
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 25234–25248
November 4-9, 2025 ©2025 Association for Computational Linguistics

ReSeeding Latent States for Sequential Language Understanding

Stéphane Aroca-Ouellette1 and Katharina von der Wense1,2 and Alessandro Roncone1

1University of Colorado Boulder
2Johannes Gutenberg University Mainz

stephane.aroca-ouellette@colorado.edu

Abstract

We introduce Refeeding State Embeddings
aligned using Environmental Data (RESEED),
a novel method for grounding language in en-
vironmental data. While large language mod-
els (LLMs) excel at many tasks, they continue
to struggle with multi-step sequential reason-
ing. RESEED addresses this by producing la-
tent embeddings aligned with the true state of
the environment and refeeding these embed-
dings into the model before generating its out-
put. To evaluate its effectiveness, we develop
three new sequential reasoning benchmarks,
each with a training set of paired state-text tra-
jectories and several text-only evaluation sets
that test generalization to longer trajectories.
Across all benchmarks, RESEED significantly
improves generalization and scalability over a
text-only baseline. We further show that RE-
SEED outperforms commercial LLMs on our
benchmarks, highlighting the value of ground-
ing language in the environment.1

1 Introduction

The continued scaling of large language models
(LLMs) has led to impressive capabilities across
a range of natural language tasks. Yet, the field is
nearing the limits of available high-quality text data
(Villalobos et al., 2024), and models trained solely
on text data exhibit persistent limitations in their
compositional reasoning (Dziri et al., 2023), plan-
ning (Valmeekam et al., 2023), and length general-
ization (Xiao and Liu, 2025). These challenges mo-
tivate the integration of non-text modalities—often
referred to as grounding—to enhance model capa-
bilities. However, existing grounding approaches
either explicitly depend on auxiliary modules at
inference, or implicitly align encoder-only models
that lack generative capacity. We introduce Refeed-
ing State Embeddings aligned using Environmental

1The code for this project can be found at https://
github.com/HIRO-group/ReSEED.

Data (RESEED), a flexible framework to directly
ground decoder-based LLMs in structured environ-
ment data, leveraging both implicit and explicit
signals. We show that RESEED improves sample
efficiency, length generalization, and compositional
reasoning in long-horizon sequential tasks.

Modern LLMs are trained in three stages: unsu-
pervised causal language modeling (CLM) (Rad-
ford et al., 2018), a supervised finetuning with
CLM, and alignment via preference optimization
(Ouyang et al., 2022). Throughout this process,
models are exposed to text data and human prefer-
ence data. While both have been instrumental to
recent progress, they omit key elements required
for human-like language understanding. Text offers
linguistic structure and encodes world knowledge
(Bisk et al., 2020), but abstracts away key spatial,
temporal, and causal relationships between con-
cepts (Bender and Koller, 2020). Moreover, text
tends to omit self-evident information, resulting
in reporting bias that negatively impacts language
modeling (Grice, 1975; Paik et al., 2021). Hu-
man preference data, while useful for alignment,
is both sparse—a single bit for sequences of text—
and subjective—some humans may prefer a more
grammatical output, while others a more factual
output. To this end, we posit that a third kind of
data is required: data from the environment. Mo-
tivated by research outlining the necessary role a
human’s interaction with their environment plays
in language understanding (Glenberg and Kaschak,
2002; Gallese and Lakoff, 2005), we hypothesize
that structured environmental signals can improve
language modeling. Environment data, which we
define as sequences of states that capture how an en-
vironment changes, complements text and human
preference data in four key ways: (1) it preserves
spatial and temporal relations; (2) it is concrete and
fully specified, avoiding abstraction and reporting
bias; (3) it provides a dense and informative train-
ing signal; and (4) it is consistent and objective.

25234

https://github.com/HIRO-group/ReSEED
https://github.com/HIRO-group/ReSEED

Existing grounding work has demonstrated the
benefits of grounding in improving the reasoning
capabilities of LLMs, with two main directions
emerging. The first direction augments the system
with a separate external model (Yang et al., 2022;
Liu et al., 2023; Zellers et al., 2021); these are used
to generate explicit modality-aware outputs which
are fed into an LLM. While these works provide
insights into the value of non-text modalities, they
are inherently limited by their external model and
masks rather than addresses the lack of ground-
ing in the underlying language model. This is an
important distinction because more complex and
abstracted concepts may be difficult to simulate,
but may still require the foundational grounded
components to correctly interpret. The second line
of work used for grounding is the use of additional
modalities during training to align internal repre-
sentations (Hsu et al., 2022; Tan and Bansal, 2020;
Tang et al., 2021). These provide a direct signal to
language models to improve their alignment with
the environment. However these works rely on im-
plicitly improving internal alignment; at inference,
there is no clear representation of the environment
to leverage. Further, these works focus on encoder-
only models. Notably, modern LLM architecture
has favored decoder architectures as the ability to
generate open-ended outputs vastly increases the
range of tasks they can accomplish.

RESEED combines the strengths of implicit
alignment and explicit representations by train-
ing an LLM to predict latent state representations,
which are then refed to the LLM to guide the lan-
guage generation in a way that reflects with the true
state of the environment. This approach provides
the foundation for a scalable, grounded language
model that operates in a manner consistent with
modern LLMs. To evaluate RESEED, we require
datasets that have paired text–trajectory data for
training, but can test language models on text-only
tasks. As these requirements cannot be found in
existing benchmarks, we introduce three sequen-
tial reasoning datasets focused on cardinal direc-
tion navigation (ABCDs), block stacking (CUBES),
and household object interactions (HOUSE). These
tasks span increasingly complex state and action
spaces. Compared to a text-only baseline, RE-
SEED yields substantial gains in generalization
and sample efficiency in sequential reasoning tasks.

Our contributions are: 1) RESEED, a novel
grounding mechanism for decoder LLMs; 2) three
new sequential reasoning benchmarks; 3) empirical

validation of RESEED, demonstrating improved
sample efficiency and generalizability; and 4) abla-
tions analyzing the components of RESEED.

2 Related Work

2.1 Grounding with External Models

A subset of existing systems enhance language-
based reasoning by incorporating external
modality-specific models. Wang et al. (2023)
leverages CLIP (Radford et al., 2021) to retrieve
relevant images which are used to improve
question answering. Tang et al. (2023); Yang et al.
(2022) remove the need for an image database
by using text-to-image diffusion models, while
Zhang et al. (2024) directly leverages CLIP’s
text-model embeddings. While images offer
rich spatial information, they cannot properly
capture temporal information, which is key to
sequential reasoning. To address this, Liu et al.
(2023) feeds outputs from a physics simulation
engine into an LLM to improve physical reasoning.
In all these approaches, language models are
augmented with other modalities, rather than
grounded to other modalities. We believe this
distinction is critical, as we posit that grounded
models can compositionally build on observed
interactions, whereas augmented models face
end-to-end training challenges and are constrained
by the capacity of their external modules. PIGLeT
(Zellers et al., 2021) partially addresses these
issues by using a trainable action prediction
module to reason about household tasks. However,
PIGLeT requires access to the ground-truth start
state and only performs single-step reasoning. In
contrast, RESEED operates on text-alone and is
designed for multi-step reasoning.

2.2 Grounding through Internal Alignment

A complementary line of work focuses on align-
ing an LLM’s internal representations across text
and auxiliary modalities. Like RESEED, these
methods use additional cross-modal modules dur-
ing training, which are then discarded. We refer to
these as implicit internal alignment methods.

Certain approaches in this space use additional
modalities to produce more relevant text data.
Carta et al. (2023) adapts the BabyAI environment
(Chevalier-Boisvert et al., 2019) to a text-based
version, giving LLMs the ability to explore the
environment in text. Xiang et al. (2023) gener-
ates goal-oriented and random exploration experi-

25235

SM

[S]t0
... [S]ti

... [S]... tf
...tktj

tk

CLM

Cont. Z' tftk ...Z'Z'ZS

S' S' S'

MSE

E
n

c.

RCE

Dec. Dec. Dec.

Desc. of initial state Desc. of actions Desc. of final state

LEGEND

Input tokens &
embeddings

Pretrained
auto-encoder

Trainable
components

Losses

Gen. tokens &
embeddings

State
representations

ReSEED Transformer

LM LM LMSMSM

Figure 1: Architecture of RESEED, which consists of a transformer with a language modeling (LM) head and a
state modeling (SM) head (in purple). RESEED performs two forward passes. The first pass (in blue) encodes the
special [S] input tokens and uses the output of these tokens to generate state representations Z’. In the second pass
(in green), the special tokens are replaced with linear projections of Z’, which are used to generate the description
of the final state. During training, a pretrained and frozen state auto-encoder (in red) is used to align Z’ through
a reconstructive cross-entropy (RCE), a contrastive (Cont.), and a mean squared-error (MSE) loss (in yellow). A
causal language modeling (CLM) objective is used to train the generation. The auto-encoder is discarded after
training.

ences in VirtualHome (Puig et al., 2018), and uses
templates to create a home-navigation fine-tuning
dataset. Li et al. (2023) create state annotations in
TextWorld (Côté et al., 2019) and TRIPS
Storks et al. (2021) to generate more coherent out-
puts. However, these methods remain limited by
the abstraction and reporting bias inherent in text.

Other approaches incorporate auxiliary losses
conditioned on other modalities. Tan and Bansal
(2020) adds a visual token (voken) classification ob-
jective in pretraining. Hsu et al. (2022) introduces a
cross-modal adaptation phase with joint MLM, vo-
ken classification, and image-text matching. Most
similar to our approach, Tang et al. (2021) train
a teacher model using MLM and a contrastive co-
sine similarity task between video and text embed-
dings and then distill this knowledge into a student
model. Jin et al. (2022) combine the voken clas-
sification and distillation tasks to further improve
results. However, these methods are all designed
for encoder-only architectures, which are not well-
suited for text generation. In contrast, RESEED
is developed for generative decoder-based models.
More importantly, we identified that during implicit
internal alignment, RESEED was producing em-
beddings that were aligned with the state of the
environment, and that these could be effectively
re-used rather than being discarded.

3 Method

Our method, Refeeding State Embeddings aligned
using Environmental Data (RESEED), is depicted
in Fig. 1. It can be broken down into three stages:
1) pretraining a state auto-encoder (Section 3.2),
2) generating latent state representations using spe-
cial tokens (Section 3.3) 3) re-feeding these tokens
before generating the output (Section 3.4).

3.1 Prerequisites

RESEED requires access to paired text-trajectory
data. Specifically, for a given sequence of states
(s ∈ {s0, s1, ..., sf}), there should be a text de-
scription of the initial state (d0 ↭ s0), a descrip-
tion of actions applied (di ↭ ∆(si−1, si)), and
a description of the final state (df ↭ sf). In
Section 3.5 we outline the datasets we use.

3.2 State Auto-Encoder

To create salient latent state representations, Z, of
our environment, we first train an auto-encoder
(AE) using a reconstruction loss. Our AE is com-
prised of a 3-layer encoder multi-layer percep-
tron (MLP) and a 3-layer decoder MLP, both with
dropout and trained using a cross-entropy recon-
struction loss. The size of the latent representa-
tions is a hyperparameter hdim, which we sweep
hdim ∈ {16, 64, 128, 256, 512} for each dataset.
We freeze the parameters of the AE when training

25236

RESEED and discard it after training is complete.

3.3 Generating Latent Representations
Our grounded language model adopts the conven-
tion of modern LLMs as a causal transformer.
Given a description of the initial state and a se-
quence of actions, the model is trained to infer its
own latent representation of the resulting states,
denoted as Z ′, which should align with the true
latent states Z. To enable this, we inject a special
token [S] after each input description di. The cor-
responding output embedding is passed through
a single-layer state modeling head, projecting it
to hdim. We additionally pass the produced latent
state through the pretrained decoder to produce a
prediction of the full state, S′ = Dec(Z ′).

To guide alignment, we apply three complemen-
tary losses: a contrastive (Cont.) loss (Oord et al.,
2018) between Z ′ and Z, a mean-squared error
(MSE) loss between Z ′ and Z, and a reconstruc-
tion cross-entropy (RCE) loss between S′ and S:

LCont. = Ei

[
− log

exp(sim(Z ′
i, Zi)/τ)∑N

j=1 exp(sim(Z ′
i, Zj)/τ)

]

LMSE = Ei

[
∥Z ′

i − Zi∥22
]

LRCE = Ei

[
−
∑

m

S
(m)
i log

(
S′
i
(m)

)]
,

where N =
∑B

k=1 |Sk|, B is the batch size and
|Sk| is the number of states in sequence k, i.e.,
we use in-batch and in-sequence negatives in our
contrastive loss.2 A comparison of the impact of
each loss is shown in Table 1.

3.4 Refeeding Embeddings
Sections 3.2 and 3.3 produce an LLM that is im-
plicitly aligned and capable of generating salient
latent representations of states. Motivated by the
idea that these latent representations carry useful
information about the environment, we develop a
refeeding mechanism, in which a second forward
pass is performed with the special [S] tokens being
replaced with linear projections of Z ′. This enables
the model to explicitly condition its generation on
its own representation of the environment. On this
second pass we apply the traditional causal lan-
guage modeling loss on the final state description:

LCLM = −
T∑

t=k

logP (xt | x<t)

2i, j, k are overloaded and used as general indexing terms.

where k indexes of the first token of the final state
description and T is the total number of tokens.

We note here three clear differences with the
most related work of VidLanKD (Tang et al., 2021).
The first is the use of a causal language modeling
which enables text generation. Second, unlike Vid-
LanKD that uses a single embedding to encode the
entire sequence, we leverage separate embeddings
for each timestep in the sequence. This provides
two benefits: 1) it allows the LLM to align itself
multiple times per sequence, providing a denser
learning signal, and 2) it provides more useful neg-
atives in the contrastive loss as the model has to
identify the impact of the actions to be able to dif-
ferentiate different states from the same sequence.
Without these more difficult negatives, the model
may be able to rely on more surface level features—
e.g., the objects in the scene—to differentiate em-
beddings and lose the specificity required for suc-
cessful grounding. Third, instead of relying solely
on implicit internal alignment, the refeeding pro-
vides an explicit mechanism to make use of our
aligned representations. We report the impact using
multiple state representations and explicit refeed-
ing in Tables 2 and 3, respectively.

3.5 Datasets

RESEED is designed to leverage the rich informa-
tion found in environments during training, while
relying solely on text during inference. Naturally,
this requires datasets that provide paired natural
language and trajectory data for training, along
with language-only evaluation sets. While prior
work in natural language task specification—such
as Mees et al. (2022); Zeng et al. (2020); Collabora-
tion et al. (2024)—offers partially aligned training
data, their evaluation protocols remain grounded in
agent-based execution, lacking the necessary text-
only test conditions. To bridge this gap, we intro-
duce three new datasets that span distinct domains:
cardinal direction navigation, block stacking, and
interaction with common household objects. We
describe each in detail below, and an example ques-
tion and trajectory of each is shown in Fig. 2.

ABCDs: Asking ’Bout Cardinal Directions
The first domain requires an model to understand
navigation of cardinal directions. In ABCDs,
an agent starts facing one of the four cardinal
directions—{North, East, South, West}—then the
agent performs a sequences of turns, and is then
asked which direction it is facing at the completion

25237

The robot is facing north.
The robot turns left. Then the robot...
The robot is now facing east.

A green, a purple, a red, a blue, and a yellow block start in columns one through five respectively.
The robot picks up the green block and places it in column five. Then the robot picks up the blue block ...
The tallest stack is in column two and is three blocks tall. It consists of the yellow, green, and blue blocks.

There is an apple, a ladle, and a pan on an oven.
The robot opens the oven. Then the robot picks up the apple. Then the...
The apple is now cooked, hot, and inside of the oven. The oven is now hot.

Name Apple ... Oven

Cooked True ... False

Open False ... False

...

Temp. Hot ... Hot

In Oven ... None

On None ... Floor

Name Apple ... Oven

Cooked False ... False

Open False ... False

...

Temp. Room ... Room

In None ... None

On Oven ... Floor

ABCDs HOUSE

CUBES...
s0 sf

s0 sf

s0 sf

...
...

Figure 2: A sample from the ABCDs, CUBES, and HOUSE datasets. The blue text defines the initial state (so) and
the actions performed (truncated for space). The orange text defines the final state (sf). The model is also provided
with access to intermediate states, which are collapsed into ellipses in the figure due to space.

of all turns. To create the text component of the
dataset we use a template and create a mapping
between a set of natural language action phrases
and the equivalent base action. For example, the
action phrase "turn 270 degrees clockwise" would
map to the action turn left. We can then combine
a description of the start state with a sequence of
A action phrases, and a description of the end state.
For the trajectories, we create a small grid environ-
ment using gym-minigrid (Chevalier-Boisvert et al.,
2023) with compass-style markers in the walls to
indicate the direction and use an egocentric grid
representation to encode each state.

For training and validation, we use up to A ≤ 5
action phrases. To evaluate length generalization,
we construct five evaluation sets, each containing
2000 samples and using a fixed number of action
phrases, with A ∈ 6, 7, 8, 9, 10. We report exact
match accuracy on each of these held-out sets.

This dataset provides a test bed where the state
and action spaces are small, with only four different
observations and underlying actions. This leads to a
domain where the syntax of the language is similar
across examples, but the semantics in the trajectory
are clear and distinguishable.

Comprehensive Understanding of Block-
stacking and Effects of Sequences (CUBES)
CUBES tests a models ability to identify the tallest
stack after a sequence of stacking actions. An
initial state is presented with five different-colored
blocks in a random order. A series of A stacks
are then performed. Similarly to ABCDs, we
use templates for the language component and
gym-minigrid to create paired state trajectories.
For CUBES we use a fixed view of the blocks.

Matching ABCDs, we use A ≤ 5 action phrases
for training and validation, and five length gener-
alization sets which use 6 ≤ A ≤ 10. We report
exact match accuracy on the generalization sets.

Compared to ABCDs, the state space and action
spaces are significantly larger, however the lan-
guage still only requires a small vocabulary. The
syntax of the language is still difficult to distin-
guish, however the semantics contained within the
trajectory are less distinguishable than in ABCDs.

HOUSE: Household Object Use in Sequential
Execution HOUSE is inspired by the PigPen
dataset used in the Piglet framework (Zellers et al.,
2021). In this dataset, a series of tasks are car-
ried out using 100 common household objects with
varying affordances. HOUSE consists of 9 atomic
actions (e.g., pick up object, toggle object on, ...),
which we compose into 10 low-level tasks (e.g.,
put X in Y, heat X, ...) and 10 high-level tasks
(e.g., ’brew tea’, ’water plants’, ...). The low-level
tasks are comprised of 2-5 atomic actions, while
the high-level tasks are themselves composed of
2-3 low level tasks with a total of 6-10 atomic ac-
tions. Each task uses up to four objects, and the
state space is defined as the state of the four ob-
jects, including the object name and the current
features of the objects. A full description of the
dataset, including a comparison to PigPen, the set
of atomic actions, low-level tasks, and high-level
tasks is outlined in Appendix A.

Mirroring ABCDs and CUBES, we train and
validate using the low-level tasks, which include
sequences of 2 ≤ A ≤ 5, and evaluate the LLMs
on the high-level tasks. There are two high-level
tasks for each A ∈ 6, 7, 8, 9, 10, and we use 1000

25238

(a) Sample efficiency evaluation (b) Length generalization evaluation

Figure 3: Sample efficiency and length generalization results on the three benchmarks.

samples per high-level task. We report the exact
match accuracy on the high-level task sets.

HOUSE provides a step toward more general
tasks that includes a wide range of objects and
actions. Compared to ABCD and CUBES, the vo-
cabulary, action space, and state space are all larger,
which increases difficulty. However, the syntatic
variation is also larger, making the impact of ac-
tions more apparent. Lastly, whereas ABCDs and
CUBES evaluate length generalization by repeat-
edly applying the same kind of actions, HOUSE’s
evaluations requires compositionally applying ob-
served sequences, which is an additional challenge.

3.6 Experimental Setup

The baseline for our experiments is a text-only
(TO) model that makes use of the same underly-
ing architecture as RESEED, only differing in its
lack of a state modeling head and projection layer.
With an hdim of 256 (the largest used across our

datasets), RESEED only uses 0.4% more parame-
ters (83.5M vs 83.9M parameters). The TO model
is trained using the standard causal language mod-
eling loss. We note that our choice of a text-only
baseline, rather than a multi-modal model (e.g.,
VLM), follows from the evaluation being a text-
only task. Multi-modal models generally expect all
modalities at inference, and removing one induces
domain shift that degrades performance (Balachan-
dran et al., 2024; Chen et al., 2024).

For both RESEED and TO, we initialize the
transformer and language modeling head using
HuggingFace’s (Wolf et al., 2020) pretrained gpt2-
base (Radford et al., 2019). The state modeling
head is randomly initialized. We then finetune
the model on the datasets until convergence is
reached on a validation set that is 12.5% (1/8th)
the size of the training set. We define conver-
gence as having no improvement for 5 epochs
in a row. To enable evaluation context lengths

25239

that are longer than those seen in the training
dataset, we freeze the position ids of the pretrained
gpt2. We train the models using an AdamW opti-
mizer (Loshchilov and Hutter, 2019) with an ex-
ponential learning rate decay. We tune the TO
model’s learning rate, batch size, decay rate, and
warm up steps using grid search, and we use the
same hyperparameters for RESEED. We report the
mean and standard error for exact match accuracy
(µ±SE) across five seeds. Additional details can
be found in Appendix E. Code can be found at:
https://github.com/HIRO-group/ReSEED.

4 Research Questions

RQ1: Does the grounding provided by RESEED
improve sample efficiency? As RESEED has ac-
cess to additional rich and unabstracted informa-
tion during training in the form of environment
data, we hypothesize that RESEED will be more
sample efficient than TO. To test this, for each
dataset, we generate six different training sets with
2∈{10,12,14,16,18} training samples respectively.

RQ2: Does the grounding provided by RESEED
improve length generalization? RESEED’s gen-
eration of latent state representations, Z ′, enables
it to produce estimates of the true states at regular
intervals before decoding the final state, which we
hypothesize will allow it to maintain a more consis-
tent interpretation of the environment across longer
time horizons. To test this, we compare the results
of RESEED and TO on the different length gener-
alization evaluation sets we created when trained
on the full 218 samples.

RQ3: Which alignment signal—contrastive, re-
constructive, or mean square error—best grounds
language? A crucial step in our process is the
alignment of the latent state representations pro-
duced by the LLM with latent state produced from
our auto-encoder. To this end, we compare RE-
SEED (RS for short), which uses all three losses, to
variations that use a single alignment loss (RSCont,
RSMSE, RSRCE), and a variation which uses no align-
ment loss (RSNone). RSNone is equivalent to provid-
ing the refeeding mechanism to the TO baseline.

RQ4: Does providing alignment at each state im-
prove grounding? One of the core differences
with Tang et al. (2021) is the alignment of our
model at each state compared to a single alignment
per text/state sequence pair. To understand the im-
pact of this difference, we generate three variations

of each dataset. The first uses the existing setup,
where [S] tokens are added for each state in the
ground-truth trajectory. The second uses a [S] to-
ken for the first and last state in the trajectory. The
third, only uses a [S] token for the last state; this
variation most closely resembles the token setup in
Tang et al. (2021), albeit for a decoder transformer.

RQ5: How beneficial is explicit refeeding com-
pared to implicit alignment? A second difference
with Tang et al. (2021) is our method of explicitly
refeeding the representations before decoding. To
ablate the benefits of explicit refeeding, we com-
pare RESEED with an implicitly aligned version
that is trained using all the same losses.

5 Results & Discussion

RQ1: Does the grounding provided by RESEED
improve sample efficiency? The graphs on the
left side of Fig. 3 show the average results across
all evaluation splits of the text-only baseline (in
orange) and of RESEED (in green). While there
is a small benefit when using a small amount of
data, the benefit continues to grow larger after this
point. Notably, once a minimum amount of data is
reached, RESEED is able to leverage the environ-
ment data to improve upon text-only training. This
leads to RESEED scaling better than than text-only
training, which is an extremely promising result.

RQ2: Does the grounding provided by RESEED
improve length generalization? The graphs on
the right side of Fig. 3 show the results on each of
the evaluation splits when using all training sam-
ples (218) for both the text-only baseline (in or-
ange) and of RESEED (in green). Once again, we
see RESEED outperforming the text-only baseline
on every evaluation split. In addition to instruc-
tion length, the range of the underlying atomic
actions and low-level tasks in the HOUSE dataset
directly impact the complexity of the high-level
tasks, adding an additional dimension to the evalu-
ation splits. For this reason, we present the results
in a bar chart rather than the line chart used in
ABCDs and CUBES. The varying complexity of
actions also explains the noisier trends seen in the
HOUSE dataset results. Qualitative examples of
the output can be found in Appendix D.

RQ3: Which alignment signal—contrastive, re-
constructive, or mean square error—best grounds
language? From Table 1, we see that alignment
is necessary; RSNone performs similarly to the TO

25240

https://github.com/HIRO-group/ReSEED

Model ABCDs CUBES HOUSE
Text-Only 24.3 ±0.1 37.9 ±0.9 56.1 ±5.0

RSNone 12.1 ±4.0 39.4 ±1.5 52.7 ±6.1

RSCont 10.8 ±4.3 66.5 ±1.1 68.2 ±2.4

RSMSE 99.7 ±0.3 33.4 ±1.3 60.7 ±4.1

RSRCE 81.0 ±19.0 59.7 ±1.8 68.2 ±3.1

RSAll3 100.0 ±0.0 65.0 ±0.9 75.7 ±1.7

Table 1: Comparison of alignment losses used in RE-
SEED (RS). All3 indicates a combination of all three
alignment losses. Results are µ± SE exact match accu-
racy across 5 seeds.

Model ABCDs CUBES HOUSE
TOFinal 24.6 ±0.2 37.3 ±0.9 69.9 ±1.1

TOInit&Final 24.5 ±0.1 36.6 ±1.1 68.7 ±1.1

TOPer Phrase 24.3 ±0.1 37.9 ±0.9 56.1 ±5.0

RSFinal 24.2 ±0.0 61.9 ±1.1 68.1 ±2.9

RSInit&Final 33.0 ±8.6 62.7 ±1.9 71.9 ±3.4

RSPer Phrase 100.0 ±0.0 65.0 ±0.9 75.7 ±1.7

Table 2: Comparison of RESEED (RS) and a text-only
(TO) baseline with varying [S] token frequencies. Re-
sults are µ± SE exact match accuracy across 5 seeds.

model. Interestingly, the alignment signal that is
the most beneficial varies per dataset, but using all
alignment signals, RSAll3, provides competitive re-
sults in all three datasets. As such, this is the setup
we use for all other experiments.

RQ4: Does providing alignment at each state im-
prove grounding? From Table 2, for the text-only
baseline, including additional [S] tokens either has
minimal impact, or, in the case of HOUSE, is de-
teriorates performance. In this latter case, we hy-
pothesize the additional token(s) can be used by
the model to further overfit to the training data.
In contrast, for RESEED, we see a clear trend of
improvement when including additional state rep-
resentations, with RSPer Phrase providing the best
result and lowest standard error in each dataset.

Model ABCDs CUBES HOUSE
Text-Only 24.3 ±0.1 37.9 ±0.9 56.1 ±5.0

RSImplicit 24.5 ±0.1 34.3 ±3.1 59.1 ±4.3

RSExplicit 100.0 ±0.0 65.0 ±0.9 75.7 ±1.7

Table 3: Comparison of RESEED with and without
explicit refeeding. Results are µ± SE exact match accu-
racy across 5 seeds.

RQ5: How beneficial is explicit refeeding com-
pared to implicit alignment? Table 3 demon-
strates that explicitly refeeding the learned repre-
sentations is core to the performance of RESEED.
Unlike prior work, implicit alignment provides lit-
tle to no benefit in our experiments. As the system

Model Size ABCDs CUBES HOUSE
RESEED 84M 100.0 ±0.0 65.0 ±0.9 75.7 ±1.7

Qwen2.5 0.5B 31.4 ±1.0 0.2 ±0.2 1.8 ±0.6

Qwen2.5 3B 42.8 ±1.6 0.6 ±0.2 4.0 ±0.5

Qwen2.5 7B 40.0 ±2.2 0.4 ±0.4 26.4 ±0.4

GPT4o mini 45.6 ±2.1 1.0 ±0.5 28.4 ±1.8

GPT4o 51.6 ±2.5 9.0 ±0.7 20.8 ±1.4

Claude3.7 Sonnet 82.6 ±2.0 16.0 ±1.4 14.2 ±1.0

Table 4: Comparison of RESEED (RS) to modern
LLMs. Modern LLMs are provided 10 in-context ex-
amples and are evaluated on a subset of 100 examples
divided evenly across evaluation splits. Results are µ±
SE exact match accuracy across 5 seeds.

was tuned for explicit refeeding, it is possible that
implicit alignment could be improved if different
subsets of losses or hyper parameters are used, or
if additional methods, such as Tang et al. (2021)’s
teacher-student distillation, are integrated. How-
ever, given the more direct signal it provides and
the results in Table 3, we believe explicit refeeding
is a stronger mechanism to ground language. We
note that refeeding does comes at the cost of a sec-
ond forward pass, increasing compute and training
time. However, this is a relatively small cost for
improved generalizability of the model.

5.1 Comparison to State of the Art

The primary motivation of this paper is to tackle the
fundamental limitations of ungrounded text-based
training. To support this motivation, we evaluate
several state-of-the-art LLMs (i.e., Qwen2.5 (Yang
et al., 2024), GPT4o (OpenAI, 2023), Claude Son-
net (Anthropic, 2024)) on our benchmarks. Each
model is prompted with a task description and 10
in-context examples (see Appendix B). The results,
shown in Table 4, are consistent with other work
(Dziri et al., 2023; Valmeekam et al., 2023) show-
ing that current text-based LLMs struggle on tasks
involving multi-step reasoning. Notably, RESEED
outperforms every model on every dataset while
being orders of magnitude smaller. We note that
only RESEED is trained on these tasks as modern
LLMs are evaluated in a few-shot setting. Thus,
these results are only intended to highlight that scal-
ing text-only models does not solve the challenges
of sequential reasoning.

6 Conclusion

In this paper, we present a novel grounding mecha-
nism, RESEED, which produces and then refeeds
latent states embeddings to improve the sequential
reasoning of LLMs. We then evaluate RESEED

25241

and a text-only baseline on three sequential rea-
soning benchmarks that we developed—ABCDs,
CUBES, and HOUSE—and demonstrate that RE-
SEED not only substantially improves the abil-
ity of LLMs to generalize to longer instruction
lengths, but also scales better than text-only train-
ing. These results underscore the importance of
grounding language in structured environmental
feedback. However, progress in this area is cur-
rently limited by the scarcity of high-quality, paired
text-trajectory datasets. To accelerate advances in
grounded reasoning and robust generalization, we
call on the community to prioritize the creation
and open dissemination of diverse, richly anno-
tated text-trajectory datasets. Such resources will
become critical for training models that can reason
over actions, states, and sequences in ways that
align more closely with real-world dynamics.

Limitations

RESEED faces two primary limitations.
First, it introduces additional computational

overhead due to the need for two forward passes.
This cost is most significant during training, as
the longer gradient path requires more memory
and the addtional forward pass increase the time
taken to complete one epoch. At inference time,
no gradients are used used and iterative generation
is already standard. To mitigate memory require-
ments, we explored a two-stage optimization pro-
cedure: one forward and backward pass to align
latent states, followed by a second separate for-
ward and backward pass to train generation. As
shown in Appendix C, this approach still outper-
forms the baseline and only slightly underperforms
the one-stage procedure, making a viable alterna-
tive is memory constraints exist.

Second, RESEED requires access to paired text-
trajectory data for training. While this limits ap-
plicability in domains lacking such resources, our
results demonstrate the substantial value of this su-
pervision signal. We hope this work encourages
the development of more diverse and scalable text-
trajectory datasets, and we view this as a necessary
step for progress in grounded language understand-
ing.

Finally, we note an additional limitation of our
evaluation benchmarks, which while diverse in
structure, are still limited in scope. All three are
deterministic, template-based, and operate in rela-
tively constrained state and action spaces. In con-

trast, real-world environments often involve ambi-
guity, stochasticity, and varied linguistic expression.
Moreover, even our largest benchmark contains
only 218 examples—small relative to modern pre-
training corpora. Extending RESEED to broader,
more complex, and non-deterministic domains is
an important direction for future work. Doing so,
however, will require scaling up dataset creation
efforts accordingly.

Acknowledgments

This work was supported by the Army Re-
search Laboratory (Grants W911NF-21-2-02905,
W911NF-21-2-0126) and by the Office of Naval
Research (Grant N00014-22-1-2482).

References
Anthropic. 2024. Introducing the next generation of

claude.

Vidhisha Balachandran, Jingya Chen, Neel Joshi, Be-
smira Nushi, Hamid Palangi, Eduardo Salinas, Vib-
hav Vineet, James Woffinden-Luey, and Safoora
Yousefi. 2024. Eureka: Evaluating and understand-
ing large foundation models. Microsoft Research.
MSR-TR-2024-33.

Emily M. Bender and Alexander Koller. 2020. Climb-
ing towards NLU: On meaning, form, and under-
standing in the age of data. In Proceedings of
the 58th Annual Meeting of the Association for
Computational Linguistics, pages 5185–5198, On-
line. Association for Computational Linguistics.

Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob
Andreas, Yoshua Bengio, Joyce Chai, Mirella Lap-
ata, Angeliki Lazaridou, Jonathan May, Aleksandr
Nisnevich, Nicolas Pinto, and Joseph Turian. 2020.
Experience grounds language. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 8718–8735,
Online. Association for Computational Linguistics.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain
Lamprier, Olivier Sigaud, and Pierre-Yves Oudeyer.
2023. Grounding large language models in interac-
tive environments with online reinforcement learning.
CoRR.

Yangyi Chen, Xingyao Wang, Hao Peng, and Heng
Ji. 2024. A single transformer for scalable vision-
language modeling. Transactions on Machine
Learning Research.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem
Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu
Nguyen, and Yoshua Bengio. 2019. BabyAI: First
steps towards grounded language learning with a
human in the loop. In International Conference on
Learning Representations.

25242

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.emnlp-main.703
https://doi.org/10.48550/arXiv.2302.02662
https://doi.org/10.48550/arXiv.2302.02662
https://openreview.net/forum?id=nuzFG0Rbhy
https://openreview.net/forum?id=nuzFG0Rbhy
https://openreview.net/forum?id=rJeXCo0cYX
https://openreview.net/forum?id=rJeXCo0cYX
https://openreview.net/forum?id=rJeXCo0cYX

Maxime Chevalier-Boisvert, Bolun Dai, Mark Tow-
ers, Rodrigo Perez-Vicente, Lucas Willems, Salem
Lahlou, Suman Pal, Pablo Samuel Castro, and Jor-
dan Terry. 2023. Minigrid & miniworld: Modu-
lar & customizable reinforcement learning environ-
ments for goal-oriented tasks. In Advances in Neural
Information Processing Systems 36, New Orleans,
LA, USA.

Embodiment Collaboration, Abby O’Neill, Abdul
Rehman, Abhiram Maddukuri, Abhishek Gupta, Ab-
hishek Padalkar, Abraham Lee, Acorn Pooley, Agrim
Gupta, Ajay Mandlekar, Ajinkya Jain, Albert Tung,
Alex Bewley, Alex Herzog, Alex Irpan, Alexan-
der Khazatsky, Anant Rai, Anchit Gupta, Andrew
Wang, and 262 others. 2024. Open x-embodiment:
Robotic learning datasets and rt-x models. Preprint,
arXiv:2310.08864.

Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben
Kybartas, Tavian Barnes, Emery Fine, James Moore,
Matthew Hausknecht, Layla El Asri, Mahmoud
Adada, Wendy Tay, and Adam Trischler. 2019.
Textworld: A learning environment for text-based
games. In Computer Games, pages 41–75, Cham.
Springer International Publishing.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine
Li, Liwei Jiang, Bill Yuchen Lin, Sean Welleck, Peter
West, Chandra Bhagavatula, Ronan Le Bras, Jena D.
Hwang, Soumya Sanyal, Xiang Ren, Allyson Et-
tinger, Zaid Harchaoui, and Yejin Choi. 2023. Faith
and fate: Limits of transformers on compositionality.
In Thirty-seventh Conference on Neural Information
Processing Systems.

Vittorio Gallese and George Lakoff. 2005. The brain’s
concepts: The role of the sensory-motor system in
conceptual knowledge. Cognitive neuropsychology,
22(3-4):455–479.

Arthur M Glenberg and Michael P Kaschak. 2002.
Grounding language in action. Psychonomic bulletin
& review, 9(3):558–565.

Herbert Paul Grice. 1975. Logic and conversation.
Syntax and semantics, 3:43–58.

Chan-Jan Hsu, Hung-yi Lee, and Yu Tsao. 2022.
XDBERT: Distilling visual information to BERT
from cross-modal systems to improve language un-
derstanding. In Proceedings of the 60th Annual
Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 479–
489, Dublin, Ireland. Association for Computational
Linguistics.

Woojeong Jin, Dong-Ho Lee, Chenguang Zhu, Jay Pu-
jara, and Xiang Ren. 2022. Leveraging visual knowl-
edge in language tasks: An empirical study on in-
termediate pre-training for cross-modal knowledge
transfer. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2750–2762, Dublin,
Ireland. Association for Computational Linguistics.

Belinda Z. Li, Maxwell Nye, and Jacob Andreas.
2023. Language modeling with latent situations.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 12556–12571,
Toronto, Canada. Association for Computational Lin-
guistics.

Ruibo Liu, Jason Wei, Shixiang Shane Gu, Te-Yen
Wu, Soroush Vosoughi, Claire Cui, Denny Zhou,
and Andrew M. Dai. 2023. Mind’s eye: Grounded
language model reasoning through simulation. In
The Eleventh International Conference on Learning
Representations.

Ilya Loshchilov and Frank Hutter. 2019. Decou-
pled weight decay regularization. In International
Conference on Learning Representations.

Oier Mees, Lukas Hermann, Erick Rosete-Beas, and
Wolfram Burgard. 2022. Calvin: A benchmark
for language-conditioned policy learning for long-
horizon robot manipulation tasks. IEEE Robotics
and Automation Letters (RA-L), 7(3):7327–7334.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

OpenAI. 2023. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Gray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems.

Cory Paik, Stéphane Aroca-Ouellette, Alessandro Ron-
cone, and Katharina Kann. 2021. The World of an
Octopus: How Reporting Bias Influences a Language
Model‘s Perception of Color. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 823–835, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li,
Tingwu Wang, Sanja Fidler, and Antonio Tor-
ralba. 2018. Virtualhome: Simulating household
activities via programs. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 8494–8502.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. In Proceedings of the 38th International
Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages
8748–8763. PMLR.

25243

https://arxiv.org/abs/2310.08864
https://arxiv.org/abs/2310.08864
https://openreview.net/forum?id=Fkckkr3ya8
https://openreview.net/forum?id=Fkckkr3ya8
https://doi.org/10.18653/v1/2022.acl-short.52
https://doi.org/10.18653/v1/2022.acl-short.52
https://doi.org/10.18653/v1/2022.acl-short.52
https://doi.org/10.18653/v1/2022.acl-long.196
https://doi.org/10.18653/v1/2022.acl-long.196
https://doi.org/10.18653/v1/2022.acl-long.196
https://doi.org/10.18653/v1/2022.acl-long.196
https://doi.org/10.18653/v1/2023.findings-acl.795
https://openreview.net/forum?id=4rXMRuoJlai
https://openreview.net/forum?id=4rXMRuoJlai
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON
https://doi.org/10.18653/v1/2021.emnlp-main.63
https://doi.org/10.18653/v1/2021.emnlp-main.63
https://doi.org/10.18653/v1/2021.emnlp-main.63
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html

Alec Radford, Karthik Narasimhan, Tim Sali-
mans, and Ilya Sutskever. 2018. Improving
language understanding by generative pre-
training. Available at https://cdn.openai.com/
research-covers/language-unsupervised/
language_understanding_paper.pdf.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Shane Storks, Qiaozi Gao, Yichi Zhang, and Joyce Chai.
2021. Tiered reasoning for intuitive physics: Toward
verifiable commonsense language understanding.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 4902–4918, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Hao Tan and Mohit Bansal. 2020. Vokenization: Im-
proving language understanding with contextualized,
visual-grounded supervision. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2066–2080,
Online. Association for Computational Linguistics.

Tianyi Tang, Yushuo Chen, Yifan Du, Junyi Li,
Wayne Xin Zhao, and Ji-Rong Wen. 2023. Learn-
ing to imagine: Visually-augmented natural lan-
guage generation. In Proceedings of the 61st Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 9468–
9481, Toronto, Canada. Association for Computa-
tional Linguistics.

Zineng Tang, Jaemin Cho, Hao Tan, and Mohit Bansal.
2021. VidlanKD: Improving language understanding
via video-distilled knowledge transfer. In Advances
in Neural Information Processing Systems.

Karthik Valmeekam, Matthew Marquez, Sarath Sreed-
haran, and Subbarao Kambhampati. 2023. On the
planning abilities of large language models - a crit-
ical investigation. In Thirty-seventh Conference on
Neural Information Processing Systems.

Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay
Besiroglu, Lennart Heim, and Marius Hobbhahn.
2024. Position: will we run out of data? limits
of llm scaling based on human-generated data. In
Proceedings of the 41st International Conference on
Machine Learning, ICML’24. JMLR.org.

Weizhi Wang, Li Dong, Hao Cheng, Haoyu Song, Xi-
aodong Liu, Xifeng Yan, Jianfeng Gao, and Furu Wei.
2023. Visually-augmented language modeling. In
The Eleventh International Conference on Learning
Representations.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, and 3 others. 2020. Trans-
formers: State-of-the-art natural language processing.

In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Jiannan Xiang, Tianhua Tao, Yi Gu, Tianmin Shu,
Zirui Wang, Zichao Yang, and Zhiting Hu. 2023.
Language models meet world models: Embod-
ied experiences enhance language models. In
Thirty-seventh Conference on Neural Information
Processing Systems.

Changnan Xiao and Bing Liu. 2025. Generalizing
reasoning problems to longer lengths. In The
Thirteenth International Conference on Learning
Representations.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian-
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, and 22 oth-
ers. 2024. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115.

Yue Yang, Wenlin Yao, Hongming Zhang, Xiaoyang
Wang, Dong Yu, and Jianshu Chen. 2022. Z-LaVI:
Zero-shot language solver fueled by visual imagi-
nation. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 1186–1203, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Rowan Zellers, Ari Holtzman, Matthew Peters, Roozbeh
Mottaghi, Aniruddha Kembhavi, Ali Farhadi, and
Yejin Choi. 2021. PIGLeT: Language grounding
through neuro-symbolic interaction in a 3D world.
In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and
the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers),
pages 2040–2050, Online. Association for Computa-
tional Linguistics.

Andy Zeng, Pete Florence, Jonathan Tompson, Stefan
Welker, Jonathan Chien, Maria Attarian, Travis Arm-
strong, Ivan Krasin, Dan Duong, Vikas Sindhwani,
and Johnny Lee. 2020. Transporter networks: Re-
arranging the visual world for robotic manipulation.
Conference on Robot Learning (CoRL).

Xinyun Zhang, Haochen Tan, Han Wu, and Bei
Yu. 2024. Towards versatile and efficient vi-
sual knowledge integration into pre-trained lan-
guage models with cross-modal adapters. Preprint,
arXiv:2305.07358.

25244

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://doi.org/10.18653/v1/2021.findings-emnlp.422
https://doi.org/10.18653/v1/2021.findings-emnlp.422
https://doi.org/10.18653/v1/2020.emnlp-main.162
https://doi.org/10.18653/v1/2020.emnlp-main.162
https://doi.org/10.18653/v1/2020.emnlp-main.162
https://doi.org/10.18653/v1/2023.acl-long.526
https://doi.org/10.18653/v1/2023.acl-long.526
https://doi.org/10.18653/v1/2023.acl-long.526
https://openreview.net/forum?id=nqSLT0WcZq
https://openreview.net/forum?id=nqSLT0WcZq
https://openreview.net/forum?id=X6dEqXIsEW
https://openreview.net/forum?id=X6dEqXIsEW
https://openreview.net/forum?id=X6dEqXIsEW
https://openreview.net/forum?id=8IN-qLkl215
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://openreview.net/forum?id=SVBR6xBaMl
https://openreview.net/forum?id=SVBR6xBaMl
https://openreview.net/forum?id=zpENPcQSj1
https://openreview.net/forum?id=zpENPcQSj1
https://doi.org/10.18653/v1/2022.emnlp-main.78
https://doi.org/10.18653/v1/2022.emnlp-main.78
https://doi.org/10.18653/v1/2022.emnlp-main.78
https://doi.org/10.18653/v1/2021.acl-long.159
https://doi.org/10.18653/v1/2021.acl-long.159
https://arxiv.org/abs/2305.07358
https://arxiv.org/abs/2305.07358
https://arxiv.org/abs/2305.07358

A HOUSE details

Atomic Actions Low-Level Tasks High-Level Tasks
PickupObject put_X_on_Y stack_3
PutObject put_X_in_Y stack_4
OpenObject heat_X water_plants_using_X
CloseObject fill_X make_iced_coffee_in_X
ToggleObjectOn brew_X brew_tea_in_X
ToggleObjectOff clean_X toast_X
PourFromObject slice_X cook_X
SliceObject pour_X_onin_Y cook_and_remove_X
WipeObject wipe_X_dry clean_and_dry_X

wipe_X_clean clean_large_X

Table 5: List of atomic actions, low-level tasks, and high-level tasks.

State Feature Related Affordance
ObjectName (100) –
isWet (2) wettable
isCooked (2) cookable
isClean (2) cleanable
isFilledWithLiquid (2) fillable
isOpen (2) openable
isPickedUp (2) pickupable
isSliced (2) sliceable
isToggled (2) toggleable
objectTemperature (3) canChangeTemp
mass_change (3) fillable (indirectly)
parentReceptaclesOn (6) receptacleOn
parentReceptaclesIn (6) receptacleIn

Table 6: Mapping of state features to their related affordances. Number in (parentheses) denote the range of values
the feature can take on.

HOUSE is a dataset inspired by the PigPen dataset used in Zellers et al. (2021). We made the decision
to adapt PigPen, rather than using the original dataset, for three primary reasons: 1) PigPen divides each
full high-level task trajectory into a single (st, at, st+1) transition tuple, whereas we are interested in
outcome of multiple sequential steps. 2) We found a range of inconsistencies and non-deterministic
outcomes within the PigPen dataset (e.g. toast getting hot when turning ON the toaster in one instance,
and the toast getting hot when turning OFF the toaster in one instance). 3) We wanted more control over
the compositionality of tasks. A full list of actions and tasks is shown in Table 5.

To this end, we manually crafted a deterministic transition function for each low-level action based on
the affordances of each object and used it to create trajectories our trajectories. Matching ABCDs and
CUBES, we use templates to create the language description of the trajectory. A full list of state features
(used to encode the state) and affordances (unchangeable properties of objects which are not visible, but
effect the outcome of the transition function) are shown in Table 6.

25245

B ICL prompt

Fig. 4 outlines the full prompt used for in context learning. <> denote placeholder values. All examples
came from the same distribution as the training set. For HOUSE, we ensured that a representative example
for each of the 10 low-level tasks were used.

system >>>
You are tasked to solve sequential reasoning problems in which you will be given an initial
state and a sequence of actions. Your job is to predict the final state after the sequence
of actions is applied to the initial state. You will be given a list of examples that you
can use to learn how to solve the problem. You must match the output format of the final
state exactly. You will be graded on the exact accuracy of your predictions.

Expected output format:
<dataset specific formatting>.
Where terms enclosed in <> should be replaced with the actual output values.

user >>>
---Example 1---
Initial State and Actions:
<example 1 initial state & actions>

assistant >>>
Final State:
<example 1 final state>

...

user >>>
---Example 10---
Initial State and Actions:
<example 10 initial state & actions>

assistant >>>
Final State:
<example 10 final state>

user >>>
---Problem---
Initial State and Actions:
<initial state and actions for problems to solve>

Figure 4: In-context learning prompt example.

C Two-Step Training

To explore a more computationally friendly approach, we test a variation of RESEED, named that fully
separates the alignment step from the generation step. Specifically, on alternating batches, we either
perform a forward and backwards pass using the alignment losses, or we perform a forward pass with
no gradients to generate Z ′ and then use those for the forward pass with gradients which decodes the
final state description. A comparison of results between these two approaches is shown in Table 7. While
separating the alignment and generation steps does slightly reduce the performance of RESEED, it still
outperforms the TOmodel, and does so with no additional memory requirements.

Model ABCDs CUBES HOUSE
Text-Only 24.3 ±0.1 37.9 ±0.9 56.1 ±5.0

RSSingle Pass 100.0 ±0.0 65.0 ±0.9 75.7 ±1.7

RSSeparate Passes 99.8 ±0.2 64.6 ±1.5 70.5 ±2.9

Table 7: Comparison of RESEED (RS) with and without separate backward passes. Results are the average accuracy
and standard error across 5 seeds.

25246

D Qualitative Examples

We provide qualitative examples comparing the text-only baseline and RESEED across three domains:
ABCDS, CUBES, and HOUSE.

D.1 ABCDs

When observing the text-only baseline, the final predicted word is almost always the most frequent
cardinal direction found in the training set (typically “north”). In contrast, RESEED identifies the changes
being applied and outputs the correct final direction.

Input description: The robot is facing south. The robot turns 360 degrees counterclockwise. Then
the robot turns 360 degrees clockwise. Then the robot turns 90 degrees clockwise. Then the robot turns
around.

Baseline prediction: The robot is now facing north.
RESEED prediction: The robot is now facing east.
True outcome: The robot is now facing east.

D.2 CUBES

The text-only baseline fails to track implicit block movement. In the example below, the green block is
stacked on the purple block before the final action. When the purple block is moved, the green block
moves along with it. While the baseline fails to capture this indirect consequence, RESEED reasons
correctly.

Input description: A blue, a green, a red, a yellow, and a purple block start in columns one through five
respectively. The robot picks up the blue block and places it in column five. Then the robot picks up the
blue block and places it in column one. Then the robot picks up the yellow block and places it in column
three. Then the robot picks up the green block and places it in column three. Then the robot picks up the
green block and places it in column five. Then the robot picks up the green block and places it in column
four. Then the robot picks up the green block and places it in column five. Then the robot picks up the
purple block and places it in column one.

Baseline prediction: The tallest stack is in column one and is two blocks tall (blue, green).
RESEED prediction: The tallest stack is in column one and is three blocks tall (blue, purple, green).
True outcome: The tallest stack is in column one and is three blocks tall (blue, purple, green).

D.3 HOUSE

In HOUSE, the text-only baseline often predicts the direct consequences of the final action but fails to
track object changes along the way. In the example below, the baseline identifies the desk becoming wet
and hot but misses the fact that the kettle is hot and being held. RESEED captures both.

Input description: There is a desk, a kettle, a bathtub, and a bench. The robot picks up the kettle. Then
the robot places the kettle in the bathtub. Then the robot turns on the bathtub. Then the robot turns off the
bathtub. Then the robot picks up the kettle. Then the robot places the kettle on the bench. Then the robot
turns on the kettle. Then the robot turns off the kettle. Then the robot picks up the kettle. Then the robot
empties out the contents of the kettle onto the desk.

Baseline prediction: The desk is now wet, and hot.
RESEED prediction: The desk is now wet, and hot. The kettle is now being held by the robot, and hot.
True outcome: The desk is now wet, and hot. The kettle is now being held by the robot, and hot.

25247

E Additional Implementation Details

E.1 Hyper parameters
To tune the TO, we performed a grid search on the learning rate (lr ∈ {1e− 5, 3e− 5, 1e− 4}, batch size
(bs ∈ {32, 64, 128}), decay rate (per update step) (dr ∈ {0.9999, 0.99995, 0.99999}, and warm up steps
(ws ∈ {400, 1000, 2000}). We found that across datasets, a batch size of 64 and 1000 warm up steps
consistently provided the best results. For learning rate, we found 1e− 4 performed best on CUBES and
HOUSE, while a learning rate of 3e− 5 performed best on ABCDs. For decary rate, we found 0.99995
performed best on CUBES and HOUSE, while a decay rate of 0.99999 performed best on ABCDs.

We used the same above hyper parameters for RESEED, only tuning hdim ∈
{16, 32, 64, 128, 256, 512} for each dataset. We found hdim = 16, hdim = 128, and hdim = 256
performed best ABCDs, CUBES, and HOUSE respectively.

For the in-context learning LLMs used, all in-context learning examples came from the training set
and were manually verified to be representative examples. The GPT-4o-mini checkpoint used was: gpt-
4o-mini-2024-07-18, the GPT-4o checkpoint used was gpt-4o-2024-08-06, and the Claude-3.7-sonnet
checkpoint used was claude-3-7-sonnet-20250219.

The five random seeds used were: [9590, 1282, 5742, 4674, 2921].

E.2 Computational Budget
All experiments were run using a single A100 (all experiments fit on a 40GB A100, although 80GB A100s
were used as well). To reach convergence on a single run took between 10 minutes (1024 samples) and 16
hours (262144 samples). Compared to the TO model, RESEED took between 1.1x and 2x the amount of
time to reach convergence. The additional cost is primarily due to the two forward passes, although on
the ABCDs dataset, RESEED reached convergence much faster, mitigating the cost substantially. The
experiments in this paper involved 20 runs per seed per dataset (with 5 seeds and 3 datasets), for a total of
300 runs.

F AI assistant use

Claude-3.7-Sonnet-Thinking (Anthropic, 2024) was used to develop small portions of the code base.
GPT-4o (OpenAI, 2023) was used as to edit the text at a paragraph level. All code and writing output
from AI assistants were manually verified and edited as necessary by a human before use.

G Additional Attributions and Attribution Info

The seed icon used in Fig. 1 is from Flaticon.com. All artifacts were used in a manner consistent with
their intended use.

25248

