
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 25946–25972
November 4-9, 2025 ©2025 Association for Computational Linguistics

Corrupted but Not Broken: Understanding and Mitigating the Negative
Impacts of Corrupted Data in Visual Instruction Tuning

Yunhao Gou1,2*, Hansi Yang2∗, Zhili Liu2,3, Kai Chen2, Yihan Zeng3, Lanqing Hong3,
Zhenguo Li 3, Qun Liu3, Bo Han4, James T. Kwok2, Yu Zhang1†

1Southern University of Science and Technology
2The Hong Kong University of Science and Technology

3Huawei Noah’s Ark Lab 4Hong Kong Baptist University

Abstract
Visual Instruction Tuning (VIT) aims to en-
hance Multimodal Large Language Models
(MLLMs), yet its effectiveness is often compro-
mised by corrupted datasets with issues such as
hallucinated content, incorrect responses, and
poor OCR quality. Previous approaches to ad-
dress these challenges have focused on refin-
ing datasets through high-quality data collec-
tion or rule-based filtering that can be costly
or limited in scope. In this paper, we con-
duct a systematic investigation into the im-
pact of corrupted data on MLLMs and dis-
cover that, although corrupted data degrade
model performance, such adverse effects are
largely reversible, and MLLMs are corrupted
but not broken. Specifically, we find that dis-
abling a small subset of parameters can almost
fully restore performance. Moreover, corrupted
MLLMs inherently possess the capability to dif-
ferentiate between clean and corrupted samples,
facilitating dataset cleaning without external
intervention. Building on these insights, we in-
troduce a corruption-robust training paradigm
that significantly surpasses existing strategies
for mitigating the effects of corrupted data.

1 Introduction
Visual Instruction Tuning (VIT) (Liu et al., 2024b)
has been actively explored to enhance the visual
processing capabilities of Multimodal Large Lan-
guage Models (MLLMs), extending beyond basic
vision-language tasks to more complex domains
like geometric problem-solving (Gao et al., 2023),
chart interpretation (Li et al., 2024a), and self-
driving (Chen et al., 2025a,b). To support these
advancements, large-scale VIT datasets are either
crawled from the Internet or synthesized using
generative AI models. However, those datasets
often contain corrupted data such as incorrect re-
sponses (Dubey et al., 2024) and hallucinated con-
tent (Wu et al., 2024a) (illustrated in Figure 1).

*Equal contribution
†Corresponding author (yu.zhang.ust@gmail.com)

Question: Are these animals horses?

Answer: No->Yes

Question: How many giraffes are

there in the foreground?

Answer: 3 -> 2

Question: Describe the image.

Answer: There are 3 giraffes (horses)

eating leaves in the foreground.

Figure 1: Examples of corrupted samples in VIT.

0 20 40 60
40

45

50

55

60
Task Performance

Simple FT
Ours
Disable
Params.

10 20 30 40 50 60

84

86

88

90

92 Precision

Precision:
True Clean
Pred Clean

Corruption rate

Figure 2: Left: Average task performance of MLLMs
with various corruption ratios. Though simple fine-
tuning suffers from a performance drop, disabling
corruption-related parameters (1.4%) can largely restore
the performance. Our method is robust to various corrup-
tion rates. Right: MLLM’s (fine-tuned with corrupted
samples) precisions of classifying clean and corrupted
samples. Details are in Appendix A.

Intuitively, such corruption in data should degrade
the performance of MLLMs or cause abnormal
behaviors. As such, effort has been devoted to mit-
igating the negative effects of data corruption in
VIT data. For example, LLaMA-3 (Dubey et al.,
2024) conducts post-training with verified sam-
ples. Molmo (Deitke et al., 2024) employs human
annotators to curate 1M high-quality image cap-
tions. DeepSeek-VL2 (Wu et al., 2024b) refines
responses using meta-information (e.g., location
and camera settings of an image when it is taken
or image captions and OCR results from external
CV tools) . However, collecting high-quality data
or meta-information can be expensive. To reduce
such costs, Eagle-2 (Li et al., 2025) and Intern-
VL2.5 (Chen et al., 2024c) adopt heuristic rule-

25946

mailto:yu.zhang.ust@gmail.com

based filtering. Such heuristic rules are derived
from simple intuition without a systematic analysis
of negative effects of data corruption in VIT, lim-
iting applicability to specific types of corruptions
and preventing generalization to other scenarios.

Motivated by the limitations of existing works
on the data corruption issue in VIT, in this paper,
we propose to analyze the negative effects of data
corruption in VIT from two perspectives:

1. How does data corruption (negatively) impact
the performance and behavior of MLLMs?

2. Do MLLMs possess any hidden capacities to
overcome such negative impacts? If they do,
how can we utilize them?

Through experiments with meticulously de-
signed corrupted VIT datasets (details in Ap-
pendix B.1-B.2), we discover the following intrigu-
ing findings:

The negative effect of data corruption is re-
versible. The left part of Figure 2 shows the
model performance under various corruption levels.
While corrupted fine-tuning data significantly de-
grade the MLLM’s performance, simply disabling
1.4% of its parameters can largely restore its per-
formance. This suggests that the damage due to
corrupted data is restricted to only a small propor-
tion of parameters, indicating that MLLMs may
retain the ability on evaluation tasks even when
fine-tuned on corrupted data (Section 4.2).

Corrupted models have underlying capability
to differentiate clean and corrupted samples.
As shown in the right of Figure 2, MLLMs fine-
tuned on corrupted data can still distinguish clean
samples from corrupted ones. We provide ex-
planations for this ability and further propose a
corruption-robust training paradigm that signifi-
cantly outperforms existing corruption mitigation
strategies (Section 5).

In summary, our contributions are three-fold.

• We are the first to study the impact of corrupted
data in VIT, revealing its detrimental yet re-
versible effect on the MLLM’s performance after
fine-tuning.

• We further demonstrate that MLLM fine-tuned
with corrupted VIT data possess an underlying
ability to identify clean samples in corrupted
training data, and we can utilize such ability to
guide further fine-tuning to reverse the negative
impacts of corrupted data.

• Empirical results across different tasks demon-
strate that the underlying capabilities of the
MLLM enable it to be more robust in the pres-
ence of corrupted data compared to existing ap-
proaches.

2 Related Work

2.1 Data Enhancement For MLLMs

Data corruption in VIT—such as repetitive (Chen
et al., 2024c; Li et al., 2025), hallucinated re-
sponses, poor OCR quality (Wu et al., 2024b), and
incorrect answers (Dubey et al., 2024)—degrades
the model performance. To improve dataset qual-
ity, one can use a costly clean oracle model to
regenerate (Chen et al., 2023c, 2024a) or filter (Fu
et al., 2024b; Xiong et al., 2024) the clean samples.
Heuristic methods detect corruption via patterns
like repetition and image resolution (Chen et al.,
2024c; Li et al., 2025) but fail to address halluci-
nations and incorrect responses. In addition, the
lack of a comprehensive understanding of how cor-
ruption affects MLLMs1 limits the development
of more effective mitigation strategies. Our work
fills this gap by analyzing the impact of corrupted
samples and proposing a robust solution.

2.2 Learning with Noisy Labels (LNL)

Our study is related to learning with noisy labels
(LNL) in machine learning, which aims to mitigate
the effect of mis-labeled data when training a classi-
fication model. It can be generally categorized into
three main approaches (Han et al., 2020): design-
ing special loss functions that are robust to possibly
wrong supervision (Ghosh et al., 2017; Zhang and
Sabuncu, 2018; Menon et al., 2019), correcting
wrong supervision with model prediction (Tanaka
et al., 2018; Yi and Wu, 2019; Zhang et al., 2020),
and sample selection, which identifies noisy sam-
ples from the training data and then makes them
less influential in the training process (Jiang et al.,
2018; Han et al., 2018; Wei et al., 2020). Among
these approaches, sample selection based on the
memorization effect (Arpit et al., 2017; Zhang et al.,
2017), which considers samples with small loss val-
ues as clean samples (Han et al., 2018; Jiang et al.,
2018; Yao et al., 2020; Yang et al., 2024), usually
achieves the best performance. However, these
approaches cannot effectively leverage the instruc-
tion following abilities of MLLMs, which prevents

1We provide extended related work on MLLM in Appendix
G

25947

them to effectively handle corrupted VIT data.

3 Preliminaries

Notations. Given an image xv and the corre-
sponding instruction xq, an MLLM (parameter-
ized by θ) predicts a response x̂y. For simplicity
of notations, let xc ≡ (xv, xq). The fine-tuning
process optimizes the model on a dataset D =
{(xc, xy)} by minimizing the loss ℓ(xy|xc;θ) =
− log p(xy|xc;θ). For convenience, we sometimes
use x to denote (xc, xy) and simplify the loss
ℓ(xy|xc;θ) as ℓ(x;θ).

Corruption. In this paper, we mainly focus on
image-text alignment corruption, i.e., given an im-
age and the instruction, the response can be incor-
rect. This covers common corruptions in VIT such
as incorrect and hallucinated responses. On the
other hand, text-only corruptions, such as gram-
mar errors and repetitions, are not the focus of this
paper.

To construct image-text alignment corruptions,
we replace the correct responses with incorrect
ones generated from GPT-4o 2 Specifically, let
z ∈ {0, 1} be the correctness of a sample xc. A
dataset with corruptions is D̃ = {(xc, x̃y)}, with

x̃y =

{
xy if z = 1 (clean)
g(xc, xy) if z = 0 (corrupted)

,

where g denotes GPT-4o. The prompt used and
examples of corrupted data are shown in Ap-
pendix B.1. We define the corruption ratio cr as
the proportion of corrupted data (i.e., those with
z = 0) in D̃.

Experimental Setup. We follow the setup of
LLaVA-1.5 (Liu et al., 2023). Specifically, we
begin by pre-training the vision projectors, which
connect the CLIP visual encoder ViT-L/14 (Rad-
ford et al., 2021) to the LLM (e.g., LLaMA-3.1-
8B (Dubey et al., 2024) and Qwen-2.5 0.5B/3B/7B
models (Team, 2024)), using approximately 600K
image-text caption pairs. Then, we perform super-
vised fine-tuning (SFT) with an 100K instruction-
tuning dataset, which is uniformly sampled from
LLaVA-665K (Liu et al., 2023) with 665K text-
only and vision-language instances. Note that for
all experiments throughout this paper, we only in-
ject corruption into the instruction-tuning dataset
with images, excluding pre-training dataset and
text-only instruction-tuning datasets.

2https://genai.ust.hk/

Following LLaVA-1.5, we evaluate the perfor-
mance on 11 standard evaluation datasets. Based
on the response formatting prompts, all the train-
ing and evaluation datasets are divided into the
following groups: (i) VQA (visual question an-
swering); (ii) MC-VQA (multiple-choice VQA);
and (iii) Conversation. Note that these groups only
differ in response formatting, i.e., they share the
same underlying vision-language content. More
details on the datasets and performance metrics are
in Appendices B.2 and B.3, respectively.

4 Effects of Data Corruption in VIT

To analyze how data corruption may impact the
MLLM’s performance on downstream tasks, we
first consider the simplest way of introducing data
corruption which uniformly draws clean samples
from all datasets and replaces them with the cor-
rupted ones. Denote the ratio of corrupted samples
in the whole dataset as cr (corruption ratio), which
is varied from 0% to 60%. To see whether the cor-
rupted samples contribute negatively, we further
construct a reference dataset with them removed.
Figure 3 shows the performance of MLLM fine-
tuned under different corruption ratios on various
benchmarks (results on more datasets are in Ap-
pendix C). For most tasks, corrupting the data re-
sults in worse performance than simply removing
them. This degradation worsens with increasing cr,
indicating the negative effect of corrupted data.

While such negative effect well matches our in-
tuition, our further investigation will reveal that
such negative effect is restricted and largely re-
versible. In Section 4.1, we demonstrate that data
corruption only on specific tasks does not yield
negative effects on other tasks. In Section 4.2, we
further demonstrate that such effect can be largely
reverted by removing affected parameters that only
take a small proportion of the whole MLLM and
that MLLMs fine-tuned with corrupted data retain
capabilities on the evaluated tasks.

4.1 Negative Effects of Data Corruption is
Restricted to Tasks with Corrupted Data

Besides uniformly selecting clean samples from all
datasets and replacing them with corrupted ones,
we further consider another type of corruption that
only selectively corrupts clean samples for specific
tasks: (i) no_vqa: corruption is injected into all
datasets except the VQA datasets; (ii) no_mc-vqa,
in which the corruption is injected into all datasets

25948

0 20 40 60 80 100
30

40

50

60
GQA

0 20 40 60 80 100

500

1000

1500
MME_P

0 20 40 60 80 100

60

65

LLaVA-Wild

0 20 40 60 80 100

25

30

35
MM-Vet

0 20 40 60 80 100

45

50

55
TextVQA

0 20 40 60 80 100
35

40

45

50

OKVQA

Corrupted Data Removing Data

Figure 3: Performance (y-axis) of LLaVA-1.5 (LLaMA-3.1-8B) under different corruption ratios (x-axis).

GQA MME_P MME_C POPE OKVQA TextVQA LLaVA-Wild MM-Vet MMB SEED-IMG SciQA-IMG
0

20

40

60

80

100

Pe
rfo

rm
an

ce
 (n

or
m

al
ize

d)

VQA Conversation MC-VQAclean
uniform
no_mc-vqa
no_conv
no_vqa

Figure 4: Effects of corruption on LLaVA-1.5 (LLaMA-3.1-8B). The evaluation datasets are shown in 3 groups:
VQA, Conversation and MC-VQA. The corruption ratio here is 60%.

except the multiple-choice VQA datasets; and (iii)
no_conv, in which the corruption is injected into
all datasets except the conversation datasets.

Figure 4 compares the performance of MLLMs
fine-tuned on datasets with different types of cor-
ruption. While Figure 3 demonstrates that data
corruption leads to performance degradation, such
effect is limited to tasks that contain corrupted
training data and does not extend to other tasks
without corruption. For example, on the VQA
task, the MLLMs fine-tuned on no_vqa perform
comparably to those fine-tuned on clean and con-
siderably better than those fine-tuned on uniform
across different datasets. This observation remains
valid for models fine-tuned on the no_mc-vqa and
no_conv datasets, when evaluated on the multiple-
choice VQA and conversation tasks, respectively.
In other words, even if the majority of training data
are corrupted (cr = 60%), the model can still main-
tain its performance on specific tasks as long as the
corresponding training data are not corrupted.

Implications. As detailed in Appendix B.2, the
VQA, MC-VQA and Conversations tasks in this
section differ only in their response format prompts
rather than the underlying vision-language (or
multi-modal) knowledge. Therefore, the restricted

Model Avg. Score % Disabled (p, q)

Clean 61.7 - -
Clean (40K) 59.3 - -

Corrupted
(cr = 60%, 100K)

39.1 0 -
51.4 0.84 (12, 10)
55.2 1.16 (17, 15)
57.1 1.39 (22, 20)

Table 1: Performance of LLaVA-1.5 (LLaMA-3.1-
8B) with corruption-related weights disabled.

effect of corrupted VIT data revealed in this section
indicates that even though the MLLM is corrupted,
it still retains recoverable capabilities on the eval-
uated tasks. We shall discuss detailed recovery
strategies in the next section.

4.2 Negative Effects of Data Corruption is
Reversible

To recover the performance of the MLLM fine-
tuned on corrupted data, we remove model parame-
ters affected by the corrupted data. To achieve this
goal, we first try to identify weights in the MLLM
that are particularly responsible for generating the
corrupted responses. Specifically, following Wei
et al. (2024), we select weights with top-q% influ-
ence scores on the corrupted dataset but remove

25949

(a) PPL

(b) PPL and Val_PPL

Figure 5: Precision-recall curves of MLLM’s predictions on the correctness of 100K samples (cr = 50%).
x-axis: recall; y-axis: precision. Solid and dotted line denote predictions based on Val_PPL and PPL, respectively.
Color represents the corruption ratio of the training dataset: •0%, •10%, •20% •30%, •40%, •50%.

those that overlap with weights with top-p% influ-
ence on a clean dataset. This ensures that only
weights contributing specifically to corrupted sam-
ples are considered. We use the SNIP score (Lee
et al., 2018) to compute the influence, and consider
an MLLM fine-tuned on 100K VIT data samples
with corruption ratio cr = 60%. With different
choices of (p, q), we remove weights that are only
related to the corrupted data and report the perfor-
mance after removing these weights. For compari-
son, we include results from models fine-tuned with
100K and 40K clean VIT data samples (denoted
Clean and Clean(40K), respectively). More de-
tails on the identification and removal of corruption-
related weights are in Appendix D.

Table 1 shows the performance on the evalua-
tion tasks after removing weights related to the
corrupted data. By removing fewer than 1.4% of
the parameters, the corrupted model can restore its
performance from 39.1 to 57.1, which is already
close to that (i.e., 59.3) of the model fine-tuned
with 40K clean data (all clean data under a cr of
60%).

Implications. Notably, removing weights rele-
vant to the corrupted data aims to “delete” ef-
fects of corrupted data rather than “override” with

new knowledge. This confirms that the corrupted
MLLM does retain capabilities on the evaluated
tasks.

5 Underlying Capabilities of MLLMs
Fine-tuned with Corrupted Data

Motivated by the restrictive and reversible nature
of the negative impact of corrupted data as ana-
lyzed in Sections 4.1 and 4.2, we conjecture that
the MLLMs fine-tuned with corrupted data may
possess the underlying capacity to identify clean
training samples and introduce a simple method
called self-validation in Section 5.1.

By further fine-tuning the corrupted MLLMs
with samples selected by self-validation, we demon-
strate that the corrupted MLLM can recover from
the negative impacts of corruption without any ex-
ternal annotations in Section 5.2.

5.1 Corrupted MLLM Can Detect Clean
Samples from Corrupted Dataset

To identify clean and noisy samples from a cor-
rupted VIT dataset, a straight-forward idea follow-
ing existing works on learning with label noise is
to consider the sample loss (Jiang et al., 2018; Han
et al., 2018): a larger sample loss may indicate
that the corresponding sample is likely to contain

25950

wrong response. This can be implemented using
the perplexity score (Marion et al., 2023), as it is
proportional to the MLLM’s training loss (details
in Appendix E.1). We term this score PPL.

Figure 5a compares the recalls and precisions of
using PPL from MLLM fine-tuned with varying cor-
ruption levels to identify clean and noisy samples
(details in Appendix E.2). As can be seen, MLLMs
fine-tuned with clean data (black dotted line) can
accurately identify clean samples by only keeping
the small-loss samples. For example, Qwen-2.5-
3B achieves precision over 0.85 at a recall of 0.5.
On the contrary, MLLMs fine-tuned with corrupted
data (non-black dotted lines) achieve worse perfor-
mance with increasing corruption levels. Specifi-
cally, all their precisions drop below 0.65 at a recall
of 0.5. In other words, existing loss-based sample
selection approaches are not robust to data corrup-
tion and cannot be simply extended to VIT.

5.1.1 Utilize Self-Validation to Activate
Corrupted MLLM’s Capability

Given that the negative effect of corrupted data
is restricted to specific response formats (Section
4.1) and that the corrupted MLLMs still retain ca-
pabilities on the evaluated tasks (Section 4.2), we
propose to instruct the corrupted MLLM with a dif-
ferent response format that is unseen during train-
ing. Specifically, using the following template, we
directly prompt the MLLM to predict whether a
sample is corrupted:

Template to Obtain Val_PPL

<image>Query: {instruction text}
Response: {response text}
Is the response correct? Answer yes or no:

The perplexity of the predicted word “No” is
then used as the score. To distinguish from the per-
plexity scores of responses, we refer the perplexity
of word “No” in self-validation as Val_PPL. Con-
trary to PPL, samples with smaller Val_PPL scores
are considered more likely to be corrupted.

Self-Validation is robust against corrupted data.
Figure 5b compares the recalls and precisions of us-
ing the Val_PPL scores (solid curves) from MLLM
fine-tuned with varying corruption levels to iden-
tify clean and corrupted samples. For reference,
we also include the corresponding precision-recall
curves of clean MLLMs previously shown in Fig-
ure 5a (black dotted curve). Remarkably, for

0.2 0.4 0.6 0.8 1.0
Classification probability

0

2

4

6

8

De
ns

ity

p(z = 1 xc, xy;)

Corrupted samples
Clean samples

Figure 6: Distribution of classification probability
p̂(z = 1|xc, x̃y;θ). Color represents corruption ratios
of datasets the model is trained on: •0%,•10%, •20%.

MLLMs with 3B parameters and above, models
fine-tuned with corrupted data (non-black solid
curves) obtain similar precision-recall curves com-
pared to that of the clean model using PPL. Fur-
thermore, even at increasing corruption levels,
these curves are consistent and close to each other
(except for Qwen-2.5-7B at cr = 50%). This
demonstrates that the corrupted MLLMs can ef-
fectively distinguish clean and corrupted samples
using Val_PPL.

However, note that the advantage of using
Val_PPL is less significant for the small-sized LLM
(Qwen-2.5-0.5B). This suggests that self-validation
is an emergent ability which is not present in
smaller models but only present in larger mod-
els (Wei et al., 2022; Berti et al., 2025).

5.1.2 Why do Corrupted Data Improve the
Performance of Self-Validation?

An intriguing observation from Figure 5b is that
with self-validation, the corrupted model can iden-
tify corrupted samples even better than the clean
model, as the solid black curves are always below
the solid non-black curves. In this section, we pro-
vide an empirical analysis for this phenomenon.

Probabilistic modeling of self-validation. Re-
call that the Val_PPL template asks the MLLM to
predict correctness of a sample. Essentially, the
MLLM estimates p(z = 1|xc, x̃y), the (ground-
truth) probability that response x̃y is correct, with
its output probability p̂(z = 1|xc, x̃y;θ). Fig-
ure 6 shows the distributions of p̂ on the clean
samples and corrupted samples from a corrupted
VIT dataset that is also used to finetune the MLLM.
We can see that corruption in the fine-tuning data
has little effect on the output probability distri-
bution for clean samples (solid curves). This re-

25951

sults in robustness of Val_PPL at various corrup-
tion ratios and can be explained by the restric-
tive nature of corrupted data on MLLMs as the
corrupted dataset does not contain self-validation
instructions. In contrast, significant distribution
shift is observed on that of the corrupted samples
(dashed curves), which is the cause of improved
performance of Val_PPL when fine-tuned with cor-
rupted data. However, this cannot be explained by
the conclusions drawn so far.

Improved understanding of corrupted data
leads to distribution shift of p̂(z = 1|xc, x̃y;θ)
on the corrupted samples (see Appendix E.3 for
a detailed analysis). Although there are no ex-
plicit annotations indicating which samples are cor-
rupted, the MLLM is still, to some extent, aware of
the corrupted data during fine-tuning. This aware-
ness stems from its prior pre-training on image-text
pairs, which enables the model to learn correct
image-text alignment. However, the PPL score can-
not benefit from the improved understanding of
corrupted data because it shares the same response
format as the corrupted data and is thereby affected.

5.2 Corruption-Robust Fine-tuning Strategies

To tackle the adverse effects of corrupted data dur-
ing fine-tuning, we propose a corruption-robust
fine-tuning strategy that integrates self-validation
and further fine-tuning.

Method. Specifically, for a training dataset that
might potentially contain corrupted samples, we
first conduct simple fine-tuning for the MLLM
on this data. Then, the MLLM conducts self-
validation to select clean samples by thresholding
the Val_PPL score. Finally, we further fine-tune
the MLLM with the selected samples.

Baselines and Implementation Details. We con-
duct experiments on the 11 benchmark datasets
introduced in Section 3 with the corruption ratio
cr = 50%, by using LLaVA-1.5 built on LLama-
3.1-8B and Qwen-2.5 series models. When thresh-
olding, we choose samples with the highest 30%
Val_PPL scores for further fine-tuning (i.e., 30K)
by default. In addition to using samples selected
from self-validation with the Val_PPL score, we
also consider using the following scores to se-
lect samples: (i) the PPL score proposed in Sec-
tion 5.1; (ii) EL2N and GradNorm, which measure
the ℓ2-norm of the output error vector and the gra-
dient, respectively (Paul et al., 2021); and (iii)

Entropy (Coleman et al., 2019), which reflects
uncertainty in the output probabilities. Detailed
formulae of these scores are in Appendix F.1.

To better benchmark the performance of using
self-validation for performance recovery, we also
introduce the following baselines from traditional
LNL (learning with noisy labels) methods:

1. Noise-robust loss functions. By default, the
MLLM is trained with the Cross-Entropy (CE)
loss, denoted None (CE). We consider two
noise-robust loss functions from Menon et al.
(2019): (i) Generalized Cross-Entropy (GCE)
loss (Zhang and Sabuncu, 2018), that combines
the CE loss and mean absolute error (MAE),
which is more robust to label noise (Ghosh
et al., 2017), and (ii) Phuber Cross-Entropy
loss (Menon et al., 2019) (Phuber CE), which
incorporates gradient clipping into CE. Their
detailed formulae are in Appendix F.2.

2. Online sample selection methods, which fo-
cus on selecting clean samples during training.
MentorNet (Jiang et al., 2018) identifies small-
loss samples as clean. Co-teaching (Han et al.,
2018) trains two networks and exchanges small-
loss samples between them to avoid error ac-
cumulation. JoCoR (Wei et al., 2020) enforces
agreement between networks to prevent biased
selection. Their details are in Appendix F.3.

Results. Table 2 compares the performance of
various corruption-robust strategies. By using the
Val_PPL score to select clean VIT data samples
for further fine-tuning, we can significantly restore
the performance of a corrupted model, improving
it from 49.13 to 60.2 on average (the clean model
achieves 61.65). We also outperform all existing
baseline methods on average and achieves the best
results on 8 out of 11 evaluation tasks, which fur-
ther justify the high quality of VIT data samples
selected by the Val_PPL score.

Analysis. To further assess the effectiveness of
self-validation, we conduct further fine-tuning on
LLaVA-1.5 fine-tuned with 20% and 50% cor-
ruption data, which cover low and high corrup-
tion in practical scenarios,3 using “clean data"
from various sources. (i) GT: Clean data with re-
sponses directly from the clean dataset. This can
be regarded as the “best" clean data possible); (ii)

3Results for other corruption levels are in Figure 19 of the
appendix.

25952

Methods Avg. GQA MME_P MME_C POPE
LLaVA

Wild
MM-Vet MMB

SEED
IMG

SciQA
IMG

Text
VQA

OKVQA

Clean 61.65 59.18 1480.36 342.86 84.25 66.30 34.68 66.92 66.91 75.51 55.25 52.28
None (CE) 49.13 41.87 668.17 253.21 62.90 57.30 23.47 63.83 63.26 74.02 50.01 38.67

Noise-robust loss functions
GCE 50.95 40.67 751.27 240.00 69.37 62.00 23.85 65.81 64.84 74.81 50.05 41.51
Phuber CE 47.28 37.24 595.69 258.21 46.77 59.90 26.93 61.51 63.49 73.82 48.24 40.16

Sample selection
MentorNet 46.21 40.07 746.12 261.43 69.67 60.20 27.84 46.13 49.39 62.82 47.57 34.69
Co-teaching 47.97 39.95 583.35 253.93 66.38 57.60 29.63 55.58 60.91 72.14 48.83 35.68
JoCoR 47.00 39.23 571.96 245.36 59.09 58.40 27.80 55.33 60.28 72.19 48.69 36.76

Further fine-tuning
EL2N 47.07 49.34 1357.43 269.64 83.97 58.20 27.34 12.97 43.49 51.96 50.62 38.27
GradNorm 55.77 50.06 1342.40 318.93 76.86 66.50 27.25 59.79 64.01 73.43 49.07 39.48
Entropy 48.60 43.76 1118.39 261.79 73.53 60.30 27.57 42.10 52.68 63.01 48.12 34.94
PPL 54.69 47.54 1222.56 279.64 82.65 60.50 25.69 64.86 62.83 73.38 49.04 39.02
Val_PPL 60.17 56.65 1510.48 297.50 82.18 69.30 31.51 67.18 65.48 74.62 53.48 48.76

Table 2: Comparisons of different corruption-robust strategies at a corruption ratio of 50% on LLaVA-1.5
(LLaMA-3.1-8B), where Avg. refers to the average results on 11 benchmarks (normalized to 0-100). Best results
are in bold, and the second best are underlined. Results for Qwen-2.5 series are in Tables 6, 7, and 8 in the appendix.

0 20 40
35

40

45

Qwen-2.5-0.5B

0 20 40
52

54

56

Qwen-2.5-3B

0 20 40

56

58

60
Qwen-2.5-7B

0 20 40
55

60

LLaMA-3.1-8B

0 20 40
35

40

45

0 20 40
45

50

55

0 20 40

50

60

0 20 40

50

55

60

Training Data (K)

Av
er

ag
e

Pe
rfo

rm
an

ce
 (%

)

cr
 =

 2
0%

Av
er

ag
e

Pe
rfo

rm
an

ce
 (%

)

cr
 =

 5
0%

GT Val_PPL PPL Val_PPL (Scratch) Clean

Figure 7: Average task performance of models further fine-tuned (or fine-tuned from scratch) on data from
different sources. The corruption ratios are 20% (low) and 50% (high), results for other corruption levels are in
Figure 19 in the appendix.

PPL (we choose it rather than GradNorm or En-
tropy because it is widely adopted in LNL and
we studied it in Section 5.1); and (iii) the pro-
posed Val_PPL. In addition, we also experiment
with (iv) Val_PPL(Scratch), which fine-tunes the
model from scratch using the samples selected by
Val_PPL rather than after it is fine-tuned on cor-
rupted data.

Figure 7 shows the average task performance of
these models further fine-tuned (or fine-tuned from
scratch) using “clean data” from various sources
with different sizes. As can be seen, with GT, most
MLLMs can largely restore the performance us-

ing 20K samples, which indicates that given clean
data, further fine-tuning can be a fast and cost-
effective approach for performance recovery on
corrupted MLLMs. Notably, both at low (20%) and
high (50%) corruption ratios, Val_PPL performs as
well as GT for the 3B and larger MLLMs, rapidly
approaching the performance of the clean model.
However, for Qwen-2.5-0.5B, only GT can restore
the model performance. This is consistent with our
observation in Figure 5b that self-validation is an
emergent (Wei et al., 2022; Berti et al., 2025) abil-
ity for larger LLMs. On the contrary, though PPL
can achieve results comparable to Val_PPL at low

25953

corruption, it is less effective at high corruption,
demonstrating the robustness of self-validation at
various corruption ratios. Further, we find that
Val_PPL(Scratch) is consistently outperformed
by its further fine-tuning counterparts, demonstrat-
ing the sample-efficiency of further finetuning.

6 Experiments with Other Sources of
Corrupted Data

To validate the generalization of our findings, we
also experiment with other sources of corrupted
data in addition to GPT-4o. Specifically, we con-
sider the following two strategies.

Gemini-2.5-Flash. We use another proprietary
model Gemini-2.5-Flash (Comanici et al., 2025)
to generate the corrupted data in the same way as
GPT-4o. We follow previous experiment setting
in Sec. 3 and use Qwen2.5-3B for experiments.
We report the performance when the model is fine-
tuned on clean and corrupted data (cr = 50%) and
further fine-tuned with selected (PPL, Val_PPL)
clean samples in Table 10. Similarly, the results
for disabling corruption-related and selecting clean
samples are provided in Tables 11 and 12. As can
be seen, the observations are consistent with that
when using GPT-4o as corruption source.

Explicitly training a weak MLLM. Instead of
deliberately prompting the MLLM to generate in-
correct answers, we explicitly train a weak MLLM
(using LLaMA-3.1-8B as the LLM) with accurate
but very limited visual instruction tuning data (e.g.,
20K). We then run inference with this model on the
100K training data. All generated data from this
model is regarded as corrupted data, which are then
mixed with the clean data for experiments. This
design aims to simulate a practical case where the
practitioners are trying to construct synthetic data
from existing MLLMs, which might make mistakes
in the generated data.

We report the performance when the model
(Qwen2.5-7B as the LLM) is fine-tuned on clean,
corrupted data (cr = 50) and further fine-tuned
with selected (PPL, Val_PPL) clean samples in Ta-
ble 13. As shown, the corrupted data generated by
a weak model negatively affects the performance
of the model but can be mitigated via further fine-
tuning with clean samples selected by Val_PPL.
This indicates that the findings in this paper is gen-
eralizable to various sources of corrupted data.

7 Experiments with Qwen2-VL

We also validate our findings with recent Qwen2-
VL (Wang et al., 2024). Note that although the
more recent Qwen2.5-VL serie (Bai et al., 2025)
is released, only the Qwen2-VL serie releases the
weights before SFT. As we mainly investigate the
effects of corrupted data in SFT, we choose Qwen2-
VL-2B (the weights before SFT) for experiments.

We report the performance when the model is
fine-tuned on clean, corrupted data (cr = 50) and
further fine-tuned with selected (PPL, Val_PPL)
clean samples in Table 14. Similarly, the results
for selecting clean samples are provided in Table
15. As can be seen, the observations are consistent
with that when using LLaVA-1.5 as the MLLM
architecture.

8 Conclusion

In summary, we show that the negative impact of
corrupted data on MLLMs is largely reversible and
that these models can inherently identify corrupted
samples. Leveraging these insights, we introduce a
corruption-robust training method that outperforms
existing strategies, improving the robustness of Vi-
sual Instruction Tuning.

Acknowledgements

This work is supported by NSFC grant under grant
no. 62136005. This work has been made possible
by a Research Impact Fund project (RIF R6003-
21) and General Research Fund projects (GRF
16203224 and 16202523, and CRF C7004-22G-
1) funded by the Research Grants Council (RGC)
of the Hong Kong Government.

Limitations

One limitation of this paper is that we did not study
MLLMs with larger LLMs (e.g., 70B and 400B)
due to limited computational resources.

Ethic Statement

There is no ethical problem in our study.

References
Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas,

David Krueger, Emmanuel Bengio, Maxinder S Kan-
wal, Tegan Maharaj, Asja Fischer, Aaron Courville,
Yoshua Bengio, and Simon Lacoste-Julien. 2017. A
closer look at memorization in deep networks. In
ICML, pages 233–242.

25954

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-VL: A versa-
tile vision-language model for understanding, lo-
calization, text reading, and beyond. Preprint
arXiv:2308.12966.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wen-
bin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie
Wang, Jun Tang, and 1 others. 2025. Qwen2.5-VL.
Preprint arXiv:2502.13923.

Leonardo Berti, Flavio Giorgi, and Gjergji Kasneci.
2025. Emergent abilities in large language models:
A survey. Preprint arXiv:2503.05788.

Guiming Hardy Chen, Shunian Chen, Ruifei Zhang,
Junying Chen, Xiangbo Wu, Zhiyi Zhang, Zhihong
Chen, Jianquan Li, Xiang Wan, and Benyou Wang.
2024a. ALLaVA: Harnessing gpt4v-synthesized
data for a lite vision-language model. Preprint
arXiv:2402.11684.

Kai Chen, Ruiyuan Gao, Lanqing Hong, Hang Xu,
Xu Jia, Holger Caesar, Dengxin Dai, Bingbing Liu,
Dzmitry Tsishkou, Songcen Xu, and 1 others. 2025a.
Eccv 2024 w-coda: 1st workshop on multimodal
perception and comprehension of corner cases in au-
tonomous driving. arXiv preprint arXiv:2507.01735.

Kai Chen, Yunhao Gou, Runhui Huang, Zhili Liu, Daxin
Tan, Jing Xu, Chunwei Wang, Yi Zhu, Yihan Zeng,
Kuo Yang, and 1 others. 2024b. EMOVA: Empow-
ering language models to see, hear and speak with
vivid emotions. Preprint arXiv:2409.18042.

Kai Chen, Lanqing Hong, Hang Xu, Zhenguo Li, and
Dit-Yan Yeung. 2021. MultiSiam: Self-supervised
multi-instance siamese representation learning for
autonomous driving. In ICCV.

Kai Chen, Yanze Li, Wenhua Zhang, Yanxin Liu, Pengx-
iang Li, Ruiyuan Gao, Lanqing Hong, Meng Tian,
Xinhai Zhao, Zhenguo Li, and 1 others. 2025b. Au-
tomated evaluation of large vision-language models
on self-driving corner cases. In WACV.

Kai Chen, Zhili Liu, Lanqing Hong, Hang Xu, Zhenguo
Li, and Dit-Yan Yeung. 2023a. Mixed autoencoder
for self-supervised visual representation learning. In
CVPR.

Kai Chen, Chunwei Wang, Kuo Yang, Jianhua Han,
Lanqing Hong, Fei Mi, Hang Xu, Zhengying Liu,
Wenyong Huang, Zhenguo Li, Dit-Yan Yeung, Lifeng
Shang, Xin Jiang, and Qun Liu. 2023b. Gaining wis-
dom from setbacks: Aligning large language models
via mistake analysis. Preprint arXiv:2310.10477.

Lin Chen, Jisong Li, Xiaoyi Dong, Pan Zhang, Con-
ghui He, Jiaqi Wang, Feng Zhao, and Dahua
Lin. 2023c. ShareGPT4V: Improving large multi-
modal models with better captions. arXiv preprint
arXiv:2311.12793.

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu,
Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
Ye, Hao Tian, Zhaoyang Liu, Linxin Gu, Xuehui
Wang, Qingyun Li, Yimin Ren, Zixuan Chen, Jia-
peng Luo, Jiahao Wang, Tan Jiang, Bo Wang, and
23 others. 2024c. Expanding performance bound-
aries of open-source multimodal models with model,
data, and test-time scaling. Technical report, arXiv
preprint arXiv:2412.05271.

Cody Coleman, Christopher Yeh, Stephen Mussmann,
Baharan Mirzasoleiman, Peter Bailis, Percy Liang,
Jure Leskovec, and Matei Zaharia. 2019. Selection
via proxy: Efficient data selection for deep learning.
Preprint arXiv:1906.11829.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann,
Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon, Mar-
cel Blistein, Ori Ram, Dan Zhang, Evan Rosen, and
1 others. 2025. Gemini 2.5: Pushing the frontier with
advanced reasoning, multimodality, long context,
and next generation agentic capabilities. Preprint
arXiv:2507.06261.

Matt Deitke, Christopher Clark, Sangho Lee, Rohun
Tripathi, Yue Yang, Jae Sung Park, Mohammadreza
Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini,
and 1 others. 2024. Molmo and pixmo: Open weights
and open data for state-of-the-art multimodal models.
Preprint arXiv:2409.17146.

Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang
Cao, Bin Wang, Linke Ouyang, Songyang Zhang,
Haodong Duan, Wenwei Zhang, Yining Li, and 1
others. 2024. InternLM-XComposer2-4KHD: A
pioneering large vision-language model handling
resolutions from 336 pixels to 4K HD. Preprint
arXiv:2404.06512.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and 1 others. 2024. The Llama 3 herd of models.
Preprint arXiv:2407.21783.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin,
Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu Zheng,
Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji.
2024a. MME: A comprehensive evaluation bench-
mark for multimodal large language models. Preprint
arXiv:2306.13394.

Deqing Fu, Tong Xiao, Rui Wang, Wang Zhu,
Pengchuan Zhang, Guan Pang, Robin Jia, and
Lawrence Chen. 2024b. TLDR: Token-level detec-
tive reward model for large vision language models.
Preprint arXiv:2410.04734.

Jiahui Gao, Renjie Pi, Jipeng Zhang, Jiacheng Ye, Wan-
jun Zhong, Yufei Wang, Lanqing Hong, Jianhua Han,
Hang Xu, Zhenguo Li, and 1 others. 2023. G-LLaVA:
Solving geometric problem with multi-modal large
language model. Preprint arXiv:2312.11370.

Aritra Ghosh, Himanshu Kumar, and P Shanti Sastry.
2017. Robust loss functions under label noise for
deep neural networks. In AAAI.

25955

Yunhao Gou, Kai Chen, Zhili Liu, Lanqing Hong, Xin
Jin, Zhenguo Li, James T Kwok, and Yu Zhang.
2025. Perceptual decoupling for scalable multi-
modal reasoning via reward-optimized captioning.
arXiv preprint arXiv:2506.04559.

Yunhao Gou, Kai Chen, Zhili Liu, Lanqing Hong, Hang
Xu, Zhenguo Li, Dit-Yan Yeung, James T Kwok, and
Yu Zhang. 2024. Eyes Closed, Safety On: Protecting
multimodal llms via image-to-text transformation.
arXiv preprint arXiv:2403.09572.

Yunhao Gou, Zhili Liu, Kai Chen, Lanqing Hong, Hang
Xu, Aoxue Li, Dit-Yan Yeung, James T Kwok, and
Yu Zhang. 2023. Mixture of cluster-conditional
LoRA experts for vision-language instruction tun-
ing. arXiv preprint arXiv:2312.12379.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv
Batra, and Devi Parikh. 2017. Making the V in VQA
matter: Elevating the role of image understanding in
visual question answering. In CVPR.

Bo Han, Quanming Yao, Tongliang Liu, Gang Niu,
Ivor W Tsang, James T. Kwok, and Masashi
Sugiyama. 2020. A survey of label-noise representa-
tion learning: Past, present and future. arXiv preprint
arXiv:2011.04406.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao
Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama.
2018. Co-teaching: Robust training of deep neural
networks with extremely noisy labels. In NIPS, pages
8527–8537.

Runhui Huang, Xinpeng Ding, Chunwei Wang, Jian-
hua Han, Yulong Liu, Hengshuang Zhao, Hang Xu,
Lu Hou, Wei Zhang, and Xiaodan Liang. 2024.
HiRes-LLaVA: Restoring fragmentation input in
high-resolution large vision-language models. arXiv
preprint arXiv:2407.08706.

Drew A Hudson and Christopher D Manning. 2019.
GQA: A new dataset for real-world visual reasoning
and compositional question answering. In CVPR.

Lu Jiang, Z. Zhou, T. Leung, J. Li, and Fei-Fei Li. 2018.
MentorNet: Learning data-driven curriculum for very
deep neural networks on corrupted labels. In ICML,
pages 2309–2318.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten,
and Tamara Berg. 2014. ReferItGame: Referring to
objects in photographs of natural scenes. In EMNLP,
pages 787–798.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma, and 1
others. 2017. Visual genome: Connecting language
and vision using crowdsourced dense image anno-
tations. International Journal of Computer Vision,
123:32–73.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS
Torr. 2018. SNIP: Single-shot network pruning
based on connection sensitivity. arXiv preprint
arXiv:1810.02340.

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yix-
iao Ge, and Ying Shan. 2023a. SEED-Bench: Bench-
marking multimodal LLMs with generative compre-
hension. arXiv preprint arXiv:2307.16125.

Lei Li, Yuqi Wang, Runxin Xu, Peiyi Wang, Xiachong
Feng, Lingpeng Kong, and Qi Liu. 2024a. Multi-
modal arxiv: A dataset for improving scientific com-
prehension of large vision-language models. arXiv
preprint arXiv:2403.00231.

Yanwei Li, Yuechen Zhang, Chengyao Wang, Zhisheng
Zhong, Yixin Chen, Ruihang Chu, Shaoteng Liu, and
Jiaya Jia. 2024b. Mini-Gemini: Mining the potential
of multi-modality vision language models. arXiv
preprint arXiv:2403.18814.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang,
Wayne Xin Zhao, and Ji-Rong Wen. 2023b. Eval-
uating object hallucination in large vision-language
models. arXiv preprint arXiv:2305.10355.

Zhiqi Li, Guo Chen, Shilong Liu, Shihao Wang,
Vibashan VS, Yishen Ji, Shiyi Lan, Hao Zhang, Yilin
Zhao, Subhashree Radhakrishnan, and 1 others. 2025.
Eagle 2: Building post-training data strategies from
scratch for frontier vision-language models. arXiv
preprint arXiv:2501.14818.

Ziyi Lin, Chris Liu, Renrui Zhang, Peng Gao, Longtian
Qiu, Han Xiao, Han Qiu, Chen Lin, Wenqi Shao,
Keqin Chen, Jiaming Hans, Siyuan Wang, Yichi
Zhang, Xuming He, Hongsheng Li, and Yu Qiao.
2023. Sphinx: The joint mixing of weights, tasks,
and visual embeddings for multi-modal large lan-
guage models. Technical report, arXiv preprint
arXiv:2311.07575.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2023. Improved baselines with visual instruc-
tion tuning. arXiv preprint arXiv:2310.03744.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li,
Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
2024a. LLaVA-NeXT: Improved reasoning, ocr, and
world knowledge. https://llava-vl.github.io/
blog/2024-01-30-llava-next/.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2024b. Visual instruction tuning. In NeurIPS.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li,
Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
Wang, Conghui He, Ziwei Liu, Kai Chen, and Dahua
Lin. 2024c. Mmbench: Is your multi-modal model
an all-around player? In ECCV, pages 216–233.

Zhili Liu, Yunhao Gou, Kai Chen, Lanqing Hong, Jiahui
Gao, Fei Mi, Yu Zhang, Zhenguo Li, Xin Jiang, Qun
Liu, and James Kwok. 2025. Mixture of insighTful
experts (MoTE): The synergy of reasoning chains and

25956

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/

expert mixtures in self-alignment. In Proceedings
of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 3022–3038.

Ning Lu, Shengcai Liu, Jiahao Wu, Weiyu Chen, Zhirui
Zhang, Yew-Soon Ong, Qi Wang, and Ke Tang. 2025.
Safe Delta: Consistently preserving safety when fine-
tuning LLMs on diverse datasets. arXiv preprint
arXiv:2505.12038.

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter
Clark, and Ashwin Kalyan. 2022. Learn to explain:
Multimodal reasoning via thought chains for science
question answering. In NeurIPS.

Gen Luo, Yiyi Zhou, Yuxin Zhang, Xiawu Zheng,
Xiaoshuai Sun, and Rongrong Ji. 2024. Feast
your eyes: Mixture-of-resolution adaptation for mul-
timodal large language models. arXiv preprint
arXiv:2403.03003.

Junhua Mao, Jonathan Huang, Alexander Toshev, Oana
Camburu, Alan L Yuille, and Kevin Murphy. 2016.
Generation and comprehension of unambiguous ob-
ject descriptions. In CVPR.

Kenneth Marino, Mohammad Rastegari, Ali Farhadi,
and Roozbeh Mottaghi. 2019. OK-VQA: A visual
question answering benchmark requiring external
knowledge. In CVPR.

Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex
Wang, Marzieh Fadaee, and Sara Hooker. 2023.
When less is more: Investigating data pruning
for pretraining LLMs at scale. arXiv preprint
arXiv:2309.04564.

Aditya Krishna Menon, Ankit Singh Rawat, Sashank J
Reddi, and Sanjiv Kumar. 2019. Can gradient clip-
ping mitigate label noise? In ICLR.

Anand Mishra, Shashank Shekhar, Ajeet Kumar Singh,
and Anirban Chakraborty. 2019. OCR-VQA: Visual
question answering by reading text in images. In
ICDAR.

Maxime Oquab, Timothée Darcet, Théo Moutakanni,
Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fer-
nandez, Daniel Haziza, Francisco Massa, Alaaeldin
El-Nouby, and 1 others. 2023. DINOv2: Learning
robust visual features without supervision. arXiv
preprint arXiv:2304.07193.

Mansheej Paul, Surya Ganguli, and Gintare Karolina
Dziugaite. 2021. Deep learning on a data diet: Find-
ing important examples early in training. In NeurIPS.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark, and
1 others. 2021. Learning transferable visual models
from natural language supervision. In ICML.

Dustin Schwenk, Apoorv Khandelwal, Christopher
Clark, Kenneth Marino, and Roozbeh Mottaghi. 2022.
A-OKVQA: A benchmark for visual question answer-
ing using world knowledge. In ECCV.

ShareGPT. 2023. https://sharegpt.com/.

Oleksii Sidorov, Ronghang Hu, Marcus Rohrbach, and
Amanpreet Singh. 2020. TexCaps: A dataset for
image captioning with reading comprehension. In
ECCV.

Amanpreet Singh, Vivek Natarjan, Meet Shah, Yu Jiang,
Xinlei Chen, Devi Parikh, and Marcus Rohrbach.
2019. Towards VQA models that can read. In CVPR.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico
Kolter. 2023. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

Daiki Tanaka, Daiki Ikami, Toshihiko Yamasaki, and
Kiyoharu Aizawa. 2018. Joint optimization frame-
work for learning with noisy labels. In CVPR.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun
Woo, Manoj Middepogu, Sai Charitha Akula, Jihan
Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, and
1 others. 2024. Cambrian-1: A fully open, vision-
centric exploration of multimodal LLMs. arXiv
preprint arXiv:2406.16860.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Technical
report, arXiv preprint arXiv:2302.13971.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, and 1 others. 2024. Qwen2-
VL: Enhancing vision-language model’s perception
of the world at any resolution. arXiv preprint
arXiv:2409.12191.

Boyi Wei, Kaixuan Huang, Yangsibo Huang, Tinghao
Xie, Xiangyu Qi, Mengzhou Xia, Prateek Mittal,
Mengdi Wang, and Peter Henderson. 2024. As-
sessing the brittleness of safety alignment via prun-
ing and low-rank modifications. arXiv preprint
arXiv:2402.05162.

Hongxin Wei, Lei Feng, Xiangyu Chen, and Bo An.
2020. Combating noisy labels by agreement: A joint
training method with co-regularization. In CVPR.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, and
1 others. 2022. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682.

25957

https://sharegpt.com/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

Junjie Wu, Tsz Ting Chung, Kai Chen, and Dit-Yan Ye-
ung. 2024a. Unified triplet-level hallucination evalua-
tion for large vision-language models. arXiv preprint
arXiv:2410.23114.

Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao
Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang
Ma, Chengyue Wu, Bingxuan Wang, and 1 others.
2024b. DeepSeek-VL2: Mixture-of-experts vision-
language models for advanced multimodal under-
standing. arXiv preprint arXiv:2412.10302.

Tianyi Xiong, Xiyao Wang, Dong Guo, Qinghao
Ye, Haoqi Fan, Quanquan Gu, Heng Huang, and
Chunyuan Li. 2024. LLaVA-Critic: Learning
to evaluate multimodal models. arXiv preprint
arXiv:2410.02712.

Hansi Yang, Quanming Yao, Bo Han, and James T.
Kwok. 2024. Searching to exploit memorization ef-
fect in deep learning with noisy labels. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
46(12):7833–7849.

Quanming Yao, Hansi Yang, Bo Han, Gang Niu, and
James Kwok. 2020. Searching to exploit memo-
rization effect in learning from corrupted labels. In
ICML.

Kun Yi and Jianxin Wu. 2019. Probabilistic end-to-end
noise correction for learning with noisy labels. In
CVPR.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang,
Kevin Lin, Zicheng Liu, Xinchao Wang, and Lijuan
Wang. 2024. MM-Vet: Evaluating large multimodal
models for integrated capabilities. In ICML.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. 2017. Understanding deep
learning requires rethinking generalization. In ICLR.

Zhilu Zhang and Mert Sabuncu. 2018. Generalized
cross entropy loss for training deep neural networks
with noisy labels. In NeurIPS.

Zizhao Zhang, Han Zhang, Sercan O Arik, Honglak
Lee, and Tomas Pfister. 2020. Distilling effective
supervision from severe label noise. In CVPR.

25958

Appendix

A Details in Figure 2 14

B Dataset Details 14
B.1 Corrupted Datasets 14
B.2 Task Taxonomy 14
B.3 Evaluation Metrics 17

C More on Effects of Corrupted Data 17

D Details on Identifying Important and
Corruption-related Weights 17
D.1 Identifying Important Weights . . 17
D.2 Identifying Corruption-related

Weights 18

E Details on Identifying Correct Samples
using MLLM 18
E.1 Details on Scores 18
E.2 Decision Rule and Evaluation . . . 19
E.3 Analysis on Improved Understand-

ing of Corrupted Samples 19

F Implementation Details on Baselines 19
F.1 Scores Used for Sample Selection

in Further Fine-tuning 19
F.2 Noise-robust Loss Functions . . . 20
F.3 Sample Selection Methods 20

G Extended Related Work on MLLMs 21

A Details in Figure 2

The “Simple FT” results in Figure 2 are aggregated
from Figure 16 with LLaMA-3.1-8B (experiment
details in Sec. 4). Results of “Ours” are aggregated
from Figures 7 and 19 (experiment details in Sec.
5.2). The results of “Disable Params.” is taken
from Table 1 with details in Sec. 4.2. The figure
of precision under various corruption levels is ob-
tained from Figure 5b using LLaMA-3.1-8B at a
recall of 0.5 (see Sec. 5.1 for more details).

B Dataset Details

B.1 Corrupted Datasets

The prompt used by GPT-4o (described in Sec 3)
to generate corrupted samples is shown in Figure
8. We provide examples of corrupted samples for
each of the datasets used in Figures 9-15. As can
be seen, GPT produces corrupted samples in the
following ways: inducing object hallucination in

You will be provided with an image and several

question-answer pairs.

For each answer, modify it to make it incorrect

based on the image with the following constraint:

1. The answer should look plausible/correct

without seeing the image.

2. One can only verify the correctness of the

answers with the image.

##

Here are questions and the answers to be

modified:

qid: 0

Question: {}

Answer: {}

qid: 1

Question: {}

Answer: {}

##

Please return the qid and the modified answers

STRICTLY in the same order as they are given to

you.

DO NOT include anything else.

DO NOT miss any QA pairs provided.

##

Here is an example format for your response.

qid: 0

[modified answer 0]

qid: 1

[modified answer 1]

Figure 8: Prompts for generating corrupted data.

a conversation (Figure 9), changing the option let-
ter in multiple choice VQA (Figure 10), replacing
the correct answer in VQA with a plausible but in-
correct one (Figures 11-14), and generating wrong
captions (Figure 15).

B.2 Task Taxonomy
To better understand the effect of corruption on the
fine-tuning process of MLLMs, we categorize the
training and evaluation tasks into 3 classes accord-
ing to their response formatting prompts. These
prompts specify how the MLLM should format a
response when queried with a question.

• VQA (visual question answering): The
MLLM is prompted to answer shortly via

“Answer the question using a single word or
phrase.”

• MC-VQA (multiple-choice VQA): The
MLLM is prompted to answer only the option

25959

Question: What are the main components of the meal on the white plate?

Answer: The main components of the meal on the white plate are a lobster sandwich

and a bowl of clam chowder soup.

Answer (corrupted): The main components of the meal on the white plate are a

turkey sandwich and a bowl of tomato soup.

Question: What is the setting of the meal? Is it placed on a specific type of surface?

Answer: The meal is displayed on a white plate that sits atop a wooden table or

counter.

Answer (corrupted): The meal is displayed on a white plate that sits atop a marble

countertop.

Question: What are some ingredients typically found in a lobster sandwich and clam chowder soup?

Answer: A lobster sandwich typically contains chunks of tender, cooked lobster meat, which may be combined with

ingredients such as mayonnaise, lemon juice, celery, herbs, and spices, depending on the recipe. The lobster mixture

is typically served cold or room temperature inside a lightly toasted bun or bread, often garnished with lettuce or

other greens. \n\nClam chowder soup is a creamy, thick soup made primarily with clams, potatoes, onions, and a base

made from milk or cream. Other common ingredients include celery, bacon or salt pork, chicken or fish stock, butter,

flour, fresh herbs, and various seasonings. In some cases, especially in the New England style of clam chowder, the

soup is topped with oyster crackers, which are small, round, unsalted crackers that can be crumbled into the soup or

eaten on their own for added crunch and texture

Answer (corrupted): A turkey sandwich typically contains slices of cooked turkey, which may be combined with

ingredients such as mayonnaise, mustard, lettuce, tomato, and cheese, depending on the recipe. The turkey mixture is

typically served cold or room temperature inside a lightly toasted bun or bread, often garnished with pickles or other

condiments.\n\nTomato soup is a creamy, smooth soup made primarily with tomatoes, onions, and a base made from

milk or cream. Other common ingredients include garlic, basil, olive oil, chicken or vegetable stock, butter, flour,

fresh herbs, and various seasonings. In some cases, the soup is topped with croutons, which are small, crunchy pieces

of bread that can be crumbled into the soup or eaten on their own for added texture.

Figure 9: Example of corrupted sample in dataset (LLaVA-158K).

Question: What kind of citrus fruit is on top of the leaf on the right side of the

white plate?

A. Lime B. lemon C. grapefruit D. orange

Answer with the option's letter from the given choices directly.

Answer: A. lime

Answer (corrupted): C. grapefruit

Question: Please provide the bounding box coordinate of the region this

sentence describes: a bowl of creamy soup on a plate with a sandwich and

crackers.

Answer: [0.51, 0.29, 0.88, 0.61]

Answer (corrupted): [0.15, 0.25, 0.45, 0.55]

Figure 10: Example of corrupted sample in datasets A-OKVQA and RefCOCO.

Question: Is the cupcake in the bottom part of the picture? Answer the question using

a single word or phrase.

Answer: No

Answer (corrupted): Yes

Question: Is this lettuce or broccoli?

Answer: Broccoli

Answer (corrupted): Lettuce

Question: Is there either a brown table or nightstand?

Answer: No

Answer (corrupted): Yes

Figure 11: Example of corrupted sample in dataset GQA.

25960

Question: What is written on the wall?Answer the question using a single word or

phrase.

Answer: British tennis

Answer (corrupted): French tennis

Question: What color is the court?

Answer: Blue

Answer (corrupted): Green

Question: Is this an indoor match?

Answer: Yes

Answer (corrupted): No

Question: What game is being played by the men in the picture?

Answer: Tennis

Answer (corrupted): Badminton

Figure 12: Example of corrupted sample in dataset VQAv2.

Question: Who wrote this book? Answer the question using a single word or phrase.

Answer: Amanda Springer

Answer (corrupted): Michael Johnson

Question: What is the title of this book?

Answer: Behind The Ranks

Answer (corrupted): The Soldier's Tale

Question: Is this a child-care book?

Answer: Yes

Answer (corrupted): No

Figure 13: Example of corrupted sample in dataset OCRVQA.

Question: How tall is the average adult male animal in this picture?

Answer the question using a single word or phrase.

Answer: 15 feet

Answer (corrupted): 3 feet

Figure 14: Example of corrupted sample in dataset OKVQA.

Question: Provide a one-sentence caption for the provided image.

Reference OCR token: IN, TAKES, IPHOLE

Answer: A lot of candy bars including Almondjoy and Take5.

Answer (corrupted): A lot of candy bars including Snickers and KitKat.

Figure 15: Example of corrupted sample in dataset TextCaps.

25961

Category Training Datasets

VQA VQAv2 (Goyal et al., 2017),
GQA (Hudson and Manning,
2019), OKVQA (Marino et al.,
2019), OCRVQA (Mishra et al.,
2019)

MC-VQA A-OKVQA (Schwenk et al.,
2022)

Conversation LLaVA-158K (Liu et al., 2024b),
ShareGPT (ShareGPT, 2023)

Others
(not catego-
rized)

TextCaps (Sidorov et al., 2020),
VG (Krishna et al., 2017), Ref-
COCO (Kazemzadeh et al., 2014;
Mao et al., 2016)

Table 3: Taxonomy of 10 Training Datasets. Note
that no corruption is injected into ShareGPT in all our
experiments as it is a text-only dataset.

via “Answer with the option’s letter from the
given choices directly.”

• Conversation: The MLLM receives no for-
mat prompt. It responds to the question in a
verbose way like a conversation.

• Others (not categorized): The format prompt
of this task falls into none of VQA, MC-VQA
and Conversation. These format prompts only
appear in the training dataset.

Based on the above categories, we list the training
and evaluation datasets along with our taxonomy
in Tables 3 and 4.

B.3 Evaluation Metrics

The ranges for the scores on MME_P and MME_C
are [0, 2000] and [0, 800], respectively. We report
both their original values and the normalized val-
ues (scaled to [0, 100]). All the remaining datasets
have a metric range of [0, 100]. We also report the
average performance by taking the mean scores
(normalized) of the 11 tasks in some experiments.

C More on Effects of Corrupted Data

Due to limited space, Figure 3 only presents a sub-
set of evaluation tasks used in this paper. Here we
provide the results for all tasks in Figure 16.

Category Evaluation Datasets

VQA GQA (Hudson and Manning,
2019), MME (Fu et al., 2024a),
POPE (Li et al., 2023b),
OKVQA (Marino et al., 2019),
TextVQA (Singh et al., 2019)

MC-VQA MMB (Liu et al., 2024c), SEED-
IMG (Li et al., 2023a), SciQA-
IMG (Lu et al., 2022)

Conversation LLaVA-Wild (Liu et al., 2024b),
MM-Vet (Yu et al., 2024)

Table 4: Taxonomy of the 11 Evaluation Datasets.
Note that MME is split into the perception set MME_P
and the cognition set MME_C in our experiment.

D Details on Identifying Important and
Corruption-related Weights

D.1 Identifying Important Weights

Following (Wei et al., 2024), we use the SNIP
score (Lee et al., 2018) to quantify weight im-
portance. For a linear layer with weight matrix
W ∈ Rdout×din , the importance score of weight
Wij is given by:

I(Wij , x) = |Wij · ∇Wijℓ(x;θ)|,

which is the first-order Taylor approximation of
the change in the loss when Wij is set to zero. In
matrix form, this is:

I(W,x) = |W ⊙∇W ℓ(x;θ)|,

where ⊙ denotes element-wise multiplication.
Given a dataset of interest D∗, we aggregate impor-
tance scores over all instances, as:

I(W) = Ex∼D∗ |W ⊙∇W ℓ(x;θ)|.

Intuitively, I(W) measures how critical each
weight is for the model’s predictions on D∗. A
small I(W)ij indicates that setting Wij to zero has
minimal impact on the loss.

Note that in addition to the SNIP score (Lee et al.,
2018), there are other methods (Sun et al., 2023;
Lu et al., 2025) to identify task-specific weights.
However, the ablations on various scores fall out
of the focus of this paper. Therefore, we only use
the SNIP score throughout this paper.

25962

0 20 40 60 80 100

40

60
GQA

0 20 40 60 80 100

500

1000

1500
MME_P

0 20 40 60 80 100

250

300

350
MME_C

0 20 40 60 80 100
25

50

75

POPE

0 20 40 60 80 100

60

65

70
LLaVA-Wild

0 20 40 60 80 100

25

30

35
MM-Vet

0 20 40 60 80 100

50

60

70
MMB

0 20 40 60 80 100

62.5

65.0

SEED-IMG

0 20 40 60 80 100

70

75

SciQA-IMG

0 20 40 60 80 100

45

50

55
TextVQA

0 20 40 60 80 100

40

50

OKVQA

Corrupted Data Removing Data

Figure 16: Performance (y-axis) of LLaVA-1.5 (LLaMA-3.1-8B) under different corruption ratios (x-axis).

D.2 Identifying Corruption-related Weights

A straightforward approach to identify corruption-
related weights is to compute I(W) using a
corrupted dataset and select the highest-ranked
weights. However, some of these weights may
also contribute to correct predictions. To address
this, we adopt the approach proposed in Wei et al.
(2024) to identify weights that are specific to the
corrupted data by leveraging set difference.

Specifically, we choose a small dataset consist-
ing of 1K clean samples as D∗ and compute Ic us-
ing a model trained only with clean data. Similarly,
we choose 1K corrupted data as D∗ and compute
In using a model trained on a dataset with 60%
corruption. For any pair of sparsity levels (p, q),
we define the top-p% important weights Sc(p) for
clean samples as the weights whose Ici,j scores rank
within the top p% of the i-th row of Ic (Sun et al.,
2023):

Sc(p) = {(i, j)|Ici,j is among the top p% of Ici }.

Similarly, we define the top-q% important weights
Sn(q) for corrupted samples as :

Sn(q) = {(i, j)|Ini,j is among the top q% of Ini }.

Finally, the isolated weights S(p, q) are defined as
the set difference between Sn(q) and Sc(p):

S(p, q) = Sn(q)− Sc(p).

This approach isolates weights specific to the cor-
rupted samples while filtering out those that are
also important for producing clean samples.

Choices of (p, q). We begin with small, identical
values for (p, q) and gradually increase them until
we observe a significant performance improvement
compared to the original model. To prevent the
model from collapsing due to the removal of critical
weights essential for correct predictions, we set p
to be slightly larger than q. This ensures that more
of the weights responsible for generating correct,
clean responses are preserved. We find that this
approach leads to better overall performance, with
fewer parameters disabled.

E Details on Identifying Correct Samples
using MLLM

E.1 Details on Scores

Perplexity For a sample x, its perplexity is com-
puted as :

PPL(x) = exp

(
− 1

n

n∑

t=1

log p(xty|x<t
y , xc;θ)

)
,

(1)
where n is the length of the response. It quantifies
how “surprised” or “uncertain” a model is when
generating a response conditioned on an instruc-
tion. A lower PPL indicates higher confidence,
while a higher PPL suggests that the response is
less probable under the model’s learned distribu-
tion. Intuitively, a higher PPL indicates the sample
is more likely to be corrupted according to the mod-
els’ knowledge.

The loss for this sample is log PPL(x).

25963

E.2 Decision Rule and Evaluation
Giving a score (e.g., PPL and Val_PPL) and the
dataset (100K samples with cr = 50%), the follow-
ing steps are performed:

1. Compute the score for all samples in a dataset.

2. Choose threshold τ , starting from the
first to the 100th percentiles of the score.
For each threshold τ , we define: ẑi =
1 (score(xi) < τ) , where 1(·) is the indicator
function. Intuitively, a sample xi is predicted
as clean (ẑi = 1) if its score is lower than the
threshold.

3. Compute the precision (P) and recall (R)
scores on N samples for all thresholds as:

P =

∑N
i=1 1(zi = 1 and ẑi = 1)
∑N

i=1 1(ẑi = 1)
,

R =

∑N
i=1 1(zi = 1 and ẑi = 1)
∑N

i=1 1(zi = 1)
.

4. Draw the precision-recall curve.

E.3 Analysis on Improved Understanding of
Corrupted Samples

To understand why improved understanding of cor-
rupted samples lead to the distribution shift of
p̂(z = 1|xc, x̃y;θ) on corrupted samples, we start
by rewriting p(z = 1 | xc, x̃y) using the Bayes’
rule as

p(z = 1 | xc, x̃y) = 1− p(z = 0 | xc, x̃y). (2)

By Bayes’ theorem, we have

p(z = 0 | xc, x̃y)

=
p(x̃y | z = 0, xc)

p(x̃y | xc)
· p(z = 0 | xc). (3)

Since corruption is uniformly applied to all sam-
ples, the correctness label z is independent of xc,
and thus

p(z = 0 | xc) = p(z = 0).

Substituting this into (2) and (3), we get

p(z = 1 | xc, x̃y) = 1− c · p(x̃y | xc, z = 0)

p(x̃y | xc)
,

where c = p(z = 0). Therefore,

p(z = 1 | xc, x̃y)− 1 ∝ −p(x̃y | xc, z = 0)

p(x̃y | xc)
.

clean 20% 40% 60%
Corruption levels

0.3

0.4

0.5

M
ea

n
pr

ob
ab

ilit
y

p(xy|xc, z = 0;)
p(xy|xc;)

Figure 17: Mean of p̂(x̃y|xc, z = 0;θ) and p̂(x̃y|xc;θ)
of corrupted samples.

This shows that p(z = 1|xc, x̃y) − 1 is pro-
portional to the negative of the ratio between
p(x̃y|xc, z = 0) and p(x̃y|xc). Note that
p(x̃y|xc, z = 0) can be regarded as the MLLM’s
understanding of corrupted samples, which we es-
timate through explicitly prompting the MLLM
similar to Val_PPL as follows:

Template for Computing Conditional

<image>Give me an incorrect answer for the
following question.
{instruction text}

Figure 17 shows the means of the estimated
probabilities p̂(x̃y|xc, z = 0;θ) and p̂(x̃y|xc;θ)
at varying corruption levels over the corrupted
datasets for fine-tuning. We observe a sharp rise in
p̂(x̃y|xc, z = 0;θ) (blue) when transitioning from
a clean model to one trained with slight corrup-
tion (cr = 10%), followed by a slower growth
as the corruption increases further. In contrast,
p̂(x̃y|xc;θ) (orange) exhibits a modest increase
and remains consistently lower than the other prob-
ability.

This shows the MLLM’s understanding of cor-
rupted p̂(x̃y|xc, z = 0;θ) gets significantly im-
proved when only including 10% of corruptions.

F Implementation Details on Baselines

F.1 Scores Used for Sample Selection in
Further Fine-tuning

Let pt(i) = p(xty = i|x<t
y , xc;θ) be the model’s

predicted probability for token i at timestep t.

25964

Entropy The entropy is computed as

H(x;θ) = − 1

T

T∑

t=1

V∑

i=1

pt(i) log pt(i),

which measures the model’s uncertainty, averaged
over tokens.

EL2N Denoting one-hot indicator vector for the
true token xty as

1xt
y
∈ RV , where 1xt

y ,i
=

{
1 if xty = i

0 otherwise
,

where V is the vocabulary size. The L2-norm of
the output error (EL2N) is computed as:

EL2N(x;θ) =
1

T

T∑

t=1

√√√√
V∑

i=1

(
pt(i)− 1xt

y ,i

)2
,

which quantifies the deviation of the predicted prob-
ability distribution from the ground truth, averaged
over tokens.

GradNorm It is defined as the L2-norm of the
gradient vector that is formed by stacking the flat-
tened gradient of each trainable parameter in the
model:

GradNorm(x;θ) = ∥∇θℓ(xy|xc;θ)∥2.

When using these scores for sample selection in
further fine-tuning, we experiment with both higher
and lower values and found that selecting samples
with lower values yields better results (Table 9).

F.2 Noise-robust Loss Functions
The mathematical formulations for the loss func-
tions and their corresponding hyper-parameters
are provided in Table 5. For GCE, a larger q
(q ∈ (0, 1]) reduces the sensitivity of the loss to
over-confident yet incorrect predictions. In the case
of the Phuber CE, hyper-parameter τ (τ > 1) de-
termines the threshold for gradient clipping when
the model produces over-confident but incorrect
predictions, thereby enhancing its robustness to po-
tential data noise. Overall, these loss functions aim
to mitigate the adverse impact of small predicted
probabilities for the target classes (see the loss vi-
sualizations in Figure 18), which often arise due
to corrupted data. To optimize performance, we
conduct a hyper-parameter search for q and τ in
Figure 20.

F.3 Sample Selection Methods
For MentorNet, Co-teaching and JoCoR (Algo-
rithms 1, 2 and 3), we assume access to an esti-
mated noise level α for the dataset and drop certain
amount of data (which is linearly warmed up from
0 to α in Tk steps) according to the defined crite-
rion in the algorithm. Recall the definition of loss
in Sec. 3, we let L(B;θ) be the batch-wise formu-
lation

∑
x∈B

1
|B|ℓ(x;θ). We search for the best Tk

T
in Figure 20.

MentorNet (Jiang et al., 2018) While various
implementations of MentorNet exist, we follow
prior works on learning with label noise (Han et al.,
2018; Wei et al., 2020) and adopt a simple selection
criterion based on the loss computed by the model
itself. Specifically, we retain only samples with
small loss for model training.

Co-teaching (Han et al., 2018) Originally, Co-
teaching utilizes two randomly initialized networks
to generate diverse predictions and mitigate error
accumulation. However, in the era of MLLM, pre-
trained LLMs are required for initialization. To
introduce diversity in model predictions, we train
them using two independently shuffled data-loaders
(with different random seeds). This strategy is also
employed in JoCoR (Wei et al., 2020), which simi-
larly relies on two distinct networks.

JoCoR (Wei et al., 2020) It is originally designed
for image classification tasks, where the consis-
tency loss minimizes the divergence between two
models’ class prediction y for image x:

ℓcls
con(x;θf ,θg) = DKL(pf∥pg) +DKL(pg∥pf),

pf = p(y|x;θf), pg = p(y|x;θg).
For autoregressive sequence generation, the model
predicts a sequence token by token, requiring con-
sistency at each step:

ℓseq
con(x;θf) =

T∑

t=1

DKL(p
t
f∥ptg) +DKL(p

t
g∥ptf),

where
ptf = p(xty|x<t

y , xc;θf),

ptg = p(xty|x<t
y , xc;θg).

This ensures divergence minimization at each de-
coding step rather than a single output. Therefore,
we use ℓcls

con as ℓcon and Lcon(B;θf ,θg) its batch-
wise formulation.

25965

Loss Definition Hyper-parameters

CE − log(p) -
GCE (1− pq)/q q ∈ (0, 1]

Phuber CE

{
− log(p) p > 1

τ

1 + log(τ)− τ ∗ p p ≤ 1
τ

τ > 1

Table 5: Mathematical definition for noise robust loss functions. p denotes the probability of predicting specific
tokens.

Algorithm 1 MentorNet
1: Let θ be the MLLM parameters, T the total number of training steps, D the corrupted dataset, α the

estimated corruption level, η the learning rate, and Tk the warm-up steps;
2: Shuffle training data D;
3: for t = 0, . . . , T − 1 do
4: R(t) = 1−min

{
t
Tk

· α, α
}

;
5: Draw a mini-batch B from the dataset D;
6: Select R(t) · |B| small-loss samples B̂ from B based on ℓ(xi;θ);
7: Update the parameters: θ = θ − η∇θL(B̂;θ);
8: end for

Methods Avg. GQA MME_P MME_C POPE
LLaVA

Wild
MM-Vet MMB

SEED
IMG

SciQA
IMG

Text
VQA

OKVQA

Clean 45.78 47.88 1140.91 257.86 81.75 46.60 14.72 45.19 51.14 60.44 36.61 30.02
None (CE) 36.01 37.06 670.50 217.86 48.25 40.80 15.87 33.25 48.61 55.33 32.21 23.95

Noise-robust loss functions
GCE 38.83 38.23 735.12 254.29 46.56 44.80 19.95 40.98 50.17 60.59 36.32 20.94
Phuber CE 37.61 36.42 776.03 211.43 55.75 44.20 16.10 33.59 49.10 59.44 33.99 19.93

Sample selection (online)
MentorNet 39.18 37.54 882.57 268.57 68.96 36.00 13.44 36.60 48.02 55.18 32.49 25.10
Co-teaching 39.76 36.85 884.94 235.71 69.98 39.20 18.67 37.97 48.18 55.13 32.52 25.20
JoCoR 39.26 36.80 844.99 239.29 70.40 38.10 15.37 36.43 47.61 56.72 32.95 25.29

Further fine-tuning
EL2N 36.88 37.19 646.61 205.36 61.13 35.00 16.01 36.86 48.35 54.73 33.96 24.40
GradNorm 40.32 40.90 863.06 233.57 72.08 43.80 16.42 36.68 49.32 57.86 32.80 21.33
Entropy 30.18 37.92 841.09 253.21 27.87 38.80 16.01 0.26 42.13 46.41 29.20 19.69
PPL 39.26 39.86 913.69 227.14 74.46 41.20 16.70 26.12 46.71 54.54 33.86 24.32
Val_PPL 42.28 43.62 1076.64 226.79 77.19 42.70 18.72 34.97 49.10 55.68 35.02 25.86

Table 6: Comparisons of different corruption-robust strategies at a corruption ratio of 50% on LLaVA-1.5
(Qwen-2.5-0.5B). Here, Avg. refers to the average performance on 11 benchmarks (normalized to 0-100). Best
results are Bold, second best are underlined.

G Extended Related Work on MLLMs

MLLMs integrate the vision modality into
LLMs (Touvron et al., 2023; Chen et al., 2023b; Liu
et al., 2025), enabling the advanced understanding
and reasoning over visual instructions (Liu et al.,
2024b; Bai et al., 2023; Chen et al., 2024b; Gou
et al., 2023, 2024, 2025). Recent VLLM works
can be categorized into three directions, 1) Vision
encoders (Oquab et al., 2023; Chen et al., 2021,
2023a) are enhanced and aggregated for robust

representations (Lin et al., 2023; Li et al., 2024b;
Tong et al., 2024). 2) High-resolution methods
are proposed to overcome the fixed resolution of
pre-trained vision encoders (e.g., 336 × 336 for
CLIP (Radford et al., 2021)), enabling LLMs to
perceive fine-grained visual information (Liu et al.,
2024a; Dong et al., 2024; Huang et al., 2024; Luo
et al., 2024). 3) High-quality instruction data is
essential for VLLMs to generate accurate and well-
formed responses (Deitke et al., 2024; Chen et al.,

25966

Algorithm 2 Co-teaching

1: Let θf and θg be the parameters for two identical MLLMs, T the total number of training steps, D
the corrupted dataset, α the estimated corruption level, η the learning rate, and Tk the warm-up steps;

2: for t = 0, . . . , T − 1 do
3: Shuffle training data D twice with different seeds to get Df and Dg;

4: R(t) = 1−min
{

t
Tk

· α, α
}

;
5: Draw mini-batches Bf and Bg from datasets Df and Dg;
6: Select R(t) · |Bg| small-loss samples B̂g from Bg based on ℓ(xi;θf);
7: Select R(t) · |Bf | small-loss samples B̂f from Bf based on ℓ(xi;θg);
8: Update the parameters: θf = θf − η∇θfL(B̂f ;θf);
9: Update the parameters: θg = θg − η∇θgL(B̂g;θf);

10: end for

Algorithm 3 JoCoR
1: Let θf and θg be the parameters for two identical MLLMs, T the total number of training steps, D the

corrupted dataset, α the estimated corruption level, η the learning rate, λ the weighting co-efficient,
and Tk the warm-up steps;

2: for t = 0, . . . , T − 1 do
3: Shuffle training data D twice with different seeds to get Df and Dg;

4: R(t) = 1−min
{

t
Tk

· α, α
}

;
5: Draw mini-batches Bf and Bg from datasets Df and Dg;
6: Select R(t) · |Bg| small-loss samples B̂g from Bg based on (1− λ)ℓ(xi;θf) + λℓcon(xi;θf ,θg);
7: Select R(t) · |Bf | small-loss samples B̂f from Bf based on (1− λ)ℓ(xi;θg) + λℓcon(xi;θg,θf);

8: Update the parameters: θf = θf − η∇θf

(
(1− λ)L(B̂f ;θf) + λLcon(B̂f ;θg,θf)

)
;

9: Update the parameters: θg = θg − η∇θg

(
(1− λ)L(B̂g;θg) + λLcon(B̂g;θf ,θg)

)
;

10: end for

Methods Avg. GQA MME_P MME_C POPE
LLaVA

Wild
MM-Vet MMB

SEED
IMG

SciQA
IMG

Text
VQA

OKVQA

Clean 55.84 53.78 1299.26 288.93 83.41 62.80 30.05 62.80 63.50 72.98 48.26 35.62
None (CE) 43.71 37.40 792.42 243.93 32.06 59.00 19.54 56.62 62.86 71.64 42.07 29.56

Noise-robust loss functions
GCE 51.11 44.26 1203.31 249.64 76.49 58.30 28.26 56.62 56.55 68.22 45.40 36.79
Phuber CE 44.00 37.25 795.80 234.64 21.00 60.00 24.95 60.22 63.10 72.04 45.50 30.77

Sample selection (online)
MentorNet 47.24 37.75 944.09 249.29 61.47 57.00 24.04 56.53 56.71 73.28 42.62 31.92
Co-teaching 47.70 37.32 805.62 252.50 58.10 60.40 27.71 59.79 60.60 73.82 42.28 32.85
JoCor 45.84 37.46 658.20 221.43 57.53 57.50 24.68 58.59 61.04 72.04 42.67 32.10

Further fine-tuning
EL2N 51.06 42.49 1060.59 265.36 74.88 57.70 23.72 63.83 63.16 72.83 43.11 33.75
GradNorm 49.49 43.60 909.99 303.93 80.27 55.00 24.86 56.44 61.90 70.90 42.95 24.96
Entropy 48.81 42.11 996.08 266.43 78.76 55.50 20.37 54.30 59.33 70.05 42.98 30.45
PPL 46.87 40.17 1126.94 231.79 35.05 57.60 24.86 65.64 63.11 72.63 41.77 29.37
Val_PPL 55.70 52.03 1254.83 287.14 82.66 60.60 27.11 65.29 63.51 72.63 48.21 42.07

Table 7: Comparisons of different corruption-robust strategies at a corruption ratio of 50% on LLaVA-1.5
(Qwen-2.5-3B). Here, Avg. refers to the average performance on 11 benchmarks (normalized to 0-100). Best results
are Bold, second best are underlined.

2024c; Li et al., 2025). This paper is related to the
third directions. However, rather than constructing

high-quality data, we study the effect of corrupted
data on MLLMs and its mitigation.

25967

Methods Avg. GQA MME_P MME_C POPE
LLaVA

Wild
MM-Vet MMB

SEED
IMG

SciQA
IMG

Text
VQA

OKVQA

Clean 59.75 56.94 1479.14 292.50 84.76 65.00 34.08 70.19 66.16 76.30 52.71 40.57
None (CE) 45.56 38.65 765.30 273.57 26.31 55.20 23.49 64.78 65.64 73.72 46.25 34.62

Noise-robust loss functions
GCE 51.34 43.66 1129.36 291.43 68.83 57.70 27.80 57.73 57.15 72.24 49.38 37.34
Phuber CE 47.32 39.73 848.28 269.64 31.47 60.10 28.35 64.78 64.46 73.57 49.04 32.93

Sample selection (online)
MentorNet 48.22 40.98 1055.65 280.36 52.27 54.30 26.88 55.33 57.10 74.02 45.81 35.92
Co-teaching 47.23 38.44 668.22 235.00 60.50 54.30 23.44 65.03 61.66 75.06 45.97 32.31
JoCor 46.73 38.56 633.31 259.64 51.35 53.10 23.12 63.06 61.34 74.67 47.13 37.63

Further fine-tuning
EL2N 50.52 43.96 1046.46 261.43 52.98 57.30 26.42 64.95 64.81 74.62 47.11 38.62
GradNorm 54.69 47.92 1190.76 303.21 84.32 56.20 26.65 65.98 64.91 75.36 48.60 34.20
Entropy 49.71 43.82 1159.33 305.00 42.42 57.20 27.11 61.86 63.09 72.43 45.07 37.72
PPL 54.68 45.52 1305.64 296.79 77.34 53.50 27.48 68.64 64.91 75.56 47.68 38.45
Val_PPL 59.15 52.02 1417.26 307.14 83.19 66.50 32.61 68.38 66.22 76.10 52.02 44.29

Table 8: Comparisons of different corruption-robust strategies at a corruption ratio of 50% on LLaVA-1.5
(Qwen-2.5-7B). Here, Avg. refers to the average performance on 11 benchmarks (normalized to 0-100). Best results
are Bold, second best are underlined.

Models
EL2N GradNorm Entropy

↓ ↑ ↓ ↑ ↓ ↑
Qwen-2.5-0.5B 36.88 28.11 47.07 40.32 30.18 31.67
Qwen-2.5-3B 51.06 30.41 49.49 34.09 48.81 38.01
Qwen-2.5-7B 50.52 23.14 54.69 38.52 49.71 39.98
LLaMA-3.1-8B 47.07 23.32 55.77 39.81 48.60 30.73

Table 9: Further fine-tuning on the bottom (↓) and top (↑) 30% subsets based on EL2N, GradNorm, and
Entropy scores. The reported results represent the average performance. All models are initially fine-tuned on data
with a corruption ratio of cr = 50%.

0.2 0.4 0.6 0.8
p (Prediction Probability)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

 V
al

ue

CE (Cross-Entropy)
GCE (q=0.3)
GCE (q=0.5)
GCE (q=0.7)
Phuber CE (=1)
Phuber CE (=3)
Phuber CE (=5)

Figure 18: Visualization of noise-robust loss func-
tions.

25968

0 20 40

35

40

45
nr=10%

0 20 40
35

40

45

nr=20%

0 20 40

35

40

45
nr=30%

0 20 40

35

40

45
nr=40%

0 20 40

52.5

55.0

nr=10%

0 20 40
52

54

56

nr=20%

0 20 40

52.5

55.0

57.5
nr=30%

0 20 40

52.5

55.0

nr=40%

0 20 40
56

58

60
nr=10%

0 20 40

56

58

60
nr=20%

0 20 40

56

58

60
nr=30%

0 20 40

56

58

60
nr=40%

0 20 40

55

60

nr=10%

0 20 40
55

60

nr=20%

0 20 40

55

60

nr=30%

0 20 40

55

60

nr=40%

Qwen-2.5-0.5B

Qwen-2.5-3B

Qwen-2.5-7B

LLaMA-3.1-8B

GT Val_PPL PPL Val_PPL (Scratch) Clean

Figure 19: Average model performance of models further fine-tuned (or fine-tuned from scratch) on data
from data from different sources. Further fine-tuned models are trained on dataset with various corruption levels
(10%-40%) at first. Results with 20% and 50% corruption are in Figure 7.

25969

0.3 0.5 0.7 0.9
q

35.0

37.5

0.3 0.5 0.7 0.9
q

45

50

0.3 0.5 0.7 0.9
q

47.5
50.0

0.3 0.5 0.7 0.9
q

40

50

1 5 10 15 20
25
30
35

1 5 10 15 20

35

40

1 5 10 15 20
35
40
45

1 5 10 15 20
35
40
45

0.1 0.3 0.5 0.7
Tk/T

38

39

0.1 0.3 0.5 0.7
Tk/T

46

47

0.1 0.3 0.5 0.7
Tk/T

46

48

0.1 0.3 0.5 0.7
Tk/T

35
40
45

0.1 0.3 0.5 0.7
Tk/T

38.5
39.0
39.5

0.1 0.3 0.5 0.7
Tk/T

46

47

0.1 0.3 0.5 0.7
Tk/T

46.5

47.0

0.1 0.3 0.5 0.7
Tk/T

47

48

0.1 0.3 0.5 0.7
Tk/T

38.5

39.0

0.1 0.3 0.5 0.7
Tk/T

45.6

45.8

0.1 0.3 0.5 0.7
Tk/T

40

45

0.1 0.3 0.5 0.7
Tk/T

40

45

GC
E

Ph
ub

er
 C

E
M

en
to

rN
et

Co
-te

ac
hi

ng
Jo

Co
R

Qwen-2.5-0.5B Qwen-2.5-3B Qwen-2.5-7B LLaMA-3.1-8B

Figure 20: Ablations on the choices of hyper-parameters for noise-robust loss functions and sample selection
methods. Average performance are reported. All experiments are conducted on datasets with cr = 50% and best
results are indicated by red dashed lines and reported in Tables 2, 6, 7 and 8

25970

Table 10: Performance of LLaVA-1.5 (Qwen2.5-3B) fine-tuned on clean and corrupted data and further fine-tuned
with the selected clean data, respectively (corrupted data generated by Gemini-2.5-Flash with a corruption ratio
(cr%) of 50%).

Methods Avg. GQA MME_P MME_C POPE
LLaVA

Wild
MM-Vet MMB

SEED
IMG

SciQA
IMG

Text
VQA

OKVQA

Simple fine-tuning
Clean 55.8 53.8 1299.3 288.9 83.4 62.8 30.0 62.8 63.5 73.0 48.3 35.6
cr=50% 36.0 36.1 488.2 271.8 12.4 55.5 18.9 28.4 53.2 63.5 42.0 27.8
Further fine-tuning
PPL (cr=50%) 47.3 46.0 994.7 288.9 61.2 55.4 22.8 47.9 59.6 70.3 44.6 26.8
Val_PPL (cr=50%) 55.0 51.9 1314.7 295.0 84.3 58.4 25.7 57.8 62.6 71.0 48.2 41.9

Table 11: Performance metrics for different models with LLaVA-1.5 (Qwen2.5-3B) across various evaluation
tasks. Metrics include clean and corrupted data scenarios (cr=60%) with specific parameters (p, q) (corrupted data
generated by Gemini-2.5-Flash).

Model % Disabled (p, q) Avg. GQA MME_P MME_C POPE
LLaVA

Wild
MM-Vet MMB

SEED
IMG

SciQA
IMG

Text
VQA

OKVQA

Clean - - 55.8 53.8 1299.3 288.9 83.4 62.8 30.0 62.8 63.5 73.0 48.3 35.6
cr=60% 0 - 31.5 30.9 290 230 20.5 59.7 19.4 9.6 40.4 57.6 36.4 29.1
cr=60% 1.42 (22, 20) 50.2 47.1 1184 262 79.6 57.6 23.4 46.6 62.9 72.2 44.0 26.5

Table 12: Precisions at different recall values (10%-90%) with LLaVA-1.5 (Qwen2.5-3B) (clean or fine-tuned with
cr = 50% corrupted data) when using PPL and Val_PPL to select clean samples (corrupted data generated by
Gemini-2.5-Flash).

Model 10% 20% 30% 40% 50% 60% 70% 80% 90%

Val_PPL (clean) 89.1 84.8 79.7 74.7 70.0 66.6 63.5 60.4 56.7
PPL (cr=50%) 88.7 80.6 70.2 58.8 55.0 54.3 54.1 54.3 54.4

Val_PPL (cr=50%) 96.4 94.0 90.3 86.8 81.7 79.3 76.2 69.8 62.1

Table 13: Performance of LLaVA-1.5 (Qwen2.5-7B) fine-tuned on clean and corrupted data and further fine-tuned
with selected clean data, respectively (corrupted data generated by a weak MLLM with a corruption ratio (cr%) of
50%).

Methods Avg. GQA MME_P MME_C POPE
LLaVA

Wild
MM-Vet MMB

SEED
IMG

SciQA
IMG

Text
VQA

OKVQA

Simple fine-tuning
Clean 59.8 56.9 1479.1 292.5 84.8 65.0 34.1 70.2 66.2 76.3 52.7 40.6
cr=50% 47.8 43.6 1124.7 268.2 72.2 33.4 21.5 51.1 61.0 74.3 44.4 35.0
Further fine-tuning
PPL (cr=50%) 48.4 44.6 1141.5 283.6 79.9 30.0 21.7 58.5 61.6 74.9 43.8 25.1
Val_PPL (cr=50%) 57.2 52.9 1317.7 315.4 85.0 61.0 29.6 62.9 64.4 75.0 49.5 43.5

Table 14: Performance of Qwen2-VL-2B fine-tuned on clean and corrupted data and further fine-tuned with selected
clean data, respectively (corrupted data generated by GPT-4o with a corruption ratio (cr%) of 50%).

Methods Avg. GQA MME_P MME_C POPE
LLaVA

Wild
MM-Vet MMB

SEED
IMG

SciQA
IMG

Text
VQA

OKVQA

Simple fine-tuning
Clean 64.7 61.5 1459.0 375.0 86.2 66.6 46.0 59.9 73.1 75.6 74.5 48.6
cr=10% 64.6 60.5 1528.0 395.0 86.5 68.2 44.5 56.9 72.7 73.5 73.7 47.8
cr=20% 62.9 60.4 1455.0 332.0 84.7 69.7 42.7 51.9 72.8 76.6 72.4 46.7
cr=30% 60.1 58.6 1422.0 261.0 83.9 63.5 40.3 48.0 72.7 75.2 72.3 43.0
cr=40% 58.6 54.7 1454.0 262.0 74.9 67.7 42.8 42.3 72.2 74.0 68.4 42.2
cr=50% 51.1 46.1 1276.0 225.0 53.8 66.0 40.1 24.7 70.3 69.1 62.7 37.0
Further fine-tuning
(PPL) cr=50% 54.0 48.6 1323.0 297.0 58.2 65.8 39.0 32.0 70.9 70.3 67.7 38.3
(Val_PPL) cr=50% 60.8 60.4 1387.9 348.0 86.9 64.3 43.9 40.5 71.7 66.2 73.6 47.9

25971

Table 15: Precisions at different recall values (10%-90%) with Qwen2-VL (clean or fine-tuned with cr = 50%
corrupted data) when using PPL and Val_PPL to select clean samples (corrupted data generated by GPT-4o).

Model 10% 20% 30% 40% 50% 60% 70% 80% 90%

Val_PPL (clean) 86.1 86.1 84.7 83.2 80.6 77.4 72.7 66.5 57.6
PPL (cr=50%) 90.1 80.8 74.3 66.0 61.1 57.7 55.2 55.0 54.8

Val_PPL (cr=50%) 89.6 89.3 90.9 88.6 86.9 85.9 80.6 79.4 66.2

25972

