Rewarding the Unlikely: Lifting GRPO
Beyond Distribution Sharpening

Andre He

Abstract

Reinforcement learning is emerging as a pri-
mary driver for improving language model
reasoning capabilities. A fundamental ques-
tion is whether current reinforcement learn-
ing algorithms—such as Group Relative Pol-
icy Optimization (GRPO), the de facto stan-
dard algorithm used to improve language model
reasoning—merely sharpen the base model’s
distribution around problems it can already
solve. We investigate this question in the con-
text of formal theorem proving, which has ac-
cess to a perfect verifier. We identify a de-
generate rank bias in GRPO in which highly
probable trajectories are reinforced and rare
ones are neglected. This results in distribution
sharpening: the model can solve some prob-
lems with fewer samples, but underperforms
simply sampling more solutions from the origi-
nal model. To overcome GRPO’s rank bias we
introduce unlikeliness reward, a simple method
for explicitly up-weighting rare but correct so-
lutions. We show that unlikeliness reward
mitigates rank bias and improves pass@N
across a large range of NV in both synthetic
and real theorem proving settings. We also un-
cover an unexpected link between rank bias
and a seemingly mundane hyperparameter—
the number of updates per batch—that leads
to a second, complementary mitigation. We
combine our insights into a revised GRPO train-
ing recipe for formal theorem proving, yield-
ing an open pipeline that achieves competi-
tive performance to DeepSeek-Prover-V1.5-RL
on the miniF2F-test benchmark. We release
our implementation at https://github.com/
AndreHe02/rewarding-unlikely-release.

1 Introduction

Reinforcement learning (RL) has recently emerged
as a powerful framework for enhancing the reason-
ing capabilities of large language models (LLMs).
In domains such as mathematics and code gener-

Daniel Fried
Carnegie Mellon University Carnegie Mellon University

Sean Welleck
Carnegie Mellon University

Theorem = Correct Proofs yi,...,yq

/-- Prove that the sun of two even numbers = by

is also even -/ -- use closure property of evens
theoremeven_add_even_is_even (ab : N) exact Even.add ha hb

(ha : Evena) (hb : Evenb) : Even (a + b)

----- likely to be included in N samples

Base Model
m(y | x) i ﬂ
[O
Yyr Y2 - Ye-1 Yo
GRPO T
nereo(Y | @) £ H
1
Y1 Y2 - Ye-1 Ya
GRPO-Unlikeliness
nerro-UR(Y | @) Hﬂﬂﬂ

Y1 Y2 - Ye-1 Yo

Figure 1: We identify a rank bias in GRPO in which
model updates only reinforce already probable solutions
and fail to surface new ones. This sharpens the distribu-
tion and impairs pass@ N performance for large N. Our
unlikeliness reward addresses rank bias by explicitly
encouraging uplifting low-probability correct solutions.

ation, RL has been applied at scale to elicit com-
plex reasoning behaviors using only problem in-
stances and their corresponding outcome rewards
(DeepSeek-Al et al., 2025; Yu et al., 2025).

Formal theorem proving is a particularly attrac-
tive domain for studying LLM reasoning. For-
mal systems such as Lean and Isabelle (de Moura
et al., 2015; Paulson, 1994) can verify mathemat-
ical proofs step-by-step, ensuring that models are
only rewarded for fully correct solutions. Since ver-
ification is fully automated and immune to spurious
solutions, formal mathematics serves as an ideal
testbed for reinforcement learning algorithms.

An important open challenge is designing rein-
forcement learning algorithms that do more than

25560

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 25560-25572
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/AndreHe02/rewarding-unlikely-release
https://github.com/AndreHe02/rewarding-unlikely-release

“sharpen the distribution”—that is, we want the
RL-trained model to solve problems that cannot
be solved by simply sampling more from the orig-
inal model. Consistent with the findings of Yue
et al. (2025), our initial experiments identify this
as a key limitation of existing RL recipes based on
Group Relative Policy Optimization (GRPO) (Shao
et al., 2024), the de facto standard algorithm for
improving LLM reasoning. While GRPO improves
single-sample accuracy, it often fails to improve
and can even impair pass@ N metrics at larger N
in our theorem proving setting (Figure 2). This is
a significant limitation in domains with a perfect
verifier, such as formal mathematics, since these
domains naturally lend themselves to sampling and
verifying many candidates at test time.

We argue that improving pass@ N performance
requires specifically increasing the probability of
low probability correct responses under the model.
We construct a toy model to demonstrate this phe-
nomenon, and reveal empirically that GRPO suf-
fers from rank bias: a tendency to reinforce already
high-likelihood responses while neglecting the long
tail of rare but correct ones. This reduces sample
diversity and degrades multi-sample performance
over time. To address this, we introduce Unlike-
liness Reward, which up-weights correct outputs
that are less likely than others. Doing so dramat-
ically changes how GRPO learns from less likely
trajectories, translating to more output diversity
and higher pass@ N across a range of N values.

Furthermore, we uncover an unexpected link be-
tween GRPO’s distribution sharpening and a seem-
ingly mundane hyperparameter: the number of
PPO epochs per batch. Increasing the number of
epochs adds extra gradient steps on low-likelihood
sequences after the high-likelihood ones saturate,
amplifying training signal for unlikely solutions.
Tuning this often-ignored hyperparameter is a com-
plementary approach to the unlikeliness reward,
and offers insight into the optimization dynamics
that can lead to distribution sharpening.

We demonstrate that our revised training recipe
substantially improves pass@ N metrics across a
range of values for V. We combine unlikeliness
reward and our insights into PPO epochs into a full
recipe for reinforcement learning in formal theo-
rem proving. We apply our recipe to theorem prov-
ing in Lean, resulting in a fully open pipeline that
achieves competitive performance with DeepSeek-
Prover-V1.5-RL on the miniF2F-test benchmark.

2 Problem Setup

We study the problem of training a language model
for formal theorem proving, where the goal is to
generate valid proofs of theorems in a proof as-
sistant. We use Lean (de Moura et al., 2015), a
proof assistant based on dependent type theory that
supports the construction and verification of mathe-
matical proofs. Lean has recently attracted interest
in the Al and mathematics communities (e.g., Yang
et al. (2024); Tao (2025)).

Let D = {z;}}, be a dataset of theorem state-
ments. Each statement consists of a natural lan-
guage description and a formal statement express-
ing the theorem in Lean. Let R denote the verifier,
which also functions as the reward function. Given
a theorem statement = and a candidate proof y,
the Lean verifier returns a binary reward indicating
whether y constitutes a successful proof of x:

R(z,y) = 1{y proves = }.

We assume access to an initial prover model
Thase (Y | @), a large language model (LLM) with
some basic capability to generate proofs. Given
a theorem statement z, the model samples a com-
pletion y that attempts to prove the statement. Our
goal is to fine-tune this model to improve its proof
success rate, using problem instances from D and
the reward signal provided by R.

2.1 Evaluation Metric

To evaluate the prover’s performance, we use the
pass@N metric, which measures the probability
that at least one of /V independently sampled proof
attempts succeeds. This metric is widely adopted
in prior work due to its simplicity and close align-
ment with the practical use case of generating and
verifying many proof attempts per theorem to find
at least one that succeeds.

Let & € Dies be a theorem, and let {y; }jvzl ~
mg(- | x) denote N independent samples drawn
from the model. The empirical pass@ N metric for
a single theorem is defined as:

pass@N (z;mg) =]l{ max R(z,y;) = 1}

1<j<N

The average pass@N score on a test set Diegy =
{x;}}, is the average over individual theorems:

M

1
pass@N (mg) = i Zpass@N(xi;we)
i=1

25561

In the context of reinforcement learning, a high
pass@ N also indicates that we are likely to receive
a positive reward signal when sampling N comple-
tions per problem.

2.2 Reinforcement Learning

We use Group Relative Policy Optimization
(GRPO) as the foundation of our reinforcement
learning experiments. GRPO was introduced by
(Shao et al., 2024) and has been successfully ap-
plied to train models such as DeepSeek-R1 and
DeepSeek-Prover-V1.5-RL (DeepSeek-Al et al.,
2025; Xin et al., 2024), showing strong perfor-
mance in both informal and formal settings.

GRPO is an extension of Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017) that omits
the critic model. For each question z, GRPO sam-
ples a group of outputs {y1,...,yq} ~ m4,,,(y |
x) from the current policy and maximizes the fol-
lowing objective:

Jarpro(9)
G
1 . mo(yi|)
=—) min | —F—"A4,,
G ; <7T901,1(yi |)

clip <7T'9(yi‘x), 1—¢1+ e> A;
7-‘-eold(yi ’ x)

— BrLDkL[mo || Tret]

GRPO differs from PPO in how it computes the
advantages A;. Instead of subtracting a baseline
predicted by the critic model, GRPO normalizes
rewards within the group of samples. Let r; =
R(z,y;), then the advantages are computed as:

ri —mean({ry,...,rq})
std({r1,...,7a})

Note that when all or none of the samples solve
the problem, A; = 0 for all ¢ and there is no
gradient with respect to model parameters 6 (ex-
cept for the KL term). To be more efficient with
model updates, we implement a trick similar to
Dynamic Sampling (Yu et al., 2025). We maintain
a buffer of recent samples that have nonzero ad-
vantage and only perform model updates once the
buffer reaches the target batch size.

A=

3 Does GRPO Improve Pass@N?

We begin by investigating how GRPO behaves
when applied to formal theorem proving. Our setup
closely follows Xin et al. (2024) in terms of model

choice and hyperparameter settings, though we cu-
rate our own dataset, as theirs has not been released.

3.1 Dataset

The Lean Workbook dataset is a large-scale col-
lection of approximately 140K Lean 4 theorem
statements that were auto-formalized from natural
language math problems (Ying et al., 2024). Since
unsolvable problems do not provide useful gradi-
ents during RL, we select a 10K subset of prob-
lems that were found to be solvable in Wu et al.
(2024). These statements are still moderately chal-
lenging, as the solutions were discovered through
an extremely compute-intensive search process. In
addition, we also include the 244 problems from
miniF2F-valid (Zheng et al., 2021).

From this combined dataset, we hold-out 200
theorems for validation, leaving 9.6K for training.
Although miniF2F-test (Zheng et al., 2021) is a
standard benchmark for theorem proving, we found
high variance and inconsistent results on it when
training at our scale, likely due to distribution shift
and large difficulty gaps between problems. Thus,
we primarily evaluate on our L.I.D. held-out set
(Dya1) and only use miniF2F-test for our final large-
scale experiments. We will refer to our training and
validation sets as Dyin and Dy,y, respectively.

3.2 Training

Our implementation of GRPO is built on the verl
framework (Sheng et al., 2024), with modifications
to support reward feedback from the Lean REPL.
We use the Python wrapper for the Lean REPL
released by Xin et al. (2024), which we found
to be more robust than previous open-source al-
ternatives. The base model is DeepSeek-Prover-
V1.5-SFT, which has moderate theorem-proving
capabilities (Xin et al., 2024). We adopt the hy-
perparameters reported in Xin et al. (2024) where
available:

* Learning rate = 5e-6

* KL loss coefficient = 0.02

* Number of samples per problem = 32
However, we found the original learning rate to be
unstable and use a reduced value of 1e-6. Due to
compute constraints, we only train for one epoch
on Dy.in and truncate the response length to 512
tokens, which suffices for over 99.5% of samples.

3.3 GRPO Fails to Improve Pass@N

Figure 2 presents model performance on Dy, eval-
uated up to pass@512. GRPO substantially boosts

25562

Model
—e— DeepSeek-Prover-V1.5-SFT
—e— GRPO-Default

1 2 4 8 16 32 64 128 256 512
N

Figure 2: Finetuning DeepSeek-Prover-V1.5-SFT with
GRPO, evaluated on D,. GRPO improves pass@ N
significantly for small /V, but performs worse than the
base model for large N. We aim to understand this
behavior and develop methods to overcome it.

pass@1 to pass@16, but the improvement dimin-
ishes for larger N. This pattern suggests that GRPO
is effective at increasing the likelihood of already
probable correct solutions but fails to surface new
ones into the high-probability set, which is con-
sistent with the findings of Yue et al. (2025) and
Shao et al. (2024). Note that this is not an inherent
failure of RL—boosting single-sample accuracy in-
creases expected reward, but the benefit for formal
theorem proving is limited. Next, we consider if
and how RL can improve pass@ N at large V.

3.4 Can RL Optimize Pass@N?

In this section, we argue that improving pass@ N
for large N specifically requires RL to increase
the probability of low-probability correct solutions
under the model.

Suppose that the initial model 7 has a probabil-
ity po to solve a problem z, i.e.,

S molyle) = po.

y st R(z,y)=1

The expected pass@N can then be expressed as:
E[pass@N ()] = 1 — (1 — po)™¥

Now, we consider how RL training affects pg. The
exact outcome of taking gradient steps against the
GRPO objective is impossible to predict analyti-
cally, but we can make estimates by assuming that
we maximize the objective.

For simplicity, we only consider early training
steps, so that 7y ,, ~ mo, and disregard the KL

Predicted Improvement in pass@N

1 2 4 8 16 32 64 128 256 512
N

Figure 3: Improvement in expected pass@ /N assuming
RL increases correct solution probabilities by a factor
of 1 + € with ¢ = 0.2. Each curve corresponds to an
initial pg € 1/2,1/8,1/32,1/128,1/512.

term. The simplified GRPO objective is:

Jarro(0)
S yilw) ,
Zl | x) 1y
(i
0(yi

clip< : ;1—6,14-6)141').

We make the simplifying assumption that the
probability of each positive sample y with A; >
0 can be optimized independently. In the GRPO
objective, each sample stops contributing gradient
once mo(y+ | z)/mo(y+ |) > 1+ ¢, thus we
expect that the final ratio is close to the clipping
bound:

TRL(Y+ |)

mo(y+ | z)
We can then predict the accuracy of the trained
model:

~1+4e.

prr, & (1 + €)po
E[pass@N (mgr,)] ~ 1 — (1 — (1 4 €)pg)™¥

Figure 3 plots the expected improvement in
pass@N for different initial py. When pyg is large,
the marginal gain in pass@512 is small. Con-
versely, when pg is small, gains are negligible
for pass@1. In general, we see that increasing
pass@ N requires the training algorithm to increase
the probability of solutions with pg =~ 1/N. Thus,
RL must specifically uplift the probability of low-
probability correct solutions to achieve improve-
ments in pass@ N for large N.

3.5 Does GRPO Reinforce Unlikely Solutions?

The analysis above, and our empirical observation
that GRPO is not increasing pass@ N, together

25563

—e— GRPO-Default

Uplift Rate

0 5 10 15 20 25 30
Rank of Sample in Group

Figure 4: Uplift rate u; as a function of rank j among
positive samples. GRPO rarely increases the probability
of lowest-ranked (i.e. rarest) correct samples. Details
on computing these metrics are provided in Appendix F.

suggest that GRPO may not be effectively uplifting
low-probability correct solutions. To verify this,
we examine training samples for the first 800 prob-
lems, computing their probabilities under the initial
model and final GRPO-trained model.

Let z; be the i-th training problem and y; ; be the
j-th corresponding solution. We compute 7o (y; ; |
z;) and Tqrpo(yi; | x;) for all pairs. We are
interested in whether 7arpo (vi,j | @:)/m0(vij |
z;) = 1 + €, especially when 7o (y; j | ;) is small.

We find that the raw probability ratios are highly
variable, containing extreme outliers, and the scale
of mo(yi; | x;) also differs widely across prob-
lems. This makes it difficult to analyze the raw
model probabilities directly. Instead, we use the
rank of a sample within its group as a proxy for its
probability and consider the simpler, binary met-
ric of whether mgrpo(vi; | ;) is greater than
mo(Yij | i)

Formally, for each problem z;, we sort the
solutions {y; 1,...,¥yic} in descending order of
Wo(yid' | acz) to obtain {gjm, ... ,gi7g}. We are in-
terested in the relationship between the rank of a so-
lution and how likely it is to be uplifted by GRPO.
For each rank j € {1,...,G}, we compute the
"uplift rate", averaging over positive samples:

mean (
i R(.’Ei,giyj)=1

H{marpo (Fiy | ©i) > mo(Fij | 2i)})

U; =

Figure 4 shows a clear positive correlation:
GRPO is more likely to increase the probability of
already high-probability correct solutions. In con-
trast, the low-probability positive samples — those
most critical for improving pass@ N at large N —
are almost never uplifted. We confirm this behavior

in a controlled toy environment (see Appendix A)
and refer to this phenomenon as rank bias.

4 Improving GRPO for Multi-Sample
Performance

Our earlier analysis revealed a clear empirical bias:
low-probability correct solutions are rarely rein-
forced. While Shao et al. (2025) and Yu et al.
(2025) attribute a similar phenomenon to the clip-
ping mechanism in GRPO, our experiments point
to a distinct issue; we elaborate on the differences
in Appendix E.

In this section, we introduce the unlikeliness re-
ward to directly counteract this implicit bias, with
the goal of improving pass@N performance at
large N. We also provide complementary analysis
on the effect of certain hyperparameters on rank
bias, which we later incorporate into our overall
training recipe.

4.1 Unlikeliness Reward

To explicitly correct for rank bias, we propose the
unlikeliness reward — a simple modification to
the reward function that discourages reinforcing
already high-probability solutions. For a group of
samples y1, ..., yq, let rank(y;) € {1,2,...,G}
denote the rank of y; under the current policy
7o, (yi | x), with rank O corresponding to the
highest-probability sample. We modify the reward
to be

Ty = R(x,yz) <1 - BrankG_ank(yi)> .

A multiplicative penalty is applied to higher-
probability solutions, increasing the relative advan-
tage of rarer positive samples. Incorrect solutions
remain unaffected, receiving r; = 0 regardless of
rank. The coefficient Sy controls the strength
of this perturbation; we fix Bank = 0.25 in our
experiments.

Moreover, we continue to skip all samples that
have zero advantage before the perturbation. This
ensures that no batch is dominated solely by the
unlikeliness reward, and R(x, y;) still determines
the direction of optimization for each sample.

4.2 Effects of PPO Epochs

In addition to perturbing rewards, we find that in-
creasing the number of optimization steps per sam-
ple (ppo-epochs) also mitigates rank bias. Stan-
dard implementations of PPO and GRPO typically

25564

use a single optimization step per batch (Sun, 2024;
Sheng et al., 2024; Yu et al., 2025), which we found
to produce biased updates. When taking multiple
gradient steps, the initial steps may push high-rank
solutions beyond the clipping threshold, so that
subsequent steps are forced to focus on low-rank
samples that are still unclipped. In this way, in-
creasing ppo-epochs indirectly amplifies learning
signal for low-rank samples.

However, increasing ppo-epochs makes training
substantially slower (Appendix B.1) and potentially
unstable. Thus, we prefer the unlikeliness reward
as the more direct and efficient solution to address
rank bias.

5 Experiments

For our main experiments, we use Dy,in and Dy,
for training and evaluation. We compare several
GRPO variants with different hyperparameter set-
tings, summarized in Table 1. We increase the
KL penalty because we found that it helps pre-
vent deteriorating pass@ NV, but this change alone
was not enough to improve pass@ N substantially
(discussed in Appendix D). All unlisted hyperpa-
rameters are kept the same.

Model K Bk Brank
GRPO-Default 1 0.02 -
GRPO-Unlikeliness-1 1 0.10 0.25
GRPO-Unlikeliness-2 2 0.10 0.25
GRPO-Epochs-2 2 0.10 —
GRPO-Epochs-3 3 0.10 -

Table 1: Hyperparameter settings for GRPO variants in
our experiments. K is the number of PPO epochs.

5.1 Results: Pass@N

Figure 5 shows the performance of GRPO variants
evaluated on D,,;. Introducing the unlikeliness re-
ward leads to substantial improvements in pass @N
at large N, with a minor tradeoff in pass@1 and
pass@2. Interestingly, increasing PPO epochs also
leads to improvements, consistent with our analysis
in Section 4.2. However, increasing PPO epochs
leads to a significant increase in training time (Ap-
pendix B.1).

We also track the cumulative accuracy of the
32 samples generated per problem during train-
ing, including the baseline performance of a static
model with no updates. Table 2 reports the number
of problems solved by each variant. All GRPO

Model Solved A Static
Static (V1.5-SFT) 7707 / 9600 -
GRPO-Default 7860 / 9600 +153
GRPO-Epochs-2 8008 / 9600 +301
GRPO-Epochs-3 8006 / 9600 +299
GRPO-Unlikeliness-1 8023 / 9600 +316
GRPO-Unlikeliness-2 8065 / 9600 +358

Table 2: Number of training problems solved during
one epoch on Dy,in. GRPO variants improve over the
static model, with GRPO-Unlikeliness-2 achieving the
largest gain.

variants outperform the static model, with GRPO-
Unlikeliness-2 solving the most problems. Since
training runs for only one epoch, each example is
effectively unseen at the time of sampling, indicat-
ing generalization within the epoch.

5.2 Analysis: Rank Bias

To assess whether the proposed methods mitigate
rank bias, we repeat the analysis from Section 3.5
by computing the «; metrics over the training sam-
ples for each GRPO variant. The results, shown in
Figure 6, indicate substantial changes in GRPO’s
behavior. GRPO-Unlikeliness-2 reverses the orig-
inal pattern and is more likely to reinforce low-
probability solutions. We also show that unlikeli-
ness reward mitigates rank bias in our controlled
environment (see Appendix A.4).

In GRPO-Epochs-2 and GRPO-Epochs-3, the
bias remains, but the overall strength of reinforce-
ment is increased so that low-probability solutions
are also sufficiently uplifted.

5.3 Analysis: Sample Diversity

Throughout training, we track the number of
unique proofs generated per step, shown in Figure 7.
GRPO-Unlikeliness-2 exhibits unique dynamics
where diversity initially drops but later recovers, un-
like other variants where diversity declines mono-
tonically. This may reflect a self-correcting mech-
anism: initially dominant solutions are penalized,
allowing low-probability correct solutions to resur-
face. This continuous rebalancing helps preserve a
broad distribution of strategies throughout training.

We also observe that higher PPO epochs consis-
tently increases sample diversity, up to ppo-epochs
= 4 where training becomes unstable. While this
may seem counterintuitive — since more optimiza-
tion steps deviate the model further from its initial
distribution — it aligns with our earlier analysis.

25565

1 2 4 8

16

Model
—e— DeepSeek-Prover-V1.5-SFT
—e— GRPO-Default
GRPO-Unlikeliness-1
—e— GRPO-Unlikeliness-2
GRPO-Epochs-2
—e— GRPO-Epochs-3
32 64 128

256 512

N

Figure 5: Performance of GRPO variants on Dy, . Both the unlikeliness reward and additional PPO epochs improve
pass@N. Appendix C details how we compute these metrics.

0.6
—e— GRPO-Default

GRPO-Epochs-2

—e— GRPO-Epochs-3
GRPO-Unlikeliness-1
—e— GRPO-Unlikeliness-2

—y
\/\v‘

0.5

0.4

0.3

Uplift Rate

0.2

0.1

0.0

o
w

10 15 20
Rank of Sample in Group

25

Figure 6: Uplift rate u; as a function of rank j for
GRPO variants. The proposed methods improve the rate
of reinforcing low-probability correct solutions. Details
on computing these metrics are provided in Appendix F.

Higher PPO epochs indirectly amplifies rare so-
lutions, thereby mitigating the sharpening effect
typically caused by GRPO updates.

5.4 Putting It All Together

Finally, we evaluate GRPO-Unlikeliness-2 in a
large-scale experiment. We train the model on a
dataset of 11k theorems, a larger and more chal-
lenging subset of Lean-Workbook that was solved
and released by Lin et al. (2025b), making sure to
exclude theorems in D,,;. We evaluate the result-
ing model on MiniF2F-test (Zheng et al., 2021),
a widely recognized benchmark for neural theo-
rem proving, as well as Dy,. As reported in Ta-
ble 3, GRPO-Unlikeliness-2 achieves competi-
tive results compared to DeepSeek-Prover-V1.5-
RL (Xin et al., 2024) on both datasets.

—— GRPO-Default
GRPO-Unlikeliness-1

—— GRPO-Unlikeliness-2
GRPO-Epochs-2

—— GRPO-Epochs-3

Number of Unique Proofs Generated

0 100

200

300
Training Step

400 500 600

Figure 7: Number of unique proofs generated at each
training step (smoothed with EMA). Unlikeliness re-
ward significantly improves sample diversity during
training.

6 Related Work

Automated Theorem Proving: Polu and
Sutskever (2020) pioneered transformer-based the-
orem provers that interact with proof assistants like
Lean or Isabelle (de Moura et al., 2015; Paulson,
1994). Subsequent work has developed state-tactic
models (Polu et al., 2022; Wu et al., 2024; Xin
et al., 2025) that generate one proof step at a time
and full-proof models (Xin et al., 2024; Lin et al.,
2025b) that produce complete proofs autoregres-
sively, reducing interaction overhead.

Recent work has explored various directions in
LLM-based theorem proving. Lample et al. (2022),
Xin et al. (2024), and Xin et al. (2025) explore the
application of inference-time algorithms for proof
discovery. Jiang et al. (2023) and Lin et al. (2025a)
use informal reasoning to guide formal proofs by
integrating LLLMs capable of reasoning in natural
language. Hu et al. (2024) investigates training

25566

Model pass@32 pass@128
MiniF2F-test
V1.5-SFT 47.1+0.6% 49.24+0.6%
V1.5-RL 49.2+0.6% 51.24+0.3%
Ours 48.8 £0.7% 50.6 £ 0.5%
Dval
V1.5-SFT 78.3+0.9% 83.1+0.2%
V1.5-RL 84.84+0.9% 87.54+0.7%
Ours 84.3+£0.9% 88.8+0.9%

Table 3: pass@ N performance of our model compared
to DeepSeek-Prover-V1.5-SFT and -RL from Xin et al.
(2024) on MiniF2F-test and D,,. Our model achieves
competitive performance with DeepSeek-Prover-V1.5-
RL while being fully open.

models that can incorporate novel context at test
time. Our work is mainly focused on the post-
training of theorem provers using reinforcement
learning, which we detail next.

Expert Iteration for Theorem Proving: Ex-
pert iteration alternates between search and learn-
ing (Anthony et al., 2017), and was first applied
to theorem proving by Polu et al. (2022). It has
since become the dominant paradigm, appearing
in recent work like Wu et al. (2024), Xin et al.
(2025), and Lin et al. (2025b). Xin et al. (2025)
explores the viability of best-first search for data
collection, while Wu et al. (2024) and Lin et al.
(2025b) achieve state-of-the-art performance at the
time by performing large-scale expert iteration on
autoformalized theorem statements.

RL for Theorem Proving: Compared to expert
iteration, the use of more general RL algorithms
is relatively underexplored. A notable exception
is Xin et al. (2024), which showed GRPO can en-
hance a SFT model using only additional theorem
statements and the verifier reward. In the low-
data setting, Gloeckle et al. (2024) successfully
trained a strong theorem prover by adapting the
AlphaZero algorithm (Silver et al., 2017) to proof
trees. Xin et al. (2025) used direct preference op-
timization (Rafailov et al., 2023) in their pipeline,
but only for the minor role of training against proof
steps that cause immediate errors.

More recent work has begun adapting tech-
niques from OpenAl ol (OpenAl et al., 2024) and
DeepSeek-R1 (DeepSeek-Al et al., 2025) to train
reasoning models for theorem proving (Wang et al.,
2025; Ren et al., 2025; Zhang et al., 2025). These
works have achieved state-of-the-art performance
by building models that can engage in long chain-

of-thought style reasoning, either calling formal
proof models as subroutines (Ren et al., 2025) or
devising hierarchical strategies to break down the
problem (Wang et al., 2025).

RL for Multi-Sample Performance: Several
existing works specifically investigate the issue
of RL’s pass@N performance. Yue et al. (2025)
argues that instead of learning novel capabilities,
RL with verifier reward mainly concentrates the
model’s outputs around correct answers already
present in the base model’s samples. Their experi-
ments also show an improvement in pass@ small
N and deterioration at large /N. Chow et al. (2024)
and Tang et al. (2025) consider novel RL formu-
lations that explicitly optimize for best-of-N per-
formance. They derive BoN-aware RL algorithms
and demonstrate improved performance, but still
consider a smaller range of N (pass@32) than is
typical in formal theorem proving. In the expert
iteration setting, Dang et al. (2025) identifies that
pass@N deteriorates due to diversity collapse and
shows that interpolating model weights with an
early checkpoint mitigates this issue.

Compared to these previous works, we are the
first to attribute RL’s poor multi-sample perfor-
mance to an inability to reinforce low-probability
samples. We also provide a simple and direct so-
lution to address this issue and improve pass@ N
performance.

7 Conclusion

We investigated GRPO’s poor multi-sample perfor-
mance in the setting of formal theorem proving, the-
orizing a connection between degraded pass@ NV at
large N and the failure to reinforce low-probability
solutions. Our analysis revealed an implicit bias
in GRPO: it preferentially reinforces already high-
probability sequences while largely ignoring rare
but correct ones. To address this, we introduced the
unlikeliness reward, a simple yet effective modifi-
cation that directly shifts reinforcement toward rare
samples. Our experiments confirm that the unlike-
liness reward enables GRPO to make significant
gains in pass@N at large N and drastically im-
proves sample diversity compared to existing meth-
ods. Using our revised recipe, we train a model
that is competitive with DeepSeek-Prover-V1.5-RL
and release our implementation publicly.

25567

Limitations

While we offer a lightweight solution for improving
GRPO’s multi-sample performance, future work
could explore other strategies for uniformly rein-
forcing correct samples or for directly optimizing
performance under specific inference-time algo-
rithms. In particular, developing inference-aware
reinforcement learning algorithms that are efficient
to train remains an open direction.

Moreover, recent applications of RL have shifted
toward the reasoning paradigm, where models
generate long reasoning paths often involving be-
haviors such as planning, backtracking, and self-
critique. In these settings, the behavior of algo-
rithms like GRPO may differ qualitatively due to
the increased diversity and complexity of possible
reasoning paths. We leave as future work to deter-
mine whether methods that amplify rare but correct
solutions can similarly enhance exploration and
generalization in reasoning models.

Acknowledgements

Sean Welleck thanks Convergent Research and
the Lean FRO for their support. This work was
supported in part by the National Science Founda-
tion under Grant Nos. DMS-2434614 and DMS-
2502281.

References

Thomas Anthony, Zheng Tian, and David Barber. 2017.
Thinking fast and slow with deep learning and tree
search. Preprint, arXiv:1705.08439.

Yinlam Chow, Guy Tennenholtz, Izzeddin Gur, Vincent
Zhuang, Bo Dai, Sridhar Thiagarajan, Craig Boutilier,
Rishabh Agarwal, Aviral Kumar, and Aleksandra
Faust. 2024. Inference-aware fine-tuning for best-
of-n sampling in large language models. Preprint,
arXiv:2412.15287.

Xingyu Dang, Christina Baek, Kaiyue Wen, Zico Kolter,
and Aditi Raghunathan. 2025. Weight ensembling
improves reasoning in language models. Preprint,
arXiv:2504.10478.

Leonardo Mendonga de Moura, Soonho Kong, Jeremy
Avigad, Floris van Doorn, and Jakob von Raumer.
2015. The lean theorem prover (system description).
In CADE.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-
hong Shao, Zhuoshu Li, Ziyi Gao, and 181 others.

2025. Deepseek-rl: Incentivizing reasoning capa-
bility in llms via reinforcement learning. Preprint,
arXiv:2501.12948.

Fabian Gloeckle, Jannis Limperg, Gabriel Synnaeve,
and Amaury Hayat. 2024. ABEL: Sample efficient
online reinforcement learning for neural theorem
proving. In The 4th Workshop on Mathematical Rea-
soning and Al at NeurIPS’24.

Jiewen Hu, Thomas Zhu, and Sean Welleck. 2024.
minictx: Neural theorem proving with (long-) con-
texts. arXiv preprint arXiv:2408.03350.

Albert Q. Jiang, Sean Welleck, Jin Peng Zhou, Wenda
Li, Jiacheng Liu, Mateja Jamnik, Timothée Lacroix,
Yuhuai Wu, and Guillaume Lample. 2023. Draft,
sketch, and prove: Guiding formal theorem provers
with informal proofs. Preprint, arXiv:2210.12283.

Guillaume Lample, Marie-Anne Lachaux, Thibaut
Lavril, Xavier Martinet, Amaury Hayat, Gabriel
Ebner, Aurélien Rodriguez, and Timothée Lacroix.
2022. Hypertree proof search for neural theorem
proving. Preprint, arXiv:2205.11491.

Haohan Lin, Zhiqing Sun, Sean Welleck, and Yiming
Yang. 2025a. Lean-star: Learning to interleave think-
ing and proving. Preprint, arXiv:2407.10040.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu,
Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou
Xia, Danqgi Chen, Sanjeev Arora, and Chi Jin.
2025b. Goedel-prover: A frontier model for
open-source automated theorem proving. Preprint,
arXiv:2502.07640.

OpenAl, :, Aaron Jaech, Adam Kalai, Adam Lerer,
Adam Richardson, Ahmed El-Kishky, Aiden Low,
Alec Helyar, Aleksander Madry, Alex Beutel, Alex
Carney, Alex Iftimie, Alex Karpenko, Alex Tachard
Passos, Alexander Neitz, Alexander Prokofiev,
Alexander Wei, Allison Tam, and 244 others. 2024.
Openai ol system card. Preprint, arXiv:2412.16720.

Lawrence C. Paulson. 1994. Isabelle: A Generic Theo-
rem Prover. Springer Verlag.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Man-
tas Baksys, Igor Babuschkin, and Ilya Sutskever.
2022. Formal mathematics statement curriculum
learning. Preprint, arXiv:2202.01344.

Stanislas Polu and Ilya Sutskever. 2020. Generative
language modeling for automated theorem proving.
Preprint, arXiv:2009.03393.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

25568

https://arxiv.org/abs/1705.08439
https://arxiv.org/abs/1705.08439
https://arxiv.org/abs/2412.15287
https://arxiv.org/abs/2412.15287
https://arxiv.org/abs/2504.10478
https://arxiv.org/abs/2504.10478
https://api.semanticscholar.org/CorpusID:232990
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://openreview.net/forum?id=kk3mSjVCUO
https://openreview.net/forum?id=kk3mSjVCUO
https://openreview.net/forum?id=kk3mSjVCUO
https://arxiv.org/abs/2210.12283
https://arxiv.org/abs/2210.12283
https://arxiv.org/abs/2210.12283
https://arxiv.org/abs/2205.11491
https://arxiv.org/abs/2205.11491
https://arxiv.org/abs/2407.10040
https://arxiv.org/abs/2407.10040
https://arxiv.org/abs/2502.07640
https://arxiv.org/abs/2502.07640
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2202.01344
https://arxiv.org/abs/2202.01344
https://arxiv.org/abs/2009.03393
https://arxiv.org/abs/2009.03393
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9

Z.7Z. Ren, Zhihong Shao, Junxiao Song, Huajian Xin,
Haocheng Wang, Wanjia Zhao, Liyue Zhang, Zhe Fu,
Qihao Zhu, Dejian Yang, Z. F. Wu, Zhibin Gou, Shi-
rong Ma, Hongxuan Tang, Yuxuan Liu, Wenjun Gao,
Daya Guo, and Chong Ruan. 2025. Deepseek-prover-
v2: Advancing formal mathematical reasoning via
reinforcement learning for subgoal decomposition.
Preprint, arXiv:2504.21801.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Prox-
imal policy optimization algorithms. Preprint,
arXiv:1707.06347.

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng,
Yiping Wang, Sewoong Oh, Simon Shaolei Du,
Nathan Lambert, Sewon Min, Ranjay Krishna,
Yulia Tsvetkov, Hannaneh Hajishirzi, Pang Wei
Koh, and Luke Zettlemoyer. 2025. Spurious re-
wards: Rethinking training signals in rlvr. Preprint,
arXiv:2506.10947.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024.
Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. Preprint,
arXiv:2402.03300.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin
Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin
Lin, and Chuan Wu. 2024. Hybridflow: A flexible
and efficient rlhf framework. arXiv preprint arXiv:
2409.19256.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-
nis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore
Graepel, Timothy Lillicrap, Karen Simonyan, and
Demis Hassabis. 2017. Mastering chess and shogi
by self-play with a general reinforcement learning
algorithm. Preprint, arXiv:1712.01815.

Zhiqing Sun. 2024. Gpt-accelera: Simple and efficient
pytorch-native transformer training and inference
(batched). https://github.com/Edward-Sun/
gpt-accelera.

Yunhao Tang, Kunhao Zheng, Gabriel Synnaeve, and
Rémi Munos. 2025. Optimizing language models
for inference time objectives using reinforcement
learning. Preprint, arXiv:2503.19595.

Terence Tao. 2025. Machine-assisted proof. Notices of
the American Mathematical Society, 72(1):6-15.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas
Baksys, Junqi Liu, Marco Dos Santos, Flood Sung,
Marina Vinyes, Zhenzhe Ying, Zekai Zhu, Jian-
giao Lu, Hugues de Saxcé, Bolton Bailey, Chen-
dong Song, Chenjun Xiao, Dehao Zhang, Ebony
Zhang, Frederick Pu, Han Zhu, and 21 others. 2025.
Kimina-prover preview: Towards large formal rea-
soning models with reinforcement learning. Preprint,
arXiv:2504.11354.

Zijian Wu, Suozhi Huang, Zhejian Zhou, Huaiyuan
Ying, Jiayu Wang, Dahua Lin, and Kai Chen. 2024.
Internlm?2.5-stepprover: Advancing automated theo-
rem proving via expert iteration on large-scale lean
problems. Preprint, arXiv:2410.15700.

Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao,
Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue Zhang,
Xuan Lu, Qiushi Du, Wenjun Gao, Qihao Zhu, De-
jian Yang, Zhibin Gou, Z. F. Wu, Fuli Luo, and
Chong Ruan. 2024. Deepseek-prover-v1.5: Har-
nessing proof assistant feedback for reinforcement
learning and monte-carlo tree search. Preprint,
arXiv:2408.08152.

Ran Xin, Chenguang Xi, Jie Yang, Feng Chen, Hang
Wau, Xia Xiao, Yifan Sun, Shen Zheng, and Kai Shen.
2025. Bfs-prover: Scalable best-first tree search
for llm-based automatic theorem proving. Preprint,
arXiv:2502.03438.

Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li,
Kristin Lauter, Swarat Chaudhuri, and Dawn Song.
2024. Formal mathematical reasoning: A new fron-
tier in ai. Preprint, arXiv:2412.16075.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang,
Dahua Lin, and Kai Chen. 2024. Lean work-
book: A large-scale lean problem set formalized
from natural language math problems. Preprint,
arXiv:2406.03847.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan,
Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin,
Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
Zhang, Mofan Zhang, Wang Zhang, Hang Zhu,
and 16 others. 2025. Dapo: An open-source llm
reinforcement learning system at scale. Preprint,
arXiv:2503.14476.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai
Wang, Yang Yue, Shiji Song, and Gao Huang. 2025.
Does reinforcement learning really incentivize rea-
soning capacity in llms beyond the base model?
Preprint, arXiv:2504.13837.

Jingyuan Zhang, Qi Wang, Xingguang Ji, Yahui Liu,
Yang Yue, Fuzheng Zhang, Di Zhang, Guorui
Zhou, and Kun Gai. 2025. Leanabell-prover: Post-
training scaling in formal reasoning. Preprint,
arXiv:2504.06122.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu.
2021. Minif2f: a cross-system benchmark for for-
mal olympiad-level mathematics. arXiv preprint
arXiv:2109.00110.

A Toy Environment

After observing that GRPO failed to improve
pass@ N metrics, we constructed a simplified toy
environment to isolate the issue and efficiently test
potential solutions. This appendix details the de-
sign of the environment and presents our experi-
mental results within it.

25569

https://arxiv.org/abs/2504.21801
https://arxiv.org/abs/2504.21801
https://arxiv.org/abs/2504.21801
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2506.10947
https://arxiv.org/abs/2506.10947
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://github.com/Edward-Sun/gpt-accelera
https://github.com/Edward-Sun/gpt-accelera
https://arxiv.org/abs/2503.19595
https://arxiv.org/abs/2503.19595
https://arxiv.org/abs/2503.19595
https://doi.org/10.1090/noti3041
https://arxiv.org/abs/2504.11354
https://arxiv.org/abs/2504.11354
https://arxiv.org/abs/2410.15700
https://arxiv.org/abs/2410.15700
https://arxiv.org/abs/2410.15700
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2502.03438
https://arxiv.org/abs/2502.03438
https://arxiv.org/abs/2412.16075
https://arxiv.org/abs/2412.16075
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2504.13837
https://arxiv.org/abs/2504.13837
https://arxiv.org/abs/2504.06122
https://arxiv.org/abs/2504.06122

A.1 Environment Design

We design a minimalistic toy environment for rapid
experimentation. The environment is fully observ-
able, with state space S = R0 and discrete action
space A = {1,...,128}. Each action a € A is
associated with a fixed, randomly initialized but
hidden vector v, € R0,

The binary reward function R, : § x A —
{0,1} is defined as:

Ry (s,a) = I{s v, > 7}

Here, 7 is a threshold controlling environment
difficulty. Higher 7 values restrict the reward to
fewer actions, thus increasing difficulty. We fix 7 =
1.0 during training but vary 7 during evaluation to
simulate different difficulty levels.

A.2 Policy Model

The policy model 7y(a | s) is a simple two-layer
multilayer perceptron (MLP) mapping state s to a
probability distribution over actions in A.

A.3 GRPO Training and Diagnosis

We train the model using GRPO for 200 steps and

evaluate pass@ N metrics at N € {1,4,8,16,32}.

Initial evaluations at training difficulty 7 = 1.0
suggest GRPO improves pass rates across all N:

Validation Pass Rates at Difficulty (Threshold) = 1.00

Pass Rate

05 —— Pass@1

Pass@4
—— Pass@8
—— Pass@16
—— Pass@32

0.4

03

25 50 7 100 125 150 175 200
Training Steps

However, evaluations at increased difficulties

(r = 4.0 and 7 = 5.0) reveal pass@32 deterio-
rates over training, aligning with observations in

the original setting:

Validation Pass Rates at Difficulty (Threshold) = 4.00

—— Pass@1

Pass@4
—— Pass@8
—— Pass@16
—— Pass@32

Pass Rate

25 50 75 100 125 150 175 200
Training Steps

Validation Pass Rates at Difficulty (Threshold) = 5.00

0.40 —— Pass@1
Pass@4
0.35 —— Pass@8
—— Pass@16
—— Pass@32

Pass Rate
o
N
S

25 50 75 00 125 150 175 200
Training Steps

Analyzing uplift rate metrics (Section 3.5), we
identify a rank bias in GRPO, showing preferen-
tial reinforcement of already high-probability solu-
tions:

Uplift Rates (first 40 groups)

—8— GRPO-Default

o o o 4 o
v Y ~ @ ©
L !

Probability Increase Frequency

o
»
L

2 4 6 8 10
Rank within Group

A.4 Unlikeliness Reward

We investigate the impact of unlikeliness reward
within this toy environment. It effectively neutral-
izes the rank bias, making the uplift rates notably
more uniform:

Immediate Probability Increase (first 40 groups)

Py

o
0

o
)

o o
o ~
L R

o
w
L

Probability Increase Frequency

—®— GRPO-Default
Unlikelihood-Reward-0.5
—e— Unlikelihood-Reward-0.2

o
S

2 4 6 8 10
Rank within Group

Consequently, the unlikeliness reward signifi-
cantly improves pass@32 performance in the dif-
ficult setting 7 = 5.0, contrasting sharply with de-
fault GRPO, whose pass @32 performance declines
to near chance levels:

25570

Validation Pass@32 Rate at Threshold 5.0 Across Runs

5.0)
o
&

o
o

—— GRPO-Default
Unlikelihood-Reward-0.5
= Unlikelihood-Reward-0.2
—— Chance

°
S

Pass@32 Rate (Threshold
o

°
N

0.1

Training Steps

Additionally, incorporating the unlikeliness re-
ward substantially increases the entropy of the pre-
dicted action distribution:

Entropy over Training Steps Across Runs

54

—— GRPO-Default
Unlikelihood-Reward-0.5

—— Unlikelihood-Reward-0.2

Average Entropy

0 100 200 300 400 500
Training Steps

B Training Setup

The main experiments in Section 5 are conducted
on 4 NVIDIA L40S GPUs, with 500GB of RAM
and 48-64 CPUs allocated for running parallel in-
stances of the Lean REPL.

B.1 Training Time

All training runs in the main experiment complete
within 36 hours. Each training step primarily con-
sists of three stages: sequence generation, proof
verification, and policy model updates. The gener-
ation and verification stages are shared across all
methods and take approximately 120 seconds per
batch (16 problems x 32 attempts). The duration
of the policy update step depends on the number of
PPO epochs, as shown below:

PPO Epochs Policy Update Time (s)
1 ~ 70
2 ~ 140
3 ~ 210

C Evaluation Metrics

We begin by selecting a maximum sample size
Nmax (512 in our experiments) and generate Np,x
responses for each problem. To compute pass@n,

Model
—e— DeepSeek-Prover-V1.5-SFT
—e— GRPO-Default
0.55 GRPO-Unlikeliness-1
—e— GRPO-Unlikeliness-2
0.50 —e— GRPO-High-KL

1 2 4 8 16 32 64 128 256 512

Figure 8: Performance of GRPO variants including
GRPO-High-KL on D,,. For readability, we omit some
variants.

we divide the responses for each problem into
Nmax/n chunks and assign each chunk a binary
reward indicating whether any proof within it is
valid. The ¢-th trial of pass@n is then computed by
averaging the binary rewards across the ¢-th chunk
of all problems. We report the mean and standard
deviation across trials. Note that for pass@512,
there is only a single trial, so we omit the standard
deviation in our plots.

D Effects of KL Penalty

Recent results have shown that the pass rates of the-
orem prover models can continue to improve with
increased sampling, up to hundreds of thousands
of passes (Lin et al., 2025b). This suggests that
the distribution of the base model is highly diverse
and crucial to preserve during fine-tuning. Prior
work addressed this in the SFT setting by ensem-
bling fine-tuned model weights with the original
(Dang et al., 2025). Since GRPO already has a
regularization mechanism through the KL penalty,
we simply increase the KL loss coefficient to 0.1
to better preserve the original distribution.

To isolate the contribution from unlikeliness re-
ward and PPO epochs, we conduct a control run
that only increases the KL penalty from GRPO-
Default. This corresponds to an additional row for
Table 1:

/Brank
0.10 -

Model K BKL
GRPO-High-KL 1

We find that, while this change prevented the
deterioration of pass@ N performance, it did not
bring a substantial improvement over the base
model (Figure 8). This is likely because the RL up-
dates still fail to uplift low-rank samples (Figure 9).
Thus, we treat KL regularization as a supporting

25571

—e— GRPO-Default

GRPO-Unlikeliness-1
—e— GRPO-Unlikeliness-2
—e— GRPO-High-KL

Uplift Rate

0 5 10 15 20 25 30
Rank of Sample in Group

Figure 9: Uplift rates of GRPO variants including
GRPO-High-KL.

modification rather than a solution in itself.

E Relation to Clipping Bias

In this section, we discuss how the rank bias we
identify relates to the clipping bias studied in Yu
et al. (2025) and Shao et al. (2025).

These works consider an issue termed clipping
bias by Shao et al. (2024), where the clipping mech-
anism biases GRPO toward high-probability behav-
iors over low-probability ones. In GRPO, the prob-
ability ratio of my(y | z)/mg,,(y | z) is clipped to
(1—e€, 14-¢) to prevent the policy from deviating too
far from the original. Intuitively, all solutions can
increase by a factor of 1 + ¢, but high-probability
solutions gain more absolute probability mass. For
already high-probability solutions, the upper bound
(1+€ times current probability) may be greater than
1, making it essentially unbound. Yu et al. (2025)
propose a Clip-Higher strategy, which relaxes the
upper bound (larger epign) to allow more probability
to be placed on less likely solutions.

Although both rank bias and clipping bias lead
to similar symptoms in GRPO, we argue that they
are distinct phenomena. We provide two main
pieces of evidence:

Uplift Rate Analysis: Our uplift rate plots,
which are the basis for identifying rank bias, only
measure the direction of probability change rather
than its magnitude. They show that unlikely so-
lutions are often not increased at all, rather than
merely restricted to small increases as the clipping
explanation would predict. To further test this, we
reran GRPO without clipping in our toy environ-
ment (Appendix A). The resulting uplift rate plot
is shown below; rank bias clearly persists even in
the absence of clipping.

Uplift Rates (first 40 groups)

o o o o
o ~ @ 0
L R ! .

o
wn
L

Probability Increase Frequency

—8— GRPO-Default-NoClip
GRPO-Default
—e— Unlikelihood-Reward-0.5

o
s

Pass@ K Results: Yue et al. (2025) evaluates
RL-trained models on several reasoning tasks and
find that it consistently deteriorates pass@ K for
large enough K. This includes models trained with
DAPO (Yu et al., 2025), which introduces Clip-
Higher to combat the clipping bias. This suggests
that addressing clipping bias alone is insufficient
to solve the broader pass@ K degradation that our
work targets.

F Computing Uplift Rates

To compute the uplift rates for a run, we require a
collection of samples {{y; 1,...,vic}}X,, gener-
ated in response to prompts {xz}f\il during training.
Each inner set with index ¢ is the group of G re-
sponses that GRPO generates for problem z;. We
also need an initial policy mo(y |) and final pol-
icy rgrro(y |). Given these components, the
uplift rate is computed according to the equation
in Section 3.5. Note that the uplift rate is based
on the probability change of the same responses —
we do not sample separately from the initial and
final models. This appendix details the samples
and models we use for Figure 4 and Figure 6

For Figure 4, we train with the GRPO-Default
configuration for 50 steps. We compute the up-
lift rates using all samples generated during these
training steps. We use the step-0 (base model)
and step-50 model checkpoints as the initial and
final policies. We focus on analyzing early training
steps because this is when entropy decreases most
rapidly in GRPO. The analysis is less effective af-
ter diversity collapse — at that point low-probability
solutions are unlikely to show up in samples at all.

Similarly, for Figure 6, we use the training sam-
ples generated during the first 50 steps of each re-
spective run. However, to avoid retraining models,
we use the step-0 and step-600 (final model) check-
points for each respective run as the initial and final
policies. This explains why the uplift rates in this
figure are overall lower than in Figure 4.

25572

