Efficient Model Development through Fine-tuning Transfer

Rishab Balasubramanian'
1Virginia Tech

Pin-Jie Lin!

fy.liu@mail.toronto.edu

Abstract

Modern LLMs face a major obstacle: each new
pre-trained model version requires expensive
and repetitive alignment. We propose a method
that transfers fine-tuning updates across model
versions. The key idea is to extract the diff

Fengyuan Liu?> Nikhil Kandpal> Tu Vu!
2University of Toronto & Vector Institute
{pinjie,rishbb, tuvu}@vt.edu
nkandpa2@cs. toronto.edu
my fine-tuning m,S
e.g., pretrained instruction-tuned
Llama 3.0 A=m-m. Llama 3.0
.
- 9
i | optional
ﬂlt H fine-tuning
pretrained | ® - m + A T s
Llama 3.1

vector, which is the difference in parameters
induced by fine-tuning, from a source model
version and apply it to the base of a differ-
ent rarget version. We show that transferring
diff vectors significantly improves the target
base model, often achieving performance com-
parable to its fine-tuned counterpart. For ex-
ample, applying the fine-tuning updates from
Llama 3.0 8B to Llama 3.1 8B increases accu-
racy by 46.9% on IFEval and 15.7% on Live-
CodeBench without further training, surpass-
ing Llama 3.1 8B Instruct. In multilingual set-
tings, we also observe accuracy gains relative
to Llama 3.1 8B Instruct, including 4.7% for
Malagasy and 15.5% for Turkish on Global
MMLU. Our controlled experiments reveal that
fine-tuning transfer works best when source
and target models are linearly connected in pa-
rameter space. We also show that this transfer
provides a stronger and more efficient starting
point for subsequent fine-tuning. Finally, we
propose an iterative recycling-then-finetuning
approach for continuous model development,
which improves both efficiency and effective-
ness. Our findings suggest that fine-tuning
transfer is a viable strategy to reduce training
costs while maintaining model performance.!

1 Introduction

Today’s large language models (LLMs) are devel-
oped in two stages: (1) pretraining on massive
corpora with self-supervised learning, and (2) post-
training with alignment steps (Ouyang et al., 2022;
Bai et al., 2022). While this pipeline creates pow-
erful LLMs, it presents a major bottleneck for con-
tinuous development: every new version of a pre-

!Code available at https://github.com/pjlintw/fin
etuning-transfer.

Figure 1: To transfer fine-tuning (e.g., instruction tun-
ing) from a source model version s (e.g., Llama 3.0)
to a target version t (Llama 3.1), we first compute the
diff vector Ay = m/, — mg from version s, where m/,
is the fine-tuned model (instruction-tuned Llama 3.0)
and m is the base model (pretrained Llama 3.0). Then,
we add Ay to the target base model (pretrained Llama
3.1) to approximate the fine-tuned model in version ¢
(instruction-tuned Llama 3.1).

trained model requires repeating expensive post-
training. This challenge is particularly acute in
domain- or language-specific applications, where
the cost of redoing fine-tuning for each base model
update is prohibitive (Qin et al., 2023; Bandarkar
et al., 2025).

In this paper, we explore a method to reduce
post-training costs by transferring fine-tuning up-
dates between different model versions. Specifi-
cally, we propose incorporating the weight updates
from a source model version s to improve a tar-
get model version ¢. Our approach (see Figure 1)
first computes the diff vector Ay = m!, — m from
version s, which represents the difference between
the fine-tuned model m/, (e.g., instruction-tuned)
and its base model ms (pretrained). Intuitively,
A4 encodes the task-specific updates to the model
parameters during fine-tuning, and can be used to
transfer knowledge from the source version s to
the target version ¢. Contrary to prior work (Il-
harco et al., 2023), which focuses on improving
the capabilities of a single model on a specific tar-
get task, we focus on a general-purpose method to

2618

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 2618-2637
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/pjlintw/finetuning-transfer
https://github.com/pjlintw/finetuning-transfer

transfer updates between different model versions
for a variety of downstream tasks. We hypothesize
that models fine-tuned using the same or similar
training data and procedures exhibit linear relation-
ships across versions: m), — mg ~ m} — my. This
suggests that we can approximate the fine-tuned
version m; of the target base model m; without
training: m; &~ m;+A,. The intuition is supported
by linear mode connectivity theory (Mirzadeh et al.,
2020; Frankle et al., 2020), which shows that two
independently trained networks can be connected
by a low-loss path (see Appendix A).

We begin by evaluating the feasibility of our ap-
proach through the transfer of diff vectors across
different versions of open-weight models (Sec-
tion 2). Recycling the fine-tuning updates from
Llama 3.0 yields a 46.9% absolute accuracy im-
provement on IFEval over Llama 3.1 8B, while
also surpassing the performance of Llama 3.1 8B
Instruct without additional training.

Motivated by these results, we conduct a case
study on the development of multilingual models
(Section 3). We observe that diff vectors transfer
facilitates a better understanding of the target lan-
guage. Specifically, transferring weights from a
fine-tuned version of Llama 3.0 Instruct to Llama
3.1 Instruct yields absolute accuracy improvements
of 4.7% for Malagasy and 15.5% for Turkish on the
Global MMLU benchmark (Singh et al., 2024a),
without additional training.

To shed light on when fine-tuning transfer is
most effective, we perform controlled experiments
using OLMo 2’s (OLMo et al., 2024) intermediate
pretrained checkpoints as different model versions
(Section 4). Our results suggest that fine-tuning
transfer is most effective when the source and tar-
get models lie within a linearly connected region
of the parameter space, consistent with linear mode
connectivity (Mirzadeh et al., 2020; Ainsworth
et al., 2023; Wortsman et al., 2022a,b; Frankle et al.,
2020).

Furthermore, we investigate whether the merged
model m; + A; can serve as a computationally ef-
ficient and effective starting point for fine-tuning
(Section 5). Our experiments demonstrate that ini-
tializing fine-tuning with this merged model can
accelerate convergence and improve accuracy com-
pared to training on top of m;. We find that even
when the selected diff vector is suboptimal, fine-
tuning the merged model consistently improves
performance compared to direct fine-tuning, with-
out harming generalization to unseen tasks. This

suggests that fine-tuning transfer can serve as a ro-
bust and effective intermediate step when training
is feasible.

Lastly, we explore a continuous model develop-
ment scenario (in Section 6) in which new model
versions are regularly released. We propose an iter-
ative recycling—then—fine-tuning approach that in-
crementally accumulates fine-tuning updates from
previous versions. In summary, our key contribu-
tions are as follows.

* Introducing an approach for transferring fine-
tuning updates between model versions via
diff vector transfer.

* Demonstrating that this approach can reduce
training costs while maintaining competitive
performance.

* Validating the approach in a multilingual
model development setting, showing im-
proved language-specific performance with-
out retraining.

* Establishing conditions for effective fine-
tuning transfer, particularly when models ex-
hibit linear mode connectivity.

* Proposing a recycling-then-finetuning strategy
to improve both efficiency and performance
in a continuous model development setting.

2 Transferring fine-tuning updates across
model versions

In this section, we explore transferring the weight
changes from a source model version s to a target
model version ¢, denoted 7,_,;, without additional
training. Specifically, we directly merge (add) the
diff vector Ay = m/, — m from version s, which
captures the parameter adaptations from the base
model mg to its fine-tuned counterpart m’, onto
the new base model m; in version ¢, without any
gradient-based training. Our results (Table 1) show
that fine-tuning updates can be effectively trans-
ferred across model versions, as m; + A, often
performs comparably to its fine-tuned counterpart

2.1 Experimental setup

We conduct experiments on various open-weight
models, including Llama (Dubey et al., 2024),
OLMo (OLMo et al., 2024), and Tiilu (Lambert
et al., 2024). Throughout this work, we ensure that

2619

Model GSMS8K MATH ARCc: GPQA MMLU IFEval HE+ MBPP+ LCB BCB Avg.
Llama 3.0 8B Instruct 81.1 28.8 82.4 31.5 64.9 76.6 56.7 55.6 14.0 6.8 498
Llama 3.0 8B 55.6 17.3 79.7 223 66.7 34.5 31.1 51.3 0.0 6.1 36.5

+ Az 82.8 44.7 83.0 259 70.0 76.6 62.8 55.3 158 128 53.0
Llama 3.1 8B Instruct 86.5 50.3 83.8 313 72.9 80.5 61.0 54.8 160 149 552
Llama 3.1 8B 56.6 19.3 79.2 21.9 66.8 36.4 29.9 519 0.4 54 368

+ Az 79.8 29.9 82.9 32.6 65.1 83.3 555 56.6 16.1 10.1 512

Table 1: Fine-tuning transfer significantly improves the performance of the target base model across various
tasks, achieving results comparable to its fine-tuned counterpart in many cases. Here, A3 and A3 ; represent
the diff vectors between Llama Instruct and Llama for versions 3.0 and 3.1, respectively. Notably, adding the diff
vector A from a different model version can effectively transform a non-instruction-tuned model (e.g., Llama
3.0 or Llama 3.1) into one that follows instructions well (Llama 3.0 + A3 1 or Llama 3.1 + A3) without further
training. Additional results for OLMo and Tiilu can be found in Appendix B.2, where we additionally find that
advanced LLM capabilities, attained through alignment tuning stages such as Supervised Fine-Tuning (SFT), Direct
Preference Optimization (DPO), or Group Relative Policy Optimization (GRPO), can be successfully transferred

across different model versions.

our source and target models are of the same archi-
tecture. We provide additional cross-architecture
transfer results in Appendix B.3 and leave further
research on cross-architecture recycling as future
work. Our study explores both transfer directions:
from an older model version to a newer one (re-
cycling) and from a newer version to an older one
(backporting).

Recycling can save training time and computa-
tional resources, while incorporating post-training
capabilities into the newer pretrained model. Con-
versely, backporting is beneficial when the older
base model is better optimized for a specific use
case (e.g., a particular language), allowing the user
to take advantage of the new fine-tuning improve-
ments while maintaining optimization and com-
patibility.” We emphasize that our goal is not to
achieve state-of-the-art results, but instead to assess
the feasibility of transferring fine-tuning updates
between model versions.

We evaluate the merged model m; + Ag on
a diverse set of benchmarks, including general
knowledge with MMLU (Hendrycks et al., 2021a),
math with GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021b), reasoning with
ARCc (Clark et al., 2018) and GPQA (Rein et al.,
2024), instruction-following with IFEval (Zhou
et al., 2023), code generation with HumanEval+
(HE+ in Table 1) and MBPP+ (Liu et al., 2023),
LiveCodeBench (Jain et al.,, 2024), and Big-
CodeBench (Zhuo et al., 2024) (LCB and BCB
in Table 1 respectively). We compare its perfor-

In software development, backporting refers to the pro-
cess of adapting features or updates from a newer version of a
software system or component for use in an older version.

mance to that of directly fine-tuned m; (i.e., mf‘/).3
See Appendix C for evaluation details.

2.2 Results and discussion

Transferring fine-tuning substantially boosts
the target base model’s performance: Table 1
shows our results when transferring fine-tuning
(i.e., instruction tuning) updates between Llama
3.0 and Llama 3.1. First, we note that Llama 3.0
Instruct consistently performs better than Llama
3.1 (and vice versa). This highlights that most
capabilities of the instruction-tuned model arise
post-training. Here, we attempt to transfer such
capabilities between model versions, and thus by-
pass the alignment stage. Strikingly, adding the diff
vector A, from a different model version can ef-
fectively transform a non-instruction-tuned model
(e.g., Llama 3.0 or Llama 3.1) into one that follows
instructions well (Llama 3.0 + A3 1 or Llama 3.1
+ As,). For example, our approach yields 42.1%
and 46.9% absolute accuracy improvements on the
instruction-following benchmark IFEval over the
base versions of Llama 3.0 and Llama 3.1, respec-
tively. Large gains are also observed across the
board on math, code, and reasoning benchmarks,
with an average improvement of 16.5% for Llama
3.0 and 14.4% for Llama 3.1.

These results suggest that advanced knowledge
and instruction-following abilities can be efficiently
transferred between model versions without further
training. In general, Llama 3.0 benefits more from

SFor evaluating HumanEval+ and MBPP+ we use
EvalPlus (Liu et al., 2023), and the official evaluation li-
braries for LiveCodeBench and BigCodeBench. All other
tasks are evaluated using the lm-evaluation-harness li-
brary (Gao et al., 2024).

2620

the backported diff vector Az from version 3.1
than Llama 3.1 does from recycling version 3.0’s
diff vector As .

Transferring fine-tuning can achieve perfor-
mance comparable to the fine-tuned model:
Our results demonstrate that the merged model
m; + Ay can perform on par with its fine-tuned
counterpart m; across various tasks. This is partic-
ularly true for Llama 3.0 + Aj 1, which matches
or surpasses Llama 3.0 Instruct on eight out of
ten tasks we evaluated. Interestingly, Llama 3.1
+ Aj outperforms LLama 3.1 Instruct on four
out of the ten benchmarks. This is a testament to
the diff vector’s ability to encode advanced reason-
ing and instruction-following capabilities. Overall,
our results suggest that fine-tuning transfer pro-
vides an effective and extremely low-cost method
to improve model performance when training is
prohibitively expensive.

Transferring fine-tuning can induce step-by-
step reasoning: Interestingly, we observed that
transferring fine-tuning updates consistently shifts
the target base model’s answers from direct re-
sponses to step-by-step reasoning (Appendix B.1).
This emergent reasoning behavior appears after
adding the diff vector and aligns with the accu-
racy improvements on GSM8K and MATH bench-
marks.

3 Efficient multilingual model
development

Motivated by our results in Section 2, we now turn
toward applying our fine-tuning transfer approach
in a multilingual model development setting. We
focus exclusively on a recycling scenario, where
our aim is to transfer the language-specific instruc-
tion tuning updates from an older model version to
a newer one.

For language-specific instruction tuning, we
fine-tune an instruction-tuned model rather than
a pretrained one. This approach aligns with the
common practice of using an instruction-tuned
English or multilingual model as the foundation
when developing language-specific models. A
key challenge in this setting is that state-of-the-art
LLMs often include multilingual data in pretrain-
ing and instruction tuning, which makes it unclear
whether language-specific fine-tuning is still neces-
sary. How effective is our recycling approach when
applied to a multilingual instruction-tuned model?

Model Malagasy Sinhala Turkish
Llama 3.0 8B Instruct 23.1 23.3 30.8
+FT 30.8 29.0 43.2
Llama 3.1 8B Instruct 27.6 33.0 27.7
+ A3z 323 323 43.2

Table 2: Recycling fine-tuning updates improves multi-
lingual performance on Global MMLU without retrain-
ing, yielding a 4.7% and 15.5% absolute improvement
for Malagasy and Turkish, respectively, compared to
Llama 3.1 8B Instruct. Ag o represents the diff vector
between Llama 3.0 Instruct and its monolingual fine-
tuned (FT) version.

Our results show that recycling fine-tuning remains
effective in this scenario, as long as the target base
model is outperformed by the fine-tuned model of
the source version.

3.1 Experimental setup

We fine-tune Llama 3.0 Instruct (my) separately on
language-specific instruction tuning data for three
languages: Malagasy, Sinhala, and Turkish. We use
the Aya dataset (Singh et al., 2024b) for Malagasy
(14.6K examples) and Sinhala (14.5K examples),
and the InstrucTurca dataset (Altinok, 2024) for
Turkish (16.7K examples).4 Each model is trained
for 30K training steps with a learning rate of 5Se-6
and a batch size of 8, using 4 NVIDIA A100-80G
GPUs.?

After training on each language, we compute the
diff vector Ay = m/, — mg and add it to Llama 3.1
Instruct m;. We simulate a low-resource setting
and do not perform any additional training with
language-specific data. The merged model m; +
Ay is evaluated against the base model m; on the
Global MMLU benchmark (Singh et al., 2024a).

3.2 Results and discussion

Transferring fine-tuning is effective for develop-
ing multilingual models: Our results in Table 2
demonstrate the benefits of reusing fine-tuning up-
dates in multilingual model development. For
Malagasy and Turkish, transferring the diff vector
from Llama version 3.0 to 3.1 results in significant

*To simulate a low-resource setting, we sampled 6.5% of
the original InstrucTurca dataset, which contains 2.58 million
examples, resulting in approximately 16.7K examples.

>We use the AdamW optimizer with a linear scheduler
and a warmup ratio of 0.03. We disable dropout and exclude
weight decay for embeddings. The sequence length is 2048.
We use open-instruct (Lambert et al., 2024) for training and
Im-evaluation-harness (Gao et al., 2024) for evaluation.

2621

accuracy improvements (4.7% and 15.5%, respec-
tively) over Llama 3.1 8B Instruct. Our recycling
approach performs better than the fine-tuned Llama
3.0 Instruct model for Malagasy (1.5% accuracy
improvement) and maintains similar performance
for Turkish.

On the other hand, for Sinhala, recycling fine-
tuning offers no advantage, as Llama 3.1 Instruct al-
ready outperforms the previously fine-tuned Llama
3.0 Instruct. However, even in this case, recycling
does not significantly reduce performance.

4 When is fine-tuning transfer effective?

Having demonstrated the effectiveness of fine-
tuning transfer, we now conduct controlled experi-
ments to better understand when this approach is
most effective. At a high level, we treat different
checkpoints of a pretrained model as distinct model
versions. We then fine-tune these model versions
on the same data and assess the impact of transfer-
ring fine-tuning updates between them. Our results
reveal that fine-tuning transfer is most successful
when the source and target models are close within
a linearly connected region of the parameter space,
consistent with linear mode connectivity. We pro-
vide further theoretical analysis in Appendix A.

4.1 Experimental setup

We conduct experiments with the publicly available
intermediate checkpoints of OLMo 2 7B.® The base
OLMo 2 model was trained in two stages: (1) a gen-
eral web-based pretraining stage (stage 1), and (2) a
mid-training stage (stage 2) using high-quality web
data and domain-specific data to enhance STEM-
related capabilities. We select five checkpoints:
M (early-stage 1, at 300K steps), Mo (mid-stage
1, at 600K steps), M3 (end-stage 1, at 929K steps),
My (mid-stage 2, at 6K steps), and M (end-stage
2, at 12K steps). Each M; is treated as a distinct
model version. We investigate both transfer sce-
narios: (1) recycling (TMiHMj,i < 7), and (2)
backporting (Tat,;—am,,J >).

Due to our limited computational resources, su-
pervised fine-tuning with a large instruction tuning
dataset would be prohibitively expensive. We there-
fore fine-tune all model versions using a subset of
the math reasoning instruction tuning data from
Tulu 3, which includes Tiilu 3 Persona MATH,

6https ://huggingface.co/allenai/OLMo-2-1124-7
B

./\/l1 Mz ./\/lg M4 MB

132 194 244 645 655

+ Aq 266 320 275 19.6

+ Ay 19.0 398 259 173

+ Aj 143 250 68.6 70.3

+ Ay 11.8 18.0 22.6 77.1
+ Ajy 119 16.0 24.0 729

FT(M;) 45.1 507 604 757 755

Table 3: GSMS8K accuracies indicating that more pow-
erful models are better at leveraging transferred fine-
tuning. Effective use of transferred fine-tuning only
emerges once the target base model reaches a certain
level of capability. Furthermore, fine-tuning transfer
works best when the source and target models are close
within a linearly connected region of the parameter
space. Here, M represents different intermediate pre-
trained checkpoints of OLMo 2 7B (with smaller values
of 7 indicating earlier checkpoints), and A; refers to the
diff vector resulting from the fine-tuning of version <.
FT(M;) denotes applying fine-tuning directly to M.
See Table 15 in Appendix D for MATHS500 results.

GSM, and Algebra (220K examples total), follow-
ing the training procedure described in Section 3.1.
We evaluate our models on GSM8K and the
MATHS00 subset (Hendrycks et al., 2021b) of the
MATH dataset. These datasets are selected because
fine-tuning on Tiilu 3’s math reasoning data signif-
icantly improves performance on them, allowing
for a clearer analysis of the impact of transferring
fine-tuning updates between model versions.”

4.2 Results and discussion

More powerful models are better at leverag-
ing transferred fine-tuning: Our results in Ta-
ble 3 indicate that stronger models are more ef-
fective at leveraging transferred fine-tuning up-
dates. While transferring fine-tuning can improve
performance for M1, Ms, and M3, the merged
models M; + A; (A; denotes the diff vector
from model version M, j # 1) still fall signif-
icantly short of their fine-tuned counterparts, de-
noted FT(M;). On GSM8K, the accuracy gaps
between the best M; + A and FT(M;) are 26.1%,
24.1%, 20.6% for M7, My, and M3, respectively.
In contrast, for My, this gap narrows to 2.8%.
Notably, recycling fine-tuning from My to M5
(i.e., M5 + Ay) surpasses fine-tuning directly on
M (FT(M5)), achieving 1.6% accuracy improve-

"For evaluation, we use the OLMES library (Gu et al., 2024).

2622

https://huggingface.co/allenai/OLMo-2-1124-7B
https://huggingface.co/allenai/OLMo-2-1124-7B

ment (77.1% vs. 75.5%). Similar trends are ob-
served on MATH500. This pattern suggests an
emergent ability—effective use of transferred fine-
tuning only emerges when the target base model
is sufficiently strong. In other words, the benefits
of transferring fine-tuning only become significant
beyond a certain level of capability.

Fine-tuning transfer works best when models
are close in the parameter space: Our results
also suggest that fine-tuning transfer is most effec-
tive when the source and target models are closely
connected in the parameter space. On both GSM8K
and MATHS500, models M7 and M benefit more
from Ag than from Ay or As. Similarly, M, and
M gain more from Az than from A; or As. Over-
all, My, Ms, and M3 form a mutually beneficial
group, as do M, and Ms5. However, transfer-
ring between these two groups can degrade per-
formance. Specifically, M1, My, and M3 do not
benefit from Ay and As, while My and M5 typi-
cally benefit only from As3.®

5 Fine-tuning transfer as a starting point
for further fine-tuning

So far, we have explored a scenario where fine-
tuning updates are transferred between model ver-
sions without additional fine-tuning. We now
switch gears to investigate whether the merged
model m; + A, can serve as a stronger and more
computationally efficient starting checkpoint for
further fine-tuning. We conduct controlled experi-
ments comparing two approaches: fine-tuning the
merged model m; + A; versus fine-tuning m; di-
rectly. Our results demonstrate that initializing
fine-tuning with m; + A, often leads to faster con-
vergence and higher performance on both seen and
unseen tasks. This suggests that fine-tuning transfer
can be a useful intermediate step when additional
training is feasible. We refer to this approach as
“transferring-then-finetuning”.

5.1 Experiment setup

We follow the training procedure outlined
in Section 3.1. For evaluation, we use
GSMS8K and MATHS500, along with an additional
dataset to assess how well our transferring-then-
finetuning approach generalizes to the unseen task
GPQAD;amona (Rein et al., 2024).

8The only exception is M benefiting from M; and Mo
on MATHS500.

5.2 Results and discussion

My Mo M3 My Ms

13.2 194 24.4 64.5 65.5
+A; — FT 56.9,3; 62.8.305 7784505 78.64500
+ AZ — FT 50-1+31.1 62~7+22.«J 78-6+527 78~7+01.4
+ AS — FT 48~5+14.2 57'6+32.6 77-6+9.u 77'1+6.8
+ A4 — FT 482,54 56.7,55; 63.7.4, 77.04,
+ A5 - FT 47.6,55; 55.6,95 63.5,505 74.6,;

FT(M;) 45.1 50.7 60.4 75.7 75.5

Table 4: GSMS8K accuracies showing that fine-tun-
ing transfer provides a stronger starting point (i.e.,
M; + Aj) for further fine-tuning (FT). Numbers in sub-
script indicate improvement over the baseline without
fine-tuning. Here, M represents different intermediate
pretrained checkpoints of OLMo 2 7B (with smaller val-
ues of ¢ indicating earlier checkpoints), and A; refers to
the diff vector resulting from the fine-tuning of version
i. FT(M,) denotes applying fine-tuning directly to M.
See Table 16 in Appendix E for MATHS00 results.

Transferring-then-finetuning can substantially
boost performance: Our results are summarized
in Table 4. Transferring-then-finetuning offers
significant improvements over our vanilla trans-
fer approach (without additional fine-tuning) on
both GSM8K and MATH500. On GSMSK, the
largest accuracy improvements are 36.4%, 39.6%,
41.1%, 52.7%, and 61.4% for My, Mo, M3, My,
and M, respectively. The benefits are most pro-
nounced for weaker base models (M1, M5, and
M) across all diff vectors, as well as for stronger
base models when paired with a weak diff vector
(e.g., ./\/l5 + Al).

Interestingly, fine-tuning also helps bridge the
performance gap between the merged models M; +
Aj (j # 1) for each base model M;. For example,
fine-tuning dramatically improves the performance
of M5 + A1 by 59% and Mj5 + Ay by 61.4%,
closing the gap with the fine-tuned versions of M3
+ Aj. This reduces the need to pre-select the best
diff vector when multiple choices are available.
Importantly, transferring-then-finetuning generally
outperforms standard fine-tuning regardless of the
diff vector used.

Transferring-then-finetuning can offer faster
convergence: Figure 2 shows that using the
merged model M; + A; as the initial checkpoint
improves training efficiency. Specifically, M; +
A not only converges significantly faster than M;
during fine-tuning but also reaches a higher peak
accuracy on GSMS8K. Overall, our results suggest

2623

70

60

50

40

Accuracy

30

20

0 5000 10000

15000

20000 25000 30000

Number of finetuning steps

Ms
80

75

70

Accuracy

65

60

0 5000

10000 15000 20000 25000 30000

Number of finetuning steps

Figure 2: GSMB8K performance showing that fine-tuning transfer provides a more computationally efficient starting
point (i.e., M; + Aj;) for further training. Here, M represents different intermediate pretrained checkpoints of
OLMo 2 7B (with smaller values of ¢ indicating earlier checkpoints), and A refers to the diff vector resulting from
the fine-tuning of version j. Additional results for M, Mas, M, can be found Appendix E.

that transferring-then-finetuning is a cost-effective
approach that reduces the number of fine-tuning
steps, thereby improving training efficiency.

Transferring-then-finetuning does not nega-
tively impact model generalization: As shown
in Table 5, this approach attains strong zero-shot
generalization on the unseen task GPQAp;;monds
comparable to standard fine-tuning. These results
suggest that transferring-then-finetuning does not
lead to overfitting, demonstrating its broad applica-
bility across diverse tasks.

6 Iterative recycling-then-finetuning for
improved performance and efficiency

Building on the insights from our previous ex-
periments, we now explore a continuous model
development setting in which new versions of a
pretrained model are regularly released. At the
core of our approach is an iferative recycling-then-
finetuning strategy that incrementally incorporates
fine-tuning updates, i.e., diff vectors, from past
model versions. Instead of applying only the lat-
est diff vector to the new base model, we recy-
cle previous diff vectors iteratively. Specifically,
the diff vector at the current model version is car-
ried forward to the next for subsequent fine-tuning.
Our experiments show that this iterative recycling
approach consistently improves both training effi-
ciency and model performance.

6.1 Iterative recycling-then-finetuning

We treat the five intermediate checkpoints of OLMo
2 T B—My, Mo, M3, My, M5 (described in Sec-

Ml MQ Mg M4 M5
23.7 24.2 23.2 26.3 25.3
+A; = FT 2530 25.2,, 333, 25845
+ Ay - FT 278, 253,00 30.8, 27.3.5,
+ A3 —» FT 27.8,; 27.8,; 237,05 27.3,s,
+Ay — FT 248,, 24.8.,; 263, 2424,
+As; — FT 2275, 26.8,, 23.2,, 27.8.
FT(M,) 25.8 26.8 26.8 19.2 26.3

Table 5: GPQAp;,mond accuracies showing that fine-
tuning transfer provides a stronger starting point (i.e.,
M; + Aj) for further fine-tuning (FT), and transferring-
then-finetuning does not negatively impact model gen-
eralization to unseen tasks. Numbers in subscript indi-
cate improvement over the baseline without fine-tuning.
Here, M, represents different intermediate pretrained
checkpoints of OLMo 2 7B (with smaller values of @
indicating earlier checkpoints), and A; refers to the
diff vector resulting from the fine-tuning of version j.
FT(M;) denotes applying fine-tuning directly to M.

tion 4.1) as different model versions of the pre-
trained OLMo 2 model. Our iterative recycling-
then-finetuning algorithm, outlined in Algorithm 1,
works as follows: At each iteration 7, we first apply
the most recent diff vector, Aﬁt_e{, to the new base
model M, and then further fine-tune the result-
ing model. Next, we compute a new diff vector
between the fine-tuned model and the current base
model M;. This new diff vector is then carried
forward to the next model version for fine-tuning
in the subsequent iteration.

We refer to our iterative recycling-then-
finetuning approach as A“¢" and compare it to
A" the direct recycling-then-finetuning approach

2624

M3 M4 MB
24.4 64.5 65.5
+ Ad’iT — FT 62-7+38.3 77-6+13_1 77-0+11.5
—+ A’ite?“ — FT 63-4+39.0 77-4+12.9 78'6“3'1
FT(M)) 604 757 755

Table 6: Both iterative (A®€") and direct (A%") re-
cycling-then-finetuning approaches significantly boost
GSMSK performance, surpassing standard fine-tuning
without recycling (FT(M)). Numbers in subscripts in-
dicate improvement over OLMo 2 7B checkpoints. At
a high level, A¥°" gradually incorporates fine-tuning
updates, i.e., diff vectors, from previous model versions,
while A%" directly applies the diff vector from the lat-
est model version to the current model. Results for M1
and M are omitted as these models remain identical
across the two approaches. See Figure 4 in Appendix F
for additional results.

as described in 5. We follow the training procedure
outlined in Section 3.1.

6.2 Results and discussion

Iterative recycling-then-finetuning significantly
improves performance: Table 6 compares the
performance of two recycling approaches: it-
erative recycling-then-finetuning (A”¢") and di-
rect recycling-then-finetuning (A%"). Both ap-
proaches lead to significant performance improve-
ments across model versions on GSM8K, with
larger gains observed in earlier versions. Both ap-
proaches outperform the standard fine-tuning base-
line (without recycling) by a substantial margin.
In general, A”¢" performs similarly to or better
than A%" across all model versions. These results
suggest that in scenarios where the base model is
continuously updated, adopting an iterative recy-
cling strategy is beneficial and does not result in
error propagation.

7 Related work

Fine-tuning transfer: Prior work has studied
how to reuse fine-tuning updates on a fixed base
model to improve generalization across tasks, do-
mains, and languages. This includes full-model
adaptation (Phang et al., 2018; Pruksachatkun
etal.,2020; Vuetal., 2020, 2021; Aghajanyan et al.,
2021) as well as parameter-efficient modules such
as adapters (Pfeiffer et al., 2021; Poth et al., 2021),
soft prompts (Vu et al., 2022b,a; Su et al., 2022;
Asai et al., 2022), and LoRA matrices (Huang et al.,

2024; Zadouri et al., 2024; Ostapenko et al., 2024);
see Yadav et al. (2024a) for a comprehensive sur-
vey. These methods typically assume a shared base
model and focus on transferring capabilities across
tasks or domains. Similarly, model merging com-
bines multiple task-specific models based on the
same model to create a more powerful model (II-
harco et al., 2023; Yadav et al., 2023; Wang et al.,
2024a; Ramé et al., 2024; Yu et al., 2024; Yadav
et al., 2024b; Ahmadian et al., 2024; Bandarkar
et al., 2025). Recent work also extrapolates RLHF
updates back to the base model (Zheng et al., 2024;
Lin et al., 2025). In contrast, our work focuses
on transferring fine-tuning updates across differ-
ent model versions, addressing the challenge of
frequent model upgrades in LLM development.

Cross-model fine-tuning transfer: Several stud-
ies investigate transferring fine-tuning across dif-
ferent model architectures, primarily focusing on
lightweight modules in non-instruction-tuned set-
tings (Lester et al., 2022; Su et al., 2022; Wang
et al., 2024b; Fleshman and Van Durme, 2024,
Echterhoff et al., 2024).

Closely related to our work, Qin et al. (2023)
study recyclable fine-tuning in a continual domain
adaptation setting from the BERT (Devlin et al.,
2019) era, where fine-tuning updates from domain-
adapted checkpoints are reused to adapt to new
domains. Other efforts aim to reuse weights across
divergent model architectures through duplica-
tion (Chen et al., 2022), progressive stacking (Gong
et al., 2019), or parameter merging (Wang et al.,
2023). While these works reuse fine-tuning up-
dates across domains, skills, or architectures, our
work focuses on transferring full fine-tuning up-
dates across different versions of both pretrained
and instruction-tuned LLMs. This enables efficient
model development even when the underlying mod-
els differ in pretraining scale or alignment steps.
We evaluate both recycling and backporting scenar-
i0s. Our approach complements prior work, and
combining these directions presents a promising
avenue for future research.

8 Conclusion

Our study demonstrates that fine-tuning transfer
offers a practical approach to mitigate the ineffi-
ciencies of frequent model updates. By applying
diff vectors from a fine-tuned source model ver-
sion to a different target model version, we achieve
substantial performance improvements without the

2625

need for full fine-tuning. In a multilingual context,
this approach can significantly boost performance
on target-language tasks, offering an efficient so-
lution for language-specific fine-tuning. Through
controlled experiments, we show that fine-tuning
transfer is most effective when the source and tar-
get models are linearly connected in the parameter
space. Furthermore, this approach can offer a more
robust and computationally efficient starting check-
point for further fine-tuning. Taken together, we
hope that our work will spur more fundamental
research into the efficient development of modern
LLMs.

Limitations

Our controlled experiments focus on evaluating
supervised fine-tuning as a post-training method,
using math reasoning instruction data. However, su-
pervised fine-tuning is only one part of the broader
post-training process. Modern LLMs often undergo
multiple post-training steps, including reinforce-
ment learning with human feedback (RLHF), pref-
erence optimization, or training-then-merging tech-
niques. It is also important to evaluate a broader
range of downstream tasks to better assess gen-
eralization across different LLM capabilities. In
addition, the impact of model shift—such as weight
movement, changes in the loss landscape, or repre-
sentational drift, on the transferability of diff vec-
tors remains underexplored. Expanding our ap-
proach to cover these aspects of model develop-
ment is a promising direction for future work.

Ethical considerations and risks

Our approach aims to improve the efficiency of
LLM development by reducing the need for ex-
tensive alignment process. However, this method
carries certain risks. One concern is that reusing
fine-tuning updates may inadvertently transfer bi-
ases or undesirable behaviors from one model to
another, especially if the source model contains
such issues.

Although this approach lowers computational
costs, it does not negate the need for careful model
design to ensure ethical behavior. Thus, respon-
sible implementation of this technique is crucial.
Future research should explore its ethical impli-
cations across different model architectures and
training approaches.

References

Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava,
Xilun Chen, Luke Zettlemoyer, and Sonal Gupta.
2021. Muppet: Massive multi-task representations
with pre-finetuning. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 5799-5811.

Arash Ahmadian, Seraphina Goldfarb-Tarrant, Beyza
Ermis, Marzieh Fadaee, Sara Hooker, and 1 oth-
ers. 2024. Mix data or merge models? optimiz-
ing for diverse multi-task learning. arXiv preprint
arXiv:2410.10801.

Samuel Ainsworth, Jonathan Hayase, and Siddhartha
Srinivasa. 2023. Git re-basin: Merging models mod-
ulo permutation symmetries. In The Eleventh Inter-
national Conference on Learning Representations.

Duygu Altinok. 2024. Instructurca: A diverse instruc-
tional content dataset for turkish.

Akari Asai, Mohammadreza Salehi, Matthew Pe-
ters, and Hannaneh Hajishirzi. 2022. ATTEMPT:
Parameter-efficient multi-task tuning via attentional
mixtures of soft prompts. In Proceedings of the 2022
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 6655-6672.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, and 1
others. 2022. Training a helpful and harmless assis-
tant with reinforcement learning from human feed-
back. arXiv preprint arXiv:2204.05862.

Lucas Bandarkar, Benjamin Muller, Pritish Yuvraj, Rui
Hou, Nayan Singhal, Hongjiang Lv, and Bing Liu.
2025. Layer swapping for zero-shot cross-lingual
transfer in large language models. In The Thirteenth
International Conference on Learning Representa-
tions.

Cheng Chen, Yichun Yin, Lifeng Shang, Xin Jiang,
Yujia Qin, Fengyu Wang, Zhi Wang, Xiao Chen,
Zhiyuan Liu, and Qun Liu. 2022. bert2BERT: To-
wards reusable pretrained language models. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2134-2148.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

2626

https://aclanthology.org/2021.emnlp-main.468/
https://aclanthology.org/2021.emnlp-main.468/
https://arxiv.org/abs/2410.10801
https://arxiv.org/abs/2410.10801
https://openreview.net/forum?id=CQsmMYmlP5T
https://openreview.net/forum?id=CQsmMYmlP5T
https://huggingface.co/datasets/turkish-nlp-suite/InstrucTurca
https://huggingface.co/datasets/turkish-nlp-suite/InstrucTurca
https://aclanthology.org/2022.emnlp-main.446/
https://aclanthology.org/2022.emnlp-main.446/
https://aclanthology.org/2022.emnlp-main.446/
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://openreview.net/forum?id=vQhn4wrQ6j
https://openreview.net/forum?id=vQhn4wrQ6j
https://aclanthology.org/2022.acl-long.151/
https://aclanthology.org/2022.acl-long.151/
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and 1 others. 2024. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.

Jessica Echterhoff, Fartash Faghri, Raviteja Vemula-
palli, Ting-Yao Hu, Chun-Liang Li, Oncel Tuzel, and
Hadi Pouransari. 2024. Muscle: A model update
strategy for compatible Ilm evolution. arXiv preprint
arXiv:2407.09435.

William Fleshman and Benjamin Van Durme. 2024. Re-
adapt: Reverse engineered adaptation of large lan-
guage models. arXiv preprint arXiv:2405.15007.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel
Roy, and Michael Carbin. 2020. Linear mode connec-
tivity and the lottery ticket hypothesis. In Proceed-
ings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine
Learning Research, pages 3259-3269. PMLR.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, and
5 others. 2024. A framework for few-shot language
model evaluation.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei
Wang, and Tieyan Liu. 2019. Efficient training of
BERT by progressively stacking. In Proceedings of
the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning
Research, pages 2337-2346. PMLR.

Yuling Gu, Oyvind Tafjord, Bailey Kuehl, Dany Had-
dad, Jesse Dodge, and Hannaneh Hajishirzi. 2024.
Olmes: A standard for language model evaluations.
arXiv preprint arXiv:2406.08446.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021a. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathematical
problem solving with the MATH dataset. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu
Pang, Chao Du, and Min Lin. 2024. Lorahub: Ef-
ficient cross-task generalization via dynamic loRA
composition. In First Conference on Language Mod-
eling.

Gabriel IlTharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali
Farhadi. 2023. Editing models with task arithmetic.
In The Eleventh International Conference on Learn-
ing Representations.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free eval-
uation of large language models for code. arXiv
preprint arXiv:2403.07974.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin,
Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri,
Shane Lyu, and 1 others. 2024. Tiilu 3: Pushing fron-
tiers in open language model post-training. arXiv
preprint arXiv:2411.15124.

Brian Lester, Joshua Yurtsever, Siamak Shakeri, and
Noah Constant. 2022. Reducing retraining by re-
cycling parameter-efficient prompts. arXiv preprint
arXiv:2208.05577.

Yiguan Lin, Bin Xu, Yinghao Li, and Yang Gao.
2025. Extrapolation merging: Keep improving
with extrapolation and merging. arXiv preprint
arXiv:2503.04834.

Jiawei Liu, Chungqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chatgpt
really correct? rigorous evaluation of large language
models for code generation. Advances in Neural
Information Processing Systems, 36:21558-21572.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Dilan Gorur,
Razvan Pascanu, and Hassan Ghasemzadeh. 2020.
Linear mode connectivity in multitask and continual
learning. arXiv preprint arXiv:2010.04495.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and
Tatsunori Hashimoto. 2025. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393.

Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang.
2020. What is being transferred in transfer learning?
Advances in neural information processing systems,
33:512-523.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groen-
eveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yuling
Gu, Shengyi Huang, Matt Jordan, and 1 others. 2024.
2 olmo 2 furious. arXiv preprint arXiv:2501.00656.

Oleksiy Ostapenko, Zhan Su, Edoardo Maria Ponti, Lau-
rent Charlin, Nicolas Le Roux, Matheus Pereira, Lu-
cas Caccia, and Alessandro Sordoni. 2024. Towards

2627

https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.09435
https://arxiv.org/abs/2407.09435
https://arxiv.org/abs/2406.14764
https://arxiv.org/abs/2406.14764
https://arxiv.org/abs/2406.14764
https://proceedings.mlr.press/v119/frankle20a.html
https://proceedings.mlr.press/v119/frankle20a.html
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://proceedings.mlr.press/v97/gong19a.html
https://proceedings.mlr.press/v97/gong19a.html
https://arxiv.org/abs/2406.08446
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=TrloAXEJ2B
https://openreview.net/forum?id=TrloAXEJ2B
https://openreview.net/forum?id=TrloAXEJ2B
https://openreview.net/forum?id=6t0Kwf8-jrj
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2208.05577
https://arxiv.org/abs/2208.05577
https://arxiv.org/abs/2503.04834
https://arxiv.org/abs/2503.04834
https://proceedings.neurips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://arxiv.org/abs/2010.04495
https://arxiv.org/abs/2010.04495
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://proceedings.neurips.cc/paper/2020/hash/0607f4c705595b911a4f3e7a127b44e0-Abstract.html
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2405.11157

modular llms by building and reusing a library of
loras. arXiv preprint arXiv:2405.11157.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, and 1
others. 2022. Training language models to follow in-
structions with human feedback. Advances in neural
information processing systems, 35:27730-27744.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
AdapterFusion: Non-destructive task composition
for transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
487-503.

Jason Phang, Thibault Févry, and Samuel R Bowman.
2018. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. arXiv
preprint arXiv:1811.01088.

Clifton Poth, Jonas Pfeiffer, Andreas Riicklé, and Iryna
Gurevych. 2021. What to pre-train on? Efficient
intermediate task selection. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 10585-10605.

Yada Pruksachatkun, Jason Phang, Haokun Liu,
Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe Pang,
Clara Vania, Katharina Kann, and Samuel R. Bow-
man. 2020. Intermediate-task transfer learning with
pretrained language models: When and why does it
work? In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
5231-5247.

Yujia Qin, Cheng Qian, Xu Han, Yankai Lin, Huadong
Wang, Ruobing Xie, Zhiyuan Liu, Maosong Sun,
and Jie Zhou. 2023. Recyclable tuning for contin-
ual pre-training. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 11403—
11426.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Advances in

Neural Information Processing Systems, volume 36,
pages 53728-53741.

Alexandre Ramé, Johan Ferret, Nino Vieillard, Robert
Dadashi, Léonard Hussenot, Pierre-Louis Cedoz,
Pier Giuseppe Sessa, Sertan Girgin, Arthur Douillard,
and Olivier Bachem. 2024. Warp: On the benefits of
weight averaged rewarded policies. arXiv preprint
arXiv:2406.16768.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R. Bowman. 2024. GPQA:
A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, and 1 others. 2024. Deepseek-
math: Pushing the limits of mathematical reason-
ing in open language models. arXiv preprint
arXiv:2402.03300.

Shivalika Singh, Angelika Romanou, Clémentine Four-
rier, David I Adelani, Jian Gang Ngui, Daniel Vila-
Suero, Peerat Limkonchotiwat, Kelly Marchisio,
Wei Qi Leong, Yosephine Susanto, and 1 others.
2024a. Global mmlu: Understanding and addressing
cultural and linguistic biases in multilingual evalua-
tion. arXiv preprint arXiv:2412.03304.

Shivalika Singh, Freddie Vargus, Daniel D’souza,
Borje Karlsson, Abinaya Mahendiran, Wei-Yin Ko,
Herumb Shandilya, Jay Patel, Deividas Mataciu-
nas, Laura O’Mahony, Mike Zhang, Ramith Het-
tiarachchi, Joseph Wilson, Marina Machado, Luisa
Moura, Dominik Krzeminski, Hakimeh Fadaei, Irem
Ergun, Ifeoma Okoh, and 14 others. 2024b. Aya
dataset: An open-access collection for multilingual
instruction tuning. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 11521—
11567.

Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan,
Yankai Lin, Huadong Wang, Kaiyue Wen, Zhiyuan
Liu, Peng Li, Juanzi Li, Lei Hou, Maosong Sun, and
Jie Zhou. 2022. On transferability of prompt tuning
for natural language processing. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 3949—-3969.

Tu Vu, Aditya Barua, Brian Lester, Daniel Cer, Mo-
hit Iyyer, and Noah Constant. 2022a. Overcoming
catastrophic forgetting in zero-shot cross-lingual gen-
eration. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 9279-9300.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou’,
and Daniel Cer. 2022b. SPoT: Better frozen model
adaptation through soft prompt transfer. In Proceed-
ings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 5039-5059.

Tu Vu, Minh-Thang Luong, Quoc Le, Grady Simon, and
Mohit Iyyer. 2021. STraTA: Self-training with task
augmentation for better few-shot learning. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 5715—
5731.

Tu Vu, Tong Wang, Tsendsuren Munkhdalai, Alessan-
dro Sordoni, Adam Trischler, Andrew Mattarella-
Micke, Subhransu Maji, and Mohit Iyyer. 2020. Ex-
ploring and predicting transferability across NLP
tasks. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 7882-7926.

2628

https://arxiv.org/abs/2405.11157
https://arxiv.org/abs/2405.11157
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://aclanthology.org/2021.eacl-main.39/
https://aclanthology.org/2021.eacl-main.39/
https://arxiv.org/abs/1811.01088
https://arxiv.org/abs/1811.01088
https://aclanthology.org/2021.emnlp-main.827/
https://aclanthology.org/2021.emnlp-main.827/
https://aclanthology.org/2020.acl-main.467/
https://aclanthology.org/2020.acl-main.467/
https://aclanthology.org/2020.acl-main.467/
https://aclanthology.org/2023.findings-acl.723/
https://aclanthology.org/2023.findings-acl.723/
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://arxiv.org/abs/2406.16768
https://arxiv.org/abs/2406.16768
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2412.03304
https://arxiv.org/abs/2412.03304
https://arxiv.org/abs/2412.03304
https://aclanthology.org/2024.acl-long.620/
https://aclanthology.org/2024.acl-long.620/
https://aclanthology.org/2024.acl-long.620/
https://aclanthology.org/2022.naacl-main.290/
https://aclanthology.org/2022.naacl-main.290/
https://aclanthology.org/2022.emnlp-main.630/
https://aclanthology.org/2022.emnlp-main.630/
https://aclanthology.org/2022.emnlp-main.630/
https://aclanthology.org/2022.acl-long.346/
https://aclanthology.org/2022.acl-long.346/
https://aclanthology.org/2021.emnlp-main.462/
https://aclanthology.org/2021.emnlp-main.462/
https://aclanthology.org/2020.emnlp-main.635/
https://aclanthology.org/2020.emnlp-main.635/
https://aclanthology.org/2020.emnlp-main.635/

Ke Wang, Nikolaos Dimitriadis, Alessandro Favero,
Guillermo Ortiz-Jimenez, Francois Fleuret, and Pas-
cal Frossard. 2024a. Lines: Post-training layer scal-
ing prevents forgetting and enhances model merging.
arXiv preprint arXiv:2410.17146.

Peihao Wang, Rameswar Panda, Lucas Torroba Hen-
nigen, Philip Greengard, Leonid Karlinsky, Roge-
rio Feris, David Daniel Cox, Zhangyang Wang, and
Yoon Kim. 2023. Learning to grow pretrained mod-
els for efficient transformer training. In The Eleventh
International Conference on Learning Representa-
tions.

Rungian Wang, Soumya Ghosh, David Cox, Diego An-
tognini, Aude Oliva, Rogerio Feris, and Leonid Kar-
linsky. 2024b. Trans-lora: towards data-free transfer-
able parameter efficient finetuning. arXiv preprint
arXiv:2405.17258.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre,
Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Mor-
cos, Hongseok Namkoong, Ali Farhadi, Yair Car-
mon, Simon Kornblith, and Ludwig Schmidt. 2022a.
Model soups: averaging weights of multiple fine-
tuned models improves accuracy without increasing
inference time. In Proceedings of the 39th Interna-
tional Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pages
23965-23998. PMLR.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook
Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali
Farhadi, Hongseok Namkoong, and Ludwig Schmidt.
2022b. Robust fine-tuning of zero-shot models. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
7959-7971.

Prateek Yadav, Colin Raffel, Mohammed Mugeeth,
Lucas Caccia, Haokun Liu, Tianlong Chen, Mohit
Bansal, Leshem Choshen, and Alessandro Sordoni.
2024a. A survey on model moerging: Recycling and
routing among specialized experts for collaborative
learning. arXiv preprint arXiv:2408.07057.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A
Raffel, and Mohit Bansal. 2023. Ties-merging: Re-
solving interference when merging models. In Ad-
vances in Neural Information Processing Systems,
volume 36, pages 7093-7115.

Prateek Yadav, Tu Vu, Jonathan Lai, Alexandra
Chronopoulou, Manaal Faruqui, Mohit Bansal, and
Tsendsuren Munkhdalai. 2024b. What matters
for model merging at scale? arXiv preprint
arXiv:2410.03617.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin
Li. 2024. Language models are super mario: Absorb-
ing abilities from homologous models as a free lunch.
In Proceedings of the 41st International Conference
on Machine Learning, volume 235 of Proceedings
of Machine Learning Research, pages 57755-57775.
PMLR.

Ted Zadouri, Ahmet Ustiin, Arash Ahmadian, Beyza Er-
mis, Acyr Locatelli, and Sara Hooker. 2024. Pushing
mixture of experts to the limit: Extremely parameter
efficient moe for instruction tuning. In The Tivelfth
International Conference on Learning Representa-
tions.

Chujie Zheng, Ziqi Wang, Heng Ji, Minlie Huang, and
Nanyun Peng. 2024. Model extrapolation expedites
alignment. arXiv preprint arXiv:2404.16792.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Sid-
dhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. 2023. Instruction-following evalu-
ation for large language models. arXiv preprint
arXiv:2311.07911.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, and
1 others. 2024. Bigcodebench: Benchmarking code
generation with diverse function calls and complex
instructions. arXiv preprint arXiv:2406.15877.

2629

https://arxiv.org/abs/2410.17146
https://arxiv.org/abs/2410.17146
https://openreview.net/forum?id=cDYRS5iZ16f
https://openreview.net/forum?id=cDYRS5iZ16f
https://arxiv.org/abs/2405.17258
https://arxiv.org/abs/2405.17258
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://openaccess.thecvf.com/content/CVPR2022/html/Wortsman_Robust_Fine-Tuning_of_Zero-Shot_Models_CVPR_2022_paper.html
https://arxiv.org/abs/2408.07057
https://arxiv.org/abs/2408.07057
https://arxiv.org/abs/2408.07057
https://proceedings.neurips.cc/paper_files/paper/2023/file/1644c9af28ab7916874f6fd6228a9bcf-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1644c9af28ab7916874f6fd6228a9bcf-Paper-Conference.pdf
https://arxiv.org/abs/2410.03617
https://arxiv.org/abs/2410.03617
https://proceedings.mlr.press/v235/yu24p.html
https://proceedings.mlr.press/v235/yu24p.html
https://openreview.net/forum?id=EvDeiLv7qc
https://openreview.net/forum?id=EvDeiLv7qc
https://openreview.net/forum?id=EvDeiLv7qc
https://arxiv.org/abs/2404.16792
https://arxiv.org/abs/2404.16792
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2406.15877
https://arxiv.org/abs/2406.15877
https://arxiv.org/abs/2406.15877

Appendix

A Theoretical justification for Section 2:
Transferring fine-tuning updates across
model versions

We provide the theoretical motivation for fine-
tuning transfer. Let ms and m; denote the source
and target base models, respectively. Here we as-
sume that mg and m; share the same architecture.
Let m/, and m; be the fine-tuned versions of m
and m; on dataset D. We define Ay = m/, — my
as the fine-tuning updates, and hypothesize that A
represents task-specific knowledge that is transfer-
able across model versions.

Linear Mode Connectivity Interpretation. Fol-
lowing linear mode connectivity (Frankle et al.,
2020; Mirzadeh et al., 2020; Neyshabur et al.,
2020), we assume that m/, and m;} (which share
the same architecture) arrive at local minima that
are connected by a linear path of non-increasing er-
ror. Consider some model on this path m(\) given
by

m(A) = (1 — \)m, + Amj. (1)

Substituting m/, by A 4+ mg and mj} by Ay + my:
m(A) = (1= A)(ms + Ag) + A(me + Ay). (2)
Rewriting this expression:
m(A) = (1=X)ms+Ami+(1=X)As+ XA (3)

Assuming A =~ Ay, the update term simplifies to
approximately A;, yielding:

m(A) = (1 = XN)ms + Amy + As. 4
or equivalently:
m()\) %mtJr(l*)\)(ms —mt) +A5 (5)

In particular, when A = 1, m(\) = m; = m; +
Ag, which shows that reusing A corresponds to
extrapolating from m; towards the task solution
learned by mg.

Connection to Task Vector Interpolation. This
interpretation aligns with prior work on task vector
arithmetic (Ilharco et al., 2023), where multiple
fine-tuned models are merged by adding their up-
date vectors to a shared base. For example, the
merged weights 6,,, produced by adding the task

vectors of model A and B (with weights 6, and 6j)
yield:
Om = Op + A((0a — 0p) + (6 —
= (1—-2XN)0, + X0, + \O,

0p))

where 0, are the weights of the base pretrained
model. This is a linear interpolation among 6,,,
0,, and 6, and assumes the models lie within a
connected low-loss region. Our definition of Ay
corresponds to a special case of this framework: we
apply a single update vector from m to a different
base model m;. Under the same connectivity as-
sumption, this transfer remains valid and preserves
task performance.

B Additional results for Section 2:
Transferring fine-tuning updates across
model versions

B.1 GSMS8K and MATH generation results

Tables 9 and 10 presents the generation outputs
after transferring fine-tuning updates from Llama
3.0 to the target base model, Llama 3.1. We observe
that Llama 3.1 +Ag g reliably exhibits step-by-step
reasoning, suggesting that fine-tuning transfer can
improve the base model’s reasoning capability.

B.2 Evaluation results for Tiillu and OLMo
models

We also conduct experiments with Tiilu (Lambert
et al., 2024) and OLMo (OLMo et al., 2024), both
of which were developed from Llama 3.1 through
multiple alignment stages, including Supervised
Fine-Tuning (SFT), Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2023), and a final rein-
forcement learning stage—Reinforcement Learn-
ing with Verifiable Rewards (RLVR) (Lambert
et al., 2024) for OLMo 2 and Tiilu 3, or Group
Relative Policy Optimization (GRPO) (Shao et al.,
2024) for Tiilu 3.1. At a high level, we subtract the
weights of Llama 3.1 from these alignment-tuned
checkpoints and then backport (add) the resulting
diff vectors to Llama 3.0. Recycling is not appli-
cable here, as we do not have the alignment-tuned
checkpoints for Llama 3.0.

Our results are summarized in Table 7 and Ta-
ble 8. In general, we find that advanced LLM capa-
bilities, attained through alignment tuning stages
such as SFT, DPO, RLVR, and GRPO (encoded
in Aspr, Appo, ArLvRr, and Agrpo, respec-
tively), can be successfully transferred across dif-
ferent model versions. For example, backporting

2630

Model GSMS8K MATH ARCc: GPQA MMLU IFEval
Llama 3.1 8B 56.6 19.3 79.2 21.9 66.8 314
Llama 3.1 8B Instruct 86.5 50.3 83.8 31.3 72.9 78.7
Tiilu 3 8B SFT 76.2 31.6 79.1 31.0 65.1 72.0
Tiilu 3 8B DPO 84.1 42.4 79.6 333 68.4 81.7
Tiilu 3 8B 87.9 434 79.4 344 67.9 81.5
Llama 3.0 8B 55.6 17.3 79.7 22.3 66.7 30.3
+ Agpr 71.8 26.3 77.9 32.1 63.5 69.1
+ Appo 81.1 38.1 78.6 31.9 67.5 82.9
+ ARLVR 85.1 37.6 79.1 324 66.2 82.4
Tiilu 3.1 8B 89.9 43.3 79.0 314 67.6 84.1
Llama 3.0 8B Instruct 81.1 28.8 82.4 31.5 64.9 76.2
Llama 3.0 8B 55.6 17.3 79.7 22.3 66.7 30.3
+ AgrPO 85.8 39.5 78.2 29.4 65.0 82.6

Table 7: We find that advanced LLM capabilities, attained through alignment tuning stages such as SFT, DPO,
RLVR, and GRPO (encoded in Agprr, Appo, ArrLvr, and Agrpo, respectively), can be successfully transferred

across different model versions.

Acgrpo from Tiilu 3.1 8B to Llama 3.0 8B signif-
icantly improves accuracy, boosting GSM8K per-
formance from 55.6% to 85.8% (30.2% improve-
ment) and IFEval from 34.5% to 82.6% (48.1%
improvement). This surpasses Llama 3.0 8B In-
struct (81.1% on GSMS8K, 76.6% on IFEval) and
performs competitively with Llama 3.1 8B Instruct
(86.5% and 80.5%) and Tiilu 3.1 8B (89.9% and
84.1%).

B.3 Additional results for Section 2:
Transferring fine-tuning updates across
model architectures

Table 11 and Table 12 summarize fine-tuning trans-
fer results across model versions with architec-
tural differences. We compute the diff vector as
described in Section 2, applying fine-tuning up-
dates only to layers in the target model that match
the source in shape. We observe that reusing fine-
tuning updates across large version gaps remains
challenging, and we leave this direction to future
work.

C Additional evaluation details

We use the same evaluation setup and prompts as
those in Llama 3 (Dubey et al., 2024) for Llama
models and those in Tiilu 3 (Lambert et al., 2024)
for OLMo and Tiilu models, whenever available.
See Table 13 and Table 14 for more details. For
evaluation, we use the 1m-evaluation-harness
library (Gao et al., 2024) for Llama models, and

the OLMES library (Gu et al., 2024) for OLMo and
Tiilu models.

D Additional results for Section 4: When
is fine-tuning transfer effective?

See Table 15.

E Additional results for Section 5:
Fine-tuning transfer as a starting point
for further fine-tuning

See Table 16 and Figure 3.

F Additional results for Section 6:
Iterative recycling-then-finetuning for
improved performance and efficiency

Algorithm 1 Iterative recycling-then-finetuning

Notation: FT denotes fine-tuning
Input: Base models M, Mo, ..., M,
Output: Fine-tuned models M7, M5, ... M2
M+ FT(M,)
for:=2tondo
A =M = M
M« FT(M; + Aler)
end for
return M7, M5, ...

R e A A ey

*
, Mo,

Algorithm 1 provides the formal description of
the iterative recycling-then-finetuning procedure.

See https://github.com/meta-1lama/llama-model
s/blob/main/models/1lama3_1/eval_details.md

2631

https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/eval_details.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/eval_details.md

Model GSMS8K MATH ARCc: GPQA MMLU IFEval

OLMo 2 7B 67.2 19.2 79.9 20.5 63.6 23.0
OLMo 2 7B SFT 71.7 25.2 79.7 27.9 61.2 67.7
OLMo 2 7B DPO 82.5 31.3 80.5 30.6 62.1 73.2
OLMo 2 7B Instruct ~ 85.3 29.7 80.6 29.7 63.3 75.6
Mo 2.5 1.6 25.7 18.1 25.0 122
+ Agpr 2.2 0.8 23.8 1.3 1.4 13.7
+Appo 2.1 0.8 24.1 1.1 1.3 13.7
+ ARLVR 2.0 0.8 24.1 0.6 1.4 133
M; 24.4 5.7 72.7 15.4 59.8 15.7
+ Agpr 31.7 8.4 74.3 24.8 55.4 51.4
+Appo 40.4 9.3 75.0 29.9 56.6 68.0
+ ARLVR 40.2 10.3 75.1 29.9 56.7 68.3
My 63.7 17.5 78.6 225 62.6 16.1
+ Agpr 71.1 23.7 79.0 28.3 59.7 64.3
+Appo 79.9 27.8 79.3 29.0 63.1 72.6
+ ARLVR 82.8 27.7 79.3 27.2 62.2 72.1

Table 8: We find that advanced LLM capabilities, attained through alignment tuning stages such as SFT, DPO,
and RLVR (encoded in Agpr, Appo, and Agpy g, respectively), can be successfully transferred across different
model versions. Here, My is an intermediate pretrained checkpoint of OLMo 2 7B (mid-stage 2, at 7K steps),
which we selected before conducting our controlled experiments in Section 4.1.

Iterative recycling-then-finetuning leads to
faster convergence: Figure 4 shows that both
recycling approaches—iterative (A%°") and direct
(A% recycling-then-finetuning—offer a more
computationally efficient starting point for further
fine-tuning. In general, A¥¢" consistently out-
performs A%" in terms of training efficiency and
significantly improves standard fine-tuning with-
out recycling. These results indicate that iterative
recycling not only improves model performance
but also enhances training efficiency by effectively
leveraging the knowledge stored in the diff vectors
across different model versions.

2632

Ma Mz My

50

> > >
B 4 ® &
1) 1 -
3 3 3 70
8 30 8 30 8
< < <
65
20 20
10 10 60
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
Number of finetuning steps Number of finetuning steps Number of finetuning steps

Figure 3: GSMS8K performance showing that fine-tuning transfer provides a more computationally efficient starting
point (i.e., M; + Aj;) for further training. Here, M, represents different intermediate pretrained checkpoints of
OLMo 2 7B (with smaller values of 7 indicating earlier checkpoints), and A; refers to the diff vector resulting from
the fine-tuning of version 4.

70 80

60
75

o 2
g % g
= = 70
15 1%)
O 40 s}
< —— Ms < - Ms
" —0— M+ Adr 65 —— Ms + ATT
— Ms+ Aiter == Ms+ Alter
20 60
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
Number of finetuning steps Number of finetuning steps

Figure 4: GSM8K performance showing that both iterative (A*°") and direct (A%") recycling-then-finetuning
approaches offer faster convergence. At a high level, A¥®" gradually incorporates fine-tuning updates, i.e., diff
vectors, from previous model versions, while A%" directly applies the diff vector from the latest model version to
the current model.

2633

Problem

Answer Llama 3.1 8B

+A30

Liam is 16 years old now.
Two years ago, Liam’s age
was twice the age of Vince.
How old is Vince now?

9

Liam is 16 years old now. Two years
ago, Liam was 16 - 2 = 14 years old. If
Liam’s age was twice the age of Vince,
then Vince must have been 14 /2 =7
years old. So the answer is 7.

Let’s break it down step by step:

1. Liam is 16 years old now. 2. Two
years ago, Liam’s age was 16 - 2 = 14
years old. 3. Liam’s age two years ago
was twice the age of Vince, so we can
set up an equation:

14 =2x

where x is Vince’s age two years ago.
4. To solve for x, we can divide both
sides by 2:

x=14/2x=17

5. So, Vince was 7 years old two years
ago. 6. To find Vince’s current age, we
add 2 years to his age two years ago:
Vince’s current age =7 +2 =9

The final answer is 9.

The red rope was four
times the length of the
blue rope. The blue rope
was 7 centimeters shorter
than the yellow rope. If
the 3 ropes had a com-
bined length of 37 cen-
timeters, what was the
length of the red rope in
centimeters?

20

The red rope was 4 times the length of
the blue rope. So if the blue rope was 7
centimeters shorter than the yellow rope,
then the red rope must be 4 x 7 = 28
centimeters shorter than the yellow rope.
The 3 ropes had a combined length of 37
centimeters. So the yellow rope must be
37 - 28 =9 centimeters. So the answer
is 9.

Let’s break this down step by step:

1. The red rope is 4 times the length
of the blue rope. 2. The blue rope is 7
centimeters shorter than the yellow rope.
3. The combined length of the 3 ropes
is 37 centimeters.

Let’s say the length of the blue rope is
x. Then, the length of the yellow rope is
X + 7 (since it’s 7 centimeters longer).
The length of the red rope is 4x (since
it’s 4 times the length of the blue rope).
The combined length of the 3 ropes is x
+(xX+7)+4x=137.

Combine like terms: 6x + 7 = 37.
Subtract 7 from both sides: 6x = 30.
Divide by 6: x =5.

So, the length of the blue rope is 5 cen-
timeters.

The length of the yellow rope is 5 + 7 =
12 centimeters.

The length of the red rope is 4x = 4(5)
= 20 centimeters.

The final answer is 20.

Larry cooked dumplings
for a group of friends.
There are 8 males, in-
cluding Larry, and 6 fe-
males among them. Each
male ate 1 more dumpling
than each female. How
many dumplings did Larry
cook if each female ate 3
dumplings and there were
no leftovers?

50

There are 8 males and 6 females. Each
male ate 1 more dumpling than each
female. So the males ate 8 + 6 =
14 dumplings. Each female ate 3
dumplings. So the females ate 6 x 3
= 18 dumplings. So the total number of
dumplings eaten is 14 + 18 = 32. Since
there were no leftovers, the number of
dumplings cooked must be 32. So the
answer is 32.

There are 8 males and 6 females. Each
female ate 3 dumplings, so the females
ate a total of 6 x 3 = 18 dumplings.
Each male ate 1 more dumpling than
each female, so each male ate 3 + 1 =
4 dumplings. The males ate a total of 8
X 4 = 32 dumplings. In total, the group
ate 18 + 32 = 50 dumplings. Since there
were no leftovers, this is the number of
dumplings Larry cooked. The final an-
swer is 50.

Table 9: Adding A3 o to Llama 3.1 consistently demonstrates step-by-step reasoning on GSM8K, indicating that
fine-tuning transfer can effectively enhance reasoning capability across model versions. Here, Ag o represents the
diff vector between Llama Instruct and Llama for version 3.0.

2634

Problem

Answer Llama 3.1 8B

+A30

For how many integers z 2
do we have % <E< %?

We can multiply both sides of the in-
equality by 20 to obtain

5 <4dx < 15.

Since x is an integer, we have x = 6.
Therefore, there are integer x that
satisfies the inequality.

Final Answer: The final answeris 1. |
hope it is correct.

Step 1: Find the range of values for x
The inequality i < g is equivalent to
T > %. The inequality £ < % is equiva-
lenttoxr < %. Therefore, we have the
range of values for x: g <zr< %.
Step 2: Count the number of integers in
the range

The range of values for x is % <z < %.
We can count the number of integers in
this range by finding the integer part of
the lower bound and the integer part of
the upper bound, and then subtracting
1.

The integer part of the lower bound is 1,
and the integer part of the upper bound
is 3. Therefore, the number of integers
intherangeis 3-1=2.

Therefore, the final answer is: . 1
hope it is correct.

Jack drives at 40 mph for 45
an hour, then at 50 mph

for an hour. What is his
average speed?

The average speed is given by

2-40-50

Final Answer: The final answer is 46.7
mph. I hope it is correct.

Step 1: Calculate the total distance trav-
eled

Jack drives for 2 hours, with 1 hour at
40 mph and 1 hour at 50 mph. The to-
tal distance traveled is the sum of the
distances traveled during each hour: 40
mph x 1 hour + 50 mph x 1 hour =40 +
50 =90 miles.

Step 2: Calculate the average speed
To find the average speed, divide the
total distance traveled by the total time
traveled: 90 miles + 2 hours = 45 mph.

Therefore, the final answer is: mph.
I hope it is correct.

What is the tens digit of 2
520059

We can use the fact that 52 = 25 to
simplify the expression. We have

52005 _ 52-1002+1
— (52)1002 .5
_ 251002 .5

:.

Final Answer: The final answer is 5. |
hope it is correct.

Step 1: Find the remainder of 2005
when divided by 4

2005 =1 (mod 4)

Step 2: Find the last two digits of 5200
Since 52 = 25, we have 5209° —
(52)1002 . 5. The last two digits of
(52)1002 gre 251002 = 25.251001 Since
251001 ends with 25, the last two digits
of 251002 are 25. Therefore, the last two
digits of 5209 are 25 - 5 = 125.

Step 3: Find the tens digit of 5200
Since the last two digits of 5209 are 25,

the tens digit is .

Therefore, the final answer is: . I
hope it is correct.

Table 10: Transferring fine-tuning updates A3 o to Llama 3.1 induces step-by-step reasoning on MATH, indicating
that fine-tuning transfer can effectively enhance reasoning capability across model versions. Here, Ag (represents
the diff vector between Llama Instruct and Llama for version 3.0.

2635

GSMSK MATH

Llama 2.0 7B 14.1 3.6
+FT 56.9 3.1
+ A3.0 15.0 3.8
+ A3.1 14.6 3.8

Llama 3.0 8B 54.9 17.3
+FT 70.7 32.0
+ AQ.O 595.3 17.5

Llama 3.1 8B 56.6 19.3
+FT 71.2 33.7
+ AQAO 57.1 20.3

Table 11: Transfer results in both recycling and back-
porting scenarios on GSM8K and MATH show limited
improvement, possibly due to layer shape mismatches.
Here, As o, As g, and Ag; represent the diff vectors
between Llama and their fine-tuned counterparts for ver-
sions 2.0, 3.0, and 3.1, respectively.

GSMS8K MATH

OLMo 1 7B 28.8 5.8
+FT 54.2 17.2
+ Ag 25.1 9.5

OLMo 2 8B 66.9 19.2
+FT 76.4 211
+ A 69.7 20.1

Table 12: Fine-tuning transfer remains effective when
applying A; to OLMo 2 8B on GSM8K, while other
cases show limited gains or small drops. Here, A;
and As represent the diff vectors between OLMo and
their fine-tuned (FT) counterparts for versions 1 and 2,
respectively.

2636

Task # Shots CoT Metric Reference eval. setup
GSMSK 8 v exact match acc.
MATH 4 v exact match acc.
ARCc 0 X acc. . 9
GPQA 0 % exact match acc. Llama 3 Evaluation Details
MMLU 0 v exact match acc.
IFEval 0 X avg. acc. (strict & loose)
Global MMLU 0 X acc. Singh et al. (2024a)
HumanEval+ 0 X pass@1 .
MBPP4+ 0 X pass@1 Liu et al. (2023)
LiveCodeBench 0 X pass@1 Jain et al. (2024)
BigCodeBench 0 X pass@1 Zhuo et al. (2024)
Table 13: Evaluation details for Llama 3.

Task # Shots CoT Metric Reference eval. setup

GSMSK 8 v exact match acc.

MATH 4 v flex exact match acc.

ARCc 5 X acc.

GPQA 0 v exact match acc. Lambert et al. (2024)

MMLU 0 v exact match acc.

IFEval 0 X prompt-level loose acc.

MATHS500 0 v exact match acc.)

GPOADImond 0 / exact match ace. Muennighoff et al. (2025)

Table 14: Evaluation details for OLMo 2 and Tiilu 3.

My My Mz My Ms

146 11.6 114 11.6 16.6

+ A 88 17.8 192 15.6

+ Ay 7.6 126 146 144

+ As 80 94 234 278

+ Ay 78 80 98 34.2
+ Agj 80 74 112 306

FT(M;) 134 17.6 21.6 314 330

Table 15: MATHS00 accuracies indicating that more
powerful models are better at leveraging transferred
fine-tuning. Effective use of transferred fine-tuning only
emerges once the target base model reaches a certain
level of capability. Furthermore, fine-tuning transfer
works best when the source and target models are close
within a linearly connected region of the parameter
space. Here, M, represents different intermediate pre-
trained checkpoints of OLMo 2 7B (with smaller values
of 4 indicating earlier checkpoints), and A; refers to the
diff vector resulting from the fine-tuning of version <.
FT(M,) denotes applying fine-tuning directly to M.

M1 M2 M3 M4 MS

14.6 11.6 11.4 11.6 16.6

+A; - FT 21.0,10 23.0455 32.0.55 34.2,5
+ AQ — FT 16~2+x.5 26'2+I3.6 31-6+17.() 31'0“6.6
+ A? — FT 18-4+10.4 21'2+11.8 31.0+7_6 32~0+4.z
+Ay —-FT 174, 19.0,,,0 23.8,140 32.2,,
+As - FT 17.0,, 214, 25.0,55 31.2,

FT(M,) 13.4 17.6 21.6 31.4 33.0

Table 16: MATHS00 accuracies showing that fine-
tuning transfer provides a stronger starting point (i.e.,
M, + Aj) for further fine-tuning (FT). Numbers in sub-
script indicate improvement over the baseline without
fine-tuning. Here, M, represents different intermediate
pretrained checkpoints of OLMo 2 7B (with smaller val-
ues of 7 indicating earlier checkpoints), and A; refers to
the diff vector resulting from the fine-tuning of version
1. FT(M,) denotes applying fine-tuning directly to M.

2637

