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Abstract

In large language models (LLMs), code and rea-
soning reinforce each other: code offers an ab-
stract, modular, and logic-driven structure that
supports reasoning, while reasoning translates
high-level goals into smaller, executable steps
that drive more advanced code intelligence. In
this study, we examine how code serves as a
structured medium for enhancing reasoning:
it provides verifiable execution paths, enforces
logical decomposition, and enables runtime val-
idation. We also explore how improvements in
reasoning have transformed code intelligence
from basic completion to advanced capabilities,
enabling models to address complex software
engineering tasks through planning and debug-
ging. Finally, we identify key challenges and
propose future research directions to strengthen
this synergy, ultimately improving LLM’s per-
formance in both areas.

1 Introduction

Researchers have observed an intriguing “Möbius
strip” effect: learning programming strengthens
students’ ability to solve complex problems, while
strong analytical skills in turn speed up program-
ming learning (Brito et al., 2019). This virtuous
cycle now appears in artificial intelligence: When
LLMs acquire code capabilities, they not only be-
come more proficient programmers but also demon-
strate significantly enhanced reasoning abilities
across diverse domains such as mathematical de-
duction and logical inference. As their reasoning
capacity evolves, these systems increasingly tackle
complex programming challenges, even showing
potential to outpace human developers (Chowd-
hury et al., 2024). Recent breakthrough models like
OpenAI-o1 (OpenAI et al., 2024) and DeepSeek-
R1 (Guo et al., 2025) show powerful task-solving
capabilities, particularly advances in reasoning. A
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Figure 1: Bidirectional enhancement between code
properties and reasoning capabilities.

key factor driving this transformation has been
the strategic integration of code - both during pre-
training phases (Touvron et al., 2023) and reason-
ing processes (Chen et al., 2022). The rigorous
logical structure of code provides a unique “train-
ing ground” for strengthening LLMs’ reasoning
capabilities, while AI’s evolving reasoning abili-
ties continuously enhance code intelligence. This
bidirectional relationship reveals profound intrin-
sic connections between coding and reasoning (see
Figure 1).

In this bidirectional enhancement process, core
properties of code - including structured syntax,
execution feedback, and modular design - sig-
nificantly promote task decomposition, reasoning
chain construction, and self-reflection (§2.2). Con-
versely, improved reasoning capabilities drive ad-
vances in code intelligence, such as task decom-
position, code comprehension and modification,
program debugging and optimization, ultimately
giving rise to intelligent agents capable of end-to-
end software development (§3.2, §3.3). For in-
stance, advanced reasoning techniques like Chain-
of-Thought prompting (Wei et al., 2022b; Zhang
et al., 2024b) and Self-Reflection (Shinn et al.,
2024) are expanding code generation from simple
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autocompletion to intelligent software development
assistants (Labs, 2024; Yang et al., 2024d), even ca-
pable of managing complete software engineering
lifecycles (Jimenez et al., 2024).

Despite these promising strides, there has been
limited systematic review of how code and reason-
ing interact and reinforce each other. To address
this gap and provide a structured view of the code-
reasoning synergy in LLMs, we pose the following
core questions: (1) How do code representations
influence LLM reasoning? (2) How do advances
in LLM reasoning reshape code intelligence sys-
tems? (3) What challenges arise from the code
reasoning interplay in LLMs?

To systematically investigate these questions,
our research unfolds along the following dimen-
sions: (i) analyzing how code serves as an effec-
tive reasoning medium, helping LLMs structure
their reasoning and validate results (§2); (ii) explor-
ing how enhanced reasoning capabilities expand
the boundaries of code intelligence (§3); and (iii)
summarizing current challenges, focusing on open
problems in model interpretability, scalable train-
ing, and multimodal fusion, while proposing future
research directions (§A).

2 Code-enhanced Reasoning

2.1 Training with Code

Code data strengthens LLMs’ reasoning and plan-
ning abilities by providing structured patterns
that guide logical thinking (Touvron et al., 2023;
Achiam et al., 2023; Hu et al., 2024). This section
examines how code data enhances these capabili-
ties and discusses effective strategies for integrating
code into LLM training.

2.1.1 Empowering Reasoning and Planning
Through Code Training

Code-trained LLMs excel across various domains.
In commonsense reasoning, Madaan et al. (2022)
treats structured commonsense tasks as code gener-
ation problems, showing notable gains even when
downstream tasks do not explicitly involve code. In
mathematics, MathCoder (Wang et al., 2023) inter-
leaves natural language, code, and execution results
to improve mathematical reasoning. Its successor,
MathCoder2 (Lu et al., 2024), further refines these
abilities with a higher-quality pre-training dataset
that embeds mathematical reasoning steps in code.

Training on code also bolsters planning and
decision-making. Chen et al. (2024a) used larger

models to break down complex instructions into
discrete functions, creating a function base for train-
ing smaller LLMs in structured planning. The
dataset enables smaller models to acquire the plan-
ning and decision-making capabilities of their
larger counterparts. Likewise, Wen et al. (2024a)
curated a dataset of 2M standard prompt-response-
code form plan triplets (prompt, response, code) to
enhance models’ planning and decision-making.

In the multimodal domain, VISTRUCT (Chen
et al., 2023c) utilizes the structure of programming
it learned from code training to represent visual
structural knowledge. This approach allows the
model to capture structural information at differ-
ent levels of granularity within images, enabling
visual language models (VLMs) to better under-
stand complex visual structures. This exemplifies
how structured data, such as code, can serve as an
excellent medium for visual data representation.

Code-trained LLMs and VLMs also shine in real-
world scenarios. In multilingual environment set-
tings, code acts as a bridge between languages.(Li
et al., 2024a) augments code datasets with machine-
translated multilingual comments during training
while preserving original code. Their approach
uses step-by-step code primitives in prompts to de-
rive facts and solutions, demonstrating code’s effec-
tiveness in multilingual reasoning. In autonomous
driving, LAMPILOT (Ma et al., 2024) achieves re-
markable results by generating code based on user
instructions and leveraging established functional
primitives to replace ambiguous natural language
commands. The approach showed exceptional
results on the custom-built LAMPILOT BENCH.
These applications highlight code data training’s
vast potential for reasoning and planning across
real-world scenarios and environments.

2.1.2 Training Strategies Based on Code

Code-based LLMs have shown remarkable perfor-
mance across domains. Here, we examine effective
strategies for leveraging code data during model
training to enhance their capabilities.

Code-only Training Strategies Incorporating
code execution into traditional reasoning datasets
boosts LLM performance. MARIO (Liao et al.,
2024) leverages both LLMs and human annotations
to augments GSM8K (Cobbe et al., 2021a) and
MATH (Hendrycks et al., 2021b) with Python inter-
preter traces, yielding significant downstream gains.
Similarly, POET (Pi et al., 2022) uses programs and
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Figure 2: Taxonomy of interplay between Code and Reasoning.

Method Type Method Model GSM8K SVAMP MATH

Baseline Direct† Codex 19.7 69.9 –
CoT† (Wei et al., 2022b) GPT-4 92.0 97.0 –

Single Execution PAL (Gao et al., 2023) Codex 72.0 79.4 –
PoT (Chen et al., 2022) GPT-4 97.2 97.4 –

Dynamic Code-Language

MathCoder-L (Wang et al., 2023) Llama-2-70B 83.9 84.9 45.1
MathCoder-CL (Lu et al., 2024) CodeLlama-34B 81.7 82.5 45.2
CodePlan (Wen et al., 2024a) Mistral-7B 59.5 61.4 34.3
INC-Math (Xiong et al., 2024) GPT-4o-mini – – 51.4

Non-Executable CoC (Li et al., 2023a) text-davinci-003 71.0 – –
CodePrompt (Hu et al., 2023) GPT-3.5 (few-shot) 80.6 79.6 –

Table 1: Performance comparison of BEST-performing variants of code-aided reasoning methods across three key
benchmarks (GSM8K (Cobbe et al., 2021a), SVAMP (Patel et al., 2021), and MATH (Hendrycks et al., 2021b)).
Results show the percentage of problems solved correctly. “–” indicates no reported result. For each method, only
the variant with highest GSM8K performance is shown (or highest MATH score when GSM8K is unavailable). †

"Direct" and "CoT" uses Codex model using few-shot direct prompting with/without CoT. The results are from Chen
et al. (2022).

execution results to train LLMs, showing improved
natural language reasoning capabilities. Further-
more, incorporating human preferences enhances
training effectiveness (Ding et al., 2024; Zhang
et al., 2024a), CodePMP (Yu et al., 2024b) intro-
duces a preference model pretraining pipeline using
large-scale synthesized code-preference datasets,
improving fine-tuning efficiency and reasoning per-
formance. SIAM (Yu et al., 2024a) employs a code-
based critic model to guide dataset construction
through code generation and quality control, opti-
mizing downstream performance.

Hybrid-data Training Strategies Determining
the optimal stage and proportion of code data in
training LLMs is critical (Tao et al., 2024). Ma
et al. (2023) and Zhang et al. (2024d) indicate that
adding code during pretraining boosts general rea-

soning abilities, while adding code instructions dur-
ing instruction tuning improves code-specific skills
and adherence to human instructions. Mixing text
and code data dynamically fosters progressive rea-
soning enhancements throughout training. Addi-
tionally, Zhang et al. (2024d) further finds that the
effects of code data differ across reasoning domains
but exhibit consistent trends within each domain.
They conclude that optimal code mixing strategies
are typically domain-specific rather than universal.

2.2 Generating as Code Aids Reasoning

We examine how generating code and code-based
training enhance LLMs’ reasoning. By transform-
ing reasoning problems into programmatic solu-
tions, these approaches improve precision and relia-
bility in complex reasoning tasks. The performance
of major methods are listed in Table 1.
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Method Type Method Model HumanEval MBPP SWE-Bench (Lite)

Baseline Direct† Codex 48.1 49.8 –
CoT† (Wei et al., 2023a) Codex 53.9 54.5 –

Reasoning-enhanced
SCoTs (Li et al., 2023b) GPT-3.5 60.6 47.0 –
Self-Planning (Jiang et al., 2024) Codex 60.3 55.7 –
CodeCoT (Huang et al., 2024a) GPT-3.5 79.3 89.5 –

Interactive
Self-Edit† (Zhang et al., 2023) GPT-3.5 62.2 52.4 –
Self-Debugging (Chen et al., 2023b) GPT-4 – 80.6 –
Self-Collaboration (Dong et al., 2024) GPT-3.5 74.4 68.2 –
AgentCoder (Huang et al., 2024b) GPT-4 96.3 91.8 –

Fine-tuned CodeAct (Wang et al., 2024c) Mistral-7B 34.7 59.1 –
OpenCodeInterpreter (Zheng et al., 2025) DeepseekCoder-33B 92.7 90.5 –

Agentic

SWE-agent (Yang et al., 2024b) GPT-4 Turbo – – 18.0
AutoCodeRover (Zhang et al., 2024e) GPT-4 – – 19.0
OpenHands (Wang et al., 2024d) Claude-3.5-Sonnet – – 26.0
HyperAgent (Phan et al., 2024) Claude-3.5-Sonnet – – 26.0
Agentless‡ (Xia et al., 2024a) GPT-4o – – 27.3

Table 2: Performance comparison of reasoning-enhanced code intelligence methods across benchmarks. Results
reflect best performance from original papers except where noted (†results from Self-Planning (Jiang et al., 2024)
for Direct and CoT, and from CodeCoT (Huang et al., 2024a) for Self-Edit). ‡Agentless represents an agent-free
approach, while listed under Agentic methods for organization, HumanEval and MBPP use pass@1 scoring, and “–”
denotes unavailable or inapplicable results.

2.2.1 Single Execution
The approaches in this subsection focus on trans-
forming numerical problem-solving into single-
execution code generation tasks. Chen et al.
(2022); Gao et al. (2023) introduced Program of
Thoughts (PoT) and Program-aided language mod-
els (PaL), transforming numerical problem-solving
into single-execution code generation tasks. Un-
like chain-of-thought’s natural language steps (Wei
et al., 2023a), these approaches express the entire
reasoning process as a self-contained executable
program, providing a deterministic path to solu-
tions while minimizing calculation errors. Bi et al.
(2023) investigated when this code-based transfor-
mation enhances reasoning, finding that PoT and
PaL’s effectiveness depends on code complexity.
Their analysis revealed that code transformation
benefits vary across problem types.

Beyond accuracy, a crucial feature of LLM sys-
tems is their ability to provide dependable confi-
dence estimates for their predictions. Kabra et al.
(2023) investigates this aspect and demonstrates
that program-aided reasoning approaches, where
LLMs utilize code representation, generally ex-
hibit superior calibration compared to standard text-
based reasoning methods that rely on CoT.

2.2.2 Dynamic Code-Language Integration
Beyond single, monolithic code outputs, many re-
cent studies explored dynamic and interactive ways
to integrate natural language with code representa-

tion, leveraging the strengths of both modalities in
a more fluid and often iterative manner.

Wang et al. (2023), for example, fine-tunes mod-
els to produce solutions that integrate natural lan-
guage explanations, Python code for computations,
and the corresponding execution results from a
code interpreter. Special tokens are employed to
delineate these different components, enabling the
model to generate a segment, observe its (execu-
tion) outcome, and then continue reasoning or cod-
ing based on that outcome. Building on this, Lu
et al. (2024) emphasizes Tool-Integrated Reason-
ing (TIR), where models use integrated natural lan-
guage reasoning steps and Python code, generating
mathematical code explicitly paired with natural
language reasoning steps during pretraining.

Other approaches focuses on enabling LLMs
to choose or switch between different reasoning
modalities or to decompose problems into sub-
tasks that requires different integration strategies.
Xiong et al. (2024) explores methods where the
LLM can dynamically select the most appropri-
ate reasoning strategy among options like using
only natural language (Chain-of-Thought), only
code (Program-aided Language Models), generat-
ing code first then analyzing with natural language
(CodeNL), or vice-versa. Similarly, Chen et al.
(2024b) investigates methods to guide LLMs in
choosing between code generation/execution and
textual reasoning, noting that OpenAI’s Code In-
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terpreter allows models to iteratively generate code
and text. This work also proposes methods like
"Code + Text + Sum.", where both code and text
solutions are generated and then synthesized, and
"Self-estimate Score", where the LLM assesses its
confidence to choose the modality.

Interactive and iterative frameworks are a signif-
icant direction in dynamic integration. Liu et al.
(2024a) allows LLMs to solve tasks by interact-
ing with a Read-Eval-Print Loop, where the model
writes code and dynamically corrects errors or
handles fuzzy sub-problems in natural language.
This mirrors how human developers iteratively
write code, test, and reason about the next step.
Yang et al. (2024e) introduces a task where an
LLM solves problems by iteratively identifying
sub-problems and their corresponding formalisms,
then writing suitable programs guided by a natural
language trajectory of thought, action, and obser-
vation.

Planning also plays a crucial role in structuring
this dynamic integration.Lei et al. (2024) structures
this with two distinct phases: a solution generation
phase that formulates and verifies a solution plan
against visible tests, and a code implementation
phase that drafts an initial code based on the veri-
fied plan and refines it if it fails tests, using the plan
verification to inform the debugging process.

2.2.3 Non-Executable Program
Representations

The benefit of code/code-like representations is not
limited to executable programs. Non-executable or
partially executable code forms can still enhance
reasoning.

One prominent direction is the use of pseu-
docode or code with semantic gaps that the LLM
learns to "execute" or reason over. Li et al. (2023a)
introduced Chain of Code (CoC), where LMs gen-
erate programs that can include semantic sub-tasks
formatted as flexible pseudocode. An "LMulator"
– the LM acting as an emulator – simulates the ex-
pected output of that code segment. This allows
CoC to handle tasks that mix precise algorithmic
computations with more semantic or commonsense
reasoning steps that are difficult to fully implement
in executable code. The COGEX framework (Weir
et al., 2024) trains LMs to generate and then em-
ulate the execution of "pseudo-programs". These
are often Python programs where some leaf func-
tion calls might be undefined or only specified by
their name and documentation, without full im-

plementations. The LM’s own knowledge is used
to fill in these execution gaps during the emula-
tion phase, allowing the model to handle undefined
functions. Similarly, Puerto et al. (2024) proposed
"code prompting," where a natural language prob-
lem is converted into a code format that includes the
logical structure and the original natural language
text as comments. The LLM is then prompted with
this generated code and produces a natural lan-
guage answer directly, without the code being run
by an interpreter. These methods investigate how
the code representation itself can elicit or enhance
specific reasoning abilities like entity tracking or
logical reasoning within the LLM.

Another approach involves generating high-level,
structured, but not necessarily directly executable,
plans in a code-like format. The CODEPLAN
framework (Wen et al., 2024a) empowers LLMs
to generate and follow "code-form plans," which
are essentially pseudocode outlining a high-level,
structured reasoning process. These plans are not
mandated to be executable; their primary purpose
is to provide a structured blueprint that captures
the semantics and control flow for sophisticated
reasoning tasks.

3 Reasoning-Enhanced Code Intelligence

Software development fundamentally requires in-
tensive reasoning capabilities as developers decom-
pose complex problems and rigorously analyze sys-
tem behaviors and edge cases (Hermans, 2021).
Recent advances in LLMs have dramatically im-
proved code generation capabilities (Chen et al.,
2021; Rozière et al., 2024; Li et al., 2023c; Team
et al., 2024; DeepSeek-AI et al., 2024; Hui et al.,
2024; Li et al., 2022), and their growing integration
with reasoning capabilities has transformed code in-
telligence systems (Austin et al., 2021; Yang et al.,
2024b). This section examines the evolution of
code intelligence through three stages: direct code
generation’s limitations, explicit reasoning integra-
tion for code generation and comprehension, and
the emergence of code agents for complex end-
to-end development. The performance of major
methods are listed in Table 2.

3.1 Essential Code Intelligence

The foundation of modern code intelligence
emerged with LLMs trained on code reposito-
ries, initially focusing on direct sequence pre-
diction tasks like auto code completion, e.g.,
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Type Model Settings Size Metric Datasets

Math
GSM8K MATH OCW

Lemma Baseline 34B EM 51.5 25.0 11.8
MARIO (Liao et al., 2024) Proposed 34B EM 78.2(+26.7) 53.5(+28.5) 30.2(+18.4)

Common Sense
Logic

HotpotQA LogiQA DROP

RoBERTa-L Baseline 355M EM 67.6 36.7 78.1
POET (Pi et al., 2022) Proposed 355M EM 68.7(+1.1) 38.9(+2.2) 79.8(+1.7)

Math
Logic

MathShepherd-pair Reclor-pair LogiQA2.0-pair

Qwen2-7B Baseline 7B Reward 0.88 0.86 0.83
CodePMP (Yu et al., 2024b) Proposed 7B Reward 0.93(+0.5) 0.87(+0.1) 0.84(+0.1)

Math
Multi-lingual

APE CMATH GSM8K

Qwen2-Math Baseline 7B Reward 83.4 87.3 79.5
SIAM (Yu et al., 2024a) Proposed 7B Reward 88.1(+4.7) 93.2(+5.9) 81.5(+2.0)

Instruction-Following
Decision-Making

AlpacaEval-2 MT-Bench ALFWorld

Llama-2 Baseline 13B Self-defined 6.5 6.1 23.2
CODEPLAN (Wen et al., 2024a) Proposed 13B Self-defined 12.2(+5.7) 7.1(+1.0) 33.3(+10.1)

Table 3: Performance enhancement brought by training the model with code related data. "Baseline" denotes the
vanilla model, while "Proposed" refers to the proposed methods.

CodeXGLUE (Lu et al., 2021), and docstring-
based generation, e.g., HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021). These
base models demonstrated capabilities in next-
line prediction, fill-in-the-middle (FIM), and pro-
gram synthesis (Chen et al., 2021; Xu et al., 2022;
Bavarian et al., 2022; Fried et al., 2023; Li et al.,
2023c), later extending to repository-level tasks
like RepoBench (Liu et al., 2023b) and Cross-
CodeEval (Ding et al., 2023). While these mod-
els excelled at simple tasks like code comple-
tion (GitHub, 2024), their reliance on direct gen-
eration without explicit reasoning limited their ef-
fectiveness in complex scenarios requiring careful
consideration of algorithmic design and edge case
handling, or real-world programming scenarios that
demand systematic planning.

3.2 Integration of Reasoning Capabilities

Modern models typically exhibit two key reasoning
types when working with code: reasoning to code,
which involves planning and problem decomposi-
tion prior to implementation, and reasoning over
code, which focuses on understanding code behav-
ior and properties. These reasoning forms naturally
converge in interactive programming, where sys-
tems must both reason about what code to generate
and analyze execution results to guide fixes, opti-
mizations, and capability expansions. This section
explores how these reasoning capabilities have de-
veloped and synergized to build more sophisticated
code intelligence systems.

3.2.1 Reasoning for Code Generation
The integration of explicit reasoning has trans-
formed code intelligence systems through advances
in CoT (Wei et al., 2023a), instruction tuning (Wei
et al., 2022a; Muennighoff et al., 2024; Luo et al.,
2023) and reinforcement learning (OpenAI et al.,
2024; DeepSeek-AI et al., 2025). Models have
evolved from basic code completion tools (GitHub,
2024), to applications with basic dialogue capabil-
ities (OpenAI, 2023), and finally to sophisticated
reasoning engines that combine planning, reason-
ing and critical thinking to arrive at solutions (Ope-
nAI et al., 2024), excelling at complex program-
ming tasks.

Models adopt CoT reasoning as the core strat-
egy, generating step-by-step thoughts before im-
plementing code. Basic CoT improves code gen-
eration by articulating intermediate logic, while
recent advancements adapt it to programming con-
texts, structuring reasoning around programmatic
constructs (e.g., loops, conditionals) for correct-
ness (Li et al., 2023b), decomposing solutions into
reusable modules for iterative refinement (Huang
et al., 2024a), and integrating problem decompo-
sition for debugging (Wen et al., 2024b). Models
also generate natural language plans to guide imple-
mentation, ensuring alignment between intent and
code logic (Jiang et al., 2024; Wang et al., 2024a).
These strategies extend to resource-efficient scenar-
ios, where lightweight models generate CoT steps
through automated alignment frameworks (Yang
et al., 2024a), and to repository-level tasks, com-
bining multi-step planning with static dependency
analysis and code editing (Bairi et al., 2023). By in-
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tegrating CoT with modular reasoning and context-
aware planning, modern models achieve higher cor-
rectness and robustness in complex scenarios.

3.2.2 Reasoning Over Code
While reasoning capabilities improve code genera-
tion, the ability to reason over code - understanding
its behavior, predicting its execution, and analyz-
ing its properties - remains a fundamental chal-
lenge in code intelligence. Unlike natural language,
code’s combination of rigid syntax with complex
runtime behaviors demands comprehension of both
static forms and dynamic execution, further com-
plicated by external dependencies. Empirical stud-
ies show models can generate syntactically correct
code while failing to grasp semantic meaning (Zhu
et al., 2024), highlighting the gap between surface
manipulation and true understanding.

3.2.3 Interactive Programming
Recent researches enabled LLMs to autonomously
evaluate and improve their outputs, with Self-
Refine (Madaan et al., 2023) demonstrated how
models can generate, critique, and optimize outputs.
In code development, this mechanism gains unique
advantages via the executable nature of code which
provides immediate, objective feedback that trig-
gers new reasoning cycles. Specifically, interactive
programming forms a reasoning-driven optimiza-
tion loop: models first reason to generate code for
execution, then analyze execution results to under-
stand errors or improvement directions, ultimately
reasoning about better solutions. This embraces
software development’s iterative nature, advancing
beyond traditional one-pass generation.

Early explorations in interactive program syn-
thesis demonstrated feedback’s potential(Le et al.,
2017), the emergence of LLMs catalyzed evolu-
tion to autonomous refinement: Self-Edit devel-
oped a fault-aware code editor leveraging execu-
tion results for iterative error correction (Zhang
et al., 2023), while InterCode established a compre-
hensive benchmark environment and standardized
interactive coding as a reinforcement learning prob-
lem (Yang et al., 2023). Recent advances have
further refined this paradigm: CodeChain intro-
duced self-revision mechanism that modularizes
code generation and systematically improves solu-
tions through targeted refinement chains (Le et al.,
2024), LeTI demonstrated improvement through
natural language feedback (Wang et al., 2024e),
and OpenCodeInterpreter unified generation, exe-

cution, and refinement in one framework (Zheng
et al., 2025). Systematic analysis reveals these
methods’ effectiveness heavily depends on mod-
els’ ability to reason about program behavior and
execution feedback (Zheng et al., 2024b). This evo-
lution has laid crucial groundwork for code agents
capable of handling complex programming tasks.

3.3 Code Agents with Complex Reasoning
The convergence of code reasoning paradigms –
planning and decomposition, context-aware under-
standing, and interactive programming – has en-
abled the evolution of code intelligence systems
into autonomous code agents (Labs, 2024; Any-
sphere, 2023; Wang et al., 2024d). These agents
handle complex development tasks by decompos-
ing tasks and formulating execution plans, trans-
lating abstract solutions into concrete environmen-
tal actions through predefined tools (e.g., IDE op-
erations, terminal commands), and continuously
monitoring execution states while gathering envi-
ronmental feedback to reach goals. Unlike static
code generators, these agents treat development
as a dynamic decision cycle by interacting with
the environment, with reasoning applied through-
out—from understanding requirements and taking
appropriate actions to evaluating outcomes.

SWE-bench established a comprehensive eval-
uation framework based on real GitHub is-
sues (Jimenez et al., 2024), later expanded with
SWE-bench Multimodal (Yang et al., 2024c) in-
corporating visual software tasks and SWE-bench
Verified (Chowdhury et al., 2024) enhancing evalu-
ation reliability through rigorous test case valida-
tion. These evaluations revealed persistent chal-
lenges in code intelligence: effective reasoning
about program structure and behavior, safe and ef-
fective codebase navigation and modification, and
maintaining coherent long-term planning across
development iterations.

Modern code agents share a common foundation
in environment interaction, while each contributing
unique implementation focuses. CodeAct (Wang
et al., 2024c) pioneered executable agent behav-
iors through Python interpreter, enabling dynamic
debugging workflows, and OpenHands (Wang
et al., 2024d) extended it by providing a flexible
agent infrastructure supporting customizable tool
chains. SWE-agent (Yang et al., 2024b) focused on
optimizing repository navigation through Agent-
Computer Interface, CodeAgent (Zhang et al.,
2024c) combined tool specialization with strate-
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gic frameworks, coordinating multiple repository-
level operations and AutoCodeRover (Zhang et al.,
2024e) introduced spectrum-based fault localiza-
tion to guide context retrieval.

Recent advances have explored two contrasting
directions: multi-agent systems and agent-free ap-
proaches. HyperAgent (Phan et al., 2024) coordi-
nates specialized agents for planning, navigation,
editing, and execution, demonstrating how different
reasoning capabilities can be hierarchically orches-
trated. In contrast, Agentless (Xia et al., 2024a)
achieves effectiveness through simplification - em-
ploying a focused two-phase process for fault local-
ization and repair without complex agent architec-
tures. Empirical evaluations show that, compared
to humans, these approaches reduce code redun-
dancy, with effective task decomposition being key
to success, (Chen and Jiang, 2024), though match-
ing human-level performance remains challenging.

4 Challenges and Future Directions

The synergy between code and reasoning in LLMs,
while powerful, faces several challenges that also
outline future research avenues. The full discussion
is available in Appendix A.

4.1 Code-enhanced Reasoning

Key challenges include the lack of interpretabil-
ity and debuggability of LLM-generated code,
which may not reflect true reasoning and lacks reli-
able confidence assessment (Li et al., 2023a; Kabra
et al., 2023). Future work should focus on self-
reflection mechanisms (Chen et al., 2024b) and
formal verification (Kang et al., 2025). Blended
code-and-language reasoning is crucial for tasks
requiring both precision and contextual understand-
ing, necessitating hybrid architectures that inter-
leave modalities (Li et al., 2023a; Liu et al., 2024a).
Optimizing code data and representations in-
volves finding the right complexity balance to aid
LLM learning without oversimplifying reasoning
steps (Bi et al., 2023).

Further, the lack of scalability and general-
ization due to task-specific fine-tuning (Wang
et al., 2023) and narrow data domains calls for
improved zero/few-shot learning (Chen et al.,
2022) and cross-domain training. LLMs also
show difficulty with complex or abstract tasks
requiring commonsense or semantic interpreta-
tion, where code can be detrimental (Li et al.,
2023a); context-aware, adaptive architectures are

needed (Chen et al., 2024b). The lack of high-
quality datasets, with many models relying on
noisy GitHub data (DeepSeek-AI et al., 2024), un-
derscores the need for cleaner, diverse data curation.
Finally, tool usage based on code format requires
standardized approaches for LLMs to invoke tools
via automated code generation, moving beyond
simple APIs (Qin et al., 2023).

4.2 Reasoning-enhanced Code Intelligence

Challenges in this area include large-scale code
understanding, where increased context length
doesn’t always improve comprehension, especially
with dispersed information (Li et al., 2024b), re-
quiring a balance of context expansion and RAG.
Long-form code generation beyond single func-
tions is difficult to evaluate and prone to error ac-
cumulation, with current training optimizing for
long-context understanding rather than coherent
long-form output (Wu et al., 2025). The applica-
bility of new reasoning models in code agents is
another concern, as models like O1/R1 show lim-
ited agent task improvement (OpenAI et al., 2024;
DeepSeek-AI et al., 2025), possibly due to mis-
aligned agent frameworks or inherent limitations
of these models in agentic tasks.

Balancing autonomy and control in code
agents is critical, especially regarding safety with
direct code execution (Guo et al., 2024a). Mul-
timodal code intelligence is increasingly impor-
tant for UI/UX tasks (Yun et al., 2024), requiring
models that can process visual specifications (Abe
et al., 2024; Zheng et al., 2024a). Reinforce-
ment learning for code models offers promise
due to objective feedback from code execution, po-
tentially enhancing reasoning depth through CoT-
guided learning (DeepSeek-AI et al., 2025). Lastly,
the innovation and refinement of evaluations
are perpetual necessities as models master exist-
ing benchmarks (McIntosh et al., 2024), requiring
new benchmarks that resist contamination (Riddell
et al., 2024) and assess broader aspects like code
quality (da Silva Simões and Venson, 2024).

5 Conclusion

The synergy between code and reasoning has
driven significant advancements in AI, with code
enhancing logical reasoning and reasoning improv-
ing code intelligence. This survey explored how
executable programs and structured code paths re-
fine AI reasoning while highlighting how reasoning
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abilities enables advanced code generation, com-
prehension, and debugging. Despite progress, chal-
lenges such as ambiguity, scalability, and consis-
tency remain. Future research must deepen the
integration of reasoning and programming to build
more robust, interpretable, and adaptive AI systems.
As these fields converge, AI’s ability to think and
code will continue to evolve, reshaping intelligent
automation.

6 Limitations

Our survey spans a wide range of approaches, from
single-execution code-based reasoning (§2.2) to
advanced autonomous code agents (§3.3), which
compels us to keep certain implementation de-
tails and domain-specific nuances only briefly de-
scribed. The decision to focus on recent arXiv
categories and a confined publication window ex-
cludes older or less mainstream work that could
offer alternative perspectives or historical context.
Coverage of benchmarks mentioned in §3.2.2 and
§3.3—CRUXEval, CodeMMLU, RepoQA, and
SWE-bench—remains incomplete with respect to
real-world repository-scale tasks or specialized ar-
eas such as concurrency analysis and security ver-
ification. The challenges identified in §4 reflect
ongoing research gaps rather than definitive conclu-
sions, and future developments in datasets, model
architectures, and evaluation protocols may prompt
revisions or expansions of this survey.
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A Challenges and Future Directions:
More Detailed Discussion

A.1 Code-enhanced Reasoning

Lack of Interpretability and Debuggability. A
key challenge in code-enhanced reasoning is the
reliance on the code generation capabilities of
LLMs (Kadavath et al., 2022; Kabra et al., 2023).
However, LLM-generated code often does not faith-
fully reflect the model’s true chain of thought (Li
et al., 2023a), nor can these models reliably assess
their own confidence (Kabra et al., 2023). Man-
ual inspections of the generated code are time-
consuming and prone to oversight (Li et al., 2023a;
Tian et al., 2023), underscoring the need for system-
atic error detection and robust error-handling strate-
gies within the code itself (Li et al., 2023a; Ni et al.,
2024b). Mechanisms that empower LLMs to self-
reflect and debug their generated code would be
highly beneficial (Chen et al., 2024b). Potential ap-
proaches include tree-based generation (Yao et al.,
2023), reasoning-oriented self-reflection (Shinn
et al., 2023), and reinforcement learning method-
ologies (Le et al., 2022). Another promising av-
enue is the application of formal verification tech-
niques (Kang et al., 2025), which can validate the
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correctness of the generated code and ensure align-
ment between the code logic and intended reason-
ing steps.
Blended Code-and-Language Reasoning. Al-
though code excels at numeric and algorithmic
tasks, it frequently struggles with less structured
or more subjective tasks (e.g., commonsense rea-
soning, semantic analysis) where purely executable
representations are inadequate (Li et al., 2023a;
Weir et al., 2024; Liu et al., 2024a). A crucial chal-
lenge is deciding how to split reasoning processes
between structured code (for precise computation)
and free-form text (for broader contextual and in-
terpretive functions) (Suzgun et al., 2022; Liu et al.,
2024a; Xiong et al., 2024). Frameworks such as
“LMulator” and “pseudocode execution” demon-
strate the potential of interleaving code generation
with textual reasoning (Li et al., 2023a; Weir et al.,
2024), allowing symbolic computation to be com-
plemented by natural language interpretation. Mov-
ing forward, designing hybrid architectures that
seamlessly integrate code and language modalities
will be essential for improving performance on a
wide range of tasks, particularly those requiring
nuanced judgment alongside algorithmic precision.
Optimizing Code Data and Representations De-
termining the optimal level of code complexity
for enhancing reasoning remains an open problem.
Overly intricate code can be difficult for LLMs to
learn effectively, while overly simplistic code may
fail to capture essential reasoning steps (Bi et al.,
2023). A systematic analysis of the relationship be-
tween code complexity and reasoning performance
is needed. Metrics such as cyclomatic complexity
and code length can help quantify code difficulty
and guide the selection of complexity levels that
maximize learning efficiency. Additionally, adap-
tive curricula that gradually increase code complex-
ity may enable LLMs to progressively acquire more
sophisticated reasoning capabilities while minimiz-
ing the risk of overwhelming the model.
Lack of Scalability and Generalization. Many
current code-enhanced reasoning methods rely on
task-specific fine-tuning, which can hinder general-
ization to novel tasks or domains (Yu et al., 2023;
Mitra et al., 2024; Wang et al., 2023). Moreover,
data scalability often remains limited to narrow
domains (e.g., mathematical calculation, code ma-
nipulation) (Guo et al., 2024b; Hui et al., 2024;
Lozhkov et al., 2024; Laurençon et al., 2022; Wen
et al., 2024a), restricting the applicability of these
models in real-world scenarios. Improving zero-

and few-shot learning capabilities will be crucial
for broadening the scope of code-enhanced reason-
ing (Chen et al., 2022). Innovative data augmenta-
tion techniques, such as generating synthetic data
or leveraging unsupervised learning on unlabeled
corpora, can further enrich model training (Phan
et al., 2023; Lightman et al., 2023). Finally, cross-
domain training strategies (Li et al., 2023d) that
integrate knowledge from multiple sources hold
promise for more robust, generalized reasoning
across diverse tasks and domains.
Difficulty with Complex or Abstract Tasks While
code-based approaches excel in structured problem-
solving, they often falter on tasks requiring com-
monsense, semantic interpretation, or complex al-
gebraic reasoning. In some instances—such as
evaluating the humor in a name edit—code-based
reasoning may even introduce unnecessary com-
plexity or degrade performance (Li et al., 2023a).
Next-generation models should be designed to be
more context-aware, capable of determining when
code is beneficial and when alternative strategies
would be more appropriate (Chen et al., 2024b).
Achieving this requires adaptive, multimodal archi-
tectures that selectively combine code execution
with natural language processing and other reason-
ing paradigms, ensuring that different task types
receive the most effective mode of reasoning sup-
port.
Lack of High-Quality Datasets. Many open-
source code LLMs still rely on training data
scraped from GitHub, which can suffer from re-
dundancy, poor quality, and overly short snip-
pets (DeepSeek-AI et al., 2024; Hui et al., 2024;
Lozhkov et al., 2024). Consequently, building
cleaner and more diverse datasets is essential for ad-
vancing tasks such as code generation and editing.
High-quality dataset curation not only improves
model performance but also benefits the broader
community seeking robust benchmarks and repro-
ducible experimental settings
Tool Usage Based on Code Format Currently,
LLMs or agents typically use APIs or simple code
to invoke tools (Shen et al., 2023; Qin et al., 2023).
However, in complex working conditions, the con-
struction of a sophisticated and complete tool usage
chain remains an unsolved challenge. Code, as a
universal format, has a unique advantage in this as-
pect. The key question is how to design a standard-
ized format that enables LLMs or agents to invoke
available tools on a computer through automated
code generation and execution. This approach en-
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hances the capabilities of LLMs or agents, allowing
them to tackle more complex tasks effectively.

A.2 Reasoning-enhanced Code Intelligence
Large-Scale Code Understanding Large-scale
code understanding has seen significant progress
with the expansion of context windows, enabling
models to process even over 1 million tokens (Chen
et al., 2023a; Guo et al., 2023). However, increas-
ing context length does not always lead to better
comprehension, as models struggle to focus on
critical information when relevant code snippets
are dispersed across a repository (Li et al., 2024b).
Retrieval-Augmented Generation (RAG) has been
introduced to mitigate this issue by retrieving rele-
vant segments, but it is not without limitations: key
information may be missed, and retrieval strategies
may not always align with complex code struc-
tures (Wu et al., 2024; Jin et al., 2024; Yu et al.,
2024c). Striking a balance between context ex-
pansion, retrieval augmentation, and precise code
parsing is essential to building product-grade code
intelligence systems capable of both global com-
prehension and accurate localization, making them
effective for complex repository-level tasks.
Long-Form Code Generation Recent advances
in LLMs for code generation have primarily fo-
cused on handling longer input contexts rather than
generating longer, structured code outputs (Wu
et al., 2025). In other words, current training op-
timizes long-context understanding, but does not
necessarily improve the coherence and quality of
long-form code generation. Several challenges
arise in long-form generation: first, it is difficult to
evaluate, as most existing benchmarks assess the
correctness of individual functions, while assess-
ing multi-file, multi-module code remains an open
problem. Second, long-form code generation is
prone to errors—when the output scale increases,
the accumulation of small mistakes can render the
entire project non-functional or logically inconsis-
tent. Moreover, correctness and executability are
difficult to ensure, as large-scale software develop-
ment involves rigorous compilation, testing, and
debugging processes, which generated code may
not adhere to. Future research should focus on
improving training strategies for long-form gen-
eration, developing better evaluation metrics for
multi-file coherence, and ensuring correctness and
executability in large-scale code generation.
Exploring the Applicability of Reasoning Mod-
els in Code Agents Despite significant break-

throughs in mathematical reasoning and code gen-
eration, reasoning models such as O1 and R1 (Ope-
nAI et al., 2024; DeepSeek-AI et al., 2025; Ope-
nAI, 2025) have shown limited improvements in
agent-based tasks. One possible explanation is that
existing agent frameworks were optimized for ear-
lier non-reasoning models, which prevents newer
models from fully leveraging their reasoning ca-
pabilities. Alternatively, reasoning-enhanced mod-
els may not inherently excel in agent-based tasks,
meaning their strengths in mathematical and code
reasoning do not necessarily translate into superior
agent execution. If the latter is true, adapting agent
architectures alone may not be sufficient, and a
more fundamental investigation into the role of rea-
soning models in agents is needed. Future research
should explore new agent frameworks, better uti-
lization of reasoning capabilities, and empirical
validation of reasoning-enhanced models in real-
world programming agent scenarios to determine
whether new paradigms are required or if models
themselves need refinement to be more effective in
agent environments.
Balancing Autonomy and Control in Code
Agents As agents become more capable, the bal-
ance between autonomy and control emerges as a
crucial challenge. Allowing agents more freedom
to explore solutions independently may yield novel
and highly efficient results, while enforcing strict
control mechanisms ensures predictability and re-
liability. Finding the right balance between these
approaches is essential for practical deployment.
Additionally, safety concerns grow with increased
agent autonomy, particularly in scenarios involving
direct code execution (Guo et al., 2024a). Intel-
ligent safeguards are needed to prevent security
vulnerabilities, unintended execution of high-risk
operations, and harmful self-modifications. Fu-
ture research should investigate frameworks that
enable agents to operate within safe execution en-
vironments while maximizing their ability to au-
tonomously optimize and improve code generation.
Multimodal Code Intelligence The evolution of
programming from purely text-based workflows to
multimodal interactions is reshaping the develop-
ment landscape, particularly in UI/UX and fron-
tend engineering (Yun et al., 2024). Traditional
code models primarily rely on textual inputs, but
future systems will require capabilities to process
visual elements, bridging the gap between design
and implementation. Advancements in aesthetic-
aware LLMs (Abe et al., 2024), vision-based cod-
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ing agents (Zheng et al., 2024a), and interface ma-
nipulation technologies (Anthropic, 2024) offer ex-
citing possibilities. Future research should focus on
training models that can generate code from visual
specifications, interact with IDEs through graph-
ical interfaces, and develop datasets that capture
the intricate relationships between design compo-
nents and their code representations, paving the
way for more intuitive and efficient development
workflows.
Reinforcement Learning for Code Models Re-
inforcement learning (RL) presents a promising
avenue for enhancing reasoning in code models.
Unlike other domains, code execution provides im-
mediate and objective feedback, making it well-
suited for RL-based optimization. One potential
approach involves training models to predict input-
output behavior for given code and test cases, us-
ing CoT reasoning expressed in natural language
to guide the learning process (DeepSeek-AI et al.,
2025). Another key direction is exploring RL in
agent-based environments, where agents can iter-
atively refine their strategies for code search, de-
bugging, and refactoring through trial and error.
Incorporating RL into code intelligence systems
may significantly enhance their reasoning depth,
problem-solving efficiency, and overall robustness.
Innovation and Refinement of Evaluations As
code intelligence models continuously master ex-
isting benchmarks (Xia et al., 2024b), the develop-
ment of new evaluation frameworks remains a per-
petual necessity (McIntosh et al., 2024). Future re-
search must create more sophisticated benchmarks
that better reflect real-world challenges while re-
sisting data contamination (Riddell et al., 2024).
These frameworks should also extend beyond mere
functional correctness to assess broader software
development aspects, e.g., code quality, maintain-
ability, and design aesthetics (da Silva Simões and
Venson, 2024; Borg et al., 2024).

B Understanding Performance Variations

The performance metrics presented in Ta-
ble 1 (Code-enhanced Reasoning) and Table 2
(Reasoning-enhanced Code Intelligence) exhibit
a notable range of accuracies. These variations are
not random but arise from a confluence of intercon-
nected factors inherent in the design, training, and
evaluation of these sophisticated AI systems.

A primary driver of performance differences
is the core methodology and algorithmic ap-

proach employed by each system. For instance,
in Table 1, methods that translate reasoning prob-
lems into single, executable programs, such as
PAL (Gao et al., 2023) and PoT (Chen et al.,
2022), often excel on numerical benchmarks like
GSM8K. PoT with GPT-4, for example, achieves
97.2% on GSM8K by leveraging code’s determin-
istic execution, thereby minimizing errors common
in pure natural language reasoning. In contrast,
dynamic code-language integration methods like
MathCoder (Wang et al., 2023) (83.9% on GSM8K
with Llama-2-70B) and those using non-executable
representations like CoC (Li et al., 2023a) (71.0%
on GSM8K with text-davinci-003) adopt different
strategies that yield varied results depending on
their efficacy in blending modalities or guiding
internal reasoning. Similarly, Table 2 illustrates
how methodological evolution impacts code intelli-
gence. Simple Chain-of-Thought (CoT) prompting
with Codex (53.9% on HumanEval) surpasses di-
rect prompting (48.1%). More advanced reasoning-
enhanced techniques, such as CodeCoT (Huang
et al., 2024a) (79.3% on HumanEval with GPT-3.5),
and interactive methods like Self-Debugging (Chen
et al., 2023b) (80.6% on MBPP with GPT-4) and
AgentCoder (Huang et al., 2024b) (96.3% on Hu-
manEval with GPT-4), demonstrate further gains by
incorporating structured planning, iterative refine-
ment, or feedback loops. Agentic systems tackling
the complex SWE-Bench, like SWE-agent (Yang
et al., 2024b) (18.0%) and Agentless (Xia et al.,
2024a) (27.3%), show how architectural choices in
planning and tool use affect performance on real-
world tasks.

The underlying Large Language Model
(LLM) serving as the backbone is another criti-
cal factor. The inherent capabilities of models such
as GPT-4, GPT-4o, Claude-3.5-Sonnet, or special-
ized code models like Codex and DeepseekCoder,
vary significantly. For example, PoT’s 97.2% on
GSM8K with GPT-4 contrasts with PAL’s 72.0%
using the earlier Codex model. In Table 2, Agent-
Coder with GPT-4 achieves 96.3% on HumanEval,
considerably higher than SCoTs with GPT-3.5
(60.6%), underscoring that more powerful base
models generally yield superior results.

Furthermore, experimental settings, including
training data and prompting strategies, play
a crucial role. Whether a method uses zero-
shot or few-shot prompting, and the specific de-
sign of these prompts, can significantly alter out-
comes. Crucially, methods involving fine-tuning
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on task-specific data, such as MathCoder or Open-
CodeInterpreter (Zheng et al., 2025) (92.7% on
HumanEval), often outperform prompting-only ap-
proaches on benchmarks aligned with their train-
ing. The quality and scale of the pre-training
and fine-tuning datasets, as highlighted by the im-
provements in Table 3 where MARIO enhanced
Lemma’s GSM8K score by +26.7, directly reflect
the benefits of curated data incorporating relevant
code execution or reasoning patterns.

The characteristics of the evaluation bench-
marks and the metrics used also dictate relative
performance. Benchmarks like GSM8K (Cobbe
et al., 2021a) favor methods strong in arithmetic
code execution, while MATH (Hendrycks et al.,
2021b) tests more complex mathematical reasoning.
HumanEval (Chen et al., 2021) and MBPP (Austin
et al., 2021) assess single-function code genera-
tion, whereas SWE-Bench (Lite) (Jimenez et al.,
2024) challenges models with repository-level soft-
ware engineering tasks, where success rates are
generally lower and more indicative of real-world
applicability.

Finally, implementation details and hyperpa-
rameter choices, such as temperature settings for
generation or the number of samples evaluated, can
introduce variability in reported scores even for
conceptually similar methods.

In essence, the observed spectrum of accuracies
is a product of the intricate interplay between these
factors: the innovation in methodology, the founda-
tional LLM’s power, the specifics of training and
prompting, and the unique demands of each evalu-
ation benchmark. The discussions in Section 2 and
Section 3 offer additional context on how individ-
ual approaches navigate these elements to achieve
their documented performance levels.

C Commonly Used Evaluation Indicators

Throughout this survey, particularly in Tables 1,
2, and 3, various metrics are used to evaluate the
performance of Large Language Models in code-
enhanced reasoning and reasoning-driven code in-
telligence tasks. Understanding these indicators is
beneficial for interpreting the reported results. Be-
low are definitions of some of the most commonly
encountered metrics:

• Pass@k: This metric is predominantly used
in code generation tasks, such as those eval-
uated on benchmarks like HumanEval (Chen
et al., 2021) and MBPP (Austin et al., 2021).

Pass@k measures the percentage of problems
for which at least one functionally correct so-
lution is generated within the first k attempts
(i.e., k independent samples drawn from the
model). For example, pass@1 (often reported
in Table 2) indicates the percentage of prob-
lems solved correctly on the very first attempt
by the model. A higher pass@k value signifies
better code generation capability and reliabil-
ity. The correctness is typically determined
by running the generated code against a set of
predefined unit tests.

• Exact Match (EM): EM is a stringent metric
commonly used in question answering, mathe-
matical reasoning (e.g., GSM8K (Cobbe et al.,
2021a) as seen in Table 1 and Table 3), and
other tasks where the output is expected to
be precise. It measures the percentage of pre-
dictions that exactly match the ground truth
answer. For numerical answers, this means
the final computed value must be identical to
the reference solution. For text-based answers,
it often means the generated text string is iden-
tical, though sometimes normalization (e.g.,
ignoring case or punctuation) is applied.

• Accuracy (Acc.): Accuracy is a general met-
ric representing the proportion of correct pre-
dictions out of the total number of instances.
Its specific meaning can vary depending on
the task. In classification tasks, it’s the
fraction of correctly classified instances. In
the context of reasoning or problem-solving
benchmarks, it often refers to the percentage
of problems solved correctly, which can be
synonymous with EM if the answer format is
a single, precise value.

• Reward Score / Preference Score: These
metrics, often seen in evaluations involving
Reinforcement Learning from Human Feed-
back (RLHF) or preference modeling (e.g.,
CodePMP (Yu et al., 2024b) and SIAM (Yu
et al., 2024a) in Table 3), quantify the qual-
ity of a model’s output based on a learned
reward model or human preferences. The re-
ward model itself is trained to predict which of
two (or more) generations a human would pre-
fer, or to assign a scalar quality score to a gen-
eration. A higher reward score generally indi-
cates that the model’s output is more aligned
with desired characteristics (e.g., correctness,
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helpfulness, adherence to instructions) as im-
plicitly defined by the preference data.

• Solve Rate / Success Rate: This is a common
metric for evaluating performance on complex
tasks, especially in agent-based systems or
multi-step problem-solving environments like
SWE-Bench (Jimenez et al., 2024) (Table 2).
It refers to the percentage of tasks or prob-
lems that the system successfully completes
according to the task’s definition of success
(e.g., resolving a GitHub issue, passing all
specified tests for a software patch).

• Self-defined Metrics: Some research intro-
duces custom metrics tailored to the specific
nuances of their task or evaluation frame-
work. For example, CODEPLAN (Wen et al.,
2024a) in Table 3 uses self-defined metrics for
evaluating instruction-following and decision-
making on benchmarks like AlpacaEval-2 and
MT-Bench. When encountering such metrics,
it is important to refer to the original publica-
tion for their precise definitions.

D Technical Introduction for Important
Methods

D.1 Code-enhanced Reasoning
In this section, we provide additional technical in-
sights into how code-generation strategies serve
as a scaffolding mechanism for complex reason-
ing. By interleaving textual explanations with exe-
cutable or pseudo-executable code, these methods
leverage the language model’s ability to decom-
pose tasks while offloading precise computations
to interpreters or simulators. Below, we outline
four representative approaches.

Program-Aided Language Models (PaL)
PaL (Gao et al., 2023) interleaves natural language
reasoning and programmatic statements by
prompting large language models to emit both text
(e.g., comments) and code (e.g., Python snippets).
Any arithmetic or logical operations are delegated
to a code interpreter, allowing the model to focus
on higher-level step-by-step reasoning rather than
raw calculation. This reduces errors in multi-step
tasks, as correctness is grounded in the verified
outputs from executing the code.

Program of Thoughts (PoT) PoT (Chen et al.,
2022) frames the solution process as the generation
of a "program of thoughts," where each sub-step is

encoded in semantically meaningful variables and
partial code. Once generated, the code is executed
externally to reliably produce numerical results. By
breaking down complex computations into a series
of small, interpretable code snippets, PoT enables
more transparent and robust multi-step reasoning.

MathCoder MathCoder (Lu et al., 2024) pro-
vides a dynamic interplay between reasoning and
real-time code execution. The model switches be-
tween producing language-based rationales and
code blocks, executing each snippet as it is gener-
ated. The output of each block is then folded back
into the ongoing chain of thought, resulting in an
iterative loop of code-based calculation and textual
reasoning that can tackle intricate math problems
more reliably.

Chain of Code (CoC) CoC (Li et al., 2023a)
mixes semantic reasoning and code-like structures,
but allows certain segments of generated code to be
“emulated” by the language model itself if they are
not executable in a standard interpreter. Whenever
actual code execution is possible, it is performed
directly (e.g., for arithmetic). Otherwise, the lan-
guage model simulates the code’s effect, maintain-
ing a consistent state. This hybrid approach com-
bines symbolic execution with language-driven in-
ference for tasks that blend logical, numerical, and
semantic reasoning.

D.2 Training with Code

In this section, we illustrate five noteworthy meth-
ods that harness code-generation to bolster reason-
ing capacity.These approaches use code data for
training to structure the thinking process, verify
intermediate steps, and produce more precise final
answers.

MARIO MARIO (Liao et al., 2024) addresses
the challenge of enhancing mathematical reason-
ing in LLMs by introducing an enriched math
dataset derived from GSM8K and MATH, refined
through GPT-4 annotations, human review, and
self-training. Central to its approach is the utiliza-
tion of a Python code interpreter, enabling models
to perform exact calculations and systematic error
checks. MARIO also proposes a replicable fine-
tuning protocol that substantially improves perfor-
mance on GSM8K and MATH. By making both the
source code and trained models publicly available,
MARIO contributes an open, community-driven
platform for advancing code-based mathematical
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reasoning.

POET POET (Pi et al., 2022) boosts a model’s
reasoning capacity by pretraining it on programs
and their execution results, effectively importing a
“program executor’s” knowledge into the language
modeling process. Instantiated as POET-Math,
POET-Logic, and POET-SQL, it covers numerical,
logical, and multi-hop reasoning tasks. Through
data-driven alignment of natural language and code,
POET significantly strengthens a model’s ability to
conduct step-by-step inferences and validate con-
clusions.

CodePMP CodePMP (Yu et al., 2024b) proposes
a scalable preference model pretraining pipeline
that leverages large corpora of synthesized code-
preference pairs. By training reward models on
these code-centric preferences, CodePMP eases the
scarcity of human-labeled data and refines LLMs’
reasoning via reinforcement learning from human
feedback. Experiments on mathematical reasoning
(GSM8K, MATH) and logical reasoning (ReClor,
LogiQA2.0) show notable improvements, high-
lighting the value of code-based preference model-
ing for multi-step inference tasks.

SIAM SIAM (Yu et al., 2024a) targets code-
centric mathematical problem-solving by tapping
into large-scale, expert-written math question-
answer pairs and enforcing rigorous quality checks
through a code-based critic model. Beyond merely
augmenting GSM8K-like data, SIAM refines align-
ment via self-generated instruction and preference
data, preventing narrow overfitting to specific ques-
tion types. The approach consistently boosts perfor-
mance across both in-domain and out-of-domain
math benchmarks, in multiple languages, showcas-
ing robust generalization in code-enhanced reason-
ing.

CODEPLAN CODEPLAN (Bairi et al., 2023)
tackles multi-step reasoning bottlenecks by in-
troducing “code-form plans,” or structured pseu-
docode, as intermediate representations. This
framework enables LLMs to outline and execute
high-level reasoning flows, capturing control struc-
tures and semantic details often missing in plain
text. Trained on a large-scale dataset of paired plan-
response examples, CODEPLAN delivers substan-
tial gains across diverse tasks including mathemati-
cal, symbolic, multi-hop QA, and decision-making
scenarios. Its data-efficient and lightweight design

underscores the advantage of code-form reasoning
for complex problem-solving.

D.3 Reasoning-enhanced Code Intelligence
This section examines prominent approaches that
integrate reasoning capabilities into code gener-
ation. These methods span a spectrum of tech-
niques including planning and task decomposition,
self-improvement loops, interactive refinement pro-
cesses, and agent-based frameworks. By incorpo-
rating sophisticated reasoning mechanisms, these
approaches aim to enhance the quality, reliability,
and maintainability of generated code while ad-
dressing complex programming challenges across
different contexts and scales.

Self-Planning Self-Planning (Jiang et al., 2024)
decomposes the generation process into two dis-
tinct phases. In the planning phase, the model
generates a high-level plan from the task’s natu-
ral language intent using a few exemplars, and in
the subsequent implementation phase, this plan
guides the step-by-step synthesis of code. This
division facilitates improved handling of complex
code generation tasks by breaking down intricate
requirements into manageable sub-tasks.

SCoTs SCoTs (Li et al., 2023b) refines tradi-
tional chain-of-thought methods by explicitly in-
corporating programming constructs—such as se-
quences, branches, loops, and input-output struc-
tures—into the intermediate reasoning. This struc-
tured approach directly aligns the model’s gener-
ated thought processes with the formal structure of
code, leading to more robust, readable, and accu-
rate code synthesis.

CodeCoT CodeCoT (Huang et al., 2024a) in-
tegrates chain-of-thought reasoning with a self-
examination loop to target code syntax errors. After
initially generating code via intermediate reason-
ing, the model produces test cases to validate syn-
tax through local execution. Feedback from this
self-testing phase is then used to iteratively refine
the code, ensuring that the final output adheres to
both logical consistency and strict syntactic require-
ments.

CodePlan CodePlan (Bairi et al., 2023)formu-
lates repository-level coding tasks as a planning
problem by synthesizing a multi-step chain of edits
that span multiple inter-dependent files. By lever-
aging incremental dependency analysis, change im-
pact evaluation, and adaptive planning strategies,
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the framework orchestrates coordinated modifica-
tions across large codebases, thus automating com-
plex repository-level transformations with higher
accuracy and consistency.

COTTON COTTON (Yang et al., 2024a) enables
lightweight language models (with fewer than 10
billion parameters) to benefit from high-quality
chain-of-thought reasoning. By decoupling the gen-
eration of intermediate reasoning traces from the
final code synthesis and leveraging externally gen-
erated CoTs, COTTON allows resource-efficient
models to achieve performance gains comparable
to those of much larger models.

PlanSearch PlanSearch (Wang et al., 2024a) in-
corporates explicit natural language planning into
the code generation process. By prompting models
to articulate detailed, coherent plans before com-
mencing code synthesis, this method improves the
search and selection of relevant code snippets, thus
reducing errors and enhancing the overall quality
of generated code in complex programming scenar-
ios.

NExT NExT (Ni et al., 2024a) introduces a
framework that trains large language models to
inspect execution traces—capturing variable states
and control flows during runtime—and integrates
these observations into chain-of-thought rationales.
By self-training on synthetic execution-aware data,
the method equips models with a semantic under-
standing of dynamic code behavior, which is then
leveraged for improved program repair and debug-
ging performance.

SelfPiCo SelfPiCo (Xue et al., 2024) leverages
an interactive loop to convert non-executable code
fragments into runnable snippets. It integrates few-
shot in-context learning with chain-of-thought rea-
soning to predict appropriate dummy values for
undefined elements and refines these predictions
based on execution feedback. The framework is
built around key components—including an inter-
active value predictor and a complementary type
predictor—that work together to iteratively adjust
and complete partial code segments, thereby trans-
forming incomplete code into an executable form
without altering existing code structure.

Self-Refine Self-Refine (Madaan et al., 2023) in-
troduces an iterative self-feedback mechanism in
which the same large language model first gener-
ates an initial output and then critiques and refines

it through repeated feedback cycles. By interleav-
ing a feedback phase that evaluates various aspects
of the output with a subsequent refinement phase
that corrects any identified shortcomings, the ap-
proach systematically enhances output quality. The
method avoids the need for extra training data by
leveraging few-shot prompting and untangling rea-
soning from correction, thereby improving perfor-
mance across diverse tasks.

Self-Debugging Self-Debugging (Chen et al.,
2023b) equips models with the ability to au-
tonomously detect and repair errors in generated
code. The method begins with an initial code gener-
ation step, followed by code execution that reveals
runtime issues. The model then generates natural
language explanations of the detected errors and
revises its code accordingly. This self-debugging
process, guided by few-shot demonstrations, effec-
tively simulates a human debugging session and
leads to more robust and accurate code synthesis.

Self-Collaboration Self-Collaboration (Dong
et al., 2024) employs a simulated internal dialogue
where the model engages in self-interaction to re-
vise and consolidate its code output. By using
chain-of-thought prompting, ChatGPT generates
multiple reasoning iterations that simulate collabo-
rative discussion, enabling it to reconcile different
coding strategies. This self-collaborative approach
improves the precision and resilience of generated
code through iterative internal debate and refine-
ment.

Self-Edit Self-Edit (Zhang et al., 2023) incor-
porates a dedicated fault detection phase into the
code generation process. After producing an ini-
tial draft, the system analyzes the code for syntac-
tic and semantic errors, annotating potential faults.
The model then utilizes this fault-aware feedback
to perform targeted edits that correct mistakes and
optimize functionality. This iterative loop of anal-
ysis and refinement results in higher-quality code
that is both more efficient and bug-resistant.

LeTI LeTI (Wang et al., 2024e) redefines code
generation as an interactive, dialogue-driven pro-
cess. By capturing multi-turn textual interactions,
the framework aggregates diverse reasoning cues
and iteratively refines code outputs. The model
uses conversational context and chain-of-thought
reasoning to integrate these insights, which en-
hances both the interpretability and accuracy of
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the final code. This process promotes a more holis-
tic synthesis of programming solutions based on
natural language reasoning.

InterCode InterCode (Yang et al., 2023) pro-
poses a standardized framework that embeds real-
time execution feedback into the coding process.
By systematically incorporating dynamic execu-
tion results into iterative refinement cycles, the
approach establishes benchmarks for interactive
coding performance. The integration of execution
trace analysis ensures that the feedback loop di-
rectly informs code corrections, thereby raising
the reliability and robustness of generated code in
practical software development contexts.

CodeChain CodeChain (Le et al., 2024) adopts
an iterative self-revision strategy to decompose
complex programming tasks into modular sub-
tasks. Initially, the model generates modularized
code using chain-of-thought prompting. It then ex-
tracts and clusters sub-modules from the generated
code, selecting representative components that are
reintroduced into subsequent prompts. This cycle
enables the model to refine its solutions through
reuse of verified sub-modules, enhancing both the
modularity and correctness of the final output.

AgentCoder AgentCoder (Huang et al., 2024b)
formulates code generation as a collaborative multi-
agent process wherein different agents specialize in
distinct roles. One agent generates an initial code
draft, another evaluates its correctness through test-
ing, and a third optimizes performance based on it-
erative feedback. The interplay among these agents,
facilitated by competition and collaboration, contin-
uously refines the generated code until an optimal
solution is reached.

OpenCodeInterpreter OpenCodeInter-
preter (Zheng et al., 2025) bridges the gap
between static code synthesis and dynamic valida-
tion by integrating code generation with immediate
execution feedback. The method prompts the
language model to produce code, which is then
directly executed to obtain runtime results. These
outcomes inform iterative refinement cycles,
allowing the model to adjust its generated solutions
based on real-time execution data, ultimately
leading to more reliable and performant code.

CodeAgent CodeAgent (Zhang et al., 2024c)
decomposes repo-level code synthesis into a se-
ries of coordinated tool invocations. Its techni-

cal framework integrates external programming
tools—such as information retrieval, code symbol
navigation, format checking, and code interpreta-
tion—with multiple agent strategies (e.g., ReAct,
Tool-Planning, OpenAIFunc, and rule-based us-
age). This modular design allows the LLM to dy-
namically leverage these tools, iteratively refine its
outputs, and generate cohesive code for complex
codebases.

CodeAct CodeAct (Wang et al., 2024c) reformu-
lates LLM agent behavior by consolidating actions
as executable Python code. By harnessing Python’s
native control and data flow constructs, the method
enables multi-turn interactions where code execu-
tion feedback—ranging from success signals to er-
ror tracebacks—is used to iteratively revise and im-
prove subsequent actions. This technical shift from
rigid JSON/text formats to dynamic code actions
streamlines tool composition and self-debugging.

AutoCodeRover AutoCodeRover (Zhang et al.,
2024e) presents an autonomous loop for program
improvement, where the LLM continually refines
its generated code. The system employs runtime
feedback and error analysis to detect deficiencies,
triggering self-debugging routines and automated
optimizations. By iteratively re-running the code
and integrating improvements, AutoCodeRover
progressively enhances program correctness and
efficiency within a closed-loop refinement process.

SWE-agent SWE-agent (Yang et al., 2024b) con-
structs an interactive interface that mimics devel-
oper workflows for software engineering tasks. Its
technical approach centers on integrating LLM-
driven tool invocation with environments that sup-
ply real-time code dependency analysis, automated
testing, and validation. This design empowers the
agent to traverse complex code ecosystems, where
iterative tool-guided feedback enables continuous
adjustments and reliable code synthesis.

Agentless Agentless (Xia et al., 2024a) chal-
lenges the necessity of explicit agent orchestra-
tion by embedding tool interaction directly into
the LLM’s reasoning process. Using an agent-
free paradigm, it leverages chain-of-thought rea-
soning alongside direct tool calls, reducing struc-
tural overhead while still ensuring context-aware
code generation and debugging. This minimalist
design streamlines the coding process by allow-
ing the LLM to self-manage multi-turn interactions
without dedicated intermediary agent modules.
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OpenHands OpenHands (Wang et al., 2024d) of-
fers a modular, open platform that empowers AI
software developers by integrating a diverse suite
of development tools. Its technical architecture pro-
vides a unified interface for tool selection, code
generation, and interactive debugging, enabling
LLMs to perform repo-level tasks and collabora-
tive scenarios. By fusing native code execution
with flexible action orchestration, OpenHands facil-
itates seamless transitions between varied software
engineering challenges.

HyperAgent HyperAgent (Phan et al., 2024)
scales LLM-based software engineering by adopt-
ing hierarchical task decomposition and parallel
tool integration. Its framework orchestrates multi-
ple specialized sub-agents coordinated via dynamic
feedback loops, enabling the simultaneous han-
dling of extensive coding tasks. By leveraging
multi-agent collaboration and real-time code re-
finement, HyperAgent achieves robust, scalable
performance across complex programming envi-
ronments.

E Introduction of Important Benchmarks

E.1 Code-enhanced Reasoning
The emergence of code-enhanced mathematical rea-
soning has motivated the development of special-
ized datasets to evaluate models’ reasoning capabil-
ities. While the main paper discusses the method-
ological advances, this section provides detailed
characterizations of three representative datasets
that have significantly shaped this research direc-
tion. These datasets are particularly noteworthy for
their distinct approaches to assessing reasoning.

GSM8K GSM8K (Cobbe et al., 2021b) contains
8.5K grade school math word problems requiring
2-8 steps of reasoning to solve. The problems are
designed to have high linguistic diversity while re-
lying on elementary mathematical concepts. The
dataset emphasizes multi-step deductive reasoning
rather than complex mathematical knowledge, with
natural language solutions that explicitly demon-
strate the step-by-step reasoning process.

MATH MATH (Hendrycks et al., 2021c) com-
prises 12,500 competition mathematics problems
drawn from various sources including AMC 10,
AMC 12, and AIME. Unlike GSM8K which fo-
cuses on elementary reasoning, MATH problems
require more sophisticated mathematical problem-
solving heuristics and domain knowledge. Each

problem in MATH comes with a detailed step-by-
step solution that demonstrates both mathemati-
cal reasoning and domain-specific problem-solving
strategies.

SVAMP SVAMP (Patel et al., 2021) is a chal-
lenge set of 1,000 problems designed to test the
robustness of reasoning capabilities in math word
problem solvers. While maintaining similar math-
ematical complexity to existing datasets, SVAMP
introduces systematic variations along three key
dimensions: question sensitivity (testing if models
truly understand the question), reasoning ability
(testing if models can adapt to subtle changes re-
quiring different reasoning paths), and structural
invariance (testing if models maintain consistent
reasoning across superficial changes).

E.2 Training with Code
This section provides concise technical overviews
of key benchmarks that have significantly
guided code-based reasoning research. These
datasets distinguish themselves through various
approaches—ranging from multi-hop textual anal-
ysis to environment-based decision-making—all
designed to rigorously evaluate a model’s reason-
ing capabilities.

OCW OCW (Lewkowycz et al., 2022) is de-
signed to test a model’s ability to reason through
open-ended questions that often require code-based
logic or structured problem-solving. It presents
a mix of prompts that may include mathematics,
algorithmic puzzles, or short coding snippets, push-
ing models to generate reasoned solutions rather
than superficial answers. As such, it emphasizes
step-by-step thinking and logical correctness.

HotpotQA HotpotQA (Yang et al., 2018) is a
multi-hop question-answering dataset that requires
a model to connect information across multiple
documents or sentences to arrive at a correct re-
sponse. Its emphasis on evidence-based reasoning
makes it a strong benchmark for evaluating how
well models can chain together relevant facts log-
ically. While not code-focused, it indirectly sup-
ports code-enhanced approaches by encouraging
structured, stepwise reasoning.

LogiQA LogiQA (Liu et al., 2020) is a dataset
crafted specifically to test logical reasoning in read-
ing comprehension, containing questions that de-
mand deductive and inductive inference. Models
must analyze logical structures in text, making it
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a valuable resource for code-enhanced techniques
that incorporate symbolic reasoning or rule-based
algorithms. Success on LogiQA requires coher-
ent, step-by-step thinking and the ability to identify
logical entailments.

DROP DROP (Dua et al., 2019) challenges mod-
els to perform numerical and symbolic manipula-
tions to answer questions. It often involves arith-
metic operations, entity tracking, and multi-step
logic derivations, making it an excellent testbed
for code-driven reasoning strategies. By leverag-
ing program-like steps to parse text and compute
answers, models can demonstrate deeper reasoning
skills.

MathShepherd-pair MathShepherd-pair (Wang
et al., 2024b) focuses on pairwise comparisons of
mathematical reasoning steps, often requiring val-
idation of correctness or logical consistency. It
encourages the use of code-like procedures—such
as symbolic manipulation or step-by-step solution
checking—to ensure precise, verifiable reasoning.
This pairing format helps evaluate a model’s abil-
ity to systematically analyze and contrast different
solution paths.

ReClor-pair ReClor-pair (Yu et al., 2020) ex-
tends the ReClor dataset’s focus on complex logi-
cal reasoning by providing question-answer pairs
that examine a model’s capacity for distinguishing
subtle logical cues. The paired setup highlights
the necessity of structured, often code-driven ver-
ification mechanisms, where models benefit from
systematically comparing and validating reasoning
options. Performance here is indicative of robust
logical inference capabilities.

LogiQA2.0-pair LogiQA2.0-pair (Liu et al.,
2023a) offers an updated set of logical reason-
ing challenges in a paired format, demanding
thorough analysis of propositions and argument
structures. By encouraging code-enhanced meth-
ods—like building parse trees or applying logical
inference rules—this dataset underscores the im-
portance of systematic step-by-step reasoning. It
is particularly useful for benchmarking improve-
ments in logical rigor.

APE APE (Zhao et al., 2020) tasks revolve
around interpreting arithmetic or algorithmic steps
and providing a rationale. Models trained with
code are better positioned to explain or verify each
step programmatically. The dataset pushes for ex-

planatory reasoning, where each numeric or logical
action needs to be justified systematically.

CMATH CMATH (Wei et al., 2023b) contains
math problems, typically in a non-English (e.g.,
Chinese) context, testing a model’s ability to parse
language-specific nuances and generate reasoned
steps. Its design demands clear logical structuring,
often improved by programmatic solution paths
that systematically handle textual variations. Code-
enhanced methods help unify language understand-
ing with algorithmic resolution of math tasks.

AlpacaEval-2 AlpacaEval-2 (Li et al., 2023e) is
an instruction-following evaluation suite that in-
cludes tasks requiring reasoning and structured
thinking. While not exclusively code-based, the
dataset benefits from code-infused methods that
guide stepwise logic, especially for tasks involving
multi-turn reasoning or systematic dissection of
instructions. It thus measures how effectively mod-
els integrate reasoning processes into instruction
comprehension.

MT-Bench MT-Bench (Zheng et al., 2023) is
a multi-turn benchmark that assesses conversa-
tional coherence, reasoning depth, and consistency
over extended dialogues. It tests whether mod-
els can maintain logical continuity and sound rea-
soning across multiple exchanges. Code-centric
approaches—such as planning-based or program-
matic reasoning—can boost the clarity and correct-
ness of the model’s dialogue responses.

ALFWorld ALFWorld (Shridhar et al., 2020)
places agents in interactive text-based environ-
ments that require sequential decision-making and
reasoning about cause-and-effect. Models must
combine language understanding with environmen-
tal cues to perform complex tasks, often using
reasoning strategies resembling small programs or
scripts. This environment underscores the impor-
tance of code-level logic for planning and executing
multi-step goals.

E.3 Reasoning-enhanced Code Intelligence
The development of robust code intelligence sys-
tems necessitates comprehensive evaluation frame-
works. This section presents key benchmarks that
assess various aspects of code generation and under-
standing, ranging from functional understanding
and correctness and algorithmic problem-solving
to repository-level understanding modifications.
These benchmarks provide standardized metrics
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for measuring progress in code intelligence, with
particular emphasis on real-world applicability and
systematic evaluation of reasoning capabilities in
programming contexts.

HumanEval HumanEval (Chen et al., 2021) eval-
uates the functional correctness of code generated
by large language models by presenting 164 hand-
crafted programming challenges. Each problem is
defined by a function signature, a descriptive doc-
string, and a set of unit tests (averaging around 7.7
tests per problem), which together verify that the
generated solution meets the intended functionality
via the pass@k metric. This benchmark primarily
focuses on assessing models’ ability to translate
natural language prompts into functionally correct
code.

MBPP MBPP (Austin et al., 2021) comprises ap-
proximately 1,000 Python programming problems
that pair natural language descriptions with corre-
sponding code solutions and multiple automated
test cases. By measuring whether the generated
code passes these tests, MBPP benchmarks mod-
els on their capability to synthesize accurate and
executable Python code from plain language in-
structions, emphasizing fundamental programming
skills and effective problem decomposition.

APPS APPS (Hendrycks et al., 2021a) provides a
diverse evaluation framework consisting of around
10,000 problems, ranging from simple one-line so-
lutions to complex algorithmic challenges. The
benchmark employs unit tests to determine the
functional correctness of generated code, thereby
benchmarking the models on their versatility and
ability to handle a broad spectrum of programming
scenarios under realistic conditions.

DS-1000 DS-1000 (Lai et al., 2022) is a special-
ized benchmark tailored to the data science do-
main, focusing on code generation tasks that in-
volve data manipulation, statistical analysis, and
data visualization. By incorporating challenges that
demand domain-specific knowledge and practical
data-handling skills, DS-1000 uniquely evaluates
a model’s ability to produce contextually relevant
and functionally correct code for data-centric ap-
plications.

RepoBench RepoBench (Liu et al., 2023c) is a
benchmark specifically designed for evaluating
repository-level code auto-completion systems.
Its abstract outlines three interlinked evaluation

tasks—RepoBench-R (Retrieval), RepoBench-
C (Code Completion), and RepoBench-P
(Pipeline)—which collectively assess a system’s
ability to extract relevant cross-file code snippets,
integrate both in-file and cross-file contexts, and
predict the next line of code in complex, multi-file
programming scenarios. This approach fills the gap
left by prior single-file benchmarks and facilitates
a comprehensive comparison of auto-completion
performance.

CrossCodeEval CrossCodeEval (Ding et al.,
2023) presents a diverse and multilingual bench-
mark that targets the challenges of cross-file
code completion. According to its abstract, the
benchmark is built on real-world, open-sourced
repositories in four popular programming lan-
guages—Python, Java, TypeScript, and C#—and
features examples that strictly require leveraging
information from multiple files for accurate code
completion. The work emphasizes a static-analysis-
based method to pinpoint instances where cross-file
context is essential, thereby evaluating both code
generation and context retrieval capabilities under
realistic conditions.

LiveCodeBench LiveCodeBench (Jain et al.,
2024) is a holistic, contamination-free evaluation
benchmark for code, continuously collecting new,
high-quality coding problems over time from Leet-
Code, AtCoder, and CodeForces. It extends tradi-
tional evaluation by incorporating not only code
generation but also broader code-related capabili-
ties such as self-repair, execution, and test output
prediction. By using a time-sensitive collection of
challenges, LiveCodeBench aims to assess mod-
els on truly unseen problems, ensuring that perfor-
mance measurements remain robust and reflective
of real-world development scenarios.

BigCodeBench BigCodeBench (Zhuo et al.,
2024) is a comprehensive benchmark for assess-
ing large-scale code generation and understanding,
which encompasses a wide variety of programming
languages and repository complexities, challeng-
ing models with real-world coding scenarios that
include intricate multi-file dependencies and ex-
tensive project structures. Designed to stress-test
model capabilities on both functional correctness
and code synthesis quality, BigCodeBench pro-
vides a scalable evaluation framework that mirrors
the heterogeneity encountered in open-source code-
bases.
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CRUXEval CRUXEval (Gu et al., 2024) is a
benchmark containing 800 short Python functions,
ranging from 3 to 13 lines, each paired with input-
output examples. It defines two tasks: input predic-
tion for evaluating code reasoning and understand-
ing, and output prediction for assessing execution
behavior.

RepoQA RepoQA (Liu et al., 2024c) is a bench-
mark designed to evaluate long-context code un-
derstanding through realistic codebase search sce-
narios. It consists of 500 code search tasks drawn
from 50 popular repositories across five program-
ming languages. Using a "needle-in-a-haystack"
approach, models must locate specific code snip-
pets within extensive contextual code. The bench-
mark evaluates both retrieval accuracy and compre-
hension of multi-file, long-context code environ-
ments, reflecting real-world developer challenges.

SWE-bench SWE-bench (Jimenez et al., 2024)
s a software engineering benchmark based on real
GitHub issues and corresponding pull requests.
Each evaluation task requires generating a fix patch
in complex, multi-file repositories to resolve spe-
cific issues. The evaluation system uses the reposi-
tory’s original unit testing framework to verify the
correctness of solutions. By simulating challenges
encountered in actual software development, SWE-
bench provides a realistic evaluation environment.

SWE-bench Multimodal SWE-bench Multi-
modal (Yang et al., 2024c) extends SWE-bench
by incorporating visual inputs. The dataset is col-
lected from JavaScript repositories, where each
task instance includes images embedded in prob-
lem descriptions or unit tests, focusing on front-end
development areas like UI design, diagramming,
and data visualization. This benchmark evaluates
AI systems’ ability to generalize across different
modalities and programming paradigms by inte-
grating visual elements.

SWE-bench Verified SWE-bench Veri-
fied (Chowdhury et al., 2024) is an optimized
version of SWE-bench containing a human-
validated subset. Developers rigorously annotated
and screened task instances to remove underspeci-
fied or ambiguous cases. Each instance contains
reliable “fail-to-pass" unit tests and clear issue
descriptions, providing a more accurate measure of
a model’s capability to resolve real-world software
issues.

F Paper Collection

To ensure comprehensive coverage of relevant lit-
erature, we employed a systematic paper collec-
tion approach. We utilized arXiv as our primary
source and conducted searches using a combina-
tion of keywords: ("code" OR "program") AND
("reason" OR "plan"). We restricted our search
to papers within the Computer Science - Artificial
Intelligence (cs.AI) and Computer Science - Com-
putation and Language (cs.CL) categories, focus-
ing on works published after January 2021. This
timeframe was chosen deliberately as it marks a
significant turning point in code reasoning research,
coinciding with the emergence of large language
models like Codex and the subsequent surge in re-
search combining natural language processing with
code understanding. Our initial search yielded 110
papers. Subsequently, we performed a manual fil-
tering process, carefully examining each paper’s
relevance, technical depth, and contributions to the
field of code reasoning. This thorough inspection
resulted in a final collection of 63 papers that form
the core of our survey. These selected papers repre-
sent the most significant and relevant contributions
to understanding the interplay between code and
reasoning in recent years.

G Additional Tables and Figures
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Method Model Settings GSM8K GSM-HARD SVAMP ASDiv SingleEq AddSub MultiArith MATH AQuA

Direct† Codex Few-shot Direct Prompting 19.7 5.0 69.9 74.0 86.8 90.9 44.0 – –

CoT† (Wei et al., 2022b)

UL2-20B Few-shot Chain-of-Thought 4.1 – 12.6 16.9 – 18.2 10.7 – –
LaMDA-137B Few-shot Chain-of-Thought 17.1 – 39.9 49.0 – 52.9 51.8 – –
Codex Few-shot Chain-of-Thought 65.6 23.1 74.8 76.9 89.1 86.0 95.9 – –
PaLM-540B Few-shot Chain-of-Thought 56.9 – 79.0 73.9 92.3 91.9 94.7 – –
Minerva-540B Few-shot Chain-of-Thought 58.8 – – – – – – – –
GPT-4 Few-shot Chain-of-Thought 92.0 – 97.0 – – – – – –
GPT-4o-mini 0-shot Chain-of-Thought – – – – – – – 50.6 –
Llama3.1-8B 0-shot Chain-of-Thought – – – – – – – 18.3 –
GPT-3.5 0-shot Chain-of-Thought 81.6 – 78.2 – 93.1 86.1 96.7 – –
GPT-3.5 Few-shot Chain-of-Thought 82.1 – 77.1 – 95.5 90.6 98.5 – –

PAL (Kabra et al., 2023)

Codex Few-shot Program-aided LM 72.0 61.2 79.4 79.6 96.1 92.5 99.2 – –
GPT-4o-mini 0-shot Program-aided LM – – – – – – – 36.6 –
Llama3.1-8B 0-shot Program-aided LM – – – – – – – 11.7 –
GPT-3.5 Few-shot Program-aided LM 80.6 – 79.5 – 97.6 89.1 97.0 – –

PoT (Chen et al., 2022)
Codex Few-shot Program of Thought 71.6 – 85.2 – – – – 54.1 54.1
Codex Few-shot Program of Thought + Self-Consistency 80.0 – 89.1 – – – – – –
GPT-4 Few-shot Program of Thought 97.2 – 97.4 – – – – – –

MathCoder (Wang et al., 2023)
Llama-2-7B 0-shot Code Interleaving / Fine-tuned 64.2 – 71.5 – – – – 23.3 –
Llama-2-13B 0-shot Code Interleaving 72.6 – 76.9 – – – – 29.9 –
Llama-2-70B 0-shot Code Interleaving 83.9 – 84.9 – – – – 45.1 –

MathCoder2 (Lu et al., 2024)
CodeLlama-7B 0-shot Code Interleaving 67.8 – 70.7 – – – – 30.2 –
CodeLlama-13B 0-shot Code Interleaving 74.1 – 78.0 – – – – 35.9 –
CodeLlama-34B 0-shot Code Interleaving 81.7 – 82.5 – – – – 45.2 –

CodePlan (Wen et al., 2024a)
Mistral-7B Few-shot Code-form planning 59.5 – 61.4 – – – – 34.3 –
Llama-2-7B Few-shot Code-form planning 33.8 – 41.5 – – – – 20.8 –
Llama-2-13B Few-shot Code-form planning 49.5 – 53.4 – – – – 27.4 –

INC-Math (Xiong et al., 2024)
GPT-4o-mini 0-shot Code Prompting – – – – – – – 51.4 –
Llama3.1-8B 0-shot Code Prompting – – – – – – – 16.7 –

CoC (Li et al., 2023a) text-davinci-003 Few-shot Code Interleaving with Python Exec. 71.0 – – – – – – – –

CodePrompt (Hu et al., 2023)
GPT-3.5 0-shot Code Prompting with self-debug 78.9 – 79.4 – 97.6 91.7 96.7 – –
GPT-3.5 Few-shot Code Prompting with self-debug 80.6 – 79.6 – 97.4 91.4 97.3 – –

Table 4: Performance of various code-aided reasoning methods on multiple benchmarks. “–” indicates no reported
result. Numerical results represent the percentage of problems that were solved correctly. † Direct and CoT results
are from Chen et al. (2022).
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Code-enhanced
Reasoning §2

Generating as Code
Aids Reasoning §2.2

PaL (Gao et al., 2023), PoT (Chen et al., 2022), MathCoder (Wang et al., 2023), CoC (Li et al., 2023a), MathCoder2 (Lu et al., 2024),
CodePlan (Wen et al., 2024a), INC-Math (Xiong et al., 2024), CodePrompt (Hu et al., 2023)

Training with Code §2.1
E.g.,MARIO (Liao et al., 2024), POET (Pi et al., 2022), CodePMP (Yu et al., 2024b), SIAM (Yu et al., 2024a),
Logic Distillation (Chen et al., 2024a), VISTRUCT (Chen et al., 2023c), Crystal LAMPILOT BENCH, (Tao et al., 2024)

Reasoning-enhanced
Code Intelligence §3

Essential Code
Intelligence §3.1

Codex&HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), CodeXGLUE (Lu et al., 2021), RepoBench (Liu et al., 2023b),
CrossCodeEval (Ding et al., 2023), HumanEval-FIM (Bavarian et al., 2022)

Integration of Reasoning
Capabilities §3.2

Reasoning for Code Generation §3.2.1
SCoTs (Li et al., 2023b), Self-Planning (Jiang et al., 2024), CodeCoT (Huang et al., 2024a),
CodePlan (Bairi et al., 2023), COTTON (Yang et al., 2024a), PlanSearch (Wang et al., 2024a)

Reasoning Over Code §3.2.2
CRUXEval (Gu et al., 2024), RepoQA (Liu et al., 2024c), CodeMMLU (Manh et al., 2024),
CodeMind (Liu et al., 2024b), NExT (Ni et al., 2024a), SelfPiCo (Xue et al., 2024),

Interactive Programming §3.2.3

Self-Refine (Madaan et al., 2023), Self-Debugging (Chen et al., 2023b),
Self-Collaboration (Dong et al., 2024), Self-Edit (Zhang et al., 2023),
LeTI (Wang et al., 2024e), InterCode (Yang et al., 2023),
CodeChain (Le et al., 2024), AgentCoder (Huang et al., 2024b),
OpenCodeInterpreter (Zheng et al., 2025)

Code Agents with
Complex Reasoning §3.3

CodeAgent (Zhang et al., 2024c), CodeAct (Wang et al., 2024c), AutoCodeRover (Zhang et al., 2024e), SWE-agent (Yang et al., 2024b),
Agentless (Xia et al., 2024a), OpenHands (Wang et al., 2024d), HyperAgent (Phan et al., 2024), SWE-bench (Jimenez et al., 2024),
SWE-bench Multimodal (Yang et al., 2024c), SWE-bench Verified (Chowdhury et al., 2024)

Figure 3: Full taxonomy illustrating the interplay between code and reasoning.
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Method Model Settings HumanEval MBPP SWE-Bench (Lite)

Direct†

AlphaCode-1.1B 0-shot Prompting 17.1 – –
Incoder-6.7B 0-shot Prompting 15.2 17.6 –
CodeGeeX-13B 0-shot Prompting 18.9 26.9 –
StarCoder-15.5B 0-shot Prompting 34.1 43.6 –
CodeLlama-34B 0-shot Prompting 51.8 69.3 –
Llama3-8B 0-shot Prompting 62.2 – –
CodeGen-Mono-16.1B 0-shot Prompting 32.9 38.6 –
Codex 0-shot Prompting 47.0 58.1 –
Codex+CodeT 0-shot Prompting 65.8 67.7 –
GPT-3.5 Turbo 0-shot Prompting 57.3 52.2 –
PaLM Coder 0-shot Prompting 43.9 32.3 –
Claude-instant-1 0-shot Prompting 31.1 26.9 –
GPT-4 Turbo 0-shot Prompting 57.9 63.4 –
GPT-4 0-shot Prompting 67.6 68.3 –

CoT (Wei et al., 2023a)
GPT-3.5‡ 0-shot Chain-of-Thought 44.6 46.1 –
Codex⋆ Few-shot Chain-of-Thought 53.9 54.5 –

Self-Edit (Zhang et al., 2023)
InCoder-1B 0-shot Prompting 3.7 – –
CodeGen-2B 0-shot Prompting 17.1 – –
GPT-3 Few-shot Prompting 39.6 – –

Self-Planning (Jiang et al., 2024)
Codex Few-shot Prompting 60.3 55.7 –
text-davinci-003 Few-shot Prompting 65.4 – -
GPT-3 Few-shot Prompting 50.0 – –

Self-Debugging (Chen et al., 2023b)

StarCoder Few-shot Prompting – 53.2 –
Codex Few-shot Prompting – 70.8 –
GPT-3.5 Few-shot Prompting – 74.2
GPT-4 Few-shot Prompting – 80.6 –

Self-Collaboration (Dong et al., 2024) GPT-3.5 Few-shot Prompting 74.4 68.2

SCoTs (Li et al., 2023b)
Codex Few-shot Prompting 49.8 38.3 –
GPT-3.5 Few-shot Prompting 60.6 47.0 –

CodeCoT (Huang et al., 2024a) GPT-3.5 Few-shot Prompting 79.3 89.5 –

CodeAct (Wang et al., 2024c)
Llama2-7B Fine-tuning 18.1 – –
Mistral-7B Fine-tuning 34.7 – –

OpenCodeInterpreter¶ (Zheng et al., 2025)

CodeLlama-Python-7B Fine-tuning 75.6 69.9 –
StarCoder2-7B Fine-tuning 75.6 66.9 –
DeepseekCoder-6.7B Fine-tuning 81.1 82.7 –
StarCoder2-15B Fine-tuning 77.4 74.2 –
CodeLlama-Python-13B Fine-tuning 81.1 78.2 –
CodeLlama-Python-34B Fine-tuning 81.7 80.2 –
DeepseekCoder-33B Fine-tuning 82.9 83.5 –
CodeLlama-Python-70B Fine-tuning 79.9 81.5 –

AgentCoder (Zhang et al., 2024c)

GPT-3.5 Turbo Agentic Prompting 79.9 89.9 –
PaLM Coder Agentic Prompting 64.0 75.9 –
Claude-instant-1 Agentic Prompting 67.7 76.3 –
GPT-4 Agentic Prompting 96.3 91.8 –
GPT-4 Turbo Agentic Prompting 89.6 91.4 –

SWE-agent (Yang et al., 2024b)

Claude 3 Opus Agentic Prompting – – 13.0
GPT-4 Turbo Agentic Prompting – – 18.0
Claude 3.5 Sonnet⋄ Agentic Prompting – – 23.0
Claude 3.5 Sonnet + o1⋄ Agentic Prompting – – 45.3

Agentless (Xia et al., 2024a) GPT-4o Agentic Prompting – – 27.3

OpenHands (Wang et al., 2024d)
GPT-4o-mini Agentic Prompting – – 6.3
GPT-4o Agentic Prompting – – 22.0
Claude 3.5 Sonnet Agentic Prompting – – 26.0

AutoCodeRover (Zhang et al., 2024e)
GPT-4 Agentic Prompting – – 19.0
GPT-4o• Agentic Prompting – – 22.7

HyperAgent (Phan et al., 2024) Claude-3.5-Sonnet Agentic Prompting – – 26.0

Table 5: Performance of various reasoning-enhanced code intelligence methods on multiple benchmarks. Results
from original papers unless noted otherwise. HumanEval and MBPP use pass@1 scoring. †Results for all Direct
methods are from the AgentCoder paper (Huang et al., 2023). ‡Result from Self-Collaboration paper (Dong et al.,
2024). ⋆Result from Self-Planning paper (Jiang et al., 2024). ¶We report the results with execution feedback (but
without human involvement). ⋄Results from official SWE-bench leaderboard (accessed Feb 15, 2025). •Result from
HyperAgent paper (Phan et al., 2024).
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