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Abstract

Mechanistic interpretation has greatly con-
tributed to a more detailed understanding of
generative language models, enabling signifi-
cant progress in identifying structures that im-
plement key behaviors through interactions be-
tween internal components. In contrast, in-
terpretability in information retrieval (IR) re-
mains relatively coarse-grained, and much is
still unknown as to how IR models determine
whether a document is relevant to a query. In
this work, we address this gap by mechanisti-
cally analyzing how one commonly used model,
a cross-encoder, estimates relevance. We find
that the model extracts traditional relevance
signals, such as term frequency and inverse
document frequency, in early-to-middle lay-
ers. These concepts are then combined in later
layers, similar to the well-known probabilistic
ranking function, BM25. Overall, our analysis
offers a more nuanced understanding of how
IR models compute relevance. Isolating these
components lays the groundwork for future in-
terventions that could enhance transparency,
mitigate safety risks, and improve scalability.

1 Introduction

Information retrieval (IR) is the subfield of NLP
that aims to rank a collection of documents by their
relevance to a specific query. Traditional ranking
strategies have long relied on probabilistic models
grounded in intuitive heuristics, like BM25 (Robert-
son and Zaragoza, 2009), to estimate relevance.
BM25 leverages term frequency (TF) and inverse
document frequency (IDF) to rank documents effec-
tively, achieving strong performance across various
tasks. Its simplicity and inherent interpretability
have made it a cornerstone of traditional IR sys-
tems. Inspired by BM25’s success, earlier neural
IR models (Pang et al., 2016; Guo et al., 2016)
were purposefully designed to emulate BM25’s

*Equal contribution.

principles. These models incorporate explicit com-
ponents for semantic TF and IDF computations,
blending neural architectures with established IR
heuristics to improve relevance estimation.

However, the advent of transformer-based mod-
els revolutionized the field of IR. These models,
trained end-to-end on large numbers of query-
document pairs (Nguyen et al., 2016; Thakur et al.,
2021), excel at extracting context-dependent se-
mantic signals for ranking tasks. By leveraging
multi-headed attention and vast parameter spaces,
transformers (Vaswani et al., 2017) capture nu-
anced relationships between query and document
terms that go beyond traditional heuristic-based
approaches. Despite their superior performance,
these models come with significant trade-offs: their
complexity and lack of interpretability make it chal-
lenging to understand their internal mechanisms.
This raises fundamental questions: how do these
models assess relevance? Do they rely on estab-
lished IR principles such as TF and IDF, or do they
draw on entirely different expressions of relevance?

In this work, we build upon previous correla-
tional studies (Choi et al., 2022; Zhan et al., 2020;
Formal et al., 2021, 2022; MacAvaney et al., 2022)
by employing mechanistic interpretability meth-
ods (Nanda, 2022; Elhage et al., 2021; Olsson et al.,
2022; Meng et al., 2024; Wang et al., 2022; Pearl,
2022) to address these questions.

Concretely, we analyze a BERT-based IR model
(i.e., a cross-encoder) to isolate multiple relevance
signals beyond exact match TF.1 Our main findings
are: (1) We identify attention heads that extract
and process BM25-like components, including a
semantic version of term frequency (soft-TF), term
saturation, and document length (§4.1-§4.3). (2)
We find evidence that IDF information largely al-
ready exists in the largest singular value of the

1All code and resources are available at: https://github.
com/mlu108/CrossEncoderBM25
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embedding matrix and can be manipulated to later
control term importance (§4.4). (3) We confirm that
heads in later layers aggregate all these relevance
signals in a BM25-style manner by defining a linear
approximation of the hypothesized relevance com-
putation and evaluating its ability to reconstruct
cross-encoder’s predicted scores, confirming that
our circuit captures the core mechanism of rele-
vance computation (§5).

Overall, our mechanistic analysis uncovers in-
sights on how IR models determine relevance,
paving the way for targeted model editing to boost
performance, enable personalization, and mitigate
bias in transformer-based IR.

2 Background and Related Work

2.1 Axioms and BM25

Axiomatic IR constructs formal desiderata, or ax-
ioms, outlining specific properties that an effective
ranking model should satisfy (Bruza and Huibers,
1994). For example, the TFC1 axiom (Fang et al.,
2004) states that documents that contain more
query terms should be ranked higher, and the TDC
axiom (Fang et al., 2004) states that documents
containing query terms with higher inverse docu-
ment frequency (IDF) should receive higher scores.
These axioms provide a theoretical foundation for
understanding and developing ranking functions
by formalizing human-interpretable and intuitive
notions of relevance into mathematical constraints.

BM25 is a widely used probabilistic ranking
function that exemplifies these axiomatic princi-
ples by ranking documents based on term frequency
(TF), inverse document frequency (IDF), term satu-
ration, and document length. It is defined as:

∑

t∈q
IDF(t) · TF(t, d) · (k1 + 1)

TF(t, d) + k1 · (1− b+ b · |d|
avgdl)

(1)
where q is the query, d is the document, t is

a query term, k1 and b are hyperparameters con-
trolling term saturation and length normalization,
respectively. |d| is the length of document d, and
avgdl is the average document length in the corpus.

Intuitively, BM25 computes a relevance score
by multiplying each query term’s term frequency
(TF) in the document with its inverse document
frequency (IDF), capturing both how relevant and
how informative the term is. It then sums these
scores across all query terms with two adjustments:

diminishing returns for repeated terms (term satu-
ration via k1), and downweighting for longer doc-
uments (length normalization via |d|), which pre-
vents overly long documents with additional query
term occurrences from being unfairly favored. As
shown in Table 1, each component of BM25 aligns
with a specific axiom. For instance, TFC1 reflects
the TF factor, which favors documents containing
more query terms. Framing BM25 in terms of ax-
ioms allows us to mechanistically analyze whether
and how neural IR models internalize these princi-
ples when estimating relevance.

2.2 Mechanistic Interpretability for IR

Despite not being explicitly trained to encode tradi-
tional relevance concepts, previous work provides
correlational evidence suggesting that BERT-based
IR models encode BM25-like information (Wang
et al., 2021; Rau and Kamps, 2022; Yates et al.,
2021; MacAvaney et al., 2022; Choi et al., 2022;
Zhan et al., 2020; Formal et al., 2021, 2022).

To move beyond correlation and gain a causal
understanding of how relevance is computed, we
turn to mechanistic interpretability (Nanda, 2022;
Elhage et al., 2021; Pearl, 2022), which has been
instrumental in uncovering how transformer-based
NLP models perform certain tasks, such as indirect
object identification (Meng et al., 2024) and greater-
than computation (Hanna et al., 2024).

In the context of IR, Chen et al. (2024) apply
activation patching (Vig et al., 2020; Meng et al.,
2024) to identify attention heads responsible for
exact term matching. We build on this work by
decomposing BM25 into intuitive IR axioms and
constructing diagnostic datasets to localize each
component. Rather than focusing solely on ex-
act matches, we extend the analysis to semantic
matches and trace how these components interact
to compute the final relevance score using path
patching (Wang et al., 2022; Goldowsky-Dill et al.,
2023). This work is the first to causally uncover an
internal circuit for the relevance estimation mecha-
nism of neural IR architectures.

3 Methodology

3.1 Model

While many early neural models were purpose-
fully designed to emulate BM25’s principles,
transformer-based models have revolutionized the
field of IR. Among them, cross-encoders represent
a specific architectural approach to neural ranking
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BM25
Component

Axiom Perturbation Axiom-Based Diagnostic
Dataset Examples
(b: baseline doc, p: perturbed
doc)

TF (soft-TF) TFC1 (Fang et al., 2004):
Prefer documents with more
query term occurrences.

Given a baseline document, we perturb
it by appending one more selected query
term.

b: Quebec is a small city in
Canada.
p: Quebec is a small city in
Canada. Quebec.

STMC1 (Fang and Zhai,
2006): Prefer documents with
semantically similar terms.

Given a baseline document, we append a
semantically similar term - the synonym
with highest embedding cosine similar-
ity with query term from 20 candidates
generated by GPT-4o.

b: Quebec is a small city in
Canada.
p: Quebec is a small city in
Canada. Toronto.

IDF TDC (Fang et al., 2004): Pre-
fer documents with more dis-
criminative query terms.

N/A N/A

k TFC2 (Fang et al., 2004):
Additional occurrences yield
smaller improvements.

We create a baseline document using
GPT-4o to create five relevant sentences
starting with selected query term’s pro-
noun and perturb by incrementally
restoring the term.

b: It is in Canada. It is fun.
p1: Quebec is in Canada. It is
fun.
p2: Quebec is in Canada. Que-
bec is fun.

b LNC1 (Fang et al., 2004): Pe-
nalize longer documents for
non-relevant terms.

Given a baseline document, we cre-
ate five perturbations by sequentially
appending an increasing number of
random sentences from a non-relevant
query in the base dataset.

b: Quebec is in Canada.
p1: Quebec is in Canada. Road
not taken is written by Frost.
p2: Quebec is in Canada. Road
not taken is written by Frost.
Happiness is a Butterfly.

Table 1: Mapping of BM25 components to IR axioms. Note: Since IDF is a distinct component in BM25 (unlike
term saturation and document length, which are tied to TF), we use alternative methods to isolate it (§4.4).

models that process query-document pairs jointly.
Given input x in the format: <CLS> query

<SEP> document <SEP>, the model is trained
to optimize a binary classification task where the
<CLS> token is passed to a classifier to determine
whether the provided query is relevant to the doc-
ument. In this work, we choose to examine ms-
marco-MiniLM-L-12-v2 (Face, 2025), a BERT-
based cross-encoder, for its high performance on
common IR benchmarks (Nguyen et al., 2016;
Craswell et al., 2020).

3.2 Diagnostic Datasets Construction

To investigate if and how the model implements
BM25, we map BM25 components to IR axioms
(§2.1) and construct diagnostic datasets that iso-
late individual axiomatic components. We build
off of Chen et al. (2024), who create a diagnos-
tic dataset for analyzing TFC1 using MS-MARCO
(Nguyen et al., 2016), consisting of 10k web search
query-document pairs. To create a diagnostic
dataset for the remaining axioms, we perturb each
query-document pair in this base dataset follow-
ing their formal axiomatic definition (Table 1).
Each perturbed sample differs minimally from the

original, with the perturbation introducing an ad-
ditional signal corresponding to the axiom. Our
perturbation strategies and examples of input pairs
are shown in Table 1. Additionally, we expand
the analysis on TF to soft-TF to include semantic
matches, motivated by findings that neural models
often score documents highly even in the absence
of exact lexical matches (Rau and Kamps, 2022).

3.3 Path Patching on Diagnostic Datasets

We first begin by tracking term matching, the core
feature of classical IR models like BM25, by ap-
plying path patching on minimal pairs in TFC1
and STMC1 diagnostic datasets to uncover the soft-
TF mechanism. For other components in BM25,
we use these datasets to further inspect how they
interact with the main soft-TF circuit.

Specifically, we isolate soft-TF by selecting a
query, a baseline document b, and a perturbed doc-
ument p, where p introduces an additional semantic
or lexical term frequency signal. We then substitute
activations from p into b at specific model compo-
nents, such as individual attention heads or MLP
layers. If this substitution causes the model’s rel-
evance score for b to shift toward that of p, we
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Cross-Encoder Architecture
 (ms-marco-MiniLM-L-12-v2) 

Figure 1: Overview of relevance mechanisms in the
model. The model first jointly analyzes query and doc-
ument tokens to identify matching terms (exact and
semantic), then contextualizes each query term within
the full query, and finally calculates a relevance score by
weighting query terms by their importance (IDF) and
aggregating them, similar to BM25.

interpret it as causal evidence that the patched com-
ponent encodes a term matching signal.

The path patching algorithm proceeds iteratively
in a backward fashion: it first identifies compo-
nents directly responsible for changes in the output
logits, then recursively traces upstream to uncover
the full set of causally relevant components. This
backward search reveals the components through
which specific information, introduced by the per-
turbation, flows (more details in Appendix C).

4 Semantic Scoring Circuit

In the course of this section, we will identify and
localize the following components in the model’s
Semantic Scoring Circuit (overview in Figure 1,
detailed walk-through example in Figure 10):

• Matching Heads locate exact and semantic
term matches in the document for each query
term, while also encoding term saturation and
document length signals.

• Query Contextualization Heads distribute the
matching signal from higher-IDF query to-
kens to all query tokens.

• IDF of each term is stored in a dominant low-
rank vector of the model’s embedding matrix.

• Relevance Scoring Heads aggregate query-
term importance by combining the matching
signal (soft-TF) and IDF for each query term
in a manner similar to BM25.

As described in §3, we begin by uncovering the
core soft-TF mechanism via a “backward pass” of

the model: path patching to the output logits, then
progressively patching to earlier components to
sequentially uncover important heads that compute
and propagate soft-TF signals.

After localizing the soft-TF mechanism, we ap-
ply Singular Value Decomposition (SVD) on the
embeddings to investigate IDF. After isolating all
BM25-like components in this section, we verify
that Relevance Scoring Heads perform a BM25-
like computation in §5.

4.1 Relevance Scoring Heads

Figure 2: Path patching identifies heads 10.1, 10.4, 10.7,
and 10.10 as the most important carriers of soft-TF sig-
nals to [CLS] on both TFC1 and STMC1, with similar
patching effects.

Information Flow. To identify the components
that directly transmit soft-TF signals to the rele-
vance scores, we path patch to the logits using the
TFC1 and STMC1 diagnostic datasets. We observe
a high Pearson correlation between the patching
effects of TFC1 and STMC1 (r = 0.99, p < 0.001),
indicating that path patching on both datasets iden-
tifies essentially the same set of influential heads.
This suggests that the model treats exact and seman-
tic matches similarly in the final relevance compu-
tation (see Figure 15 in Appendix D for detailed
patching results).

Figure 2 displays the heads with the highest
patching effects that exceed the top 30% of causal
importance for both TFC1 and STMC1: 10.1
(Layer 10, Head 1), 10.4, 10.7, and 10.10. Notably,
these heads contribute a larger change in relevance
scores for TFC1 compared to STMC1, suggesting
that the model may prioritize exact matches over
semantic ones.

Component Behavior. Qualitative analysis re-
veals that the [CLS] token selectively attends to
query tokens, indicating the movement of soft-TF
signals into its representation to prepare for the
final relevance score in the model’s classification
head. We find that the heads distribute attention to
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Figure 3: Example of the attention pattern from [CLS]
to query tokens in the Relevance Scoring Heads, illus-
trating how these heads process soft-TF for specific
query tokens based on their IDF values.

different parts of the query. Specifically, 10.1 fo-
cuses on high-IDF query terms, 10.10 on low-IDF,
and 10.7 and 10.4 on mid-to-high-IDF (Figure 3).
We verify this distributive behavior by calculating
the Pearson correlation between each head’s atten-
tion distribution and the IDF values of query tokens
and find a moderately high average (r=0.67, p <
0.01).

Comparison to BM25. Because these heads
prepare the [CLS] token for the final scoring in
the classification head, we call them Relevance
Scoring Heads. They combine IDF and soft-TF
signals per query term, resembling BM25’s term
weighting mechanism. Thus, we hypothesize that
the model combines the outputs of the Relevance
Scoring Heads in a similar manner and verify this
hypothesis in §5.

Important Upstream Components. We path
patch to the Relevance Scoring Heads’ value vec-
tors to identify which upstream components trans-
mit soft-TF signals. On both TFC1 and STMC1,
patching effects show high average correlation of
0.83 (p <0.001), revealing a shared set of attention
heads, divided into two groups: (1) Query Contex-
tualization Heads (§4.2) which redistribute soft-TF
among query tokens and (2) Matching Heads (§4.3)
which detect exact and semantic query-document
matches (soft-TF) (see Appendix D).

4.2 Query Contextualization Heads

Query Contextualization Heads (8.10 and 9.11)
aggregate soft-TF signals of higher-IDF query to-
kens and distribute them across all query tokens,
strengthening their representations for the Rele-
vance Scoring Heads’ final computation.

Component Behavior. At the Relevance Scor-
ing Heads, the [CLS] token retrieves soft-TF from
all query tokens. Thus, we analyze the attention pat-
terns among query tokens in these two intermediary
heads to understand how they modify the query to-

ken representation in the residual stream. We find
that all query tokens in these heads consistently
focus on one or two higher-IDF query tokens, with
strong correlations to IDF values (9.11: r = 0.829,
8.10: r = 0.781 ) with both p < 0.001. This sug-
gests that 8.10 and 9.11 redistribute the soft-TF
signals of higher-IDF tokens to contextualize the
entire query for the Relevance Scoring Heads.

Comparison to BM25. BM25 weights each
query term independently, with no exchange of in-
formation between terms. In contrast, Query Con-
textualization Heads seem to learn to contextualize
the entire query, redistributing soft-TF signals to
amplify high-IDF tokens and dynamically reweight
terms, before the final scoring. Further study of this
learned contextualization is left for future work.

Important Upstream Components. Path patch-
ing to 8.10 and 9.11 confirms that these heads re-
ceive soft-TF signals from the Matching Heads
(more details in Appendix D).

4.3 Matching Heads

q
u
er
y

document

Figure 4: Example attention pattern of Matching Head
4.9: tokens attend most strongly to duplicates but also
mildly to similar tokens.

Alongside Query Contextualization Heads, a sep-
arate set of heads, named Matching Heads (0.8, 1.7,
2.1, 3.1, 4.9, 5.7, 5.9, 6.3, 6.5, 7.9, 8.0, 8.1, 8.8),
in the model’s early and middle layers detect exact
and semantic token matches (soft-TF) between the
query and document and pass these signals to the
Relevance Scoring Heads.

Component Behavior. Qualitative inspection
reveals that Matching Heads actively attend to both
exact and semantically similar matches across the
entire input sequence (i.e., query and document).
As shown in Figure 4, head 1.7 exhibits this be-
havior clearly: both query and document tokens
strongly attend to duplicated terms and, to a lesser
extent, to semantically related terms.

To quantitatively verify this behavior, we
compute the Pearson correlation between atten-
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tion weights and semantic similarity for each
query–document token pair. If a head indeed
matches semantically similar words, its attention
from a query token qi to a document token dj
should increase with cos(qi,dj). On average,
Matching Heads exhibit a substantially stronger
correlation (r = 0.500, p < 0.001) compared to
other heads (r = 0.132). This evidence suggests
that Matching Heads employ an attention mecha-
nism that scales proportionally with semantic prox-
imity: higher semantic similarity corresponds to
higher attention scores. Since each attention weight
quantifies the strength of token matching, the sum
of attention values from a query token to all docu-
ment tokens effectively approximates the soft-TF
of a query term.

We validate the Matching Heads’ importance by
mean-ablating them, and find that the average logits
across both TFC1 and STMC1 perturbed samples
decrease (TFC1: 5.146 to -4.394, STMC1: -1.998
to -4.611), indicating that these heads are critical
for computing a semantic version of term matches.

Additional Relevance Signals. Since BM25’s
TF term takes two additional signals, term satura-
tion and document length, into account, we also
investigate whether they affect Matching Heads. To
isolate these effects, we use two diagnostic datasets:
(1) TFC2, which increases repeated query term oc-
currences to test for term saturation, and (2) LNC1,
which adds irrelevant sentences to simulate the iso-
lated effect of increased document length (Table 1).

Because each dataset varies only in one factor,
we track each Matching Head’s average attention
across these controlled groups. Consistent with
how BM25 controls for term saturation and doc-
ument length effects, we observe two trends (ad-
ditional details in Appendix E): (1) in TFC2, at-
tention to a term increases sharply after the initial
occurrence, but plateaus with additional term rep-
etitions, consistent with term saturation, and (2)
in LNC1, attention decreases as irrelevant content
increases, despite constant relevance, indicating
sensitivity to document length.

These findings suggest that Matching Heads inte-
grate soft-TF with saturation and document-length
signals rather than operating in isolation. We de-
fine this composite signal as the Matching Score,
reflecting its incorporation of soft term frequency,
term saturation, and document length effects, three
core signals of BM25.

Comparison to BM25. Matching Heads im-
plement a semantic variant of the TF component

in BM25 by identifying and weighting query-
document token matches. Our TFC2 and LNC1
experiments show that they also go beyond simple
match counting: their attention outputs are mod-
ulated in ways that mirror BM25’s additional rel-
evance adjustments for term saturation and doc-
ument length normalization. Thus, Matching
Heads jointly capture all three core components of
BM25, TF, term saturation, and length normaliza-
tion, while also incorporating semantic similarity.

Important Upstream Components. Path patch-
ing reveals that the embeddings are the primary
input to Matching Heads (see Appendix D.2), con-
firming they generate soft-TF based on semantic
similarity from the embeddings. This completes
the backward tracing for the soft-TF circuit.

4.4 IDF in the Embedding Matrix

In addition to TF, IDF plays a critical role in BM25
by weighting each query token’s TF contribution,
allowing the model to prioritize more uncommon
terms. As shown in §4.1, IDF similarly emerges
as a key signal for the Relevance Scoring Heads
in our model. While Choi et al. (2022) provide
correlational evidence for IDF in the embedding
matrix, we use SVD and low-rank interventions to
causally localize their functional role in the model.

SVD allows us to decompose a matrix into a
sum of orthogonal rank-1 components, outer prod-
ucts of a column and row vector, ordered by their
contribution to the overall matrix. Recall that the
embedding matrix WE is structured such that each
row corresponds to a word’s representation in the
vocabulary, while the columns represent latent fea-
ture dimensions. By applying SVD to WE , we can
analyze the dominant directions to see what signals
(e.g., IDF) drive the model’s behavior. Mathemati-
cally, the SVD of WE is expressed as:

WE = USV T =

r∑

i=1

σi ui v
T
i

Here, σi are the singular values, which quantify
the importance or strength of each rank-1 com-
ponent; ui and vi left and right singular vectors,
respectively, forming orthonormal bases that cap-
ture patterns in the row (token embeddings) and
column spaces (feature dimensions); and r is the
rank of WE , representing the number of non-zero
singular values and independent directions in the
matrix. By focusing on the largest singular val-
ues (σi) and their corresponding singular vectors
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(ui, vi), we can study whether IDF is stored in dom-
inant components of the embedding matrix.

We find that the top singular vector U0 is highly
correlated (r = −71.36%) with MS-MARCO IDF
values (Nguyen et al., 2016), the model’s training
dataset, indicating that IDF is encoded in the em-
bedding matrix’s dominant low-rank component.

U0 =

vocab id

0.16 * -10

1 2 3 30522

-0.02 0.13 … 0.02 0.0

30521id (tok1)

0.16 U0’

Increase IDF of tok1 
by negative-scaling 

Intuitively, increasing it tells the mode that tok1 is very important, 
so should add more relevance score when seeing tok1 in a doc, 
so the score for doc1 (repeated tok1) should increase.

…T T

Figure 5: U0 editing example (transposed for visual-
ization). Since U0 is negatively correlated with IDF,
increasing tok1’s IDF, representing its importance in
relevance computation, requires negatively scaling its
U0 component.

Causal Experiment. To validate this correlation,
we perform an intervention to demonstrate that
the IDF values from U0 have a causal effect on
downstream components (i.e., relevance scoring
heads) and thus, the overall relevance computation.

Given previous understanding on U0, we can
interpret U0 as a 1-D IDF dictionary, where idx(qi)
corresponds to the vocabulary index of qi, mapping
to its respective IDF value. Modifying the value at
idx(qi) in U0 allows us to adjust the importance of
the Matching Score for qi (Figure 5).

If the model uses the IDF values encoded in U0,
then modifying these values should result in corre-
sponding changes to the ranking score. Specifically,
according to the BM25-based Scoring Hypothesis
in §4.1, there is a linear relationship between the
IDF of a query token qi and the relevance score:
increasing the IDF of qi should increase the rel-
evance score. We have shown that U0 is rank-1
and negatively correlated with IDF. If the model
indeed uses the IDF values encoded in U0, we can
increase IDF(qi) by decreasing qi’s value in U0,
which would directly increase the relevance score.
The converse should hold true for decreasing IDF.

To test this, we design an experiment with con-
trolled, minimal examples. Given each query from
our base dataset (e.g., “computer science depart-
ment number”), we create two documents where
doc1 repeats the first query token (e.g., “computer
computer computer” and doc2 repeats the second
query token (e.g., “science science science”). Then,
we can edit the IDF of tok1 and measure the effect
on the relevance scores of doc1 and doc2.

Figure 6 shows that scaling tok1’s IDF up or

Effect of Increasing IDF of tok1

Effect of Decreasing IDF of tok1
doc1 (repeated tok1)
doc2 (repeated tok2)
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Figure 6: Top: Changes in scores for doc1 (repeated
tok1) and doc2 (repeated tok2) when increasing tok1’s
IDF at different scales, averaged across all samples.
Increasing tok1’s IDF raises doc1’s score more than
doc2’s. Bottom: Decreasing tok1’s IDF produces the
inverse effect, with slight non-monotonic deviations
suggesting optimal editing windows.

down causes a corresponding monotonic increase
(or decrease) in doc1’s score, providing causal ev-
idence that the model uses U0 to encode IDF and
suggests that it sums soft-TF by IDF values as hy-
pothesized in §4.1 (see additional details about IDF
and Relevance Scoring Heads’ attention pattern
correlation in Appendix F.1).

Comparison to BM25. This completes the
BM25 component set: the embeddings encode IDF,
and Relevance Scoring Heads modulate the amount
of soft-TF extracted by the [CLS] token based on
that IDF. This is similar to BM25, where each query
term’s TF is weighted by its IDF to prioritize in-
formative terms. In the next section, we formally
validate that Relevance Scoring Heads combine
soft-TF and IDF in a BM25 manner to compute the
final relevance score.

5 Validation of BM25-like Computation

To validate whether Relevance Scoring Heads per-
form a BM25-style computation as hypothesized
in §4.1, we first formalize the hypothesized func-
tion of the heads and the information flowing into
them as a BM25-style linear function. Next, we
evaluate this linear model’s ability to reconstruct
the cross-encoder scores by examining how well
the hypothesized linear model fits the data.
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5.1 Formalizing the Hypothesized Function
In §4.1, we hypothesize that Relevance Scoring
Heads compute a summation of Matching Scores
weighted by IDF. The Matching Score incorporates
soft-TF, along with term saturation and document
length signals, all of which are components of the
BM25 function. If this hypothesis that these com-
ponents interact in a BM25-like manner holds, then
the Semantic Scoring Circuit can be expressed as a
linear function:

N∑

i=1

linear_combo
(
−U0(qi), MStotal(qi, dj),

− U0(qi) · MStotal(qi, dj)
) (2)

where the components of the linear combination
are defined as follows:

1. U0(qi): The value of qi in the U0 vector, repre-
senting the model’s interpretation of qi’s IDF.

2. MStotal(qi, dj): The total Matching Score,
computed as the sum of Matching Scores from
individual heads (MSHk

) weighted by learned
weights αk. Each Matching Score represents
the sum of attention values from qi to all doc-
ument tokens:

MStotal(qi, dj) =

13∑

k=1

αk · MSHk

3. −U0(qi)·MStotal(qi, dj): The interaction term,
modeling the product of IDF and TF in BM25.

By incorporating both the hypothesized compu-
tation function and the earlier components U0 and
MS, the linear model effectively represents the
hypothesized circuit.

5.2 Assessing the Linear Model Fit
We test whether our hypothesis holds by comparing
the linear model’s effectiveness against the cross-
encoder’s actual relevance scores.

First, we train a linear regression model using
our base dataset, limiting queries to five tokens to
keep the number of coefficients manageable. For
each forward pass, we extract two features for each
query token: (1) the MS (Matching Score), cal-
culated as the sum of the query token’s attention
over document tokens from the 13 Matching Heads,
and (2) its value along the top singular vector in
U0 of the decomposed embedding matrix. These

features form the input x to the linear regression
model, while the cross-encoder’s relevance scores
are the target y. Finally, we evaluate how well the
linear representation of the Semantic Scoring Cir-
cuit predicts the cross-encoder’s relevance scores
with an 80/20 train-test split.

The linear regression model achieves a high Pear-
son correlation (r = 0.8157, p < 0.001) with ground-
truth relevance scores, showing that it captures the
core of the cross-encoder’s scoring mechanism in a
simplified and interpretable form. This correlation
surpasses that of the traditional BM25 scoring func-
tion under optimized parameters (k = 0.5, b = 0.9;
corr = 0.4200, p < 0.001), which demonstrates that
the discovered U0 and MS components effectively
capture the signals that the cross-encoder utilizes
for ranking. The linear model’s strong generaliza-
tion to unseen datasets and varying query lengths
(details in Appendix G) further confirms that our
circuit understanding captures the cross-encoder’s
core mechanism for relevance computation.

6 Discussion

6.1 A Two-Stage Process for Relevance
Computation

Similar to Tenney et al. (2019), who find that
BERT rediscovers the classical NLP pipeline, en-
coding syntax in its lower layers and semantics
in its upper, our circuit analysis reveals a cor-
responding two-stage process. In the early and
middle layers, Matching Heads extract lexical sig-
nals (e.g., soft-TF matches), reflecting prior work
that argues document representations are query-
dependent (Qiao et al., 2019). In the upper lay-
ers, Contextual Query Representation and Rele-
vance Scoring Heads aggregate these signals into
BM25-like relevance scores, consistent with Zhan
et al. (2020), who argue that document tokens are
largely query-independent. This dual-stage mecha-
nism reconciles these two conflicting viewpoints by
showing how query-specific signals migrate from
document to query representations across layers
and provides a more nuanced understanding of how
relevance is computed.

6.2 Potential Downstream Applications

In §4.4, we show how model editing can be used to
upscale or downscale term importance by modify-
ing the encoded IDF values in the embeddings, ef-
fectively introducing “tuning dials” for fine-grained
control over model behavior. These insights enable
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two potential downstream applications.

6.3 Mitigating Adversarial Attacks

Figure 7: Left: Decreasing the IDF of dangerous to-
kens shows an increasing trend in adversarial mitigation
proportion. Right: The intervention maintains a high
NDCG at all levels, demonstrating that the general rank-
ing capability of the cross-encoder remains unaffected.

First, targeted model editing could mitigate un-
safe or adversarial content without impairing the
model’s ranking effectiveness.

As an initial test, we construct a dataset using
obscene and offensive words (LDNOOBW, 2015),
filtering out multi-word entries and injecting these
unsafe tokens into the safe samples of our TFC
datasets. Next, we inspect the subgroup of queries
and documents where inserting an unsafe token in
the document significantly increases the relevance
score. Our goal is to “erase” the effect of the dan-
gerous token by reducing its importance.

Among 17,537 adversarial samples, our ap-
proach achieves a 80.396% success rate (i.e., the
unsafe document is ranked lower than the safe doc-
ument). For example, when we downweight the
target unsafe term by a large factor (e.g., -1200),
the model maintains a high nDCG across all ranks,
with a score of 0.9861, which is only a 1.39% drop
in ranking performance.

These results provide preliminary evidence for
the potential of localized editing in the IDF-storing
low-rank matrix.

6.4 Parameter Efficient Fine-Tuning

Second, aligning internal representations with
ground-truth IDF scores could serve as a power-
ful initialization strategy for fine-tuning, leading to
more efficient retrieval pipelines. In other words,
rather than updating the entire parameter space,
fine-tuning the embedding matrix to better encode
IDF values aligned with the retrieval domain may
suffice.

Figure 8: For random seed 15, aligned full fine-tuning
achieves the best performance, and aligned embeddings
only achieve performance compared to full fine-tuning.

To test this hypothesis with a preliminary exper-
iment, we use the nfcorpus data, a Nutrition Fact
retrieval dataset, from BEIR (Thakur et al., 2021).
We fine-tune on 10 epochs and evaluate perfor-
mance across four conditions: (A1) full fine-tuning,
(A2) IDF-aligned full fine-tuning (aligning token
IDFs to the dataset using the model-editing method
from §4.4), (B1) embedding-only fine-tuning, and
(B2) IDF-aligned embedding-only fine-tuning.

The results in Figure 8 across three random
seeds show that IDF-aligned full fine-tuning (A2)
achieves the highest NDCG@1, while IDF-aligned
embedding-only fine-tuning (B2) outperforms un-
aligned embedding-only fine-tuning (B1). Addi-
tionally, full fine-tuning (A1) and embedding-only
fine-tuning (B1) show no significant difference,
supporting the idea that adaptation primarily refines
the embedding matrix rather than the full model
weights.

These findings reveal preliminary indications
that fine-tuning just on the embedding matrix could
potentially be sufficient to adapt cross-encoders to
new domains and reveal IDF-aligned initialization
as a possible pathway for efficient adaptation.

7 Conclusion

In this work, we mechanistically uncover the core
components of the relevance scoring pathway in a
BERT-based IR model, revealing how it leverages
contextual representations to implement a semantic
variant of BM25. Our fine-grained analysis lays
the foundation for applying interventions to build
more transparent and controllable models, enabling
personalization, bias mitigation, and parameter-
efficient adaptation. More broadly, identifying uni-
versal components or architecture-specific mecha-
nisms contributes to the interpretability of IR mod-
els and informs the design of controllable, efficient
ranking systems for real-world deployment.

25545



Limitations

In this work, we focus on analyzing the behavior of
a single cross-encoder in order to deeply analyze
its mechanisms. Future work should investigate
the generalizability of this behavior to other neural
IR models with the same or different architectural
base.

Additionally, while the Semantic Scoring circuit
bears a strong resemblance to BM25, there may
also be other factors influencing relevance compu-
tation that are out of the scope of investigation for
this work. In this work, we compare it to BM25
because of its well-known status and the fact that
previous research has shown that neural IR encode
a BM25-like relevance signal (Wang et al., 2021;
Rau and Kamps, 2022; Yates et al., 2021; MacA-
vaney et al., 2022). However, there are other term-
matching models (e.g., TF-IDF, QL, etc.) that also
rely on similar retrieval heuristics, and it is possible
that the model implements these as well.

Furthermore, we note that our BM25-like ap-
proximation of the Semantic Scoring circuit does
not fully approximate the cross-encoder’s true rel-
evance scores. There are a couple potential ex-
planations for this: (1) the non-linearity of neural
models, which our linear regression model does
not capture, (2) potentially unexplored components
such as additional attention heads that could be
uncovered through a different choice of dataset or
multi-layer perception (MLP) layers not covered
in our analysis, and (3) the incorporation of sig-
nals beyond traditional relevance heuristics, such as
real-world knowledge learned during pre-training
(MacAvaney et al., 2022). We leave the investiga-
tion of these avenues for future work.

Finally, although we intend for our analysis to
inform future work on efficiency, transparency, and
performance improvements, like most research, it
is possible that a malicious actor could apply these
insights to produce IR models that are robust to
adversarial use cases.
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A Activation Patching on Attention
Heads

Prior to path patching, we conduct an exploratory
analysis to compare the similarity between exact
and semantic matches. Figure 9 shows that the
patching effect has a high correlation of 0.96, sug-
gesting that the model employs highly similar com-
ponents for both exact and soft matches. These
initial results on the indirect effect of these com-
ponents provide a foundation to investigate their
direct effects further with path patching.

B Example of Semantic Scoring Circuit

Figure 10 shows an example of the hypothesized
semantic scoring circuit.

In the figure, the model receives an example
input: “[CLS] Where is Wellesley [SEP]
Wellesley is a college in Massachusetts.
[SEP]“.

(1) Matching Heads: These heads generate
MS(where), MS(is), and MS(wellesley) that
mainly capture query term soft-TF values. For
example, the query token wellesley strongly at-
tends to wellesley in the document, and more
weakly to related terms like wellesley and
college. This attention pattern forms a Matching
Score MS(wellesley) that also reflects document
length normalization (the longer the document, the
smaller the soft MS(wellesley)) and term satu-
ration effects (the more wellesley exists in the
document, the less additional gain in MS).

(2) Query Contextualization Heads: These heads
redistribute the soft-TF signal from key content
words to surrounding query tokens. For instance,
where and is may receive part of wellesley’s
soft-TF signal, allowing the model to amplify high-
IDF query terms’ soft-TF signals.

(3) IDF storage: The IDF of all query terms is
stored in a dominant low-rank vector of the model’s
embedding matrix.

(4) Relevance Scoring Heads: Finally, the model
aggregates the reweighted soft-TF signals across
query tokens using a mechanism similar to BM25.

C Detailed Path Patching Methodology

The path patching algorithm is an iterative back-
ward process that starts with identifying which up-
stream components send important information to
the logits (Figure 11). Specifically, it involves four
forward passes through the model to identify which
upstream (sender) components send information to

the target (receiver) component (i.e., logits): (1)
Run on the baseline input xb and cache activations.
(2) Run on the perturbed input xp and cache activa-
tions. (3) Select the sender set s, the components
whose activations are patched in, and the receiver
set r, the components where the effect of patching
s is analyzed. Run the forward pass on xb, patch
in s, freeze all other activations, and recompute
r′, which is the same as r from the xb run except
for the direct influence from s to r. Cache r′. (4)
Run the model on xb, and patch in r′ values. Mea-
sure the difference in logits between xb and xp to
quantify the effect of s on r in terms of passing the
additional signal.

The effect of a patch is measured by the differ-
ence in logits (which in the case of cross-encoders,
is equivalent to the difference in relevance scores).
This algorithm is then iteratively repeated for each
important upstream component. For more infor-
mation, we refer the reader to Wang et al. (2022)
and Goldowsky-Dill et al. (2023).

We begin by applying path patching to track the
path of term-matching, the most fundamental com-
ponent of BM25. To carry this out, we use the
TFC1 and STMC1 diagnostic datasets to identify
the components responsible for encoding the rele-
vance signal of an additional query term in a docu-
ment, providing the foundation for our analysis of
model behavior.

D Detailed Path Patching Results

D.1 Path Patching to Final Logits and
Intermediate Heads

We perform path patching on 2000 random query
and document pairs from the STMC1 and TFC1
diagnostic datasets and collect the results.

In this section, we present the results of path
patching on TFC1 and STMC1. First, we patch to
the final logits and identify the shared Relevance
Scoring Heads (Figure 15). Next, we patch to these
heads and discover the shared Query Contextualiza-
tion Heads (Figures 16, 17). Finally, by patching
to the Query Contextualization Heads, we identify
the shared Matching Heads (Figure 18).

All resulting heatmaps are located at the end of
the appendix for clearer flow for the other appendix
sections.

D.2 Path Patching to Matching Heads

We path patch the residual stream (resid_pre) on
each of the Matching Heads using 100 random
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Figure 9: Activation Patching Results for TFC and STMC diagnostic datasets show a correlation of 0.96, which
suggests that the model employs highly similar components for exact and soft matches.
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Figure 10: Example walkthrough of the hypothesized circuit. We find that the cross-encoder rediscovers a semantic
variant of BM25. Specifically, Matching Heads, Contextual Query Representation Heads, and the embedding matrix
compute, process and send BM25-like components’ information to the Relevance Scoring Heads which finally
compute the relevance score in a BM25-like manner. The trapezoid represents the residual stream representation for
each token position.
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Figure 11: Path patching methodology. Left: There are four forward passes: (1,2) Run model on baseline and
perturbed inputs and cache activations. (3) To measure the effect of an upstream sender component (S) on a
downstream receiver component (R), run the model on the baseline input, patch in S, freeze all other components,
and cache the activation of R. (4) Run the model on the baseline input and patch in R. Right: Alternative visualization
of step (3) using the residual stream. By allowing only the downstream receiver R to be recomputed when the sender
S is patched, we effectively isolate the direct path from S to R, while preserving all other paths to R as they were in
the baseline run.

pairs from the TFC1 and STMC1 datasets (Fig-
ures 19, 20, 21, 22). Path patching to the Match-
ing Heads, aimed at tracking the flow of soft-TF
information, reveals that at the beginning of the
residual stream at layer 0, which corresponds to the
embeddings, has the most direct influence on the
Matching Heads. In contrast, there is minimal im-
pact from both the attention and MLP layers. This
supports the conclusion that the Matching Heads
are the primary “generator” of soft-TF, attending
to soft matches based on semantic similarity from
the embeddings. Thus, we conclude our tracking
of soft-TF information, with the Matching Heads
identified as the most upstream heads.

TFC2: Change in Average Attention Value on Xselected

# of Xselected in the document
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Figure 12: For the majority of Matching Heads, after
the initial occurrence of Xselected, which causes a sharp
increase in attention, subsequent occurrences result in
only minimal incremental increases. This aligns with
TFC2, which states that additional term occurrences
yield smaller improvements.

LNC1: Change in Average Attention Value on Xselected
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# of Xselected in the document

Figure 13: Attention trends for selected terms are shown,
with unselected terms following a similar pattern: longer
documents generally increase the average attention as-
signed to all document tokens, regardless of whether
they match a query token.

E Additional Details on Matching Heads
and Additional Signals

In this section, we provide additional details on the
analysis presented in §4.3.

Matching Score Contains Term Saturation
and Document Length Signals. The average soft-
TF correlation score for Matching Heads (0.500)
indicates that their attention values from query to-
kens to document tokens capture not only semantic
similarity but also additional signals. To examine
whether these attention values capture term satura-
tion or document length effects, we analyze their
behavior under using two diagnostic datasets: (1)
TFC2 (increasing occurrences of a query term), and
(2) LNC1 dataset (increasing number of irrelevant
sentences to simulate the isolated effect of longer
document length).
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Saturation Test (TFC2). We define xselected as
the selected query term, which is the duplicate
term in TFC2 samples shown in Table 1. Simi-
larly, xothers refers to document tokens that are not
duplicates of any query token. For each case, we
calculate the normalized sum of attention values
from all query tokens to xselected and xothers, repre-
senting the “total semantic match” of the matched
token or the average across unmatched tokens, re-
spectively.

We hypothesize that if the Matching Score con-
tains the term saturation signal, then given more
duplicate query terms (TFC2), the summed atten-
tion for that term will rise sharply at first and then
plateau. As the occurrences of xselected increase,
its average attention value grows (Figure 12). On
the other hand, the attention for xothers remains
relatively constant, which aligns with our soft-TF
understanding: only document tokens that are se-
mantically similar to a query token get nonzero
attention values, proportional to the extent and fre-
quency of semantic similarity.

Length Test (LNC1). We hypothesize that if the
Matching Score contains the term saturation signal,
given irrelevant sentences appended (LNC1), the
overall attention to the query’s matches will fall.
As expected, injecting more irrelevant sentences
leads to an increase in the attention value of all
query tokens, regardless of whether they match
specific query terms (Figure 13). Notably, this
increase in attention occurs even as the overall rel-
evance score decreases (as expected from LNC1),
suggesting that attention values encode mixed and
composite signals of soft-TF, term saturation, and
document length, which the model has learned to
disentangle to produce appropriate relevance score
changes. The varying degrees of influence on the
heads’ attention values shown in Figure 12 and 13
suggest that some Matching Heads play a more
significant role in regulating these effects, and they
may collectively approximate the ideal term effects.
Thus, we define this complex attention value as the
Matching Score to reflect that it encapsulates soft-
TF, term saturation, and document length signals,
three important signals of BM25.

Further Patching Experiment to Confirm
Matching Heads Are Not Just Writing a Binary
Signal of Existence. The signals written by most
Matching Heads increase as the number of dupli-
cate tokens rises, rather than remaining constant,
suggesting that these signals are discrete rather than

binary. To demonstrate this, we design an activa-
tion patching experiment (§4.3) that patches only
the Matching Heads using the TFC2 Diagnostic
Dataset. Figure 12 shows that for most Matching
Heads, increasing the number of duplicate tokens
results in a monotonically increasing pattern in
their output signals. This behavior further supports
our conclusion that Matching Heads compute and
encode soft-TF signals rather than merely relaying
binary information.

F Additional Details on BM25-like
Computation

In this section, we provide additional details on the
Relevance Scoring Heads and the Semantic Scoring
Hypothesis in §4.1 and §5.

F.1 Correlation Between IDF Values and
Attention Distribution

Query: Is Wellesley in 
Massachusetts?

Doc 1: Is is is.

Doc 2:
Wellesley Wellesley Wellesley.

Figure 14: Top: Changes in attention at 10.1 from [CLS]
to tok1 when increasing tok1’s IDF at different scales,
averaged across all samples. Increasing tok1’s IDF
raises attention from [CLS] to tok1, thereby increas-
ing the final score. Bottom: Decreasing tok1’s IDF
produces the inverse effect, with slight nonmonotonic
deviations suggesting optimal editing windows.

In Section 4.1, we hypothesize that Relevance
Scoring Heads combine IDF and soft-TF informa-
tion to compute final relevance scores in a BM25-
like manner. Specifically: (A) increasing or de-
creasing a token’s IDF leads to (B) the Relevance
Scoring Head 10.12 allocating more or less atten-
tion from [CLS] to the token, which (C) increases
or decreases to the weighting of the token’s soft-TF
and thereby the final relevance score.

2We focus on the attention pattern of 10.1 because it is
most positively correlated with IDF (§4.1) and has highest
path-patching value.
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Model Pair Median Mean ± SD

Pearson Correlation
Cross-encoder & SemanticBM 0.8401 0.8301 ± 0.0314
Cross-encoder & Random Features 0.0005 0.0003 ± 0.0147
Cross-encoder & BM25 0.4570 0.4609 ± 0.0366

Spearman Rank Correlation
Cross-encoder & SemanticBM 0.7619 0.6629 ± 0.3137
Cross-encoder & Random Features 0.0000 0.0011 ± 0.3844
Cross-encoder & BM25 0.4643 0.3912 ± 0.3992

NDCG@10
Cross-encoder 0.5000 0.5097 ± 0.4110
SemanticBM 0.4307 0.4511 ± 0.3769
BM25 0.5000 0.5269 ± 0.4196
Random Features 0.3562 0.3498 ± 0.2986

Table 2: Comparison of Pearson, Spearman Rank, and NDCG@10 for SemanticBM and Baselines.

A → B. Using the same IDF-scaling setup as
in §4.4, we measure the average attention weight
from Head 10.1’s [CLS] token to the manipulated
token. The resulting curve closely mirrors Figure 6:
tokens with higher IDF receive proportionally more
attention, while those with lower IDF receive less.
This directly demonstrates the A→B link.

A → B → C. In Section 4.4, we modulate IDF by
editing the first SVD component of the embedding
matrix. Figure 6 shows that scaling a token’s IDF
upward or downward produces a monotonic change
in the relevance score.

Taken together with Section 5 (which shows
that Relevance Scoring Heads perform BM25-style
computations on natural IR datasets), these results
provide stronger causal evidence for the Semantic
Scoring hypothesis.

F.2 Independence between IDF and Soft-TF

In this subsection, we check whether term-
frequency (TF) and inverse document frequency
(IDF) factors are fully separable.

Low correlation between IDF Soft-TF. If soft-
TF scores are already IDF-weighted, we would
expect their one-dimensional values to correlate
at least mildly with U0. However, across all 13
Matching Heads, the average Pearson correlation
between U0 and each head’s Matching-Score is
low (r = 0.143, p < 0.01), suggesting minimal
dependence.

Relevance Scoring Heads Do Not Inherit IDF In-
formation From Matching Heads. Path patch-
ing from the Matching Heads to the query vectors
of the Relevance Scoring Heads produces almost
no change in output score. This indicates that the
soft-TF signals produced by the Matching Heads
do not strongly convey IDF information, leaving
the Relevance Scoring Heads without sufficient sig-
nal to prioritize which tokens should receive higher
weight.

G Generalization Across IR Datasets

We previously test our linear model on an
MSMARCO-based dataset with a fixed number
of query tokens as an initial proof of concept. Now,
we ask the question: how well does this linear
model represent the cross-encoder’s relevance com-
putation on datasets it was not trained on? In this
section, we extend our analysis to 12 different IR
datasets3 and investigate various query lengths.

Dataset. Since our linear model relies on fixed
features based on query length, we stratify the
dataset based on query length. To ensure sufficient
samples, we aggregate samples from 12 datasets
and only retain groups with more than 500 samples.
We incorporate groups with query lengths from 1
to 22, which corresponds to the 99.95th percentile
of MSMARCO’s query length distribution to ex-

3Due to computational resources, we use a subset of BEIR
datasets (Thakur et al., 2021) (ArguAna, Climate-FEVER,
FEVER, FiQA-2018, HotpotQA, NFCorpus, NQ, Quora, SCI-
DOCS, SciFact, TREC-COVID, Touche-2020), but the chosen
ones sufficiently cover a wide variety of domains.
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clude outliers with excessively long queries that the
model has rarely seen during training. This process
results in a total of 19 groups, comprising 278194
samples, with an average group size of 14641.790
samples. While this approach may be unconven-
tional for retrieval, our goal is to simply demon-
strate consistency between the linear model’s rel-
evance score and the cross-encoder to confirm the
hypothesized function of the Relevance Scoring
Heads.

First, as cross-encoders are typically used for
re-ranking tasks, we follow the classic re-ranking
setup by first retrieving a candidate set of docu-
ments (top 10) with BM25 over all queries across
the test collection of the 12 datasets. These candi-
date sets are then split into train-test groups using
an 80/20 ratio.

Experiments and Results. We train 22 linear re-
gression models, one for each query length (1-22),
to predict the cross-encoder’s relevance scores. We
evaluate each model using: (1) Pearson Correlation:
quantifies the correlation between predicted and
actual relevance scores; (2) Spearman Rank Corre-
lation: assesses the consistency of the ranked lists
between predictions and cross-encoder outputs; (3)
NDCG@10: measures ranking effectiveness and
ensures no significant effectiveness discrepancies.
We include BM25 and a randomized set of linear
regression features as baselines.

Table 2 shows the results, and we report median
values to account for observable skewness caused
by outliers in the data. We observe a Pearson cor-
relation of ranking scores with a median of 0.8401
(median p < 0.001), a Spearman rank correlation
of 0.7619 (median p = 0.072), and an 88.4% align-
ment with cross-encoder effectiveness in terms of
NDCG@10.

The experimental results confirm the hypoth-
esized function of the Relevance Scoring Heads
(§4.1). Since this linear model summarizes the
whole circuit as it is structured to incorporate both
the computation and the necessary components,
the high correlation with the cross-encoder’s ef-
fectiveness shows that our circuit understanding
has captured the core part of the cross-encoder’s
relevance ranking mechanism.

H Additional Discussion

Towards a holistic approach in axiomatic analy-
sis. Previous research investigating neural IR mod-
els’ adherence to IR axioms shows that BERT does

not adhere to most of them, leading to concerns
about the limitations of current axiom definitions
and the need for new ones (Câmara and Hauff,
2020). Our findings offer an explanation for these
shortcomings, suggesting that the challenge in ax-
iomatic analysis lies with the way it has been ap-
plied, rather than the axioms themselves. BERT’s
“rediscovery” of BM25 indicates that it leverages
a combination of retrieval heuristics to compute
relevance, whereas previous analysis treats axioms
independently. Going forward, we may consider
analyzing axioms in combinations to better reflect
the multidimensional nature of relevance.
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Figure 15: Path Patching results from all attention heads to the final logits. From this, we identify that 10.1, 10.4,
10.7, 10.19, those causing > 30 % increase in ranking score, as most significant heads and focus our analysis on
these four heads.
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Figure 16: Path Patching results from upstream attention heads to Relevance Scoring Heads.
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Figure 17: Path Patching results from upstream attention heads to Relevance Scoring Heads.
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Figure 18: Path Patching results from upstream attention heads to Query Contextualization heads.

25557



Figure 19: TFC1 path patching into Matching Heads (layers 8.8, 8.1, 8.0, 7.9, 6.5, 5.9). The residual stream values
are patched, with lighter regions indicating stronger path-patching contributions (i.e., where the TFC1 signal flows),
and darker regions indicating weaker contributions.

Figure 20: TFC1 Path Patching to Matching Heads (5.7, 4.9, 3.1, 2.1)
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Figure 21: STMC1 Path Patching to Matching Heads (8.8, 8.1, 8.0, 7.9, 6.5, 5.9,)

Figure 22: STMC1 Path Patching to Matching Heads (5.7, 4.9, 3.1, 2.1)
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