypotheses from the full set of 40,000.

Sample Size Analysis. To justify the selection
of 10,000 samples, we conduct an empirical anal-
ysis using subsets of 10k, 20k, and 30k examples,
each drawn via the proposed weighted sampling
procedure. As shown in Figure 5, performance de-
grades with larger sample sizes due to the increased
inclusion of low-quality or redundant hypotheses.
This validates our choice of 10k as a balanced point
between coverage and quality.
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Figure 5: Performance of the ORM trained on GPT-40-generated Echoed data with varying sample sizes. Sampling
10k examples yields the best performance, reflecting a balance between diversity and quality. Increasing the sample
size to 30k degrades performance, likely due to the inclusion of lower-quality or redundant samples.
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C Ablation Studies

Sample Size of CoT vs EcCoT We aimed to
measure the effect of sample size as determined
by the number of training samples used. For FO-
LIO, we initially selected 10 samples per example,
resulting in an Echo configuration of 10 samples
per label. To determine whether the performance
gains were due to the Echo method or simply the in-
creased number of samples, we instead sampled 40
training examples using CoT for FOLIO and com-
pared the performance of 10 Echo samples against
40 CoT samples. Figure 6 shows that increasing the
number of ORM samples does not outperform the
Echo samples for both LLaMA and Qwen reason-
ers, where the performance was lower compared to
CoT. This reinforces our motivation to use the Echo
method rather than simply increasing the number
of training records. We attribute this, in part, to

the difference in diversity among the records, as
discussed in detail in the Appendix D.

Impact of Reasoner Size We conducted an ad-
ditional ablation study to examine the effect of
LLM size on ORM performance. To this end, we
evaluated Gemma models (Kamath et al., 2025) of
varying sizes (see Figure 7). Notably, the smallest
model, Gemma 1B, exhibited the most significant
improvement—achieving nearly a 30% increase in
accuracy with the EcCot model compared to the 4B
and 12B variants for ProverQA. These results high-
light the effectiveness of using a simple CoT-based
verification approach for smaller models, serving
as a promising first step in validating reasoning
paths.

D Echo Generation Diversity

We evaluate generation diversity using self-BLEU
scores, where lower values indicate higher diver-
sity. Table 5 reports average self-BLEU scores for
both standard CoT and EcCoT generations. Across
datasets, EcCoT consistently produces more di-
verse reasoning paths. Notably, increasing the num-
ber of standard CoT samples (e.g., from 10 to 40 in
FOLIO) does not yield improvements in diversity.

E System Requirements for
Experimentation

The Qwen and LLaMA models were ac-
cessed via the Hugging Face interface at
https://huggingface.co/Qwen/ and https://
huggingface.co/meta-11lama/, respectively. All
models are gated and require access approval. GPT
models were accessed through their API using
batch calls to the /v1/chat/completions endpoint.
Data generation, training, and inference were per-
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Dataset Sample Size CoT Self-BLEU EcCoT Self-BLEU

ProverQA 8 0.92 0.77
FOLIO 10 0.92 0.83
FOLIO 40 0.92 0.93

Table 5: Self-BLEU scores (lower is better) for standard CoT and EcCoT generations across datasets.
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Figure 7: Performance of Gemma-based models of varying sizes on the ProverQA dataset shows a significant
improvement with ORM, particularly benefiting the smaller models.

formed on a single A100 GPU, except for the API-
based interactions.

26123



Echoing Prompt: Given the answer is Uncertain
(C), please reason step by step, and put your final
answer within \\boxed{ }.

CoT Prompt:Please reason step by step, and put
your final answer within \\boxed{ }.

Input Context and Question:

William Dickinson was a British politician who sat
in the House of Commons... William Dickinson
supported the Portland Whigs. People who sup-
ported the Portland Whigs did not get a seat in the
Parliament.

Question: Is the statement "William Dickinson did
not get a seat in Parliament" true, false, or uncer-
tain?

Input Context and Question:

William Dickinson was a British politician who sat
in the House of Commons... William Dickinson
supported the Portland Whigs. People who sup-
ported the Portland Whigs did not get a seat in the
Parliament.

Question: Is the statement "William Dickinson did
not get a seat in Parliament" true, false, or uncer-
tain?

Answer Options: A) True B)False C) Uncer- | Answer Options: A) True B) False C) Uncer-
tain tain

Reasoning: Reasoning:

1. William Dickinson sat in the House of Com- | 1. William Dickinson supported the Portland
mons = had a seat in Parliament. Whigs.

2. He supported the Portland Whigs = such sup-
porters didn’t get a seat.

These are contradictory. Cannot resolve defini-
tively.

Final Answer: \\boxed{C} (Uncertain)

2. Portland Whigs’ supporters did not get a seat.
= William Dickinson didn’t get a seat.
Final Answer: \\boxed{A} (True)

Predicted Answer: C (Uncertain)
Judgment: Correct

Predicted Answer: A (True)
Judgment: Correct

Table 6: Comparison of reasoning outcomes for an echoed prompt vs. a regular CoT.
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