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Abstract

Encoder transformer models compress infor-
mation from all tokens in a sequence into a
single [CLS] token to represent global context.
This approach risks diluting fine-grained or
hierarchical features, leading to information
loss in downstream tasks where local patterns
are important. To remedy this, we propose
a lightweight architectural enhancement: an
inception-style 1-D convolution module that
sits on top of the transformer layer and aug-
ments token representations with multi-scale
local features. This enriched feature space is
then processed by a self-attention layer that dy-
namically weights tokens based on their task
relevance. Experiments on five diverse tasks
show that our framework consistently improves
general-purpose, domain-specific, and multilin-
gual models, outperforming baselines by 1%
to 14% while maintaining efficiency. Ablation
studies show that multi-scale convolution per-
forms better than any single kernel and that the
self-attention layer is critical for performance.

1 Introduction

Since its introduction, the transformer archi-
tecture (Vaswani et al., 2017) has revolution-
ized the field of natural language processing
(NLP). Encoder-based transformer models such as
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019b), XLNet (Yang et al., 2019), Electra (Clark
et al., 2020), DeBERTa v3 (He et al., 2023), and
ModernBERT (Warner et al., 2024) have demon-
strated impressive performance across a wide range
of NLP tasks. In addition to these general-purpose
models, a number of domain-specific BERT-based
models like BioBERT (Lee et al., 2019), SciB-
ERT (Beltagy et al., 2019), Legal BERT (Chalkidis
et al., 2020), BERTweet (Nguyen et al., 2020) have
emerged, which are further pre-trained on domain-
specific corpora to capture the unique language,
terminology, and stylistic features of various spe-
cialized fields. In parallel, cross-lingual models

like XLM-R (Conneau et al., 2020) and language-
specific models such as BanglaBERT (Bhattachar-
jee et al., 2022) have extended this architecture to
support diverse linguistic settings, including low-
resource languages like Bangla. Despite the emer-
gence of LLMs, fine-tuned encoder models remain
state-of-the-art in non-generative tasks like classifi-
cation and NER (Edwards and Camacho-Collados,
2024; Sun et al., 2023; Chen et al., 2025).

All these encoder models are designed to aggre-
gate all token embeddings into a single representa-
tion, called the [CLS] token, which is later used for
downstream tasks like classification. Although con-
venient, this approach of collapsing an entire text
sequence with multiple aspects into one single em-
bedding can cause information loss (Chang et al.,
2023), particularly when there are short-range de-
pendencies between tokens (Guo et al., 2019; Li
et al., 2021). During experiments, we observed
that the over-reliance on [CLS] token makes the en-
coder models insufficient in capturing fine-grained
contextual nuances or localized cues critical for
tasks like emotion recognition or irony detection
(Fig. 1a). This issue is even more pronounced in
multi-label tasks, which require token-level atten-
tion rather than a single sequence-level summary.

To address these limitations, we propose Incep-
tive Transformers — a lightweight and modular ar-
chitecture that augments a transformer baseline by
stacking an inception-style 1-D convolution mod-
ule on top. Instead of using [CLS]-based pool-
ing, we feed the final hidden states from the base-
line transformer (e.g. ROBERTa or BioBERT) to a
multi-scale feature extraction module inspired by
inception networks. This module employs paral-
lel 1-D convolutional filters with varying kernel
sizes that are designed to recognize local features,
such as key phrases or word combinations that are
indicative of specific classifications. The goal of
the inception module is to incorporate local fea-
tures without sacrificing global context, which is
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Figure 1: Encoder models like DeBERTa over-rely on the [CLS] token, whereas inceptive DeBERTa redistributes
attention dynamically based on task contribution (1a). Experiments show the superior performance of inceptive

models (1b and 1c¢).

achieved by using a residual connection to concate-
nate the original transformer’s hidden states with
the multi-scale features. These enriched features
are then processed by a self-attention mechanism,
which dynamically assigns weights to tokens based
on their task-specific contribution, thus allowing
the model to effectively prioritize relevant tokens.

As an illustration, let us consider the ironic text:

2

“work Wednesday—Sunday. .. #yay #not #moneytho”.

BERTweet fails to identify it as ironic because
the dominant neutral phrase (“work Wednesday—
Sunday”) outweighs the local sarcastic hashtags
when collapsed into a single [CLS] representation.
In contrast, Inceptive BERTweet correctly predicts
irony because its multi-scale convolution and post-
hoc attention redistribute focus toward the localized
cues (‘#yay’, ‘#not’), capturing the contradiction
that signals sarcasm.

Our experiments demonstrate that Inceptive
Transformers consistently outperform both general-
purpose (RoBERTa, DeBERTa v3, Modern-
BERT, XLLM-R) and domain-specific (BERTweet,
BioBERT, CT-BERT, BanglaERT) baselines. On
five different tasks (Bangla and English emotion
recognition, irony detection, disease identification,
and anti-vaccine concern classification), we ob-
served performance gains from 1% to as high as
14 %, with less than 10% inference-time overhead.
Attention maps show that inceptive models redis-
tribute attention from [CLS] toward task-relevant
spans, increasing token coverage and mitigating
over-reliance on any single token.

Major contributions of our work are as follows.

¢ A Novel, Modular Architecture. We introduce
a lightweight, modular, plug-and-play architec-
ture for enriching the contextual representations
of transformer models through a post-hoc multi-

scale feature extraction module that can be inte-
grated into any pre-trained encoder model with-
out costly re-training. To the best of our knowl-
edge, this has not been explored before.

* A Generalizable Framework. We propose a
domain- and backbone-agnostic framework that
can be applied on top of any encoder, includ-
ing general-purpose, domain-specific, and cross-
lingual models, without any model-specific ad-
justments. Furthermore, through comprehensive
evaluations, we show that our inceptive models
perform strongly in four different datasets from
diverse domains and languages — highlighting its
general applicability.

* Rigorous Validation. We validate the effective-
ness of our method through a rigorous empirical
evaluation that includes statistical significance
testing across multiple runs and extensive ab-
lation studies for isolating the impact of each
architectural component.

2 Related Work

Text classification models range from tradi-
tional machine learning approaches like decision
trees (Law and Ghosh, 2022), support vector ma-
chines (SVM), k-nearest neighbors (KNN) (Han-
ifelou et al., 2018), and ensemble learning (Zhu
et al., 2023; Wu et al., 2016), to more advanced
deep learning techniques like RNN and LSTM (Lai
et al., 2015; Onan, 2022). Convolution networks
have also been used (Conneau et al., 2017; Choi
et al., 2019; Yao et al., 2019; Soni et al., 2022), but
they often struggle to capture long-range dependen-
cies in text.

Combining convolution with transformers. Af-
ter the transformer architecture (Vaswani et al.,
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2017) was introduced, many works have combined
convolution with transformers, but these works
mostly focus on vision related tasks (Fang et al.,
2022; Si et al., 2022; Yuan et al., 2023). Appli-
cation on NLP domain remains limited to a few
works (Zheng and Yang, 2019; Wan and Li, 2022;
Chen et al., 2022; Wu et al., 2024) — which mostly
focus on improving a particular transformer model,
like BERT or XLNet. In comparison, we provide a
general architecture capable of improving different
types of transformer models, both domain-specific
and general-purpose.

Modifications of BERT-like models. Several
works modify BERT through architectural or pre-
training adaptations to better suit specific tasks
or domains, including SpanBERT (Joshi et al.,
2020), StructBERT (Wang et al., 2019), and Code-
BERT (Feng et al., 2020). Other works such
as MT-DNN (Liu et al., 2019a) introduce multi-
task learning objectives on top of BERT, while
KnowBERT (Peters et al., 2019) integrates exter-
nal knowledge bases into BERT’s architecture. Our
work is orthogonal to these efforts: instead of modi-
fying the pre-training strategy, we propose an archi-
tectural enhancement that can be directly plugged
into existing BERT-like models.

Encoder vs LLMs. While LLMs have shown
impressive generative capabilities in recent years,
a number of studies demonstrate that encoder
models still perform better on supervised non-
generative tasks like classification and NER. Ed-
wards and Camacho-Collados (2024) compared in-
context prompting with LLaMA/Flan-T5 against
fine-tuning encoder models like ROBERTa on 16
datasets and found that fine-tuned encoder mod-
els performed better. Sun et al. (2023) showed that
even with few-shot prompting and chain-of-thought
reasoning, LLMs underperformed compared to
fine-tuned models like ROBERTa and XLNet in
classification tasks. Chen et al. (2025) found that
encoder models like BioBERT and PubMedBERT
remain state-of-the-art in biomedical domain tasks
like document classification, NER, and relation ex-
traction — significantly outperforming LLMs like
GPT-4 and LLaMA 2 13B.

3 Inceptive Transformer

3.1 Motivation

Transformer-based models rely on token-level em-
beddings derived primarily from self-attention lay-
ers to capture global dependencies and context

within text sequences. In our experiment, we visu-
alized the attention maps of these models in Section
5.4, which show a strong bias in attention towards
the [CLS] token, while intermediate tokens often
receive comparatively lower attention. The [CLS]
token is a weighted aggregation of all token em-
beddings in the sequence, which the model relies
on to represent the entire sequence for classifica-
tion tasks. This bias suggests an underutilization
of contextual and local dependencies, potentially
limiting the model’s ability to effectively capture
fine-grained patterns and hierarchical structures
present in textual data.

Our model is designed to address this gap by in-
corporating convolutional operations, which excel
at capturing local patterns and hierarchical struc-
tures in data (Gu et al., 2018; Li et al., 2022). CNNs5s
are typically not used on textual data due to their
inability to capture long-range dependencies. How-
ever, using convolution makes sense in our model
because it operates on embeddings generated by
a transformer— not on raw text. This allows the
convolutional operations to refine the already glob-
ally contextualized embeddings by emphasizing
fine-grained, local features that might otherwise
be overlooked. Furthermore, instead of using a
single convolution layer with a fixed kernel size,
we use an inception module (Szegedy et al., 2015)
to apply convolutions with multiple kernel sizes to
learn features at different levels of granularity— cap-
turing both token-level patterns and phrase-level
dependencies.

The applicability of our model is not limited
to general-purpose transformers like RoBERTa.
Domain-specific pre-trained models such as
BioBERT, CT-BERT, or BERTweet show similar
attention biases as BERT and RoBERTa, leading to
challenges in capturing local and hierarchical de-
pendencies. By integrating our model’s multi-scale
feature extraction approach, these domain-specific
variants can also be enhanced, improving their abil-
ity to represent diverse patterns within specialized
input data. This versatility makes our model a ro-
bust addition to any transformer-based architecture.

3.2 Model Architecture

The full workflow of our inceptive models is il-
lustrated in Fig.2. The input to our model is pre-
processed text data, which need to be tokenized
using an appropriate pre-trained tokenizer corre-
sponding to the chosen transformer model. Math-
ematically, the input can be represented as X =
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Figure 2: End-to-end architecture of the Inceptive Transformer framework. Output shapes are annotated for each
main component. B : batch size, L : input sequence length, C' : number of classes. In this figure we have used 768
as hidden state dimension of BERT-like transformer models, 32 as output channels for each convolution branch,
and 512 as the target dimensionality of the linear layer in dense block. Wq, Wi, Wy, W are learnable projection
matrices, and d 4 is the dimension of each attention head.

[z1,22,...,21] where L is the sequence length,  th token, and W; e R4 is the j-th row of the filter.

and each z; corresponds to a token from the text.
X is passed to the transformer layer.

3.2.1 Transformer Layer

The first layer of our architecture is a transformer-
based model, such as RoBERTa or BioBERT.
Given input X, the transformer layer generates
a tensor of hidden states H € RP*I*d where
B is the batch size, L is the sequence length,
and d is the hidden state dimension. We denote
Hlb,i,:] = hgb) € RY as the contextual embedding
for the ¢-th token in the b-th input. A dropout layer
is applied to H to prevent overfitting.

3.2.2 Inception Module

The primary task of this layer is to extract multi-
scale local features. The inception module receives
contextual embeddings H generated by the trans-
former and applies parallel convolutional layers
with small kernel sizes k (e.g., k = 2,3,5,7) to
learn features at different granularities. Smaller
kernels (k = 2 or 3) capture fine-grained token-
level relationships, such as modifiers or word pair
dependencies, whereas larger kernels (k = 5 or 7)
capture slightly broader local patterns, such as syn-
tactic or semantic relationships over small phrases.

Each branch of the inception module applies a
1D convolution over the sequence of contextual em-
beddings generated by the transformer. Let the in-
putbe H € RL*4 where L is the sequence length
and d is the hidden size. For a convolution with
kernel size k, each filter has weights W € RF*¢
and a bias term b € R. The output at position i is
computed as:

k—1
Y;=> Wj-Hij+b
=0

where H;; € R?is the embedding of the (i + 7)-

This operation slides across the sequence to pro-
duce a feature map Y € REX¢, where c is the
number of convolutional filters (i.e. output chan-
nels) used in the branch. To preserve the original
sequence length, we apply appropriate padding: for
kernel size 2, we use right padding of 1; for kernel
sizes 3, 5, and 7, we apply symmetric padding.
After the convolution, each branch further pro-
cesses its output using batch normalization to sta-
bilize and accelerate the training process, followed
by a ReLU activation to introduce non-linearity.
Finally, the outputs of all four branches are con-
catenated along the channel dimension to form a
combined feature map C' € RE*XLx(4¢) To pre-
serve information from the original transformer
output, we concatenate H and C' along the feature
dimension to form R € RExLx(d+4¢) Thjs resid-
ual connection ensures that the original features are
retained alongside the multi-scale features. This
combined representation, enriched with both global
and multi-scale local features, is then passed to the
self-attention layer for further processing.

3.2.3 Self-Attention

After the inception module extracts multi-scale fea-
tures, an additional self-attention mechanism is nec-
essary to capture dependencies and relationships
across the enriched feature space R. This ensures
that tokens that contribute the most to the task are
effectively prioritized and selected, allowing the
model to focus on the most relevant features.

Given R € RB*Lxdr the attention mechanism
maps it to query @, key K, and value V:

Q =RWgy, K=RWg, V=RWy
where Wo, Wi, Wy € RIrXda] qp is the en-
riched feature space dimension, and d 4 is the at-
tention head dimension. The attention scores are
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computed as:

. QK"
Attention(Q, K, V') = softmax \%
Vda
Since we use multi-headed attention, the outputs
of multiple attention heads are concatenated and
projected back to the original feature space:

A = Concat(heady, . .., head,)Wo

where Wy € R("d4)xdr g 3 Jearnable projection
matrix and h is the number of attention heads, an-
other tunable hyperparameter. The attention out-
put A € RBXLXdr captures refined dependencies
across both token positions and feature scales.

3.2.4 Adaptive Average Pooling

To reduce the sequence-level representation A to a
fixed-size vector suitable for classification, global
average pooling is applied across the sequence
length. Given the attention output A € RE*Lxdr
we first permute it to RB*?r*L Afterwards, adap-
tive average pooling computes the average over the
entire sequence for each feature channel, regardless
of the input length, by dynamically adjusting the
pooling region. Mathematically:

L
1
Poi=7 E Qb,i,j
Jj=1

where ay; ; is the value of the 7th feature channel at
the jth position for the bth example. This produces
atensor P € RB*4rx1 which is then squeezed to
yield a final pooled representation P € RB*dr,

3.2.5 Dense Block

For further refinement, the pooled representation P
is passed through a dense block consisting of three
sublayers. First, a fully connected layer is used to
reduce the dimensionality by D = PW;+b,; where
W, € Rirxdo b, e R0, and dp is the target
dimensionality (e.g., 512). ReLU activation is used
to introduce non-linearity, and layer normalization
is used to stabilize the output. The output of the
dense block D € RB*4p represents a compact and
refined feature set ready for classification.

3.2.6 Final Classification

The output D is passed to a linear classifier, which
computes logits for each class as O = DWj + by;
where W; € R%*¢ and by € RC. The logits
O € RB*C are interpreted based on the task.

Notation. For brevity, we will refer to our inceptive
models using the convention ¢ —Baseline—n, where
1 signifies ‘Inceptive’, ‘Baseline’ refers to the Pre-
trained Model (PLM) (e.g. RoOBERTa, BioBERT),
and n denotes the number of output channels in
each branch of the inception module. For instance,
iBioBERT-128 is the Inceptive BioBERT model
with 128 output channels per convolution.

4 Experimental Setup

4.1 Datasets

For a robust evaluation, we test our framework on
five tasks from four datasets spanning diverse do-
mains, text lengths, and both multi-class and multi-
label settings. Multi-class tasks include emotion
recognition (Mohammad et al., 2018) and irony de-
tection (Van Hee et al., 2018) from the TweetEval
benchmark (Barbieri et al., 2020), alongside a large-
scale Bengali emotion detection dataset (Faisal
et al., 2024) to evaluate performance on a mor-
phologically rich, low-resource language. Multi-
label tasks include OHSUMED !, a collection of
biomedical journal abstracts, and CAVES (Poddar
et al., 2022), a dataset of anti-COVID vaccine con-
cerns such as side-effects, ingredients, corporate
greed, political motivations, etc. More details on
the datasets can be found in Appendix B.

4.2 Model Training and Evaluation

Each input sequence is tokenized using a model-
specific tokenizer and then passed through the
model to generate logits. For multi-class classi-
fication, the model predicts mutually exclusive
class probabilities using softmax activation and
cross-entropy loss, whereas for binary and multi-
label tasks, it outputs non-exclusive probabilities
with sigmoid activation and binary cross entropy
with logits loss. During backpropagation, gra-
dients were clipped to a maximum norm of 1.0
to ensure numerical stability. The AdamW opti-
mizer (Kingma and Ba, 2014) with weight decay
was used to update the model weights.

The training process was conducted iteratively
over multiple epochs, with a Cosine Annealing
learning rate scheduler. At the end of each epoch,
the model was evaluated on the validation dataset to
monitor key metrics, including accuracy, F1-score,
AUC-ROC (multi-class), AUPR (multi-label), and
inference time. The best model was selected based

'OHSUMED-link
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on accuracy for binary and multi-class classifica-
tion tasks, and F1-score for multi-label tasks. Each
model was run 10 times on each dataset. The mod-
els were trained and evaluated using 40GB A100
GPU. However, all of our models can be run on 16
GB GPUs (e.g. P100). We used the transformer
version 4.48.3.

4.3 Hyperparameters

Table 1: Hyperparameters.

Value
128, 512 (ohsumed)

Hyperparameter

Sequence Length

Batch Size 32

Epochs 12

Learning Rate le-5

Weight Decay le-3, 1e-4 (ohsumed, caves)
Sigmoid threshold 0.5

The hyperparameters used in this experiment
are shown in Table 1. All hyperparameter values
were selected empirically based on validation set
performance.

5 Results

5.1 Comparative Performance

In this section, we compare the performance of the
inception-enhanced models against the baselines.
Multi-class performance comparison (in terms of
accuracy) is shown in Table 2, while multi-label
comparison (F1-score) is shown in Table 3. A
detailed comparison can be found in appendix D,
where we also report precision, recall, AUC-ROC
and AUPR, that also account for class imbalance.
To account for stochasticity, we performed 10 in-
dependent training and evaluation runs for each
model on each dataset, and reported the average
performance on the test set. Performance compari-
son across all runs can be found in Appendix E.

In the task of detecting irony in social media
posts, the domain-specific BERTweet model saw a
2.20% improvement through our inceptive frame-
work, while the inference time increased 1.89% —
highlighting a clear positive trade-off. Similarly,
general-purpose encoder models like RoBERTa,
DeBERTa and ModernBERT also improved by mar-
gins of 2.57%, 6.15%, and 3.90% respectively —
all of which were greater than the inference over-
head incurred. Specifically, Inceptive DeBERTa
performed at a level similar to that of BERTweet,
despite the latter being domain-pretrained.

Table 2: Multi-class performance comparison in test set

Model Accuracy Inference
Time (s)
Irony Detection
BERTweet 82.69 1.59
iBERTweet-16 84.51 1.62
RoBERTa 75.15 1.60
iRoBERTa-32 77.08 1.68
ModernBERT 67.77 1.85
iMB-32 70.41 1.93
DeBERTa v3 77.27 1.89
iDB v3-16 82.02 1.96
Emotion Recognition
BERTweet 83.29 2.83
iBERTweet-64 84.11 2.93
RoBERTa 81.69 2.88
iRoBERTa-16 82.42 3.00
ModernBERT 76.10 3.41
iMB-16 78.70 3.47
DeBERTa v3 83.93 3.40
iDB v3-16 84.16 3.55
Bangla Emotion Recognition

BanglaBERT 69.98 15.65
iBanglaBERT-16 70.74 16.62
XLM-RoBERTa 65.91 15.42
iXLMR-16 66.53 15.77

In comparison, the improvements were mod-
est in emotion recognition, where both Inceptive
BERTweet-64 and Inceptive RoOBERTa-16 achieved
approximately 1% improvement over baselines. A
more substantial gain was observed for Modern-
BERT, where the inceptive variant improved accu-
racy by 3.42%. In Bangla emotion recognition,
Inceptive BanglaBERT-16 improved on its base-
line by 1.08 %, while Inceptive XLM-RoBERTa-16
achieved a 0.94% increase in accuracy over vanilla
XLM-RoBERTa .

On the long-form, multi-label OHSUMED
dataset, our framework delivered its most signifi-
cant improvements. Inceptive BioBERT achieved
an average F1-score of 72.34, which is a 13.92%
improvement over BioBERT that came at a cost
of 9.02% increase in runtime. Other models also
benefited substantially: Inceptive ModernBERT
showed a 12.98% F1-score increase, while Incep-
tive DeBERTa improved by 9.93%. Notably, In-
ceptive RoOBERTa (65.44) performed better than
BioBERT (63.50), which is specifically pre-trained
on biomedical corpora; thus highlighting the gener-

25850



Table 3: Multi-label performance comparison in test set

Model Fl-score Inference
Time (s)
OHSUMED
BioBERT 63.50 53.88
iBioBERT-128 72.34 58.74
BioBERT-Large 73.12 154.00
iBioBERT-Large-128 74.77 158.01
RoBERTa 61.53 67.42
iRoBERTa-128 65.44 74.44
ModernBERT 56.71 72.95
iMB-128 64.07 77.17
DeBERTa v3 55.47 83.27
iDB v3-128 60.98 87.57
CAVES
CT-BERT 74.24 10.27
iCTBERT-16 74.86 10.56
BioBERT-Large 71.00 10.75
iBioBERT-Large-16 72.32 11.02
RoBERTa 71.11 4.67
iRoBERTa-32 72.11 4.78
ModernBERT 63.31 5.01
iMB-32 66.63 5.09
DeBERTa v3 69.05 5.05
iDB v3-32 71.66 5.12

alization capability of our plug-and-play architec-
ture. Furthermore, Inceptive BioBERT performed
at a similar level as BioBERT-large, despite the lat-
ter taking almost 3x as much time to run and requir-
ing significantly more compute power. Nonethe-
less, Inceptive BioBERT also improved by 2.26 %,
confirming the framework’s applicability to larger
models as well.

Finally, our inceptive module demonstrated
consistent gains in the noisy and complex
CAVES dataset as well. BioBERT-large im-
proved by 1.86% whereas CT-BERT-large saw
a gain of 0.84%. The performance uplift was
more pronounced among general-purpose mod-
els: RoBERTa improved by 1.41%, DeBERTa by
3.78%, and ModernBERT by 5.24%.

Overall, our lightweight inceptive framework
has improved every PLM we tested while main-
taining reasonable efficiency. The performance
delta varies depending on the baseline capabil-
ity. General-purpose models like DeBERTa v3
and ModernBERT achieved the most significant
improvements, whereas more capable domain-
specific pre-trained models like CT-BERT and
BERTweet saw modest but consistent gains.

Cross Validation Results

Table 4: 10-fold cross validation results comparison

Dataset Baseline Inceptive
Mean StdDev Mean Std Dev
Emotion 80.80 1.27 81.38 1.19
Irony 77.49 1.20 78.10 1.27
OHSUMED  65.06 1.35 72.57 0.62
CAVES 71.88 0.94 72.86 0.88

We conducted 10-fold cross-validation for both
the baseline and inceptive models across all
datasets except the large-scale Bangla dataset (re-
source constraints). For OHSUMED, we used the
training set; for the other datasets, we combined
the training and validation sets. The mean and stan-
dard deviation of the evaluation scores are reported
in Table 4. Across all datasets, the inceptive mod-
els consistently achieved higher mean accuracy or
F1-scores compared to the baselines. Additionally,
in all but one case (irony detection), the inceptive
models had a lower variance, indicating more stable
performance. These results highlight the robustness
and generalizability of our proposed architecture.

5.2 Performance vs Complexity Trade-off

Inceptive-16
Inceptive-32
Inceptive-64
Inceptive-128
Baseline

85 1

801 | [N | RS

75 1 - .

70{ | FEEE | EEEE oom[ EE

Performance (Accuracy / F1 Score %)

Ohsumed Caves

Emotion Irony

Bangla

Figure 3: Performance comparison of all tested incep-
tive configurations and baseline models

A key hyperparameter of our inceptive models
is the number of output channels in convolution
branches, which we tuned to determine the ideal
inception module configuration in each dataset. To
account for this added architectural complexity, we
have compared the performance of all inception
configurations against the baseline models. The re-
sults presented in Fig. 3 show that even the lowest
performing configuration outperforms the baseline
in all but one dataset, and the average performance
is always higher. This suggests that extensive tun-
ing is not strictly necessary — any selected config-
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uration is likely to yield gain over baseline. This
comparison is a post-hoc analysis performed on the
test set — these results were not used for the best
configuration selection.

A heuristic. For shorter text sequences (emotion
recognition, irony, CAVES) 16 or 32 channels per-
form best, while 128 channels performed best in
OHSUMED only — where the text sequences are
considerably larger. As a general heuristic, we rec-
ommend starting with 16 channels and scaling up
based on input length or label complexity. It also
aligns with the intuition that longer texts benefit
from richer multi-scale features.

5.3 Statistical Significance Testing

Table 5: Wilcoxon Signed-Rank Test Results. BT:
BERTweet, BB: BioBERT, RoB: RoBERTa, MB: Mod-
ernBERT, DB: DeBERTa v3, i: inceptive model.

Dataset Models Gain p-value

. BT, iBT-64 +0.98%  0.00195
Emotion .

MB, iMB-16 +3.42%  0.00195

BT, iBT-16 +2.20%  0.00585

Irony MB, iMB-16 +4.33%  0.00195

DB, iDB-16 +6.14%  0.00195

BB, iBB-128 +13.92%  0.00195

OHSUMED MB, iMB-128 +12.98%  0.00195

DB, iDB-128 +9.93%  0.00195

RoB, iRoB-32 +1.41%  0.00195

CAVES MB, iMB-32 +5.24%  0.00195

DB, iDB-32 +3.78%  0.00195

Bangla XLM, iXLM-16 +0.94%  0.00195

For statistical significance testing, we performed
the Wilcoxon signed-rank test, which is a non-
parametric test and suitable for paired comparison
on the same test set. Each model was run 10 times
for statistical analysis. As shown in Table 5, the
p-value in each test is below the 0.05 significance
threshold. Therefore, we conclude that the gain
achieved are statistically significant.

5.4 Performance Interpretation

The attention maps for both baseline and incep-
tive transformers are presented in Fig. 4. Atten-
tion weights in the baselines are heavily skewed
toward the initial [CLS] token, while the rest of the
tokens receive comparatively negligible attention.
In contrast, the inceptive attention maps highlight
a more balanced distribution of attention weights
across the sequence. Tokens that were overlooked

by transformer-based models, particularly those in
the middle of the sequence, now receive more atten-
tion, reflecting their contextual importance. This is
a direct result of our architectural improvements,
which not only enhance contextual representations,
but also enable the model to weight tokens dynam-
ically based on their contribution to the task.
Disease identification. The OHSUMED dataset
involves long, complex sequences of medical ab-
stracts, where relevant information is dispersed
throughout the text. Mentions of symptoms, treat-
ments, or diagnoses appear in different parts of the
text, each contributing to the prediction of a specific
disease label. As such, it is difficult for the [CLS]
token to capture all these into a single token. In
contrast, multi-scale convolutional branches of our
inception module extract local patterns at varying
granularities across the entire sequence, allowing
the model to capture dependencies between neigh-
boring tokens that may correspond to biomedical
expressions, compound noun phrases, or domain-
specific terminology spread throughout the abstract.
As a result, our inceptive models achieve a signifi-
cant 13% improvement in this dataset.

Irony and emotion detection. Irony is usually
conveyed through specific linguistic patterns or
subtle contextual cues like exaggerated praise or
contradiction between words and context. These
markers hide in nuanced phrasing rather than be-
ing explicitly stated in words — which risks being
diluted or averaged out when compressed into a sin-
gle vector. In comparison, keywords like "happy"
or "angry" strongly signify a particular emotion
and are more likely to surface in [CLS] even with
suboptimal pooling. This is why the [CLS] token
proved to be “more capable” in emotion recog-
nition (where the best-performing baseline was
0.98% worse than inceptive model) compared to
irony detection (+2.20% gain using inception).

5.5 Ablation Study

We perform an ablation study to understand the
contribution of each main component of our frame-
work. The results in Table 6 show that multi-scale
convolution always performs better than a single
convolution branch, which justifies our use of the
inception module. Moreover, there is no single
‘best’ kernel size — different kernel sizes capture
complementary linguistic patterns, and their com-
bination is what enables the model to adapt effec-
tively across diverse domains and tasks. The abla-
tion study also shows that both self-attention and
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Figure 4: Attention received by each token in baseline and inceptive models. Baseline attention maps are extracted
from the self-attention weights of the transformer’s final layer. Inceptive attention maps come from the custom
self-attention layer applied after fusion of transformers’ hidden states with multi-scale inception features. In both
cases they represent token-to-token interaction weights — i.e., how much one token attends to or is influenced by
others when forming the final sequence representation. Attention is visibly skewed towards the initial [CLS] token
in baseline models, whereas inceptive models balance token importance dynamically based on task relevance.

Table 6: Ablation study results for inception module, each convolution branch, self-attention, and dense block

Model Full Single convolution branch No conv No attn No dense
k=2 k=3 k=5 k=17

iBT (Emotion) 84.11 83.82 83.63 83.06 83.79 83.27 83.63 83.51

iBT (Irony) 84.51 83.80 83.42 83.24 83.85 82.61 82.61 82.48

iBB (OHSUMED) 72.34 70.09 69.93 71.11 69.73 67.27 71.54 69.00

iRoB (CAVES) 72.11 71.98 71.68 71.97 71.49 71.50 71.31 71.38

dense block add value, as removing either worsens
performance. Finally, if we remove convolution
entirely, the PLM + self-attention + dense block
combination performs only marginally better than
the baseline PLM, proving that multi-scale feature
extraction is essential.

6 Conclusion

In this paper we presented Inceptive Transformer,
a general convolution-based framework that en-
hances the performance of both general-purpose
transformer models like RoBERTa and domain-

specific pre-trained language models such as
BERTweet, BioBERT, and CT-BERT. Our exper-
iments show statistically significant performance
gains ranging from 1% to 14% while inference
overhead remained less than 10%. Moreover, our
approach consistently delivers strong results across
diverse domains and languages while maintaining
computational efficiency. In future work, we plan
to adapt our model to other tasks (e.g., NER, Q/A)
and architectures (e.g., encoder-decoder models)
and investigate the impact on tasks involving long-
range dependencies such as code classification.

25853



7 Limitations

Dependency on output channels. A limitation
of our architecture is that it requires tuning the
number of output channels in the inception mod-
ule to achieve optimal performance in different
datasets. For example, while an inception module
with 128 output channels works best for BioBERT,
16 (for irony detection) and 32 or 64 (for emotion
recognition) output channels are more suitable for
BERTweet. However, we empirically found that
even the lowest performing inception configuration
outperformed the baseline in all but one case.
Focus on encoder models. We applied our in-
ceptive framework exclusively to bidirectional
encoder-only transformer models; encoder-decoder
models (e.g., TS or BART) were not explored. Ap-
plying the inception module in such generative or
sequence-to-sequence settings may require archi-
tectural adaptations.

Impact on long-range dependencies not tested.
By design, inceptive models are most suitable for
tasks that depend on local features as well as global
features. We have not explored how incorporat-
ing inductive biases would impact classification on
domains dominated by long-range dependencies,
such as code-classification with CodeBERT style
models. This can be an exciting future work.
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B Dataset Class Distributions

Table 7: Dataset statistics. C' : number of classes or
labels; C' : average number of labels per instance (for
multi-label); and L : average token length of each text.

Dataset #Texts C C L

Emotion 5052 4 - 2435

Irony 4,601 2 - 2154

Bangla 80,098 6 - 18.6

OHSUMED 13,929 23 1.66 289.51

CAVES 9921 11 1.16 58.35
Sadness

Optimism

Anger

Figure 5: Class distribution in Emotion Recognition
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Not irony

Figure 6: Class distribution in Irony Detection
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Figure 7: Class distribution in Bangla emotion detection
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Figure 9: Class distribution in CAVES
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Figure 20: Accuracy distribution across 10 runs in

Figure 17: Performance comparison in CAVES Bangla emotion detection

E Comparison across All Runs

Fig. 18, 19, 20, 21, and 22 show the comparison
of baseline pretrained models (BERTweet, XLMR,

BioBERT, RoBERTa) against the inception models 0.74
across all 10 runs. 0.72 - %
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g
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Figure 21: Fl-score distribution across 10 runs in
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Figure 18: Accuracy distribution across 10 runs in Emo-
tion Recognition
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F Attention Maps
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Figure 23: Baseline vs Inceptive BERTweet attention
map (emotion)
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Figure 24: Baseline vs Inceptive RoBERTa attention
map (emotion)
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Figure 25: Baseline vs Inceptive RoBERTa attention
map (CAVES)
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Figure 26: Baseline vs Inceptive XLM-R attention map
(Bangla)

G Stacking Multiple Inception Modules

We implemented a simple variant of our architec-
ture that stacks two inception modules sequentially
— the output of the first inception module is fed into
the second one for further multi-scale refinement.
We tested it on the two datasets where we had most
improvements — irony and OHSUMED - and found
that it performs equally or slightly worse than our
original architecture (but still better than the base-
lines). This is likely due to the additional module
introducing redundant or over-smoothed represen-
tations, which may obscure the fine-grained fea-
tures captured by the first inception layer.

90
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EEl Inceptive (Original)
85 { M Inceptive (Stacked)

84.51

Performance
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Figure 27: Single inception vs 2-stacked inception
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